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The problem of doping Mott insulators is of fundamental importance and long-standing interest
in the study of strongly correlated electron systems. The advent of semiconductor based moiré
materials opens a new ground for simulating the Hubbard model on the triangular lattice and
exploring its rich phase diagram as a function of doping and external magnetic field. Based on our
recent identification of spin polaron quasiparticle in Mott insulator [1], in this work we predict the
emergence of a pseudogap metal phase at small doping below half filling and an intermediate range
of fields, which exhibits a single-particle gap and a doping-dependent magnetization plateau.

As the paradigmatic model for strongly correlated elec-
tron systems, the Hubbard model captures in the sim-
plest form the essence of numerous electronic phenomena
[2], including metal-insulator transition, metallic ferro-
magnetism, charge/spin stripe states and unconventional
superconductivity. The Hubbard model was studied in-
tensively in the context of cuprate high temperature su-
perconductors [3]. Recently, transition metal dichalco-
genide (TMD) moiré heterostructures have emerged as a
robust and tunable platform for the realization of Hub-
bard model physics [4–9]. The moiré superlattice due to
lattice mismatch or rotational twist introduces a long-
wavelength periodic potential for itinerant charge car-
riers. At large moiré period, the system is akin to an
array of artificial atoms, where each “atom” corresponds
to a local minimum of the moiré potential and neighbor-
ing atoms are weakly coupled by tunneling through the
potential barrier. As a result, narrow moiré bands are
formed, and the band dispersion is well described by a
tight binding model on the triangular or honeycomb lat-
tice [4, 5]. By further including Coulomb repulsion, a
Hubbard model with on-site and non-local interactions
[10] is obtained as the effective Hamiltonian of TMD
moiré superlattices.

Compared to other Hubbard model materials, TMD
moiré superlattice has a distinct advantage due to its ro-
bustness and tunability. The formation of narrow moiré
bands needed for Mott-Hubbard physics does not require
a magic twist angle. The band filling can be tuned contin-
uously by electrostatic gating. The non-local interaction
in moiré Hubbard systems can be screened by metallic
gates [11]. The moiré bandwidth can be tuned by the
twist angle and out-of-plane electric field [8, 12].

As a hallmark of Hubbard model physics at strong cou-
pling (U ≫ t), Mott insulating states have been observed
in various TMD bilayers such as WSe2/WS2 at the fill-
ing of n = 1 electron (or hole) per moiré unit cell [6, 7].
The existence of local magnetic moments in the Mott
state is directly revealed by magnetic circular dichroism
(MCD) [7, 9, 11]. At low magnetic fields, the tempera-
ture dependence of the MCD signal shows Curie-Weiss
behavior with a negative Weiss constant that indicates
antiferromagnetic exchange interaction J = 4t2/U > 0.

At low temperature, the MCD signal saturates at a field
B∗ where the Zeeman energy gµBB

∗ becomes compara-
ble to J .

Up to now, theoretical studies of TMD moiré mate-
rials based on Hubbard model have mainly focused on
the insulating states [13–20]. Much less explored are the
metallic states that appear ubiquitously at generic filling
fractions. Kinetic magnetism in the metallic states is be-
ginning to be studied [1, 21, 22]. Evidence of heavy Fermi
liquids is being observed in MoTe2/WSe2[8, 23, 24]. An
intriguing open question is whether moiré Hubbard sys-
tems host metallic states that are fundamentally distinct
from Fermi liquids.

In this work, we predict a pseudogap metal phase in
doped moiré Mott insulator at n < 1 on the triangular
lattice. This phase is realized under a certain range of
magnetic (Zeeman) fields and evidenced by an intermedi-
ate magnetization plateau corresponding to a total spin
S that is set by the doping density δ = 1− n > 0:

Sp = N(1− 3δ)/2, (1)

where N is the number of unit cells. Our pseudo-
gap metal is a non-Fermi liquid distinct from an or-
dinary metal by the presence of an energy gap to
adding/removing an electron. Therefore, photoemission
and tunneling measurements will find a single-particle
gap at the Fermi level despite that the state is conduct-
ing and compressible. The pseudogap metal contrasts
sharply with the fully spin polarized state at higher fields
which has total spin Sm = N(1 − δ)/2 and is a conven-
tional Fermi liquid, as well as the zero-field state which
is a metallic antiferromagnet with 120◦ order.

