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Abstract

In this work we discuss the holographic description of states in the Hilbert space
of (2+1)-dimensional quantum gravity, living on a time slice in the bulk. We
focus on pure gravity coupled to pointlike sources for heavy spinning particles.
We develop a formulation where the equations for the backreacted metric reduce
to two decoupled Liouville equations with delta-function sources under pseudo-
sphere boundary conditions. We show that both the semiclassical wavefunction
and the gravity solution are determined by a universal object, namely a clas-
sical Virasoro vacuum block on the sphere. In doing so we derive a version of
Polyakov’s conjecture, as well as an existence criterion, for classical Liouville the-
ory on the pseudosphere. We also discuss how some of these results are modified
when considering closed universes with compact spatial slices.
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1 Introduction and summary

In its most common formulation, the AdS/CFT correspondence [1] allows for the computation
of correlation functions in a strongly coupled CFT from AdS gravity in the bulk with sources
placed on the boundary [2, 3]. Though the CFT description is believed to capture the full
gravitational Hilbert space, it is far from obvious how quantum gravity states, defined on
some time slice Σ, are described in CFT terms. It would therefore be desirable to have a more
direct holographic dictionary relating quantum states in the bulk to CFT quantities. Such
a reformulation of holography was referred to as ‘CFT/AdS’ by H. Verlinde in an inspiring
lecture [4]. It would allow one to address important issues such as the description of local
excitations or of the black hole interior. These are closely related to the question of holographic
emergence of bulk locality which is a subject of intensive research.

In this work we will address the holographic description of certain bulk states in 2+1
dimensional quantum gravity. Our scope will be rather modest, focusing on constructing
initial bulk states containing a number of point-like particles but no black holes, i.e. we will
introduce local defects but no additional asymptotic boundaries. Though we will make heavy
use of the quasi-topological nature of (2+1)D gravity and of its Chern-Simons description,
one might hope that some of our results, such as the connection to CFT conformal blocks
that we will uncover, generalize to higher dimensions as well. A different approach to bulk
state holography was proposed in [5].

More precisely, we will consider states in the bulk which contain a number of massive,
spinning particles in AdS in a point-like limit. Their worldlines pierce an initial time slice Σ0

with the topology of a disk, as sketched schematically in Figure 1(a).
The particles are taken to be sufficiently heavy to backreact on the geometry and produce

a multi-centered AdS solution.
At the classical level, the state of the gravitational field we are interested in consists

of initial data on Σ0 which satisfy the Hamiltonian and momentum constraints, and has the
appropriate behavior near the particle sources. We will introduce a parametrization of (2+1)D
gravity where these initial value constraints reduce to two decoupled Liouville equations with
delta-function sources

∂z∂z̄Φ + e−2Φ = π
∑
i

αiδ
(2)(z − zi), ∂z∂z̄Φ̃ + e−2Φ̃ = π

∑
i

α̃iδ
(2)(z − zi) (1)

Here, complex coordinates range over the upper half plane, with zi the locations where the
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(a) (b) (c)

Figure 1: (a) A collection of point particles in AdS piercing an initial time slice Σ. (b) When Σ
is a disk, we prepare the state with a Hartle-Hawking-like path integral on a 3-manifold with
particles emerging from the boundary in the past. (c) When Σ is a two-sphere, we compute
a path integral on a manifold without past boundary.

particle worldlines pierce the initial slice Σ0, and αi = 2G(mi + si), α̃i = 2G(mi − si), with
mi and si the particle masses and helicities respectively. The Liouville fields Φ and Φ̃ obey
the pseudosphere boundary conditions of [6] on the real line. The metric on the initial value
surface is then given in terms of these fields as

ds2
Σ0

=
(
e−Φ + e−Φ̃

)2
dzdz̄ −

(
Im
(
∂z(Φ− Φ̃)dz

))2
. (2)

To find the full (2+1)D metric one needs to integrate a system of first order time evolution
equations spelled out in (44) below. While generically quite complicated, the time dependence
simplifies in cases where all the particles are either ‘chiral’ or ‘antichiral’, meaning that αiα̃i =
0, ∀i. The full 2+1 dimensional metric is in that case

ds2 =
∣∣∣e−Φ(z+,z̄+)dz+ + e−Φ̃(z−,z̄−)dz−

∣∣∣2 − (Im
(
∂z+Φ(z+, z̄+)dz+ − ∂z−Φ̃(z−, z̄−)dz−

))2
,

where z± = z ± t. This class of metrics generalizes that studied in [7], where purely chiral
solutions with α̃i = 0,∀i were considered.

On the quantum level, a useful way to represent a bulk state is as a Hartle-Hawking path
integral over Euclidean geometries which have the time slice Σ0 as boundary. Here, we shall
consider an analogous, Hartle-Hawking-like, path integral in the Chern-Simons theory which
prepares a multi-particle state on Σ0. Our goal will be to give a direct CFT interpretation of
this object. To prepare our bulk1 multi-particle state we perform a Chern-Simons path integral
on a 3-manifold X ending on Σ0, containing particle worldlines emerging from the boundary
in the far past and terminating on Σ0 (see Figure 1(b)). In the leading approximation, we have

1In the dual boundary CFT, the state that we are considering is obtained by performing a path integral
on the hemispherical ‘cap’ in Fig. 1(b), with primary operators inserted at various points. Through the OPE,
this can also be viewed as the state created by a single, highly non-primary, operator at the south pole of the
cap.
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to evaluate the classical on-shell action on X with appropriate boundary terms. In doing so we
will find a close connection between the wavefunction and a holomorphic Virasoro conformal
block on the sphere. We will find a relation of the form

ΨHH [zi, z̄i;αi, α̃i] ∼ N(αi, α̃i) exp

(
−k

2
(F0(zi, z̄i;αi) + F0(zi, z̄i; α̃i)

)
(3)

Here N(αi, α̃i) is a normalization factor independent of the zi, and F0(zi, z̄i;αi) is a classical
Virasoro block for a 2n-point correlator on the sphere, with identical operators inserted in
each zi and its image point z̄i. The subscript in F0 indicates that it is a vacuum block in
the channel where the operators in image points are fused pairwise, as illustrated in Figure
3. The fact that, in the semiclassical approximation, the features of the state are captured
by a universal object insensitive to the details of the UV completion, is a concrete realization
of general expectations [8]. In the process of deriving the relation (3), we will also derive a
version of Polyakov’s conjecture [9, 10] for Liouville theory on the pseudosphere, and give an
existence criterion for Liouville solutions on the pseudosphere in terms of a certain reflection
property of the classical block F0.

The result (3) can be compared to the standard literature on the role of vacuum blocks
in holography2. One heuristically expects the modulus-squared of the wavefunction ΨHH to
have an interpretation as a correlation function on a spherical boundary. In terms of the
large-c Virasoro block F0 = e−kF0 we have, schematically,

|ΨHH |2 ∼ |F0(αi)F0(α̃i)|. (4)

For non-spinning sources, α̃i = αi, this agrees with the result of [11] (see also ([12])) that
the gravity partition function with sources on a spherical boundary is |F0|2, and suggests a
natural generalization to the inclusion of spinning sources.

The classical block F0 does not only determine the Hartle-Hawking-like wavefunction, but
also the full 2+1 dimensional metric. The Liouville solution in (1) is of the form

eΦ = i(ψ1ψ̄2 − ψ̄1ψ2) (5)

where ψ1(z) and ψ2(z) are the two independent solutions (with unit Wronskian, i.e. ψ′1ψ2 −
ψ1ψ

′
2 = 1) to an ordinary differential equation whose coefficients are determined by F0, namely

(∂2
z + T (z))ψ = 0, (6)

with

T (z) =

n∑
i=1

(
αi(2− αi)
4(z − zi)2

+
αi(2− αi)
4(z − z̄i)2

+
∂ziF0

z − zi
+
∂ziF0

z − z̄i

)
. (7)

Our approach extends in principle to initial slices with a different topology. It is interesting
to consider the case where Σ0 is compact without boundary. Here we expect to find a CFT
description of closed universes with negative cosmological constant which contain some point
particles. We will focus on the case where Σ0 has spherical topology, and consider a Hartle-
Hawking-like path integral over a ball containing worldlines of particles pair-created in the
past (see Figure 1(c)). In contrast to the case with conformal boundary, the wavefunction and
backreacted gravity solution now depend on dynamical CFT data, rather than on conformal

2We would like to thank the Referee for pointing out this consistency check.
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kinematics alone. Indeed, we will find relations similar to (7) and (3) above, where the vacuum
block F0 is replaced by a specific non-vacuum block

F (zi, αi, β
∗
I ), (8)

where β∗I label the exchanged conformal families. These depend implicitly on the insertion
points, β∗I = β∗I (zi, z̄i), in a highly complicated manner. In fact, to determine them one
needs dynamical information in the form of the large c behavior of the Liouville three-point
functions.

This paper is organized as follows. In Section 2 we introduce a convenient parametriza-
tion of (2+1)D gravity in terms of two auxiliary 2D hyperbolic metrics. A judicious choice of
gauge allows us to rephrase the backreaction of spinning point particles as a pair of decoupled
inhomogeneous Liouville equations. In Section 3 we apply our formalism to asymptotically
AdS spacetimes and derive a connection between the Hartle-Hawking-like wavefunction, the
on-shell Liouville action on a pseudosphere, and a classical Virasoro block on the sphere. For
this purpose we derive a version of Polyakov’s conjecture and give a new existence criterion
for Liouville theory on the pseudosphere. We also discuss some special cases and explicit ex-
amples. In Section 4 we discuss the modifications occurring when considering closed universes
with compact spatial slices. We end with some open problems and future directions.

