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Abstract

We study the gravitational description of extremal supersymmetric black holes. We point out
that the AdS2 near horizon geometry can be used to compute interesting observables, such as
correlation functions of operators. In this limit, the Hamiltonian is zero and correlation functions
are time independent. We discuss some possible implications for the gravity description of black
hole microstates. We also compare with numerical results in a supersymmetric version of SYK.
These results can also be interpreted as providing a construction of wormholes joining two
extremal black holes. This is the short version of a longer and more technical companion paper
[1].
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1 Introduction

Charged extremal black holes are very interesting objects. They seem to defy the third law of
thermodynamics since they have non-zero entropy at zero temperature. In addition, their geometries
develop a seemingly infinite throat with an AdS2 × S2 (or AdS2×(something)) geometry. These
were the type of black holes for which the Bekenstein Hawking entropy was first matched with a
microscopic counting [2].

It was recently understood that there is a gravitational mode whose quantum fluctuations be-
come large as we take the low energy limit [3, 4, 5, 6]. Fortunately, we can solve exactly the
quantum mechanics of this single mode [7, 8]. This modifies the naive classical gravity results at
low temperatures. For the non-supersymmetric case, this implies that the density of states vanishes
at low energies [9, 10, 8]. On the other hand, with N = 2, or N = 4, supersymmetry the density of
states has a gap above zero and there is a large degeneracy at exactly zero energy above extremal-
ity [10, 11]. The N = 2 arises for BPS black holes in AdS5 [12], while the N = 4 one describes
supersymmetric black holes in D = 4, 5 flat space with non-zero horizon area [11].

This energy gap means that by taking a low energy limit we can clearly restrict to the ground
states. In other words, we have a decoupling limit which allows us to isolate the ground states.
The extremal entropy is a well studied observable in this limit, starting from [2] and including very
detailed matches, as in [13].

Here we describe another set of observables which consist of correlation functions of certain
operators. We consider “simple” operators that correspond to bulk fields located near the AdS2

boundary, or near the region where the AdS2 throat opens up into a higher dimensional spacetime.
These correlators are given by Witten diagrams in AdS2 which are dressed by the quantum dynamics
of the boundary graviton mode, see figure 5. At low energies these correlators develop a certain
universal time dependence that depends only on properties of the boundary graviton mode. For the
supersymmetric case, the situation is particularly simple: they are completely time independent at
very large times. These constant values depend on the details of the bulk AdS2 theory.

In a dual quantum mechanical theory we can interpret these correlators as

Tr
!
Ô1Ô2 · · · Ôn

"
, Ôi = POiP , P = lim

u→∞
e−uH (1)
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where Oi are the simple operators and P is the projector onto zero energy states. As an example
of a quantum mechanical theory with these properties we study the supersymmetric SYK model
introduced in [14]. For a case with an Einstein gravity dual, we can consider the supersymmetric
black hole in AdS5 × S5 [15], whose low energy boundary gravity mode has N = 2 supersymmetry
[12], which is the case we analyze in detail. However, we expect that other supersymmetric black
holes, which have a N = 4 boundary graviton mode [11], would have similar properties.

The projector operator P in (1) can be viewed as describing the zero temperature limit of the
thermofield double state. In the gravity side, this corresponds to the zero temperature limit of the
usual two sided black hole. According to the classical solution its length goes to infinity as T → 0.
However quantum effects kick in at temperatures of order the energy gap, and we find that its length
remains finite at zero temperature. More precisely, the zero temperature state has a normalizable
wavefunction which peaks at a finite length which is logarithmic in the extremal entropy, logSe.

This gives an explicit construction of a supersymmetry preserving wormhole joining two super-
symmetric black holes. We can construct a large family of such wormholes by adding operators, see
figure 6. We discuss how the addition of matter changes the length, making it larger. Among this
family, the empty wormhole has the largest entanglement entropy, equal to the extremal entropy.
The others have a smaller one.

Although the Hamiltonian is zero from the boundary point of view, the bulk matter propagates
and moves subject to the bulk time. So, we have a clearly emergent bulk time from a dual boundary
theory with no time. In other words, an observer deep in the bulk still experiences time, despite
the fact that there is no time on the boundary theory in this limit.

In this paper we summarize results from its technically heavier (super) partner [1]. We also
discuss some of the conceptual implications.

This paper is organized as follows. In section 2, we consider the dynamics of the boundary
graviton mode with N = 2 supersymmetry. We discuss some implications for the description of the
microstates. In section 3, we report on a numerical computation of similar correlators in N = 2
SYK. As expected, we find agreement with the analytic computations described in the previous
section, since they are governed by the effective theory. We end with further discussion in section
4.

2 The zero energy limit of the N = 2 JT gravity theory

2.1 Density of states and the gap

By taking the extremal black hole limit, we naively expect to get a scale invariant system. But scale
invariance is not compatible with the discreteness of the spectrum. One exception is if all states are
precisely degenerate, so that the Hamiltonian is zero. Then the theory is not only scale invariant
but also completely time independent. It becomes fully time reparametrization invariant.

In supersymmetric cases, with N = 2, 4 supersymmetry, this is precisely what happens. One
can compute the density of states using the cigar (or disk) topology and we obtain an answer
with the qualitative features in figure 1 [10, 11]. There is a continuum separated by a gap from a
delta function containing a large number of degenerate zero energy states1. In many cases, index
arguments indicate that this degeneracy should remain in the exact theory [2].