The microscopic origin of the pseudogap metal at
n = 1 − δ can be traced to the nature of charge −e
quasiparticle in the Mott insulator at n = 1. For the
simplicity of notation, we consider electron (with charge
e) filling of the moiré conduction band, so that n < 1
corresponds to hole doping of the moiré Mott insulator.
As we showed in recent work with Davydova [1], for the
triangular lattice Hubbard model in the strong-coupling
regime U ≫ t, in a wide range of magnetic fields, the
undoped Mott insulator is fully spin polarized, but the
ground state with one doped hole is not, but contains
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FIG. 1. The total spin S under magnetic field obtained by DMRG at infinite U limit. Finite-size scaling of (a) δ = 1/8 and
(b)δ = 1/6 hole doping on two-leg ladder with Lx up to 80. (c) Doping dependent magnetization plateaus in Lx = 24, 32
three-leg cylinders.

one spin-flip that is bound to the hole [25], resulting in
an itinerant spin polaron that lowers the total energy.
Remarkably, the formation of spin polaron has a kinetic
origin associated with the correlated motion of the hole
and spin-flip. The binding energy between the hole and
spin-flip depends on the center of mass momentum k and
reaches the maximum at k = 0, which is on the order of
the hopping amplitude t. In the limit U → ∞, we found
by exact solution ϵb(k = 0) ≈ 0.42t (also obtained in
Ref. [25]). Therefore, for intermediate magnetic fields
h1 < h < h2 with h1 ∼ J and h2 ∼ t, the low-energy
charge −e quasiparticle of the spin-polarized Mott insu-
lator is the spin polaron instead of the bare hole.

Importantly, while bare hole has spin s = 1
2 relative to

the undoped and fully polarized Mott insulator, spin po-
laron has s = 3

2 due to the extra spin-flip it carries. Due
to the difference in their spin quantum numbers, these
two types of quasiparticles can be experimentally distin-
guished by measuring the lower Hubbard band edge as
a function of the magnetic field [1]. Following our theo-
retical prediction, a recent compressibility measurement
reported evidence of a transition from spin polaron to
bare hole excitation as h increases [26].

This work is concerned with various types of metallic
states at finite hole density (n = 1− δ) that arise under
the application of a magnetic field. Of particular interest
is that for small hole doping and at intermediate mag-
netic fields, a dilute gas of itinerant spin polarons may
be formed, leading to an unconventional metal [1]. From
the fact that a spin polaron carries spin s = 3

2 , it immedi-
ately follows that the total spin of the spin polaron metal
Sp is locked to the doping level as given by Eq. (1), thus
leading to a magnetization plateau with incomplete spin
polarization. It also follows that there is an energy gap
to adding or removing spin- 12 electrons, which are high-
energy excitations orthogonal to the underlying spin-32
spin polarons. Thus, our spin polaron metal is a pseu-
dogap metal distinct from Fermi liquids. This picture is

supported by our theoretical and numerical studies to be
presented below.

We study the triangular lattice Hubbard model for
TMD heterobilayers at electron filling n ≤ 1 (n is the
number of electrons per unit cell):

H = −t
∑
⟨i,j⟩

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ +
h(N↑ −N↓)

2

where c†iσ(ciσ) is the fermion creation (annihilation) op-

erator for spin σ on site i, niσ = c†iσciσ is the number
operator and h is the external magnetic field that couples
to the z-component of the total spin Sz. We consider the
case of large moiré wavelength, where the kinetic energy
t is much smaller than the onsite repulsion U .

At half-filling (n = 1), the ground state is an antifer-
romagnetic Mott insulator whose magnetic property is
governed by the Heisenberg model on the triangular lat-
tice: HJ = J

∑
⟨ij⟩ si ·sj . In the experimentally relevant

strong-coupling regime U ≫ t, the exchange interaction
J is very small and the Mott insulator becomes fully po-
larized above a small magnetic field h1 = 9

2J , which is
on the order of 1 T for WSe2/WS2 [7].