2 ‘Doubly hyperbolic’ parametrization of 2+1 dimensional grav-
ity

In this section we introduce a convenient parametrization of (2+1)D gravity. It relies heavily
on the formulation of the theory as a Chern-Simons theory with gauge group SL(2,R) ×
SL(2,R). The constraint equation of SL(2,R) Chern-Simons theory, which states that the
field strength should vanish on spacelike slices Σ, can be interpreted as the 2D Euclidean
Einstein equation with negative cosmological constant [13]. In this way we obtain a refor-
mulation of (2+1)D gravity as a time evolution of two auxiliary hyperbolic metrics. Perhaps
unsurprisingly, the problem of of backreacting point-particle sources then reduces to solving
the Liouville equation on Σ with delta-function sources.

2.1 Chern-Simons description

Our starting point is the Chern-Simons formulation of (2+1)D gravity:

S = SCS [A]− SCS [Ã], SCS [A] =
k

4π
tr

∫
M

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (9)

where A and Ã are potentials for the gauge group SL(2,R). The gauge potentials are related
to the vielbein E and spin connection Ω as3

A = Ω + E, Ã = Ω− E. (10)

3Throughout, we work in units where the AdS radius is set to one.
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The generators of sl(2,R) satisfy the commutation relations [Lm, Ln] = (m−n)Lm+n, m,n =
0,±1. The trace in (9) will, for definiteness, be taken in the 2-dimensional representation4,
where trLaLb = 1

2ηab. The Chern-Simons level k is then related to the Brown-Henneaux
central charge [14] as

c :=
3

2G
= 6k. (12)

In the present Section take the manifoldM on which the Chern-Simons theory is defined to
be of the form R×Σ, where the real line is the time direction and Σ is a Riemann surface. For
concreteness we will use t ∈ R as the time coordinate and choose a local complex coordinate z
on Σ. To clarify the canonical structure, it is useful to denote the spatial projections of A, Ã
by a hat,

Â ≡ Azdz +Az̄dz̄,
ˆ̃A ≡ Ãzdz + Ãz̄dz̄ (13)

and similarly introduce a spatial exterior derivative

d̂ = dz∂z + dz̄∂z̄. (14)

The canonical structure of the Chern-Simons action is clarified by rewriting it, up to a total
derivative, as

S[A] = − k

4π
tr

∫
R×Σ

dt ∧
(
Â ∧ ˙̂

A− 2AtF̂
)
. (15)

The time component At is not a dynamical variable but a Lagrange multiplier enforcing the
constraint equation

F̂ = d̂Â+ Â ∧ Â = 0, (16)

The remaining (complex) equation of motion

Ftz = 0 (17)

is a dynamical equation describing the time evolution of the dynamical variables Â.

2.2 Choice of gauge

In what follows, we will use the gauge freedom to work in a generalization of the temporal
gauge At = Ãt = 0. It involves choosing two smooth vector fields V and Ṽ which are tangent
to Σ at all times, i.e.

V = V z∂z + V z̄∂z̄, Ṽ = Ṽ z∂z + Ṽ z̄∂z̄. (18)

We then impose the gauge conditions

At = −iV Â, Ãt = −iṼ
˜̂
A. (19)

In the nomenclature of [15], this is a Lagrange multiplier gauge which, for V = Ṽ = 0, reduces
to the temporal gauge. We will keep the vector fields V and Ṽ general for the moment; in

4For concreteness we can take

L0 =
1

2

(
1 0
0 −1

)
, L1 =

(
0 −1
0 0

)
, L−1 =

(
0 0
1 0

)
. (11)
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what follows they will be chosen judiciously in order to simplify the problem. We should note
that, if V and Ṽ coincide on some locus, then the vielbein E (see (10)) degenerates there
and we have a coordinate singularity. Below, when adding particle sources, this will actually
happen on the isolated worldlines, reflecting the conical singularity of the metric there [16, 17].

Using (19) to eliminate At, the equations for the dynamical variables reduce to

F̂ = 0, ˆ̃F = 0 (20)

∂tÂ = −L̂V Â, ∂t
ˆ̃A = −L̂Ṽ

ˆ̃A (21)

The first line contains the constraint equations on the time slice Σ, while on the second line
we have the dynamical equations determining the time evolution.

The gauge choice (19) has residual symmetries stemming from parameters satisfying5

Λ̇ = −L̂V Λ, ˙̃Λ = −L̂Ṽ Λ̃. (22)

The parameter Λ can be chosen arbitrarily on specific time slice, say at t = 0, which can be

used to bring Â,
˜̂
A to a convenient form there.

2.3 ‘Doubly hyperbolic’ variables

We now introduce a convenient parametrization for the spatial connections Â and ˆ̃A. This
parametrization naturally arises from the relation [13] between flat SL(2,R) connections and
constant negative curvature metrics on Σ.

Concretely, we parametrize Â, ˆ̃A as

Â = eL1 − ēL−1 + iωL0,
ˆ̃A = −ẽL1 + ¯̃eL−1 + iω̃L0, (23)

where the one-forms e and ē are related by complex conjugation and ω is real6, and similarly
for the quantities with a tilde. The constraint equations (20) reduce to

d̂e− iω ∧ e = 0, (24)

d̂ω + 2ie ∧ ē = 0, (25)

and similarly for ẽ, ω̃. These equations state that, at each time t, the two auxiliary metrics
on Σ

ds2
2 = eē, ds̃2

2 = ẽ¯̃e (26)

have constant negative curvature, while ω, ω̃ the role of the associated spin connection one-
forms. The latter are determined algebraically in terms of e, ẽ and their spatial derivatives
through (24).

The dynamical equations (21) become

ė = −L̂V e, ˙̃e = −L̂Ṽ ẽ. (27)

5Here and in what follows, we define the spatial Lie derivative L̂V = iV d̂ + d̂iV m to act on form indices
only, and not on Lie algebra indices.

6Note that with these reality conditions Â and ˆ̃A actually take values in su(1, 1). A similarity transformation
with eiπ(L1−L−1)/4 would yield sl(2,R)-valued potentials, though here we will stick with the simpler form (23).
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The dynamical equation for the spin connection, ω̇ = −L̂V ω is automatically satisfied when
expressing ω in terms of e and using (27).

The actual (2+1)D gravity metric ds2 = tr(A− Ã)2/2 takes the form

ds2 =
∣∣(iV e+ iṼ ẽ

)
dt− e− ẽ

∣∣2 − 1

4

((
iV ω − iṼ ω̃

)
dt− ω + ω̃

)2
. (28)

It is generically related to the two auxiliary constant curvature metrics (26) in a nontrivial way.
In the special left-right symmetric case where e = ẽ, the metric on Σ is simply proportional
to the auxiliary constant negative curvature metrics (26), ds2

Σ = 4ds2
2 = 4ds̃2

2. Furthermore,
if V = −Ṽ , the (2+1)D metric in this class is static. In Section (3.6) we will discuss another
class of solutions, obtained as a certain scaling limit, which are fibrations over a 2D base with
hyperbolic metric ds2

2.

More on the phase space

While the parametrization of the gauge potentials (23,36,37) may seem cumbersome from the
point of view of (2+1)D metric variables, it gives a useful ‘left-right factorized’ description of
the gravity phase space which, following [18], facilitates the connection to 2D CFT. Indeed,
from the above parametrization we see that the space of flat SL(2,R) gauge potentials (23)
for which the 2D vielbein (e, ē) is invertible7, modulo gauge transformations, is given by
the space of constant negative curvature vielbeins modulo diffeomorphisms and local Lorentz
transformations. In other words, this phase space is, schematically,

metrics on Σ

Diff0(Σ) ×Weyl
. (29)

If Σ is of genus g and has b boundaries, this space can be identified as the Teichmüller space
T (g, b). From the 2+1 decomposition of the the Chern-Simons action (15) we see that the
symplectic form on the phase space is given by

ωCS = − k

4π
tr

∫
Σ
δÂ ∧ δÂ, (30)

which can be shown to be equivalent to the standard Weil-Petersson symplectic form on

T (g, b) [13]. Combining with the analogous ˆ̃A phase space we conclude that the phase space
of (2+1)D gravity is, locally8,

T (g, b)× T (g, b). (31)

A different parametrization of the field space, which is more natural in metric variables,
describes the phase space as the cotangent bundle of a single copy of the Teichmüller space,
T ∗ (T (g, b)). These two descriptions are equivalent in a nontrivial way, as shown in [21, 22].

We should remark that, if the boundaries are asymptotic boundaries, which will be the case
of interest for us, the diffeomorphisms Diff0(Σ) in (29) are defined to act trivially at infinity,

7As shown in [19],[20], the full moduli space of flat SL(2,R) connections consists of several components,
one of which is the Teichmüller space and which is picked out by the restriction to inverible vielbeins.

8While (31) is a correct local description of the phase space of (2+1)D gravity, it was argued in [19, 20] that
invariance under large diffeomorphisms requires a further quotient by the diagonal action of the mapping class
group M , which leads to T (g,b)×T (g,b)

M
. Such global aspects will however not play a role in the semiclassical

considerations in this work.
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and the resulting Teichmüller space is in fact infinite dimensional [18]. It captures ‘boundary
graviton’ excitations which we will describe more explicitly in Section 3. For example, for
g = 0, b = 1, it can be shown that T (0, 1) can be identified with Diff(S1)/SL(2,R) [18, 23].
The Weyl-Petersson symplectic structure reduces to the Kirillov-Kostant [24] structure on
the vacuum Virasoro coadjoint orbit, and it’s quantization leads to the Virasoro vacuum
representation [25].