1The clear gap is a feature of the semiclassical analysis. Once we include e−S0 corrections, due to other topologies,
we expect that the eigenvalue distribution will become smooth and there could be a non perturbatively small prob-
ability of finding an energy level in the gap region. See figure 13 in [16] for an example. We ignore such corrections
here. We will show that in the SYK model for small N the gap is typically clearly present.
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Figure 1: The density of states for the N = 2 superSchwarzian theory in the zero R-charge sector, from
[10]. We see the presence of a gap, and a delta function contribution at zero which gives the extremal
entropy. Egap =

1
32C , with C defined in (2).

Let us comment on the energy scale that sets the gap. As we go to low energies, there is a
particular gravitational mode that becomes strongly coupled. This mode can be described in terms
of a reparametrization between the AdS time coordinate f and the asymptotic, or boundary, time
t [17, 5, 4, 6, 14]

I = −C

#
{f(t), t}+ SUSY partners , with {f, t} =

f ′′′

f ′ − 3

2

$
f ′′

f ′

%2

(2)

where the supersymmetric partners include fermions plus a second scalar mode we will discuss later.
The coefficient C has units of time and its inverse sets the scale of the gap in figure 1. When we
consider a charged black hole in flat space this coefficient is C ∼ Sere, where re is the extremal
radius of the black hole and Se is its extremal entropy. Notice that this is a very long time for a large
black hole. C also sets the time scale at which the action (2) becomes strongly coupled. We are
asserting that for time scales larger than C, the correlators become constant, or time independent.

2.2 The two point functions at long distances

In this section, we sketch why the two point function has a constant value at long times

〈O(u)O(0)〉β → constant , for u, β, β − u ≫ 1 (3)

These correlation functions can be computed as follows. We can view them as the matrix element
of an operator between two wormhole states, one that has been generated via euclidean time u and
another with time u′, see figure 2. We will denote such wormhole states as |TFD(u)〉. We then
want to compute

〈TFD(u′)|e−∆ℓ|TFD(u)〉 (4)

where ∆ is the conformal dimension of the operator O. Each of these thermofield double states
is a quantum superposition of wormhole states with different lengths [7, 8]. More precisely, in the
supersymmetric case, the length also has further fermionic and bosonic partners that arise from
the action of the supercharges [18]. These variables are governed by a supersymmetric quantum
mechanics. In the N = 2 case this action has the form

I =

#
du

&
1

4
ℓ̇2 + ȧ2 + iψ̄rψ̇r + iψ̄lψ̇l + ψ̄lψre

−ℓ/2−ia + ψlψ̄re
−ℓ/2+ia + e−ℓ

'
(5)
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Figure 2: Diagrams for two point function. (a) The bottom propagator generates the thermofield double
state |TFD(u)〉 and the top one generates a similar one with u → u′. The correlator involves a geodesic
going between the two boundary points whose renormalized length is ℓ and the associated conformal
dimension is ∆. (b) The correlator in the u = u′ = ∞ limit. The boundary has large fluctuations but
the distance between the two operator insertions remains finite.
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Figure 3: In black, we plot the effective potential when the term involving the fermions has an effectively
negative coefficient. It leads to a single normalizable state, which is shown in red.

where we have set units such that C = 1/2, or equivalently defined u so that is related to t by

t = 2Cu (6)

The field a can be viewed as arising from a Wilson line of a U(1) gauge field in the bulk and is
related to a boundary U(1)R symmetry. This field is periodic with a period a ∼ a + 2π, implying
that the R charges are integer quantized. It is also possible to make the period larger a ∼ a+ 2πq̂
with integer q̂, and we will indeed consider this in section 3. To keep the discussion simple, we set
q̂ = 1 for now.

The Lagrangian (5) actually has four supersymmetries. The reason is that we have two from
the left boundary and two from the right boundary. Each of those two anticommutes to the same
Hamiltonian. One can use these four supersymmetries to determine the form of the Lagrangian by
demanding that the potential behaves like e−ℓ at large negative ℓ 2.

2The fact that the potential agrees at large ℓ with the N = 0 Schwarzian is required since the classical solutions
of the N = 0 Schwarzian are also solutions of the N = 2 Schwarzian with a = 0 and all fermions set to zero. By the
way, note that the classical solutions in Euclidean signature are circles in H2. Since the two sides of the circle meet
at a point after proper time β/4, the renormalized distance ℓ → −∞ after a time β/4.
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An important feature of the Lagrangian (5) is that there are two potential terms, a repulsive
potential e−ℓ and a Yukawa term involving e−ℓ/2. We can think of the fermions as two qubits.
Depending on the state of these qubits the Yukawa term could lead to a positive, zero or negative
potential for ℓ. When this e−ℓ/2 term is negative we can have bound states, see figure 3. It turns out
that there is only one bound state, with exactly zero energy and also zero R charge. This is due to
the precise relative coefficients of the two terms in the potential, which are fixed by supersymmetry.
This state preserves both the left and the right boundary supersymmetries, so it can be viewed as
a supersymmetric wormhole.