In contrast, at finite doping, magnetism arises predom-
inantly from the kinetic motion of doped charges, with
an energy scale set by the hopping amplitude t that is
much larger than J = 4t2/U . To highlight the kinetic
mechanism for magnetism, we shall mainly focus on the
Hubbard model in the infinite-U limit.

We use exact diagonalization and density matrix renor-
malization group (DMRG) methods [27] to study the
ground state of H as a function of magnetic field and
doping. ED calculation is performed on two-leg ladders
(Ly=2) with Lx between 8 and 21. To reduce the finite-
size effects, periodic and anti-periodic boundary condi-
tions in x direction are used for even and odd number of
holes, respectively. Since particle number and total spin
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FIG. 2. (a) Hole-spin correlation function Chs(i, o)/δ in a
33 × 3 cylinder with 3 spin polarons, where holes are tightly
bounded to the spin flips. The bottom panel is the Hole-Hole
correlation function Chh(i, o)/δ. o is the center of cylinder.
(b) Schematic figure of doping- and field-dependent phase di-
agram. The data points are taken from DMRG on a 24 × 3
cylinder.

Sz are conserved, we divide the full Hilbert space into
(N↑, N↓) sectors to reduce the computational cost.

We further perform quantum number conserving den-
sity renormalization group (DMRG) calculation [27–29],
as implemented in the ITensor package[30], for two-leg
ladders and multi-leg cylinders (Ly = 3, 4 and 6) with
open boundary condition along the x direction, reaching
system sizes up to 40 × 2, 32 × 3 and 12 × 6. The con-
vergence of our DMRG calculation is improved by keep-
ing track of the basis transformations and using them to
construct a good initial guess for the next step wavefunc-
tions. We introduce a random noise of 10−6 to 10−8 at
first few steps to avoid the local minimum trapping. The
maximum bond dimension and cutoff is set to be 50000
and 10−7, the convergence criteria is 10−7 of the total
energy. As a benchmark, we compare the ground state
property of two-leg ladders with ED and find excellent
agreement.

Fig. 1 shows the ground state magnetization (to-
tal spin S) at various hole doping densities as a func-
tion of magnetic field h. For the two-leg ladder at 1

8
and 1

6 dopings, magnetization curves S(h) clearly con-
verge to the thermodynamic limit with increasing system
sizes Lx. Full spin polarization is attained at high fields
h > h2 ∼ t, showing that kinetic energy of holes gov-
erns magnetic properties in hole-doped Mott insulator at
large U/t. As the magnetic field is reduced, a magne-
tization plateau is observed over an intermediate range
of fields, with the corresponding total spin Sp equal to

Eq.(1). This is exactly expected from the spin polaron
picture: every doped hole is bound to a single spin-flip,
so that the number of spin flips is equal to the number
of doped holes.

As shown in Fig.1(c), magnetization plateau is also
found in three-leg cylinders for various hole dopings up
to at least δ = 1

6 . For δ = 1
12 , the magnetization curves

at two different system sizes Lx = 24, 36 nearly coincide,
showing the convergence to the thermodynamic limit. As
in the two-leg case, the spin polarization on the mag-
netization plateau Sp as a function of doping exactly
matches the formula Eq.(1) expected for the spin polaron
metal. With increasing doping, the width of magnetiza-
tion plateaus shrinks as interaction effect between spin
polarons becomes important.

The presence of spin polaron is further supported
by the spatial correlation between hole and spin-flip in
the ground state. We calculate the real-space correla-
tion function between hole and minority spin (spin-flip):

Chs(i, j) = ⟨nh(i)n↓(j)⟩, where nh(i) = 1 −
∑

σ c
†
iσciσ.

As shown in Fig. 2 for three-leg cylinder, in the presence
of a spin-flip, there is a very high probability (> 72%)
of finding a hole on its nearest-neighbor sites, indicat-
ing a tightly bound state of hole and spin-flip. We also
calculate the density correlation Chh(i, j) = ⟨nh(i)nh(j)⟩
and find doped holes stay away from each other, indi-
cating the repulsive interaction between spin polarons.
These correlation functions also show that at small dop-
ing, each hole spreads over many sites, consistent with
the itinerant character of spin polarons.