Residual gauge fixing: Fefferman-Graham gauge

The residual gauge freedom (22) can be used to bring the spatial connections Â,
˜̂
A in a

desired form on the t = 0 initial slice which we will denote as Σ0. Before discussing the
conformal gauge, which will be used in the rest of the paper, it is instructive to first see
how the standard ‘Fefferman-Graham gauge’ for asymptotically AdS spacetimes fits in our
parametrization. This gauge leads to the (2+1)D metric in the Banados form of [26], which
is an all-order version of the Fefferman-Graham expansion.

The Fefferman-Graham gauge corresponds to taking the 2D vielbeins to be of the form

e =
dz

2y
− y

2
T (x)dx, ẽ =

dz

2y
− y

2
T̃ (x)dx. (32)

Here, z = x + iy takes values on the upper half plane, and T (x) and T̃ (x) are arbitrary
functions. The corresponding spin connection one-forms are

ω = −
(

1

y
+ yT (x)

)
dx, ω̃ = −

(
1

y
+ yT̃ (x)

)
dx. (33)

The vector fields V and Ṽ which determine the gauge choice (19) are taken to be

V = −Ṽ = −∂z − ∂z̄ = −∂x. (34)

The resulting time evolution equation (27) is simply solved by replacing x→ x+ = x+ t in e
and x → x− = x − t in ẽ. One checks that the (2+1)D metric (28) is indeed in of Banados
form [26], i.e.

ds2 =
dy2 + dx+dx−

y2
− T (x+)dx2

+ − T̃ (x−)dx2
− + y2T (x+)T̃ (x−)dx+dx−. (35)

The functions −kT (x+) and −kT̃ (x−) are identified with the components of the boundary
stress tensor [27, 28].

Residual gauge fixing: conformal gauge

Reverting to the general case where Σ0 has arbitrary topology, we will in this paper use the
residual gauge freedom (22) to bring the auxiliary metrics (26) in the conformal gauge. Let
us first introduce the following explicit parametrization of the zweibeins:

e = e−(Φ+iλ)(dz + µdz̄), ẽ = e−(Φ̃+iλ̃)(dz + µ̃dz̄), (36)

where Φ, λ are real fields and µ is complex (and similarly for their tilded counterparts). We
will also restrict to

|µ| < 1, |µ̃| < 1 (37)

9
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so that the zweibein (e, ē) is invertible. We should keep in mind that the above is a parametriza-
tion for three-dimensional gauge potentials and that the fields Φ, λ, µ, ω (and their tilded
counterparts) depend on all three coordinates (t, z, z̄).

Let us now display the equations of motion in this parametrization, starting with the
constraint equations (20). These reduce to

ωz = −∂zλ− i(1− |µ|2)−1
(
(1 + |µ|2)∂zΦ + ∂z̄µ̄− µ̄ (∂zµ+ 2∂z̄Φ)

)
(38)

e−2Φ =
Im ∂z̄ωz
1− |µ|2

(39)

The residual gauge freedom (22) can be used to bring both auxiliary metrics ds2
2 and ds̃2

2 in
conformal gauge on the t = 0 Σ0, i.e.

µ = λ = 0, µ̃ = λ̃ = 0, at t = 0 (40)

The constraint equations (20) at t = 0 reduce to ωz = −i∂zΦ, ω̃z = −i∂zΦ̃ and Liouville’s
equation for Φ and Φ̃:

∂z∂z̄Φ + e−2Φ = 0, ∂z∂z̄Φ̃ + e−2Φ̃ = 0, at t = 0. (41)

On Σ0, the spatial gauge field Â takes the form

Â = Â[Φ] := e−ΦdzL1 − e−Φdz̄L−1 + (∂zΦdz − ∂z̄Φdz̄)L0, at t = 0. (42)

In this we recognize the standard form for the Lax connection for the Liouville equation
(see e.g. [29]). When particle sources are coupled to gravity, (41) will be modified by delta-
function sources as we will discuss in detail in Section 2.4. When the spacetime has a conformal
boundary, these should be supplemented with appropriate AdS boundary conditions which
we will discuss in Section 3 below.

From the Liouville solutions (77) we can construct two holomorphic stress tensors on the
initial value surface as follows:

T (z) = −(∂zΦ
2 + ∂2

zΦ) T̃ (z) = −(∂zΦ̃
2 + ∂2

z Φ̃) at t = 0. (43)

These will play an important role in the rest of this work.
Now let us consider the dynamical equations (27) which determine the time dependence

of the fields. They lead to the coupled first order equations

∂t(Φ + iλ) = −
(
(V z∂z + V z̄∂z̄)(Φ + iλ) + V z̄∂zµ

)
+ ∂z(V

z + µV z̄)

∂tµ = − (∂z̄ − µ∂z + ∂zµ) (V z + µV z̄). (44)

These should be solved with (40) and the solutions to (41) as initial conditions. We note from
(44) that in general the fields µ and λ will not stay zero at later times.

Initial data for 3D gravity

The constraint- and dynamical equations (20,21) guarantee that the (2+1)D metric (28)
satisfies Einsteins equations with negative cosmological constant,

Rµν = −2gµν . (45)

10
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In our parametrization (23,36) and gauge choice (40), the induced metric on the initial value
surface Σ0 takes the simple form

ds2
Σ0

=
(
e−Φ + e−Φ̃

)2
dzdz̄ −

[
=m

(
∂z(Φ− Φ̃)dz

)]2
(46)

We note that this metric is form-invariant under conformal transformations of Σ0 with the
Liouville fields transforming in the standard way,

z → z′ = f(z), Φ→ Φ′ = Φ +
1

2
ln(f ′f̄ ′), Φ̃→ Φ̃′ = Φ̃ +

1

2
ln(f ′f̄ ′). (47)

The Liouville (41) and time evolution equations (44) ensure that the 2D metric (46) and
the extrinsic curvature K (whose form is rather complicated) on the initial slice satisfy the
initial value constraints of (2+1)D gravity:

R(2) + (Kµ
µ )2 −KµνK

µν + 2 = 0

DµK
µ
ν −DνK

µ
µ = 0, (48)

where Dµ is the covariant derivative with respect to the metric (46) on Σ0. In classical general
relativity, the phase space consists of initial data satisfying (48). In our formalism this data
is repackaged in the form of two fields solving Liouville’s equation. As we shall presently
see, this becomes especially advantageous when including point particle matter sources. The
nontrivial problem of finding consistent initial data then reduces to solving the Liouville
equation with delta-function sources, for which there exists a well-developed mathematical
physics machinery.

2.4 Spinning particle sources and backreaction

We now consider gravity coupled to massive, spinning matter fields in a limit in which these
fields behave like heavy point particles backreacting on the geometry. Let us say a little more
about this point particle limit. A quantum field of mass m and helicity s propagates a lowest
weight representation of sl(2,R)× sl(2,R) built on a primary of weight (h, h̃), where (see e.g.
[30])

m2 = (h+ h̃)(h+ h̃− 2), s = h− h̃ (49)

High-energy quanta are expected to behave as point particles. Since the AdS energy is given
by L0 + L̃0, the point particle limit is h+ h̃� 2 and the relations (49) simplify to

m = h+ h̃, s = h− h̃. (50)

The description of point particle sources in Chern-Simons variables goes back to [31], see
[32],[33] for more recent discussions. They are described by a classical source action which,
upon quantization, leads to a Wilson line in the appropriate unitary irreducible representation
of the gauge group. A point particle with mass m and helicity s is described by the following
worldline action

Sp[U,P, λ;A;h] =

∫
C
dτ
[
tr(PDτUU

−1) + λ
(
trP 2 + 2h2

)]
(51)

DτU ≡ dU

dτ
+AτU, (52)

11
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where Aτ is defined as the component of the connection parallel to C:

Aτ := Aµ(x(τ))
dxµ

dτ
(53)

A similar action describes the worldline coupling to Ã. Here, τ parametrizes the worldline
C and the dynamical variables U and P are elements of the SL(2,R) group and sl(2,R)
Lie algebra respectively. The action is invariant under worldline reparametrizations, and the
combined Chern-Simons and source actions remain invariant under SL(2,R) gauge transfor-
mations A→ Λ−1(A+ d)Λ provided that the worldline fields transform as

U → Λ−1U, P → Λ−1PΛ. (54)

The gauge invariance of the total action means in particular that it is independent of the
shape of the curve C; it is therefore not necessary to vary this action with respect to the
worldline C.

The equations of motion following from varying the particle action with respect to the
worldline variables U,P, λ reduce to

dP

dτ
+ [Aτ , P ] = 0,

dP̃

dτ
+ [Ãτ , P̃ ] = 0 (55)

trP 2 = −2h2, trP̃ 2 = −2h̃2 (56)

dU

dτ
U−1 +Aτ + 2λP = 0,

dŨ

dτ
Ũ−1 + Ãτ + 2λ̃P̃ = 0 (57)

The equations for the momenta P and P̃ in the first line can be shown [33] to be equivalent
to the Mathisson-Papapetrou-Dixon (MPD) equations [34, 35, 36] governing the motion of
spinning point particles in general relativity, as we review in Appendix A. In the metric formu-
lation these express conservation of momentum and angular momentum along the wordline,
and generalize the geodesic motion required for consistent coupling of non-spinning particles
to gravity. As explained in Appendix A, the (2+1)D MPD equations admit solutions describ-
ing standard geodesic motion, but also allow for more general types of motion in the spinning
case. The subclass of geodesic solutions corresponds to (see (232))

[P, P̃ ] = [Eτ , P ] = [Eτ , P̃ ] = 0. (58)

Varying the total action with respect to A yields the following source term for the field
strength

Fµν = −π
k
εµνρ

∫
C
dτP

dxρ

dτ
δ(3)(x− x(τ)) (59)

We see that, for a particle to backreact on the geometry, either h or h̃ should grow linearly
with k in the semiclassical limit of large k. For later convenience we define the ratios

α =
h

k
, α̃ =

h̃

k
. (60)

It will also be useful in what follows to distinguish some special cases. We will call the particle
‘chiral’ if α stays finite but α̃→ 0 in the large k limit, and ‘antichiral’ if the converse is true.
The particle is of ‘generic’ type if αα̃ 6= 0. We will see in Section 3.6 that the case where all

12
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the particles involved are either of the chiral or anti-chiral type (i.e. αα̃ = 0) is special in that
the dynamics simplifies significantly.