In this zero energy state the wavefunction has the following ℓ dependence, see figure 3,

|0〉 ∝ e−ℓ/2 exp
(
−2e−ℓ/2

)
× (Fermions) (7)

This zero energy state, |0〉, is unit normalized and it appears in the expansion of the thermofield
double as

|TFD(u)〉 = e
S0
2 |0〉+ · · · (8)

where the dots indicate terms that decay as u → ∞. The zero energy partition function is given by

Z = Z(β = ∞) = eS0 (9)

and it sets the number of ground states. Then the long distance two point function has the form [1]

lim
u′,u→∞

〈TFD(u′)|e−∆ℓ |TFD(u)〉 = eS0〈0|e−∆ℓ|0〉 = eS0
Γ(1 + 2∆)

24∆
(10)

where the precise function of ∆ in the right hand side requires a calculation using (7). But the fact
that it is an order one number for an order one value of ∆ does not require any calculation, since
we have already said that |0〉 has a wavefunction localized at a value ℓ ∼ 0, (7). Furthermore, we
can calculate the expectation value of ℓ as

〈ℓ〉 = − ∂∆ log〈2pt〉|∆=0 = 2(γE + log 4) ∼ o(1) (11)

which is indeed finite and of order one. In addition, since H = 0, this distance does not grow in
time, in contrast with the behavior at finite temperature.

In order to properly interpret these correlators (10), we need to understand how the operators
were normalized. First, the distance variable ℓ has been defined with a subtraction from the real
distance d = ℓ − 2 log ε, where ε is a time cutoff corresponding to the point where the AdS2 joins
flat space. Here both distances are in radius of AdS2 units. For a Reissner Nordström black hole,
ε ∼ re/(2C) ∼ 1

Se
.

In (10), we have normalized the operators so that their short distance expression is [1]

Tr
!
e−(β−u)HOe−uHO

"
= 〈TFD(β − u)|e−∆ℓ|TFD(u)〉 ∼ 1

u2∆
Z(β) , for u ≪ 1 (12)

where the 1/u2∆ dependence is set by the conformal limit in AdS2, which is a good approximation
at relatively short distances, where the Schwarzian mode is weakly coupled. The overall coefficient
in (12) sets the normalization.

It is useful to express the answer in terms of an operator W whose two point function is normal-

ized to be of order one in the boundary of AdS2. More precisely we set 〈WW 〉 ∼
*
re
t

+2∆
in terms

of the Schwarzschild time t. Recalling (6) we obtain

〈ŴŴ 〉∞ = eS0

( re
2C

)2∆ Γ(1 + 2∆)

24∆
∝ eS0

1

S2∆
e

Γ(1 + 2∆)

24∆
(13)
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The hat notation means that we have evolved over a very long Euclidean time so as to project to
the ground states, as in (1).

The factor of eS0 disappears once we divide by the partition function (9). An interesting point
about (13) is the power of re/C. This is setting the typical proper distance between the two
boundaries (in units of the radius of AdS2)

d = ℓ+ 2 log
1

ε
∼ 2 log

C

re
∼ 2 logSe (14)

since ℓ ∼ o(1) for the ground state (11). This should be compared to the naive classical expression

d ∼ 2 log
βt
re

, classical (15)

which diverges as βt → ∞ 3. This shows that as βt reaches Sere ∼ 1/Egap, the wormhole stops
growing. Notice that we are not talking about the growth of the wormhole in time, but the growth as
we take β larger. It is also true that the wormhole does not grow in time, since H = 0 for the ground
states. At zero temperature, the system is time independent and the wormhole length stays fixed
at (14). Both of these features are in stark contrast with the behavior for the non-supersymmetric
case. In that case the typical distance grows without bound either as β → 0 or as time progresses.
In the N = 0 case, it has been argued that contributions from non-trivial topologies cause the
distance to stop growing at values that are exponentially large in the entropy [19, 20]. Here we see
see a much smaller value (14), already in the disk approximation.

2.3 The cylinder two point function in the probe approximation

We can also compute the two point function on the cylinder in the probe approximation4. Here we
have one operator at one end of the cylinder and the other at the other end. We need to sum over
all the states of the empty wormhole, which reduces to a sum over all the states of the Liouville-like
theory (5) [21]. At low energies, we can concentrate on the zero energy state contribution which
gives simply

〈2 pt〉cyl,probe = 〈0|e−∆ℓ|0〉 (16)

which is the same as what we got for the two point function on the disk up to the number of ground
states, or factor of eS0 . We will explain this “coincidence” later (around (27), (28)).

2.4 n point correlation functions

In the N = 0 case, we can compute correlation functions by “dressing” the rigid AdS2 correlators
with propagators of the boundary particles [7]. In our N = 2 case we can do the same. Again,
when we go to long times, we can get the propagator for zero energy states. This is a function of
two bulk points (and their superpartners), which we work it out in detail in [1].

The correlator is constructed from two elements. First we need the correlator of bulk fields near
the boundary of AdS2. It turns out that this has the form

,

i

e−∆iρi〈O1(x1, θ1−, θ̄2−) · · ·O1(x1, θ1−, θ̄2−)〉 (17)

3The t index in βt is the inverse temperature in Schwarzschild time t, t ∼ t+ βt, see (6).
4We are neglecting loops of particles wrapping the wormhole. This is reasonable when the typical size of the

wormhole is large. We expect that this is the case for large ∆. Note that these extra loops could lead to a divergence
in the integration over the cylinder size, from the very thin cylinder region. We are assuming this gets cured somehow.
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Figure 4: The cylinder diagram in the probe approximation. The states of the empty wormhole propagate
along the cylinder.