Our recent theoretical study [1] shows that the energy
dispersion of a single spin polaron has a unique mini-
mum at Γ with an effective mass significantly larger than
the mass of bare hole. Then, at small hole doping, the
dilute gas of spin polarons has a small Fermi surface cen-
tered at Γ. In contrast, the fully polarized state at high
fields is a dilute gas of bare holes, which has two discon-
nected Fermi pockets aroundK andK ′ valley. Therefore,
for a given doping density, the spin polaron metal and
fully polarized metal, which appear at different ranges of
magnetic field, have distinct Fermi surfaces with different
Fermi wavevectors.

We now demonstrate the existence of Fermi surface at
small doping by observing Friedel oscillations of charge
and spin densities in the presence of boundaries. The
period of Friedel oscillation is given by 2π/2kF , where
kF is the Fermi wavevector. Fig.(3) shows density dis-
tributions in real space at δ = 1

12 hole doping for 32× 3
cylinder with open boundary condition in the x direction.
Pronounced Friedel oscillations are observed in both spin
polaron metal and fully polarized metal. The periodicity
of the oscillation is 4a in spin polaron metal, and 8a in
fully polarized metal.

These results can be understood straightforwardly by
taking into account of the finite circumference of the
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FIG. 3. (a) Friedel oscillation of charge and spin densities in
32×3 cylinder with δ = 1

12
hole doping in spin polaron metal;

(b) Friedel oscillation in fully polarized metal of the same
system. The two metallic states at the same density have
different Fermi wavevectors, leading to different oscillation
periods.

cylinder. In this geometry, the 2D Fermi sea is sliced
into a number of 1D Fermi sea at various ky = 2πn/Ly

with n = 0, ..., Ly−1. For Ly = 3 and δ = 1
12 , in spin po-

laron metal, the line ky = 0 cuts through a single Fermi
surface centered at Γ. The corresponding 2kF leads to
an oscillation period a/(δLy) = 4a. In contrast, in fully
polarized metal, the Fermi wavevector is halved due to
the presence of two disconnected Fermi surfaces, leading
to a doubled period of 8a.

In the presence of single spin polaron, we calculate the
momentum dependent energy levels at the sub-Hilbert
space with single hole and spin flip using ED. A 2D ge-
ometry with system size (Lx, Ly) = (5, 5) is considered
here. The corresponding single spin polaron dispersion
has an unique minimum at Γ and six degenerate excited
states surrounding Γ as shown in Fig. 4(a,b). Due to
the weak interacting nature, spin polarons are filled to
the system from the lowest energy levels. When two spin
polarons are filled, we get six degenerate ground state en-
ergy levels in Fig. 4(c) from the superposition of Γ and
six-fold degenerate excited states in single spin polaron
Hilbert space. In the case of three spin polarons, we find
the lowest energy sectors are directly constructed from
the superposition of Γ state and two of six second lowest
energy states, leading to C2

6 = 15 many-body states. For
the 15 lowest energy levels in 4(d), we have (1+2) at Γ
and (6+6) at nearby momenta, well consistent with the
filling picture of spin polarons.

Our results so far have identified an unconventional
metallic phase—a dilute gas of spin polarons—in the tri-
angular lattice Hubbard model at small hole doping and
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FIG. 4. (a) Single spin polaron energy dispersion and (b)
momentum mesh for 5 × 5 lattice, the ground state and six
excited states are marked as large and small red dots. Energy
levels for (c) two filled spin polarons with six-fold degenerate
ground states, and (d) three filled spin polarons, with (1+2)
fold at Γ and two six-fold degenerate energy levels at nearby
momemta.

intermediate magnetic field. A hallmark of spin polaron
metal is that its zero-temperature magnetization is deter-
mined solely by the doping level as given by Eq.1. It is
a compressible state with a single Fermi surface centered
around Γ.