Let us discuss the effect of the source terms in (59) and in the analogous equation for F̃µν
in more detail. We will restrict attention to curves C for which t(τ) is a monotonic function,

dt

dτ
> 0. (61)

We can then choose the parameter of the curve to coincide with the time coordinate t,

xµ(τ) = (τ, z(τ), z̄(τ)). (62)

On general grounds, we expect that the introduction of the sources should modify the con-
straint equation (and hence the phase space), but not the dynamical equations. For a generic
source with αα̃ 6= 0 this is compatible with our gauge choice (19) if we choose the the vectors
V and Ṽ to coincide, on the particle worldline, with the spatial velocity

V (x(t)) = Ṽ (x(t)) = ż∂z + ˙̄z∂z̄, generic (αα̃ 6= 0). (63)

Indeed, it is straightforward to see that the source term in (59) then does not modify the
dynamic equation (21). For an (anti-)chiral particle we need only impose that V (resp. Ṽ )
become equal to the spatial velocity:

V (x(t)) = ż∂z + ˙̄z∂z̄, chiral (α̃ = 0)

Ṽ (x(t)) = ż∂z + ˙̄z∂z̄, antichiral (α = 0). (64)

Note that these imply the vanishing of components of the gauge fields parallel to the
worldline:

Aτ = Ãτ = 0 generic (αα̃ 6= 0)

Aτ = 0 chiral (α̃ = 0)

Ãτ = 0 antichiral (α = 0). (65)

Consequently the equations (55) impose that P and P̃ are constant. The equation (56) can
be solved as9

P = −2hiL0, P̃ = −2ih̃L0. (66)

The remaining equation (57) is solved by e.g. taking

λ = λ̃ = 0, U = Ũ = 1. (67)

Substituting (66) into (59) we find that the constraint equations (41) on the t = 0 slice are
modified to10

∂z∂z̄Φ + e−2Φ = π

n∑
i=1

αiδ
(2)(z − zi), ∂z∂z̄Φ̃ + e−2Φ = π

n∑
i=1

α̃iδ
(2)(z − zi). (68)

9The factors i are a consequence of writing the equations in the su(1, 1) basis, see Footnote 6.
10In our conventions, εtzz̄ = i and the (2+1)D delta function is normalized such that 1 =

∫
dtd2zδ(3)(x) =

2
∫
dtdxdyδ(3)(x).

13
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Here, we have performed the straightforward generalization to include n particle sources
labelled by i. Each delta-function source term creates a deficit angle of 2παi at the point zi
in the 2D metric ds2. We will restrict to 0 ≤ αi < 1 as appropriate for particle sources below
the BTZ black hole treshold which corresponds to α = 1.

It may seem surprising that the wordlines Ci were largely arbitrary (except for the assump-
tion (61)), and yet they end up satisfying the MPD equations. The reason for this is that the
vectors V and Ṽ , which depend on the Ci through (63,64), enter in the (2+1)D metric (28) so
as to ensure that the MPD equations are obeyed. We are working in a ‘Kantian’ formulation
where the object (the metric) directs itself towards our knowledge (of the worldlines) and not
vice versa.

It is enlightening to check whether the particles in the backreacted solutions move on
geodesics. Recall that this requires (58) to hold. In the non-chiral case, this is so due to the
fact that (65) implies that the (2+1)D vielbein degenerates on the wordline:

Eτ =
1

2
(Aτ − Ãτ ) = 0 (generic). (69)

The coordinate singularity signalled by the degeneration of the vielbein here reflects the conical
curvature singularity on the worldline [16, 17]. For chiral particles however, the vielbein need
not be degenerate on the worldline as Eτ = Ãτ/2. They follow geodesics if, at t = 0,

Ãτ ∼ L0. (70)

If not, the chiral particle follows a more general trajectory which solves the MPD equations.
As the above analysis indicates, the phase space of (2+1) gravity in the presence of particle

sources, is (locally) the product of Teichmüller spaces of punctured Riemann surfaces,

T (g, b, n)× T (g, b, ñ), (71)

where n (ñ) is the number of particles with nonvanishing quantum number α (resp. α̃).
For example, for g = 0, b = 1, n = 1, the Teichmüller space T (0, 1, 1) can be identified,
as a symplectic manifold, with the Virasoro coadjoint orbit DiffS1/U(1) [18],[23]. Upon
quantization, one obtains a generic primary representation of the Virasoro algebra. It would
be of interest to have a better mathematical understanding of the Teichmüller spaces with
n > 1 and b ≥ 1.

3 Asymptotically Anti-de Sitter spacetimes

So far we did not specify the topology of the spatial slice Σ. In this and the following section,
we will focus on the case where Σ has a single asymptotic boundary, which is the standard
setting for the AdS/CFT correspondence. In particular we will be describing multi-particle
excitations on a global Anti-de Sitter background. We will comment on the case where Σ has
spherical topology in Section 4.

When there is a asymptotic boundary, the initial value surface Σ0 has the topology of
an open disk, possibly punctured by particle sources. The Liouville fields Φ and Φ̃ describe
hyperbolic metrics on this surface. We also want to impose asymptotically AdS boundary
conditions in the standard sense of Brown and Henneaux [14]. We will see that this reduces,
in our parametrization, to pseudosphere or Zamolodchikov-Zamolodchikov (ZZ) boundary

14
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conditions [6] on the Liouville fields Φ and Φ̃. Using an appropriate doubling trick we will
extend all quantities to the Riemann sphere, and in particular find a connection to spherical
conformal blocks.

3.1 AdS asymptotics and the pseudosphere

We can model Σ0 as the complex upper half plane parametrized by a complex coordinate z
with

Im z ≥ 0. (72)

The AdS conformal boundary corresponds to the real line, compactified by adding the point
at infinity. As we will see, this coordinate system will describe physics in the Poincaré patch.
This will be sufficient for most purposes and leads to simple formulas. The extension to a
global coordinate system will be discussed at the end of this subsection.

In the (t, z, z̄) coordinate system the standard boundary conditions [26] on the Chern-
Simons gauge potentials read

A− := At −Az −Az̄ = 0 (73)

Ã+ := At +Az +Az̄ = 0 at Im z = 0, (74)

In addition, we will impose suitable fall-off conditions [26] to ensure that the resulting space-
time is asymptotically AdS.

The boundary conditions (74) are consistent with our gauge choice (19) provided that the
vector fields V, Ṽ behave near the boundary as:

V → −∂z − ∂z̄, Ṽ → ∂z + ∂z̄ as Im z → 0. (75)

As described in the previous section, in the presence of particle sources, we also require
the vector fields V, Ṽ to coincide, on the particle worldlines in the interior, with their spatial
velocities (63,64). Let us however first discuss the situation without sources. We can then
simply take

V = −Ṽ = −∂z − ∂z̄ (76)

throughout the spacetime. The constraint- and dynamical equations (41, 44) then reduce to

0 =∂z∂z̄Φ + e−2Φ, 0 =∂z∂z̄Φ̃ + e−2Φ̃, (77)

∂tΦ =(∂z + ∂z̄)Φ, ∂tΦ̃ =− (∂z + ∂z̄)Φ̃ (78)

µ =λ = 0, µ̃ =λ̃ = 0 (79)

In other words, the auxiliary 2D metrics (26) remain in conformal gauge at all times, and
the time dependence is such that Φ and Φ̃ depend only on the combinations z+ := z + t and
z− := z − t respectively. Their real parts x± = Re(z) ± t will turn out to play the role of
light-cone coordinates on the boundary.

The 2+1 dimensional metric (28) takes the form

ds2 =
∣∣∣e−Φ(z+,z̄+)dz+ + e−Φ̃(z−,z̄−)dz−

∣∣∣2−[Im(∂z+Φ(z+, z̄+)dz+ − ∂z−Φ̃(z−, z̄−)dz−

)]2
(80)

One can check that the (2+1)D Einstein equations Rµν + 2gµν = 0 indeed reduce to (77).
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An elementary solution to (78) is to take Φ and Φ̃ to coincide at t = 0 and take the form

Φ = Φ̃ = ln 2Im z, at t = 0. (81)

We note that Φ, Φ̃ diverge on the asymptotic boundary, where z is real. The corresponding
auxiliary 2D metrics (26) describe the hyperbolic metric on the upper half plane:

ds2
2 = ds̃2

2 =
dzdz̄

4(Imz)2
. (82)

The Liouville stress tensors (43) associated to (81) vanish,

T (z) = T̃ (z) = 0, (83)

and the (2+1)D metric (80) is simply AdS3 in Poincaré coordinates:

ds2 =
−dt2 + dzdz̄

(Imz)2
. (84)

More generally we will consider Liouville solutions which approach (81) near the real axis,

Φ = ln(2Im z) +O(1), Φ̃ = ln(2Im z) +O(1). (85)

In the literature on boundary Liouville theory, these are known as Zamolodchikov-Zamolodchikov
(ZZ) or pseudosphere boundary conditions [6].