ℓ, Δ

u

u′ 

ℓ, Δ

∞

∞

(a) (b) (c)

∞

∞
∞

∞

∞
∞

Figure 5: General correlators are built from AdS Witten diagrams, in red, dressed by boundary graviton
propagators, in blue.

where θ− and θ̄− are Grassmann variables which implement the N = 2 supersymmetry at the AdS2

boundary. These correlators are computed by starting with the bulk fields in AdS2, with no gravity,
and then taking them near the boundary.

The second element is the zero energy boundary propagator P (1, 2) which is a function of two
points whose coordinates are

(x, ρ, a, θ−, θ̄−,χ) (18)

where χ is an extra Grassmann coordinate that we need to properly describe the Schwarzian degrees
of freedom and a keeps track of the R symmetry properties. See [1] for the explicit form of the
propagator. Importantly, P (1, 2) is independent of the boundary time.

Then the final expression of any correlator at zero energies, or very long times, is given by

〈Ô1 · · · Ôn〉 = πeS0

# -
i dµi

Vol(OSp(2|2))P (1, 2)P (2, 3) · · ·P (n, 1)×

×
,

i

e−∆iρi〈O1(x1, θ1−, θ̄2−) · · ·O1(x1, θ1−, θ̄2−)〉 (19)

These correlators do not depend on any boundary times. But they can depend on the order, though
they have a cyclic symmetry, consistent with their holographic interpretation in (1). The

.
dµi

integrals are over the variables (18) for each point. The denominator in the measure factor arises
because we are gauging the overall OSp(2|2) = SU(1, 1|1) symmetry of the integrand.

It turns out that the propagator contains a function of the proper distance that is the same
as the wave function we already encountered in (7). This essentially implies that the propagator
decays at large proper distances5. This implies that the correlators (19) are finite.

5The actual propagator depends on more than just the distance through some extra factors that, when inserted in
(19), also decay at long distances.
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Another feature of these correlators is that the time ordered and the out of time order correlators
are of the same order, at least for low values of ∆. Notice that since H = 0, they do not change in
time.

The time independence of (19) implies that the theory becomes “topological” at zero energies.
Of course, topological in one dimension just means that the Hamiltonian is zero and the correlators
are independent of time, though they can depend on the ordering. Though the theory is topological
in this sense, the operators that we consider are operators that are defined by the higher energy
theory. They are simple operators in the higher energy theory that are projected onto zero energy
states by performing a large Euclidean time evolution on both sides, as in (1)

Note that AdS2 has an SL(2) isometry group. However, the group of asymptotic symmetries
is larger, it is the full group of time reparametrizations. It turns out that in the zero energy limit
these are indeed symmetries of the correlators. In other words, the Schwarzian mode comes from
the spontaneous breaking of this symmetry, and its action from the explicit breaking [17, 22]. This
action becomes irrelevant at low energies and the integral over this mode restores the symmetry.
The integral is finite thanks to supersymmetry.

2.5 Lorentzian continuation

These results imply that Lorentzian correlators also go to a constant at long times. In particular
the the two point function goes to a constant. It is important that this constant is real. This
means that if one perturbs the black hole in a physical way, via a unitary process, then the effects
of the perturbation will die out at long times. This is true because the change in correlation
functions due to the perturbation is proportional to the commutator with the operator performing
the computation. This commutator involves the imaginary part of the correlator, which vanishes
at long times [1].

If we perturb the extremal black hole by adding a simple UV operator localized in time, then
we would raise its energy above extremality. We can avoid this by integrating the operator over a
long lorentzian time, a time longer than 1/Egap. This has the effect of projecting the operator to
the zero energy subsector. We expect that these operators are similar to the operators Ô = POP
that we we were discussing above in the Euclidean context. We will make this approximation when
we discuss probing black holes in the next subsection.

Notice also that the fact that the late-time Lorentzian 2-pt function is the same as the Euclidean
2-pt function implies that the bulk proper time between two points on the boundary is also finite,
of order 2 logSe.

2.6 Building and exploring wormholes

We have already mentioned that the state (7) corresponds to a supersymmetric wormhole of finite
length. This wormhole is empty, it contains no bulk particles.

We now consider adding an operator during the Euclidean evolution that produces the wormhole
state, see figure 6a. This produces a particle in the middle of the wormhole. There is a unique state
that we get by acting with a single conformal primary operator in this fashion. For this state we
expect that the distance between the two boundaries becomes bigger than for the empty wormhole.
One way to estimate this distance is by computing an out of time order correlator involving the
operator we inserted, which has dimension ∆ and another operator with dimension ∆′. As ∆′ → 0
we are measuring the length between the two boundaries, see figure 7. Using essentially this method
we find the the distance is [1]

ℓ24 = 2 log∆+ o(1) , for ∆ ≫ 1 (20)
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Figure 6: (a) State created by the insertion of an operator. It contains matter on the wormhole
(indicated by green). (b) State created by the insertion of two operators, now we have two particles in
the wormhole. (c) Overlap between the state in (b) and a state like (a) but created with the two particle
primary operator On

12.

Δ
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Figure 7: We consider a 4pt function involving a pair of heavy operator of dimension ∆ ≫ 1 and a very
light operator between points 2 and 4. If we do not insert any operator at 2 and 4, we can view it as
giving a wormhole going between 2 and 4. This is a wormhole that contains matter in the representation
with weight ∆. The typical distance between 2 and 4 gives us an estimate for the size of the wormhole.

which is saying that, as expected, the distance between 2 and 4 is getting larger than the empty
wormhole (11).