We now demonstrate another defining feature of
spin polaron metal: it has a single-particle gap, i.e.,
adding/removing an electron costs finite energy. Intu-
itively, the reason is obvious: the constituent particles
forming the metallic state are spin polarons carrying
spin- 32 , while the electron carrying spin- 12 is a high-energy
excitation. To show the single-particle gap explicitly, let
us denote the ground state energy at a given total particle
number N and total spin S by E(N,S) = E0(N,S)−hS,
where E0 is the ground state energy at h = 0. Minimizing
E(N,S) over all possible values of S = 0, ..., N/2 yields
the N -particle ground state energy EN ≡ minS E(N,S)
as well as the corresponding spin which is denoted as SN .
Adding an electron necessarily increases or decreases the
total spin by 1

2 . The single-particle gap is thus defined
by

∆Ee,s = E(N + 1, SN + s)− EN − µ, (2)

with s = ± 1
2 depending on the added electron being spin

↑ or ↓. µ is the chemical potential defined by µ = ∂EN

∂N .
For metallic states in the thermodynamic limit N → ∞,
µ = EN+1−EN . Then, the single-particle gap is equal to
∆Ee,s = E(N,SN−1+s)−EN . In the spin polaron metal
phase, we have SN−1 = SN − s0 with s0 = 3

2 because the
(N−1)-particle state has one more spin polaron than the
N -particle state. It thus follows that the single-particle
gap is equal to the spin gap, i.e., the energy cost resulting
from the inevitable spin mismatch s− 3

2 ̸= 0 between spin
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polaron and the added electron:

∆Ee,s = E(N,SN + s− s0)− EN . (3)

Importantly, the presence of magnetization plateau over
a finite range of magnetic fields implies the existence of
spin gap in the spin polaron metal (otherwise the total
spin would change continuously with h). We thus con-
clude that spin polaron metal has a single particle gap.
It should be contrasted with the fully polarized metal
at high field, which also has a spin gap. In that case,
s0 = 1

2 hence ∆Ee,+ 1
2
= 0, i.e., there is no gap to adding

an electron of spin ↑.
To summarize, the main finding of our work is spin

polaron metal in doped Mott insulator on the triangular
lattice under a magnetic field. It is a remarkable state of
matter at generic fillings, which is conducting and com-
pressible similar to an ordinary metal, but has a spin
gap and a single-particle gap. Its existence can be can
experimentally established by a zero-temperature mag-
netization Sp that depends only on the doping as given
by Eq.(1). Increasing the magnetic field drives a transi-
tion from the spin polaron metal to the fully polarized
metal, accompanied by a change of Fermi surface vol-
ume that can be detected by the change of Landau level
degeneracy and quantum oscillation frequency.

Finally, we briefly discuss the ground state of infinite-
U Hubbard model at smaller magnetic fields h < h1. As
h is reduced, the magnetization decreases continuously
to zero at h = 0. For three-leg cylinders, we do not
observe any additional plateau that could be associated
with bound state between hole and multiple spin-flips
[25, 31]. At zero field, we find that small doping induces
strong antiferromagnetic correlation wavector K,K ′ con-
sistent with 120◦ order, consistent with a recent study
[32]. In the magnetization curves shown in Fig. 1, the
magnetization plateau stands out as the most prominent
feature of doped Mott insulator on the triangular lattice,
which we identify as the hallmark of a pseudogap metal
composed of itinerant spin polarons.
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Physical Review B 102, 235423 (2020).

[14] H. Pan, F. Wu, and S. D. Sarma, Band topology, hub-
bard model, heisenberg model, and dzyaloshinskii-moriya
interaction in twisted bilayer wse 2, Physical Review Re-
search 2, 033087 (2020).

[15] B. Padhi, R. Chitra, and P. W. Phillips, Generalized
wigner crystallization in moiré materials, Physical Re-
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moiré Mott insulator

Quantum number conserving Density Matrix Renormalization Group

In this section, we present the detailed description of our DMRG calculation. We employ the DMRG algorithm
as implemented in ITensor package[30] on the finite ladder and cylinder. And the x direction is chosen as the long
direction with open boundary condition to reduce entanglement and bond dimension. We utilize 2 × Lx (Lx up
to 40) ladder and 3 × Lx (Lx up to 32) cylinder and calculation hole doping up to 1

6 around half-filling. The site
index is chosen to increase along the narrow y direction. For small system size (site number less than 40), a random
matrix product state (MPS) with fixed number of holes N = N↑ + N↓ and spin flips N↓ is generated as the initial
wavefunction. Without spin coupling, the tJ and full Hubbard Hamiltonian have SU(2) symmetry, and the DMRG
calculation preserves the quantum numbers during the convergence steps. Consequently, we parallelize the magnetic
plateau calculations over different particle number and spin sectors.