We will now show that the boundary conditions (85) give rise to (2+1)D metrics obeying
the Brown-Henneaux falloff conditions. As explained in [7], the Liouville equation determines
the first subleading correction to (85) in terms of the stress tensor on the boundary:

Φ = ln(2Im z) +
2

3
(Im z)2T|z=z̄ +O(Im z)4 (86)

Φ̃ = ln(2Im z) +
2

3
(Im z)2T̃|z=z̄ +O(Im z)4 (87)

The higher order terms in in this expansion are determined by the value of the stress tensor
on the real line. The expansion (87) and the reality of Φ, Φ̃ imply in particular that the value
of the stress tensor on the real axis is real:

gT (x) = T̄ (x), T̃ (x) = ¯̃T (x), for x ∈ R (88)

To bring the metric in Fefferman-Graham form, we adopt following parametrization

z = x+ i

(
y − 1

6

(
T (x+) + T̃ (x−)

)
y3 +O(y5)

)
(89)

and find

ds2 =
dy2 + dx+dx−

y2
− T (x+)dx2

+ − T̃ (x−)dx2
− +O(y2). (90)

In particular, the real functions −kT (x+) and −kT̃ (x−) coincide with the components of the
boundary stress tensor [27, 28] of the asymptotically AdS spacetime. We note from (89) that
the imaginary part of z tends to the Fefferman-Graham radial coordinate y near the boundary.
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The subleading correction in (89) is necessary to remove an unwanted term of order one in
gyy.

When particle sources are present, we can still arrange for V and Ṽ to take the form (76)
in a neighborhood of the asymptotic boundary. Therefore the asymptotic form of the metric
(90) and the relation between the Liouville and boundary stress tensors continues to hold in
this case. Near the delta-function sources zi in (68), the Liouville field has the asymptotics

Φ
z → zi∼ αj ln |z − zi|+O(1), j = 1, . . . , n. (91)

Correspondingly, the stress tensor T (z) has a second order pole

T (z)
z → zi∼ εj

(z − zi)2
+O

(
(z − zi)−1

)
, i = 1, . . . , n, (92)

where we defined
εi =

αi
2

(
1− αi

2

)
. (93)

The stress tensor T (z) is therefore meromorphic on the upper half plane. Similar properties
hold for Φ̃ and T̃ (z).

Other useful coordinate systems

It is often convenient to model Σ0 as a punctured disk instead instead of the above upper half
plane model; this has the advantage that the full spacetime accessible as a bounded domain.
For this purpose we make a conformal transformation on Σ0:

z = i
1− w
1− w

. (94)

The new coordinate runs over the unit disk |w| ≤ 1, and the AdS vacuum solution corresponds
in this frame to

Φ = Φ̃ = ln(1− |w|2), at t = 0. (95)

A natural choice for the vector fields V, Ṽ specifying the Chern-Simons gauge choice is

V = −iw∂w + iw̄∂w̄, Ṽ = iw∂w − iw̄∂w̄. (96)

In Appendix B we show that the corresponding (2+1)D metric is of the form (80), with z±
replaced by the combinations w± defined as

w+ = weit, w=we
−it. (97)

To conclude, we explain how to set up the equations in global coordinates. To this end we
make a further conformal transformation on Σ0 to a coordinate u defined on the semi-infinite
cylinder,

w = eiu, Imu ≥ 0, u ∼ u+ 2π. (98)

In the gauge determined by vector fields V, Ṽ given by

V = −∂u − ∂ū, Ṽ = ∂u + ∂ū, (99)

the 2+1 dimensional metric again takes the form (80) with z± replaced by u± defined as

u+ = u+ t, u− = u− t. (100)

17



SciPost Physics Submission

Conformally mapping the AdS solution (95) gives

Φ = Φ̃ = ln 2 sinh Imu at t = 0. (101)

The stress tensors in this frame are T (u) = T̃ (ū) = 1
4 . The (2+1)D metric is simply AdS3 in

global coordinates:
ds2 = dρ2 − cosh2 ρdt2 + sinh2 ρdφ2. (102)

where we parametrized u as

u = φ− i ln tanh
ρ

2
. (103)

Pseudosphere doubling trick

As is usually the case for CFTs defined on a bounded domain of the complex plane with certain
boundary conditions, it is possible to apply a ‘doubling trick’ which extends the theory to the
full complex plane in such a way as to automatically satisfy the boundary conditions. For the
case of Liouville theory with ZZ boundary conditions this was worked out in [7].

As we argued above, the Liouville stress tensor T (z) is a meromorphic function on the
upper half plane which, due to the ZZ boundary conditions, takes on real values on the real
line (88) . It can therefore be extended a meromorphic function on the extended complex
plane C satisfying

T (z) = T̄ (z). (104)

We recall the general form of the Liouville solution,

e−2Φ =
|f ′|2

4(Im f)2
(105)

where f satisfies
S(f, z) = 2T (z), (106)

and S(f, z) denotes the Schwarzian derivative.
The reflection condition (104) translates into a similar reflection condition on f ,

f(z) = f̄(z). (107)

Upon extending f to the complex plane, we obtain through (105) a Liouville field encoding
two joined ‘hemispheres’ of a pseudosphere, with singularities in image points, as sketched
in Figure 4(a). In Appendix B we give more details on the doubling trick in the unit disk
conformal frame.

The function f(z) in (105) is multivalued with branch points at each of the source locations.
In Section 3.3 below we will give more details on how f is determined from the solution of a
certain monodromy problem.

3.2 Hartle-Hawking-like wavefunction and Liouville action

So far we have considered classical gravity solutions containing spinning point particles, con-
structed from time-evolving suitable initial data. In this section we will take a step closer to
the quantum theory and discuss a path-integral preparing the semiclassical initial state on a
t = 0 time slice Σ0. Such a path integral can be thought of as defining a Hartle-Hawking-like
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Figure 2: The lower half of Figure 1(b) can be redrawn as a filled-in pseudosphere with particle
worldlines connecting image points through the bulk.

wavefunction, though we should stress that we will not consider here a path integral over
metrics as in the original work [37], but will rather consider a somewhat similar object in the
SL(2,R) Chern-Simons theory. One noteable difference is that, while in the metric theory
one continues to Euclidean signature in order to describe a ground state wave function, such
a continuation is not necessary in Chern-Simons theory. Indeed, in a topological theory11 the
Hamiltonian vanishes and it does not matter if one time evolves with eitHor e−τH . One does
choose the topology in accordance with the Hartle-Hawking no-boundary proposal, for exam-
ple if Σ0 is a two-sphere (a case we will consider in Section 4), we perform the Chern-Simons
path integral over a ball filling in the two-sphere. Such Hartle-Hawking-like path integrals
are standard in the Chern-Simons literature, see [38].

As explained in e.g. [39], in anti-de Sitter spacetime the Hartle-Hawking prescription
consists of performing a path integral with sources J∞ on the AdS boundary, up to the initial
time slice Σ0, as indicated in the lower half of Figure 1(b). The sources J∞ define the state
and, in the case of interest, correspond to spinning particle sources whose worldlines start
on the conformal boundary in the past and terminate on Σ0. This can be deformed to the
situation depicted in Figure 2: the manifold X on which we compute the Chern-Simons path
integral is a filled-in pseudosphere, where Σ0 is the boundary of the northern ‘hemisphere’.
The particle worldlines emerge from the southern hemisphere and end up at Σ0. We can
view them as connecting image points on the pseudosphere through the bulk. We consider n
particles with quantum numbers αi located at positions zi in the upper half plane model for
Σ0. The sources J∞ then correspond to particles located precisely at the image points z̄i on
the southern hemisphere.

The wavefunction of interest should be a functional of the canonical coordinate fields on
the boundary of X, which are to be held fixed in the path integral. Depending on the choice of

11The story is a bit more subtle in the presence of boundaries, where we have to supplement the action
with boundary terms. However since our boundaries will be constant time slices, such boundary terms are not
influenced by a continuation to imaginary time.
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canonical coordinate one obtains wavefunctions in different polarizations. Here we will choose
a holomorphic polarization12, where Az and Ãz̄ are treated as coordinates and Az̄ and Ãz̄ as
their conjugate momenta. In order to have a consistent variational principle under the these
boundary conditions, it straightforward to see that one has to add a boundary term to the
action which can be taken to be [40]

Sbdy[A] =
k

4π
tr

∫
C
dz ∧ dz̄AzAz̄. (108)

We note this boundary term is actually purely imaginary. The fact that we require a non-real
boundary term is a consequence of choosing a non-real polarization.

The Hartle-Hawking-like path integral of interest13 factorizes as

ΨHH [Az, Ãz̄; zi, z̄i;αi, α̃i] = Ψ[Az; zi, z̄i;αi]Ψ̃[Ãz̄; zi, z̄i; α̃i], (109)

where

Ψ[Az; zi, z̄i;αi] =

∫
X

[DADUiDPiDλi]|Az e
i(SCS [A]+Sbdy [A]+

∑
i Sp[Ui,Pi,λi;A;αi]), (110)

and Ψ̃ is defined analogously. We recall that Sp is the worldline action of the particles given
in (52). Though not explicitly indicated in the notation, one should keep in mind that these
wavefunctions depend on the boundary data J∞.