The states we are considering would have the following interpretation in a quantum mechanical
dual. The thermofield double is related to the operator P that projects on to the ground states,
viewed as an entangled state. As a state on the zero energy subspace this is the identity and has
maximal entropy. The state with a particle is given by

Ô = POP (21)

Since it is a deformation of the maximal entropy state, this state would have less entropy. The
entropy can be computed via the replica trick, which involves computing 2n correlation functions.
In general these are complicated. However, if ∆ is large we expect that the OTOC contributions
are suppressed, because of the increased distance we mentioned in (20). Then only planar diagrams
contribute and we get an entropy that is lower than maximal by an amount that is ∆ independent,
for large ∆ [1].

The same computation enables us to calculate the distribution of eigenvalues of the density
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matrix, which is simply related to the distribution of eigenvalues of POP . The latter turns out to
be that of a gaussian random matrix, given by a semicircle law [1]. The connection between bulk
fields and random matrices was made previously, and in more generality, in [23], generalizing the
discussion of pure JT gravity [19].

Note that we expect that any state that contains matter will typically have lower entropy than
the empty wormhole. This is particularly the case for states generated by the insertion of operators
through Euclidean evolution, as we described above. The only exception would be states that are
obtained by the action of a unitary operator on the low energy states. This can be achieved by
performing a very slow lorentzian evolution.

Another interesting question is the following. Imagine that now we add two particles that are
well separated in the Euclidean evolution so that we get the state given by

Ô1Ô2 = PO1PO2P (22)

This is expected to be a wormhole that contains a pair of particles, see figure 6b. The two particle
sate can be decomposed into a set of representations of SL(2) with dimensions ∆1 +∆2 + n, which
we denote as On

12. Each of these representations gives rise to a single wormhole state, so that the full
two particle wormhole is a superposition of of wormholes each associated to a value of n, POn

12P .
We can find the amplitude for each n by computing the overlap, see figure 6c,

〈Ôn
12Ô1Ô2〉 ∝ Tr[POn

12PO1PO2] (23)

These overlaps seem to be finite and of order one, if n is not large. We interpret this as saying that
the two particles present in the state (22) are not very far from each other. It would be interesting
to pursue this further and establish more clearly the nature of the state.

Note that the states we have discussed above, the wormhole and the wormhole plus extra matter,
constitute particular entangled BPS states of two black holes, see figure 6a,b. These states are not
represented by geometries that are locally supersymmetric in the interior, because the matter that
we insert can break supersymmetry. However, after we include the boundary mode and project
to low energies, we end up with a state that is BPS. So this is a novel way to construct BPS
states and it differs from the traditional construction of BPS gravity solutions which involve finding
a background with Killing spinors [24]. As an analogy, imagine we want to find a state with
angular momentum zero for a rigid body. We could consider excitations on the rigid body that
are not rotational invariant but we can then adjust the overall rotation of the body to produce
a zero angular momentum state. Note that the two black holes that we are considering here are
in different universes. If they were in the same universe, then we could wonder whether they
preserve a common supersymmetry. If they are far away in flat space, they would preserve different
poincare supersymmetries since they have opposite charges. It might be possible to embed them
into an ambient space with suitable fluxes so that oppositely charged black holes end up being
supersymmetric.

It appears that we could get an infinite amount of different states by adding various sequences
of matter particles. However, we expect that the island formation phenomenon [25, 26, 27, 28]
will imply that we cannot have more entanglement entropy than 2S0. Indeed, the finiteness of the
cylinder 2-pt function is evidence of this claim, see [29]. In this paper, we restrict to a relatively
low number of particles so that we do not need to worry about this.
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Figure 8: (a) zero energy empty wormhole has a distance 2d̃ (26) between the two sides. (b) We claim
that the results on correlation function imply that microstates that are designed to be maximally different
for a given operator O of order one conformal dimension should start to differ from each other only at
a distance d̃ from the boundary.

2.7 Implications for the black hole microstates

In this section we make some comments on the interpretation of the long time two point function
(13), which we reproduce here for convenience

e−S0〈ŴŴ 〉∞ =
1

Z
Tr[PWPW ] = c2∆ , c2∆ = ε2∆

Γ(1 + 2∆)

24∆
∝ 1

S2∆
e

(24)

We discuss implications of the c∆ factor. It sets the scale of the size of the operator in the IR
compared to the operator in the UV . c∆ is also telling us about the typical size of the eigenvalues
of the operator Ŵ

e−S0〈ŴŴ 〉∞ = e−S0

eS0/

i=1

w2
i (25)

where wi are the eigenvalues of Ŵ . So the typical eigenvalue is of order c∆ (24).
It is important that they are suppressed by the factor S−∆

e . This factor is present for all
correlators and it arises from the propagation of the field from the boundary to a distance

d̃ = logSe (26)

into the interior, we interpret this as saying that all microstates have to agree with the AdS2

geometry at least up to this distance into the interior, see figure 8.
We can call the states that diagonalize this operator, “fuzzball states”, in the sense that they

maximize the difference in expectation value of the operator Ŵ from state to state. We use this
name because “fuzzballs” are a hypothetical representation of the black hole microstates in terms
of gravity solutions, and presumably such states are designed to maximize their differences as seen
by simple gravity operators. Here we are not arguing for or against fuzzball proposals, see [30]. We
are only providing constraints that those proposals should obey if we want to interpret the AdS2

geometries as arising from some statistical average over such states. Since Ŵ is a gravity mode,
then these results constrain the form of these gravity modes for typical solutions. Furthermore,
since we expect a factor of e−∆id̃ for each operator, this also suggests that all solutions should be
similar to each other up to a distance d̃ from the boundary. Notice that since d̃ is also the distance
at which it is important to consider the quantum dynamics of the boundary mode, any fuzzball
proposal needs to incorporate the quantum mechanics of this mode, which is what we described in
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this paper. Note that the extremal black hole case is a favorable one to understand the explicit
gravity description of microstates because there is no boundary time dependence.