When the initial MPS is close to the global minimum, robust convergence can be achieved with a few DMRG
steps and moderate bond dimensions. However, if the initial MPS is far from the global minumum then there is no
guarantee that DMRG will be able to find the true ground state. In our problem, occupation and spin quantum
number are conserved to reduce the Hilbert space dimension. The convergence problem is much more significant since
the search space is more constrained.

To improve the numerical stability, here we add noise term from 10−6 to 10−10 to avoid local mimimum trapping
effect. More importantly, we create the initial MPS with properties close to the ground state in terms of charge
configuration and spin ordering. Especially for the case of multi spin polarons at two or three-leg ladders, we can
approximate the trial MPS of large system from the combination of converged MPS of a small system. Therefore,
the electron density is spread out over the whole system and the spin flips are binded to the hole, as expected for the
final MPS. The creation of initial MPS greatly reduces the computation cost and bond dimension for large system
size, and allows the computation for 16 holes in a 3 × 32 cylinder, which has a Hilbert space dimension 1.7*1034 at
the sector with N↓ = 16 in the tJ basis.

For the accurate evaluation of magnetic plateau and correlation function, we set energy convergence criteria as 10−7t,
the cutoff as 10−8t, and maximum bond dimension as 40000. We will compare the energy with exact diagonalization
for the case with small Hilbert space in the next section and the energy difference is normally within 10−8t. With
the converged ground state MPS, we calculate the electron density distribution, hole-hole ⟨n(0)n(x)⟩ and hole-spin

⟨n(0)sz(x)⟩ correlations in real space, where we defined n(i) = 1−
∑

σ c
†
iσciσ as the hole density operator.

(a) (b)

2/12
3/18

2/16
4/32	DMRG

Anti-periodic	for	
even	holes	

1/81/6

FIG. 5. The magnetic moment M under magnetic field obtained by exact diagonalization at infinite U limit and 1/6 and 1/8
hole doping on two-leg ladder with Lx = 6, 9, 12 and periodic boundary condition in x direction.

Comparison with exact diagonalization. We compare the ground state energy from DMRG with exact diago-
nalization. At a computing node with 500GB memory, the up limit for Hilbert space dimension in exact diagonalization
is 2× 109 if we use float128 to represent the basis and Hamiltonian. Within the tJ model at J = 0 limit, we compare
the ground state energy, real space electron and spin density for 4 holes at 2 × 12 ladder. As shown in Fig. 5, the
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magnetization plateaus and real space electron density (N↓ = 4) plots from ED and DMRG almost overlap with each
other.

Filling rule of spin polarons

In the presence of single spin polaron, we calculate the momentum dependent energy dispersion at the spin polaron
sector from ED. For system size (Lx, Ly) = (6, 3), the fully polarized state locates at M = (1/2, 0) (applies to even Lx

in general), and we subtract the background momentum in the spin polaron dispersion. The ground state momentum
is at Γ, followed by the two fold degeneracy near Γ and closely spaced energies from other momentums.

Due to the weak interacting nature of spin polarons, it is expected that spin polarons are filled to the system from
the lowest energy levels similar as the weakly-interacting particles. For (Lx, Ly) = (6, 3) with periodic boundary
condition, we find the filling rules works up to three spin polarons. By applying the anti-periodic boundary condition
at x direction, the Fermi surface of single spin polaron is shifted by half momentum spacing 1

2Lx
Gx.And we find the

filling rule is valid up to 4 spin polarons, with the energy degeneracy and multi-spin polaron ground state momenta
determined by single spin polaron dispersion.

We then apply the anti-periodic boundary condition to split the six-fold degeneracy. With anti-BC at x direction,
the spin polaron dispersion has two degenerate minima at G and (− 1

5 , 0), followed by two degenerate energies at
(− 1

5 ,
4
5 , ) and (0, 1

5 ). The wavefunction of two and three spin polarons are constructed from the superposition of four
states from energy ordering. For the case of anti-BC at x and y direction, the filling rules also apply.