In the standard approach to quantizing Chern-Simons theory with compact gauge groups
on compact manifolds, a similar functional gives a path integral representation of Kac-Moody
blocks [38]. For noncompact gauge groups and the extension to manifolds Σ0 with asymp-
totic boundary, the exact evaluation of path integrals of the form (110) is progressively less
straightforward, see [41] for a recent discussion. In this work, we will focus on a more pedes-
trian goal and consider the large k limit where (110) is dominated by a classical saddle point,
which we will then relate to the large k limit of an appropriate CFT block. At large k, the
wavefunction Ψ[Az; zi, z̄i;hi] is well approximated by the classical action

Ψ[Az; zi, z̄i;αi]
k →∞∼ eiS

tot
cl , (111)

where the total action Stot = SCS + Sbdy +
∑

i Sp,i includes the boundary and source terms.
It is to be evaluated on the classical solution which takes on the specified value Az on the
boundary.

We will first show that the total on-shell action receives contributions only from the
boundary term Sbdy in (108). Recalling that, in our chosen gauge, the component Aτ parallel
to the worldline vanishes, and using the solution (66,67) for the worldline fields, one sees that
the source action Sp vanishes. The bulk Chern-Simons action can be rewritten as

SCS [A] =
k

4π
tr

∫
X

(
A ∧ F − 1

3
A ∧A ∧A

)
. (112)

12Another common choice [18], where (e, ωz) are treated as coordinates and (ē, ωz̄) as momenta, leads to a
different boundary term Sbdy = − k

8π

∫
C dz ∧ dz̄(|ωz|

2− 2e−2Φ(1− |µ|2)), which however coincides with (108) in
conformal gauge (see (117) below).

13In principle we could have considered a more general functional which also depends on the boundary values
of the worldline variable U , but we will specialize here to the boundary value U = 1.
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The second term vanishes since detAaµ = 0 in our gauge (19), while the first term vanishes
upon using (59) and (65). Therefore only the boundary term contributes to the total action
and gives

Ψ[Az; zi, z̄i;αi] ∼ exp
ik

4π
tr

∫
C
dz ∧ dz̄AzAclz̄ . (113)

Here, Aclz̄ is a solution to

∂zA
cl
z̄ − ∂z̄Az + [Az, A

cl
z̄ ] = −2π

∑
i

αiδ
(2)(z − zi)L0. (114)

From this expression, we learn that the argument Az cannot be completely arbitrary: the
wavefunction has support on those Az which arise as components of an almost everywhere
flat connection14. In other words, Az must locally be of the form Az = G−1∂zG, and due to
(114) we must have, locally and in the sl(2,R) basis, Aclz̄ = G−1∂z̄G. In order to match up
with our conformal gauge choice on Σ0 we we will further specialize the wavefunction to those
Az which are of the form (see (42))

Az = e−ΦL1 + ∂zΦL0 ⇒ Aclz̄ = −e−ΦL−1 − ∂z̄ΦL0, (115)

where Φ satisfies (68). The resulting specialized wavefunction then depends only on zi, z̄i;αi
and we will write it as Ψ[zi, z̄i;αi] in what follows.

Summarizing, we have argued that

Ψ[zi, z̄i;αi] ∼ eiS
′
bdy [Φ], (116)

where

S′bdy[Φ] = − k

8π

∫
C
dz ∧ dz̄

(
∂zΦ∂z̄Φ− 2e−2Φ

)
(117)

Our final result will contain two corrections to this expression. First of all, (117) is not
finite due to divergent contributions from the punctures. To regularize it, we will replace the
integration region by Cε, which is the extended complex plane C̄ with small discs of radius ε
removed around each of the source insertions zj and their images z̄j , as well as small strips
of width ε above and below the real axis. In order to render the action finite upon taking
the limit ε → 0, we see from the behavior (91) near the punctures that we should add the
following term to (117):

rε = −2π

n∑
j=1

α2
j ln ε. (118)

Note that it is independent of the source locations zi.
A second modification is due to the fact that (117) is not differentiable as a functional

of Φ, again due to the source terms. The need to insist on differentiability was stressed in a
related context in [43]. The variation of the integral (117) picks up boundary terms in the
domain Cε

δS′bdy[Φ] = − k

8π
lim
ε→0

∫
δCε

δΦ (∂z̄Φdz̄ − ∂zΦdz) + . . . (119)

14This is a well-known fact [42] which, from the form (15), can be seen to extend to the full quantum
functional integral.
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This variation can be cancelled on fields which behave as (85,91) by adding contour integrals
along the boundary components of Cε. Upon doing so we arrive at the following finite and
differentiable boundary action

Sεbdy[Φ] =
k

8π

(∫
Cε
dz ∧ dz̄

(
|∂zΦ|2 − 2e−2Φ

)
+ rε (120)

−
n∑
j=1

αj
2

(∮
Cεj

Φ

(
dz̄

z̄ − z̄j
− dz

z − zj

)
+

∮
C̃εj

Φ

(
dz̄

z̄ − zj
− dz

z − z̄j

))
(121)

+

(∫
R+iε

+

∫
R−iε

)
Φ
dz̄ + dz

z − z̄

)
(122)

Here, the Cj and C̃j are circular contours of radius ε around the source in zj and its image in
z̄j respectively. All line integrals in the above expression are oriented as boundary components
of Cε.

Our main observation is now that the functional (122) closely resembles the standard,
regularized, Liouville action on the pseudosphere SεL[Φ], see [6], except for a wrong coefficient
multiplying the Liouville potential e−2Φ. More precisely we have

iSεbdy[Φ] = −k
4
SεL[Φ] +

3ik

8π

∫
Cε
dz ∧ dz̄e−2Φ. (123)

Using the fact the source-free Liouville equation holds on Cε, making use of (85,91) and taking
the ε→ 0 limit, we find that

iSbdy[Φ] = −k
4
SL[Φcl]−

3k

4

n∑
j=1

αj . (124)

Therefore we have established that the on-shell Chern-Simons action on X is proportional to
the Liouville action on the pseudosphere, up to a term independent of the insertion points zi.
We conclude that the classical approximation to the Hartle-Hawking wavefunction (109) is of
the form

Ψ(zi, z̄i, αi) ∼ N(αi, α̃i)e
− k

4
(SL[Φcl(zi,z̄i,αi)]+SL[Φ̃cl(zi,z̄i,α̃i)]). (125)

with N(αi, α̃i) independent of the insertion points zi.

3.3 Accessory parameters and pseudosphere Polyakov relations

The property (125) will allow us to relate the wavefunction to a classical Virasoro block.
An important ingredient for this connection is a property of the on-shell Liouville action
known as the Polyakov relation. We start by recalling, following [44, 7], the role of accessory
parameters in the monodromy problem involved in solving the sourced Liouville equation
(68) on the upper half plane with boundary conditions (85). We will then fill a gap in the
literature and derive a Polyakov relation for Liouville theory on the pseudosphere, identifying
the on-shell action as the generating function of the accessory parameters.
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Acessory parameters

From (91) and regularity at infinity, it follows that the stress tensor of a solution to (68, 85)
is a meromorphic function on C of the form

T (z) =
n∑
i=1

(
εi

(z − zi)2
+

εi
(z − z̄i)2

+
ci

z − zi
+

c̃i
z − z̄i

)
(126)

The as yet undetermined coefficients ci and c̃i are called accessory parameters. They are
constrained by the reflection condition (104) as well as the requirement of regularity as z →∞.
This leads to 2n+ 3 real conditions on the accessory parameters, namely

c̃i = c̄i, i = 1, . . . , n (127)

Re

(
n∑
i=1

ci

)
= 0 (128)

Re

(
n∑
i=1

(cizi + εi)

)
= 0 (129)

Re

(
n∑
i=1

(ciz
2
i + 2εizi)

)
= 0 (130)

Upon imposing these we are left with a 2n−3 real-dimensional space of undetermined accessory
parameters.

Liouville monodromy problem

The Liouville solution is determined by a multivalued function f(z) as in (105). The Schwarzian
derivative of this function is proportional to the stress tensor, cfr. (106). In practice, the func-
tion f(z) is constructed from solutions to the ordinary differential equation (ODE)

(∂2
z + T (z))ψ(z) = 0. (131)

Letting ψ1 and ψ2 denote solutions to with unit Wronskian, i.e. ψ′1ψ2−ψ′2ψ1 = 1, the function
f is the ratio

f =
ψ1

ψ2
. (132)

We can also write (105) in terms of ψ1,2 as

eΦ = i(ψ1ψ̄2 − ψ̄1ψ2) (133)

For general accessory parameters, the vector (ψ1 ψ2)T comes back to itself modulo an SL(2,C)
monodromy matrix when encircling a singular point, while f transforms by the associated
fractional linear transformation. However, the expression (105) is only invariant under the
SL(2,R) subgroup of SL(2,C). Therefore, in order for eΦ to be single-valued, the accessory
parameters must be chosen so as to restrict all monodromies to lie in SL(2,R) ⊂ SL(2,C).
It can be shown [7] that this requirement imposes 2n − 3 real conditions, precisely as many
as the number of undetermined accessory parameters. Even though there is no known proof
of existence and uniqueness for the Liouville solution with pseudosphere boundary conditions
(as far as we know), one therefore expects that at least for some values of the parameters a
solution can exist. Below we will derive a more detailed existence condition in the form of a
reflection property of a conformal block on the sphere.
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Polyakov relation on the pseudosphere

As it turns out, the solution of the above monodromy problem, if it exists, is fully determined
by the on-shell Liouville action. In the case of Liouville theory on the sphere, this is a
well-known property which follows from relations originally conjectured by Polyakov and
subsequently proven in [9, 10]. We now show that also on the pseudosphere a Polyakov-type
relation holds in the sense that the on-shell Liouville action is a generating function for the
accessory parameters:

∂SL
∂zi

= 2ci,
∂SL
∂z̄i

= 2c̃i (134)