In [1], we argue that Ŵ behaves like a random matrix with a bounded spectrum. By computing
the bounds on the spectrum, one can constrain the expectation value of Ŵ in any putative fuzzball
state. We expect that for ∆ ≳ 1, the maximum eigenvalue of Ŵ satisfies |λ| ≤ c∆ ×O(1), although
we did not compute the O(1) constant except in the ∆ ≫ 1 limit where |λ| ≤ 2c∆.

Note that even though the vev of Ŵ in a typical eigenstate of Ŵ is c∆, the vev of Ŵ in a general
typical quantum state is much smaller. This is because a general typical state is a generic linear
combination of the operators that diagonalize Ô. In fact, we are assuming that the expectation

value of Ô is zero, Tr
!
Ô
"
= 0. Its expectation value could vary from state to state, but its average

should obey [31] #
dµψ

!
〈ψ|Ô|ψ〉

"2
= e−2S0 Tr

!
Ô2

"
= e−S0c2∆ (27)

which is smaller, by a factor of e−S0 than the normalized disk two point function in (24). In fact,
this extra factor of e−S0 suggest that the cylinder diagram might be relevant. The cylinder two
point function is supposed to arise from an average of couplings of something of the form [32]

e−2S0Tr
!
Ô
"
Tr

!
Ô
"
= e−2S0Tr[OP ] Tr[OP ] =

$
Tr[OP ]

Z

%$
Tr[OP ]

Z

%
= e−2S0〈2 pt〉cyl (28)

where we introduced factors of e−S0 so that we normalize the expectation values of Ô in the standard
way. The couplings determine the form of the projector from the UV to the IR and therefore the
form of the operator Ô. There we expect that an average over couplings should have similar effects
as the average over states for fixed couplings. More precisely, we have

e−2S0Tr
!
Ô
"
Tr

!
Ô
"
= e−2S0

/

i,k

#
dµJ 〈i| Ô |i〉J 〈k| Ô |k〉J

≈ e−2S0
/

i

#
dµJ

(
〈i| Ô |i〉J

)2
≈ e−S0

#
dµψ

!
〈ψ|Ô|ψ〉

"2 (29)

where J denotes the couplings and
.
dµJ is the average over couplings. The IR basis elements |i〉J

and |k〉J depend on the couplings. In going from the top line to the bottom line we assumed that
the average over couplings would produce a δik. We then interpreted the average over couplings
together with the sum, e−S0

0
i, as similar to an average over states as we had in (27).

Indeed we see that (28) is the same as (27) once we use that (28) is given by the cylinder diagram
(16), multiplied by e−2S0 . This explains why we get the same value for the cylinder (16) and disk
(10) two point functions, up to the expected factor of eS0 . There is a similar relation at non-zero
energies in the microcannonical ensemble, see appendix A.

The fact that the R charge of the vacuum is zero has an interesting implication. It means
that any operator with non-zero R charge should be trivial on the BPS ground states. In fact,
for the case of black holes in flat space, modes with angular momentum on the sphere are of this
kind, so all of them should be trivial on the ground states. The fact that single center BPS states
carry zero angular momentum was emphasized in [33] and derived more generally from N = 4 JT
gravity in [11]. This means that any candidate “fuzzball” solution for a BPS state should be exactly
spherically symmetric, and not just on average.

Motivated by the fuzzball discussion, we can ask whether there is a gravity dual of a Gaussian
random state in pure N = 2 JT gravity. Following the West Coast model, we conjecture that
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such states are dual to end of the world brane states where the brane is of order ∼ 2d̃ from the
boundary. More concretely, our conjecture is that a Gaussian random vector in a fixed j charge
sector is described by an end of the world brane with some tension µ and some charge j. In the
ground state subsector, we expect that the tension only enters in the overall normalization of the
random vector6. We will leave a more detailed exploration of such states for the future, but let us
simply remark that in such a model, there is also a simple gravity explanation of (27). In particular,
the LHS of (27) is interpreted as the square of a 1-pt function, which is given by a wormhole with
two end of the world branes, whereas the RHS is given by a disk computation.