Antiferromagetism at finite doping

We study the ground-state properties of infinite U Hubbard model at total spin Sz = 0 spin sector [32]. At filling

factor n = 1, the spin exchange J = 4 t2

U is vanishing small at infinite U limit. At finite hole doping side, we now
consider antiferromagnetic interaction at zero magnetic field. In the ultra-strong coupling U ≫ t limit, spin correlation
arises from kinetic term. And we probe the ground state magnetic property of the J = 0 tJ model by calculating
the spin structure factor Sq(Q) = 1

N

∑
i,j

〈
Sz
i S

z
j

〉
eiQ·(ri−rj). Here we consider the number of holes from 0 to 16 in a

3× 24 and 4× 18 cylinder, covering 0% to 22% doping density. At zero magnetic field, the total ⟨Sz
i ⟩ is vanishingly

small. In the DMRG calculation, we target at the spin sector with ⟨Sz
i ⟩ = 0 by enforcing N↑ = N↓.

(a)

𝑘"

𝑘#

(b)

FIG. 6. The static spin structure factor Sq(Q) on 24× 3 cylinder for infinite U Hubbard model. (a) Contour plot of Sq(Q) at
hole doping δ = 5.5%, which shows a peak at momentum Q = K. (b) Maximum Sq(Q) at momentum K as a function of hole
doping, indicating an enhanced antiferromagnetic exchange at finite doping density.

Doping dependence of kinetic antiferromagnetic exchange And we confirmed that Sq(Q) is zero at all
momentum. By doping even number of holes into the 24× 3 ladder, we find the Sq(Q) becomes nonzero and sharply
peaks at Q = K momentum as shown in the contour plot in 6(c), indicating the kinetic induced antiferromagnetism
with 120◦ noncollinear order. In 6(b), we plot the maximum Sq(K as a function of hole doping density. Starting from
massive degenerate spin disorder phase at n = 1, the antiferromagnetism gets greatly enhanced at light doping region
with a peak at δ = 5.5%, and suppressed with further enlarged hole doping. We further calculate the spin exchange
as a function of total magnetization < Sz > in a 24×3 cylinder. For the fully polarized spin sector, the spin structure
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h=6,	s=0

(a)

𝑘"

𝑘#

𝑘" 𝑘"

(b) (c)

FIG. 7. The static spin structure factor Sq(Q) on 24 × 3 cylinder for infinite U Hubard model with hole doping δ = 5.5% (6
holes). (a) Fully polarized spin sector. (b) Spin polaron sector with 6 spin flips. (c) Antiferromagnetic spin sector with total
< Sz >= 0.

factor map has deeps at Γ and K momentum. When the number of spin flip is equal to the number of holes, the spin
polaron spin structure map has two sharp peaks around Γ momentum as shown in Fig. 7.

Magnetization plateau in the finite-U Hubbard model

As described in the main text, the width of magnetization plateau stay unchanged when U is reduced from infinite
limit. We now present the detailed calculation of U = 10, 20, 40 Hubbard model. In real material systems, the onsite
repulsion U is always finite. We consider the case of finite U , and the corresponding magnetization plateau within
the Hubbard model.

To properly include the effect of double occupancy at finite coupling strength, we directly diagonalize the Hubbard
model with double occupancy allowed Hilbert space for U=10, 20, 40 using DMRG. For three-leg ladder with Lx = 24
with finite U , the magnetization plateaus get shifted to higher magnetic field, which is consistent with enlarged
saturation field[1]. The width of magnetization plateau stay unchanged with decreasing onsite interaction down to
U = 10t. Therefore, we conclude the presence of spin polaron metal at wide range of onsite repulsion.

(a) (b) (c)

ℎ/𝑡

𝑆

ℎ/𝑡

-0.01

0.01

𝑈/𝑡 = 20

𝑈/𝑡 = 5

FIG. 8. The total spin S under magnetic field obtained by DMRG for different U at (a) δ = 1/12 for 24×3 cylinder, (b)δ = 1/12
for 24× 3 cylinder. (c) Hole-minority spin correlation function normalized by hole density Chs(i, o)/δ for 6 spin polarons in a
25× 3 cylinder. Upper and bottom panel for U/t = 5, 20, respectively.