The factor of 2 in these expressions can be thought of as coming from contributions from the
image charges. We include the derivation here for completeness since we are not aware of its
appearance elsewhere. We follow closely the method used in [10] for Liouville theory on the
sphere. We want to compute

lim
ε→0

∂ziS
ε
L, (135)

where we recall (cfr. (124)) that SεL is given by

SεL[Φ] =
i

2π

(∫
Cε
dz ∧ dz̄

(
|∂zΦ|2 − 2e−2Φ

)
+ rε (136)

−
n∑
j=1

αj
2

(∮
Cεj

Φ

(
dz̄

z̄ − z̄j
− dz

z − zj

)
+

∮
C̃εj

Φ

(
dz̄

z̄ − zj
− dz

z − z̄j

))
(137)

+

(∫
R+iε

+

∫
R−iε

)
Φ
dz̄ + dz

z − z̄

)
, (138)

with rε given in (118). In computing the derivative with respect to zi we have to take into
account contributions coming from varying the integration domain, which can be converted
into derivatives of step functions θ(|z − zi| − ε) in the integrand. This leads to the identity

∂zi

∫
Cε
dz ∧ dz̄ G =

∮
Cεi

Gdz̄ −
∮
C̃εi

Gdz +

∫
Cε
dz ∧ dz̄ ∂ziG. (139)

Also, the Liouville equation implies that, on Cε,

∂zi
(
|∂zΦ|2 + e−2Φ

)
= ∂z (∂ziΦ∂z̄Φ) + ∂z̄ (∂ziΦ∂zΦ) . (140)

Making use of these identities we find

∂ziS
ε
L =

i

2π

(∮
Cεi

(
|∂zΦ|2 + e−2Φ

)
dz̄ −

∮
C̃εi

(
|∂zΦ|2 + e−2Φ

)
dz

+

n∑
j=1

(∮
Cεj

+

∮
C̃εj

)
∂ziΦ (∂z̄Φdz̄ − ∂zΦdz)

−
n∑
j=1

αj
2

∮
Cεj

(∂ziΦ + δij∂zΦ)

(
dz̄

z̄ − z̄j
− dz

z − zj

)

−
n∑
j=1

αj
2

∮
C̃εj

(∂ziΦ + δij∂z̄Φ)

(
dz̄

z̄ − zj
− dz

z − z̄j

)

+

(∫
R+iε

+

∫
R−iε

)
∂ziΦ

dz̄ + dz

z − z̄

)
, (141)
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To evaluate this in the ε→ 0 limit we need the first subleading terms in the expansions near
the boundary, already derived in (87), and near the punctures (91). The latter are determined
by the form of the stress tensor (126) and one finds

Φ
z → zj∼ αj ln |z − zj |+ σj −

cj
αj

(z − zj)−
c̄j
αj

(z̄ − z̄j) + . . . , j = 1, . . . , n

z → z̄j∼ αj ln |z − z̄j |+ σ̃j −
c̄j
αj

(z − z̄j)−
cj
αj

(z̄ − zj) + . . . , j = 1, . . . , n

Im z → 0∼ ln(2Im z) +
2

3
(Im z)2T|z=z̄ + . . . , (142)

where the σi are functions of (zj , z̄j). Using these expansions in (141) and taking the ε → 0
limit we obtain

lim
ε→0

∂ziS
ε
L = −ci

+
n∑
j=1

αj(∂ziσj + ∂zi σ̃j) + 3ci

−
n∑
j=1

αj∂ziσj

−
n∑
j=1

αj∂zi σ̃j

+0. (143)

Each line in this expression is the contribution of the corresponding line in (141). Adding
these up we arrive at (134).

3.4 Wavefunctions and solutions from vacuum blocks on the sphere

We are now ready to illustrate the intimate connection with classical Virasoro blocks on the
sphere. It was argued in [7] that if a solution to (68) with boundary conditions (85) exists, it
is closely related to, and determined by, a specific classical Virasoro vacuum block. We will
now review and extend this argument.

Monodromy problem for classical blocks

We start by recalling some properties of classical Virasoro blocks and their construction
through monodromy methods [45], following closely [12]. Quantum conformal blocks F(zI ,∆I ,∆J ′)
are basic building blocks of CFT correlators which capture the parts which are fixed by Vira-
soro symmetry. They depend on the dimensions ∆I , I = 1, . . . ,m of the primary operators as
well as on dimensions ∆J ′ , J

′ = 1, . . . ,m− 3 of the exchanged conformal families. They also
depend implicitly on the chosen OPE channel in which the exchanged families propagate.

If we take the classical c = 6k →∞ limit with εI = ∆I/k, νJ ′ = ∆J ′/k fixed, it has been
argued that the conformal block exponentiates as follows

F(zI ,∆I ,∆J ′)
k →∞∼ e−kF (zI ,εI ,νJ′ ), (144)
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where F is called a classical Virasoro block. Let us denote by DI the partial derivatives

∂zIF (zI , εI , νJ ′) ≡ DI(zi, εi, νJ ′). (145)

The conformal Ward identities imply that the DI play the role of accessory parameters in a
meromorphic stress-energy tensor

t(z) =

m∑
I=1

(
εI

(z − zI)2
+

DI

z − zI

)
, (146)

and satisfy constraints from regularity of t(z) at infinity:∑
I

DI = 0 (147)∑
I

(DIzI + εI) = 0 (148)∑
I

(DIz
2
I + 2εIzI) = 0. (149)

The classical block accessory parametersDI are determined [12] by requiring that the solutions
to the ordinary differential equation

(∂2
z + t(z))ψ = 0 (150)

have a monodromy matrix MJ ′ when going around the J ′-th closed loop in the conformal
block diagram, whose conjugacy class is fixed by νJ ′ :

trMJ ′ = −2 cos(π
√

1− 4νJ ′). (151)

The wavefunction as a classical block

The following property will allow us to identify the accessory parameters ci appearing in the
Liouville monodromy problem with accessory parameters DI for a certain classical block.
Suppose that a solution to the inhomogeneous Liouville equation (68) on the upper half plane
exists under boundary conditions (85). Then it is easy to see from the reflection property
(107) that the monodromies of the multivalued function f around image points are each
others’ inverse:

M(zi,z̄i) =
(
M(z̄i,zi)

)−1
. (152)

Indeed, let M denote the monodromy matrix that f picks up when encircling the point (zi, z̄i)
counterclockwise. The reflection property (107) then implies that M̄ is the monodromy picked
up when clockwise encircling the image point (z̄i, zi). Since f determines a Liouville solution,
all monodromies must lie in SL(2,R) so that M̄ = M . The monodromy when encircling the
image point counterclockwise is therefore M−1 as advertised.

The property (152) implies that monodromy of solutions to the ODE (131), when encircling
any pair of image points, is trivial. From the above discussion of classical blocks we then see
that the Liouville accessory parameters ci, c̃i solve the monodromy problem determining a 2n-
point conformal block on the sphere. The primary operators are inserted pairwise in image
points, and the relevant OPE channel is the one which fuses image pairs, as illustrated in
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Figure 3: The OPE channel relevant for the definition of the vacuum block F0. Solid lines
indicate external mirrored operators which are fused together to an identity operator. The
green dashed circles indicate cycles of trivial monodromy.

Figure 3. The triviality of the monodromy around image points tells us that this block is a
vacuum block. We will use the shorthand notation F0(zi, z̄i, εi) to denote this block, i.e.

F0(zi, z̄i, εi) := F (zi, zn+i = z̄i; εi, εn+i = εi; νJ ′ = 0). (153)

It generates the Liouville accessory parameters through (145),

∂ziF0(zi, z̄i, εi) = ci, ∂z̄iF0(zi, z̄i, εi) = c̃i. (154)

Since the doubling trick for the pseudosphere requires that c̃i = c̄i (see (127)), we see that a
necessary condition for the Liouville solution to exist is that the block F0(zi, z̄i, εi) is, up to
an irrelevant constant independent of the insertion points, a real function,

F0(zi, z̄i, εi) ∈ R. (155)

Note that the remaining conditions on the accessory parameters ci (128-130) are then implied
by (147-149).

Let us analyze the existence criterion (155) in more detail. In general the conformal block,
whether semi-classical or quantum, is a function purely of the cross-ratios, scaling weights,
exchange conformal weights and central charge. As is well-known the conformal block in a
fixed channel can be constructed level-by-level in terms of descendent states.

In the case of the four-point function of primary operators 〈φ1(0)φ2(x)φ3(1)φ4(∞)〉 the
conformal block for an exchanged primary of holomorphic weight ∆p takes the form

F12
34 (x; p) =

∞∑
K=0

∑
{k}

β
{k}
12px

K 〈[L, ...[L, φp(0)]...]φ3(1)φ4(∞)〉
〈φp(0)φ3(1)φ4(∞)〉

. (156)

Here the sum over {k} indicates a sum over all partitions of the integer K, the numbers β
{k}
12p

are the components of the linear decomposition of the OPE into descendent states. Both
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the numbers β
{k}
12p as well as the ratio of 3pt.-functions are fixed entirely by the Virasoro

algebra and furthermore they can be constructed entirely by algebraic operations on the
scaling dimensions and central charge, as a result these factors are manifestly real. As a
consequence, the burden for the reality condition lies on the conformal cross-ratio x: as long
as x is positive and real the conformal block will be real. For operators inserted in image
points as in (153), the conformal cross-ratio takes the form

x =
(z1 − z̄1)(z̄2 − z2)

(z1 − z̄2)(z̄1 − z2)
, (157)

which is manifestly real and positive. Hence in the case of four-points the reality condition
imposes no additional constraints.