From the boundary point of view, applying equation (27) gives

lim
u,u′→∞

〈ψµ|e−uHO∆e
−uH |ψµ〉〈ψµ|e−u′HO∆e

−u′H |ψµ〉
| 〈ψµ|P |ψµ〉 |2

= e−2S0 Tr
!
Ô2

∆

"
(30)

Here on the LHS we have implicitly done the disorder average over the random vector |ψµ〉. Using
the gravity dual (ignoring temporarily the denominator) this equation becomes:

μ
u′ 

Δ

μ

u

u′ 
u

∞

Δ= e−2S0 ×lim
u,u′ →∞ (31)

Geometrically, the above equality is saying that the end of the world brane (the red segment) is a
tiny fraction of the disk when we take u and u′ to be large. More precisely, one can compute the
wormhole diagram on the LHS by using the Liouville quantum mechanics for the length mode. The
end of the world brane (red) in the bottom of the diagram defines an initial state e−µℓ |ℓ〉 and the
one on top defines a final state. One obtains

eS0
.
dℓ dℓ′e−µ(ℓ+ℓ′) 〈ℓ′|0〉 〈0| e−∆ℓ |0〉 〈0|ℓ〉

e2S0 |
.
dℓe−µℓ 〈ℓ|0〉 |2

= e−S0 〈0| e−∆ℓ |0〉 . (32)

In the LHS denominator, we used the square of the disk partition function with a single end of the
world brane boundary. This is in precise agreement with (27). Notice that the state defined just
below the dotted green line in (31) is an empty spatial wormhole, which is described by a unique
state in the Liouville description. The fact that there is an end of the world brane in the past does
not change this.

3 N = 2 supersymmetric SYK numerical results

The results we discussed above are essentially determined by the dynamics of the low energy bound-
ary mode with N = 2 supersymmetry. A concrete quantum mechanical model whose low energy
dynamics also involves this mode is the N = 2 version of the SYK model introduced in [14]. This is

6For higher energy states, the brane should also carry two qubits worth of fermionic degrees of freedom; we will
ignore these other modes.
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a model involving N complex fermions ψi with a random supercharge Q =
0

ijk Cijkψ
iψjψk, where

the C ′s are random numbers and Q̄ = Q†. It was shown in [14] that, in the conformal regime,
the dimension of ψ is ∆ = 1/6. In addition, its R charge is 1/3. The quantum mechanics of the
Schwarzian mode is slightly different than what we discussed above because a ∼ a + 2π × 3. The
extra factor of 3 implies that R charges come in units of 1/3. The R charge is normalized so that
Q has R charge one7. This change in the period of a implies that there are actually three zero
energy ground states of the theory in (5) with R charges R = ±1/3, 0. So, when we compute the
low energy correlators we can also specify the R charge of the vacuum. In other words, the eS0

ground states can be separated according to these values of the R charge. The analytic predictions
for the low energy correlators are the same as for the case of N = 2 JT gravity.

Here we will report on some numerical result that were obtained by performing exact diagonal-
ization for N = 16.

E g
ap

(8
C
)

-3 -2 -1 0 1 2 3
0

1

2

3
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5

j

Figure 9: Gap as a function of j (the R-charge) for a single realization of the N = 16 SYK model. We
use the large N value of the Schwarzian coupling C = αsN = 0.1347. The solid curve is the analytic
prediction, see equation (33).

As a first question, we wanted to confirm the gap predicted by [10] for states with R charge j

E =
1

8C

$
|j|− 1

2

%2

, C = αSJN , αs = 0.00842... (33)

where we have given the large N expression for C as well as the value for αS computed by solving
the large N Schwinger-Dyson equations in [34]. The gaps are plotted in figure (9) as a function of
the R charge.

As a next question, we can calculate the value of various operators on the BPS ground states
with various charges. In other words, for various operators O we compute

1

NTFD
Tr

!
O†

rPj+rOrPj

"
, NTFD = Tr[P ] , P =

/

j

Tr[Pj ] (34)

where Pj is the projector onto zero energy states with R charge j, and r is the R charge of the
operator O. As we mentioned above, the possible values of j for the zero energy states are j =

7We will also assume N is even, since for N odd there is a further necessary modification that we will not discuss
here [10].
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Operator Vacuum R-charge Schwarzian prediction N=16 SYK Error

ψi
0 0.111 0.110± 0.005 −1%

−1/3 0.111 0.110± 0.005 −1%

ψiψj −1/3 0.0247 0.024± 0.003 −4%

ψ̄iψj

−1/3 0.0282 0.027± 0.001 −4%

0 0.0873 0.079± 0.001 −9%

+1/3 0.0282 0.027± 0.001 −4%

Table 1: Comparison between exact diagonalization results for the 2-pt function with the Schwarzian
predictions. Here we use the large N value for the Schwarzian, C = 0.00842N = 0.135. The R-charge
corresponds to the R-charge of the set of zero energy states, see equation (34). The error bar we display
in the fourth column is the standard deviation obtained by changing the value of i, the index of the
operator. This is related to the error we would get if we vary the coupling constants.

0,±1/3, a fact that we have also confirmed numerically. We have numerically computed (34) for
N = 16. We have also analytically computed the expected large N answer based on the formula
(24), after taking into account the proper UV normalization of the operators, and set N = 16 in
that result[1]. The comparison between these two computations is displayed in table 1.

As another comparison, we can compute the OTOC vs the OTOC for the basic fermions. In
other words, we can compare

TOC = Tr
1
P ψ̄jP ψ̄iPψiPψj

2
, vs OTOC = −Tr

1
P ψ̄iP ψ̄jPψiPψj

2
(35)

It turns out that the two expressions are identical, due to supersymmetry, as we explain in [1].
However, this illustrates the point that the two correlators can be similar. The fact that they are
identical is a special feature of these operators, which are BPS, but it is not true for non BPS
operators. In fact, considering neutral operators of the form O1 = ψiψ̄j and O2 = ψkψ̄l, together
with their adjoints, we numerically find a ratio of the OTOC to the TOC of 76%.

We have also found the eigenvalue distribution of ψiψ̄j operators and found agreement with
random matrix expectations [1], which are modified by the low value of N (N = 16).

4 Discussion

We have described some aspects of the zero energy limit of N = 2 supersymmetric black holes. We
need supersymmetry so that we get a finite number of states at exactly zero energy. The presence
of an energy gap helps us to argue that we can effectively project on these states by evolving the
system by a sufficiently long amount of euclidean time evolution. This amount is of order the black
hole entropy Se, rather than the exponential of the entropy. After taking this limit the Hamiltonian
of the system is zero, and we effectively have no boundary time. In this limit the SL(2) symmetry
of AdS2 is enhanced to its full asymptotic symmetry: time reparametrizations.

Note that the final expression for the correlators, (19) is a quantity we can calculate purely in
AdS2. So we have a correspondence between AdS2 and a topological quantum mechanics, which is
simply a set of eS0 states and the corresponding operators. However, we seem to have a preferred
choice of operators which are the operators that are simple in the bulk. This choice of operators is
natural in the higher energy theory with boundary time, but there is no obvious reason to choose
these operators from the purely IR boundary theory. We have mainly considered the disk topology
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(specially in (19)) and it would be interesting to consider the effect of higher topologies in this zero
energy sector. Of course, for the non-zero energy sector these effects were the subject of a number
of interesting recent papers including, among others, [19, 20, 35, 29, 36]. At the disk level, we have
an apparently infinite choice of operators, since we can have multiple field insertions. These loop
corrections should limit the set of operators to the finite set of eS0 × eS0 matrices. A toy model
where higher topologies lead to a finite number of states was given in [37].

It was argued in the past that we could not have a dual to a purely AdS2 gravity theory [38, 39].
This construction evades these arguments because it breaks the link between the time coordinate
in the AdS2 bulk (and its associated energy) and the boundary time or boundary energy.

At the disk level, there is a bulk symmetry operator which is the matter Casimir. This is a
combination of the matter bulk generators defined in [40, 41] which commutes with the Hamiltonian
and therefore survives the low energy limit8. It would be interesting to identify this generator in the
quantum mechanics theory, though perhaps it is only defined in its S0 → ∞ limit. This symmetry
generator can be used to identify the lightest simple bulk operators.

The correlation functions (19) are still non-trivial and they depend on some features of the bulk
theory such as the masses and couplings in the bulk. The two point functions are relatively easy to
calculate and we have compared these predictions against numerical SYK computations. They were
found to agree surprisingly well. We can view these as numerical checks of some quantum aspects
of supergravity theories.

Though we focused on the N = 2 supersymmetric case, we expect similar results for the N = 4
case. In fact, the qualitative fact that there is a disconnect between bulk time and boundary time is
also present for the N = 0 case, except that in that case the theory develops a universal dependence
on boundary time, as we discuss in more detail in [1].

We have considered here mainly the disk diagram. We do not expect large modifications from
the presence of higher topologies, for the simple observables we have discussed here. The disk
expectation values are all small, but they are suppressed by inverse powers of Se, while corrections
from other topologies is expected to involve powers of e−Se .

It is generally expected that black holes should be associated to chaotic systems. Since the
Hamiltonian is zero, we could wonder where the chaos is in our case9. The idea is that the projection
operator P on the low energy sector should be chaotic in some sense. In particular, one expects
that the eigenvalues of the operator Ô would display random matrix statistics. For operators with
large dimensions we show in [1] that we get a semicircle law, as for gaussian random matrices. But
we did not check for the distribution of pairs of eigenvalues. The fact that matter fields in JT
gravity should be viewed as random matrices was previously discussed in [23] for general JT gravity
theories, and the discussion here is just a limit of that general analysis.

It would be desirable to have a better Lorentzian understanding of this system. In particular,
one would like to have an understanding of possible bulk singularities. Based on the Euclidean
computations we would expect that a bulk observer has a peaceful existence at least up to a time
of order the radius of AdS2, since the t = 0 Cauchy slice seems perfectly reasonable.

There are some vague structural similarities to the case of de-Sitter space. In both cases there is
a Hamiltonian that is zero. In both cases there is a simple state where the entanglement entropy is
maximal and the addition of matter can only lower it. In both cases time emerges from a system with
no time. We are not saying that this is a model for de-Sitter. But we are saying that understanding
how time emerges in this case, where we do have a candidate quantum mechanical dual prescription,
might help us understand the de-Sitter case where there is no clear quantum mechanical dual.

8The discussion in [40, 41] was for the N = 0 case, but we expect a similar story for N = 2.
9This question was raised by S. Shenker.
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A Relation between the disk and the trumpet at non zero energy.

We have seen that the disk and cylinder diagrams were related when we take the zero energy limit.
Here we point out that they are also related at at non-zero energy as long as we restrict to a very
small energy window, this follows simply from observations in [21, 29].

Then the disk can be viewed as

D2 = eS0(ρEδE)2〈E|e−∆ℓ|E〉 (36)

where I approximated E′ ∼ E in the matrix element since we assume that the energy window, δE
is very small, δE ≪ 1. The cylinder diagram is is

T2 = ρEδE 〈E| e−∆ℓ |E〉 (37)

Then if we define dE = eS0ρEδE, then we see that the two computations are related as expected
from the equality between the average over states and the average over couplings discussed around
(27) (28).
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