The situation changes once one considers six points. In this case the relevant cross-ratios
are given by

z =
(z5 − z6)(z1 − z4)

(z4 − z5)(z6 − z1)
, u =

(z5 − z6)(z2 − z4)

(z4 − z5)(z6 − z2)
, v =

(z5 − z6)(z3 − z4)

(z4 − z5)(z6 − z3)
. (158)

In the OPE-channel where operators are contracted with the ones located at their mirror
points, the so-called ‘star’-channel in the case of six points [46], the conformal block takes the
form

F12
3456(z, u, v; p, q, s) =

∑
K1,K2,K3

∑
{k1},{k2},{k3}

zK1uK2vK3β
{k1}
12p β

{k2}
34q β

{k3}
56s

× 〈[L, ...[L, φp(0)]...][L, ...[L, φq(1)]...][L, ...[L, φs(∞)]...]〉
〈φp(0)φq(1)φs(∞)〉

. (159)

By the same argument as before the burden for reality lies on the conformal cross-ratios, the
exception now being that the reflection symmetry alone (i.e. z4 = z̄1, z5 = z̄2, z6 = z̄3) is
not sufficient to ensure that all three cross-ratios are real and positive. In conclusion, for 3
or more particles on the pseudosphere the existence criterion (155) can be met only for the
restricted particle positions for which all cross-ratios are real and positive.

Returning to the property (154), comparing it with the Polyakov relation (134) we see
that the Liouville action and the classical block must be proportional (up to an irrelevant
additive constant):

SL[Φcl(zi, z̄i, αi)] = 2F0(zi, z̄i, εi). (160)

Combining with a similar result for the Φ̃ Liouville field and our expression (125) for the
wavefunction in terms of the Liouville action, we obtain the following expression for the
classical approximation to the wavefunction (110):

ΨHH [zi, z̄i;αiα̃i] ∼ N(αi, α̃i)e
− k

2
(F0(zi,z̄i,αi)+F0(zi,z̄i,α̃i)). (161)

It is instructive to reflect on the k/2 prefactor in the exponent, which originates from the
normalization of the Chern-Simons action. In terms of the Virasoro block F0 (see (144)) our
result (161) reads, schematically,

ΨHH [αi, α̃i] ∼
√
F0(αi)F0(α̃i) (162)

The modulus-squared of the wavefunction ΨHH is heauristically expected to have an inter-
pretation as a correlation function on a spherical boundary. As already pointed out in the
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Introduction (4), for non-spinning sources (α̃i = αi) this agrees with the result of [11] (see
also ([12])) that the gravity partition function with sources on a spherical boundary is |F0|2.

Besides the wavefunction in (161), the knowledge of the classical block F0 determines,
in principle, also the full (2+1)D backreacted metric: the metric on Σ0 is constructed from
solutions to two ODE’s of the form (131) with coefficients determined by F0, and its subsequent
time evolution is determined by the first order system (44).

3.5 Further developments

Before discussing special cases and explicit examples, we would like to clarify two aspects of
our formalism. The first is how our framework is related to the description of (2+1)D gravity
in terms of a single Liouville field living on the boundary. The second is a concrete description
of the improper gauge transformations which ‘add boundary gravitons’ to the solution.

Reconstruction of the Lorentzian boundary Liouville field

It is well-known from the work [47] of Coussaert, Henneaux and van Driel that (2+1)D AdS
gravity in the presence of a single conformal boundary can be reformulated in terms of a
Lorentzian15 Liouville field ΦB living on the boundary. In this paragraph we wish to clarify
the relation between this description and our parametrization in terms of two Euclidean
Liouville fields Φ, Φ̃ defined on the initial slice Σ0.

The boundary Liouville field ΦB of [47] satisfies the Lorentzian equation

∂+∂−ΦB + e−2ΦB = 0, (163)

where x+, x− are boundary lightcone coordinates. A solution to this equation determines an
asymptotically AdS gravity solution whose boundary stress tensor components (rescaled by
a factor −(2k)−1)) are

T (x+) = −
(
(∂+ΦB)2 + ∂2

+ΦB

)
, T̃ (x−) = −

(
(∂−ΦB)2 + ∂2

−ΦB

)
(164)

The general solution to (163) can be expressed in terms of two real functions fB(x+) and
f̃B(x−) as

e−2ΦB (x+, x−) = −
f ′B(x+)f̃ ′B(x−)

(fB(x+)− fB(x−))2
. (165)

The associated boundary stress tensors are

2T (x+) = S(fB, x+), 2T̃ (x−) = S(f̃B, x−). (166)

In our parametrization, working in the upper half plane model for Σ0, the bulk Liouville
solutions Φ and Φ̃ are determined by holomorphic functions f(z) and f̃(z̄) on the upper half
plane, which take real values on the real line. Comparing the boundary stress tensors (43)
and (164) in both descriptions shows that we can identify

fB(x+) = f(x+), f̃B(x−) = f̃(x−). (167)

We should note that this simple relation encodes a highly nonlocal map between the Liouville
fields Φ, Φ̃ and ΦB. From the boundary point of point of view, the problem of finding the
backreacted solution in the presence of particle sources reduces to finding real functions fB
and f̃B which extend to multivalued functions f(z), f̃(z̄) on the upper half plane which solve
the monodromy problem for Liouville theory on a pseudosphere.

15See [48, 49] for the role of boundary Liouville theory in Euclidean spacetinmes.
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Boundary gravitons and circle diffeomorphisms

So far we have discussed how to construct solutions corresponding to particles backreacting
on the AdS vacuum solution from conformal blocks for correlators of primaries. In (2+1)D
gravity, it is always to generate new solutions by ‘adding boundary gravitons’, i.e. by perform-
ing an improper diffeomorphism which preserves the Brown-Henneaux boundary conditions
yet acts nontrivially on the boundary. These diffeomorphisms are the classical equivalent of
acting on the state with a Virasoro group element, and are parametrized by (two copies of) the
group of diffeomorphisms of the circle. As discussed in Section, these need to be included in
a complete description of the infinite-dimensional phase space, in casu T (0, 1, n)×T (0, 1, ñ).

In our formalism, adding boundary gravitons works as follows. We parametrize the circle
by an angular coordinate φ, and consider a general diffeomorphism of S1. The latter can be
Fourier expanded as follows

φ→ φ′ = φ+
∑
n∈Z

ane
inφ, a−n = an (168)

To this diffeomorphism we associate a function g(w) as

g(w) = zei
∑
n∈Z anw

n
. (169)

The function g(w) is holomorphic on the unit disk and reduces to the diffeomorphism (168)
on the boundary. Furthermore, it satisfies the reflection condition

g(1/w) =
1

ḡ(w)
. (170)

From our expression (243) we see that g(w) is a conformal transformation on Σ0 (in the unit
disk model) which, acting on a Liouville solution Φ, generates a new solution preserving the
ZZ boundary condition. Similarly, we can apply a second conformal transformation of this
type to the Liouville solution Φ̃, and combining these we obtain a (2+1)D gravity solution
with added boundary gravitons.

In the simplest cases, where n = 0, 1, the incorporation of boundary gravitons reproduces
the expected phase space. Indeed, due to the symmetries of the unpunctured and once-
punctured hyperbolic disk, the above diffeomorphisms lead to a family of solutions labeled
by Diff(S1)/SL(2,R) for n = 0 and Diff(S1)/U(1) for n = 1, in agreement with the known
phase spaces T (0, 1, 0) and T (0, 1, 1). It would be interesting to establish if, for two or more
punctures, we similarly obtain a local parametrization of T (0, 1, n).

3.6 Special cases and examples

We conclude our study of spacetimes with a single asymptotic boundary with a discussion of
some special classes of solutions and some concrete examples.

Solutions with only chiral and anti-chiral particles

As anticipated in section (2.4), the class of solutions for which our construction becomes most
tractable is that where all the particles are either chiral or antichiral, i.e. αiα̃i = 0,∀i. In this
case we can satisfy (64) by taking V and Ṽ to be as in the vacuum AdS solution and choosing
the worldlines of the (and-)chiral particles to be integral curves of the vector field ∂t+V (resp.
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∂t+ Ṽ ). For example, in the upper half plane model for Σ0, we take V = −Ṽ = −∂z−∂z̄ and
the (anti-) chiral particles move on leftmoving (rightmoving) curves of constant x+ = Re z+ t
(resp. const x− = Re z−t) at constant values of y = Im z. In this case the time dependence of
the solution is quasi-trivial, with the metric taking the form (80). The fields Φ and Φ̃ should
of course satisfy the sourced Liouville equations (41) and obey ZZ boundary conditions (85).

Let us work out the explicit solution in the simplest case of one chiral particle and one
anti-chiral one, which has not yet appeared in the literature. We take the chiral particle to
be of strength α = 1 − a and to start from position z0 at t = 0, and the anti-chiral particle
of strength α̃ = 1 − ã to start from position z̃0. The conditions (127-130) fix the accessory
parameters in the Liouville stress tensors, which read

T (z) =
1− a2

4

(z0 − z̄0)2

(z − z0)2(z − z̄0)2
, T̃ (z) =

1− ã2

4

(z̃0 − ¯̃z0)2

(z − z̃0)2(z − ¯̃z0)2
(171)

The corresponding holomorphic functions f, f̃ satisfying (106) are

f =

(
z − z̄0

z − z0

)a
, f̃ =

(
z − ¯̃z0

z − z̃0

)ã
, (172)

and the Liouville fields are given through (105) by

e−2Φ = a2|z0 − z̄0|2
(|z − z0||z − z̄0|)2(1−a)

4
(

Im
(
z−z̄0
z−z0

)a)2 , e−2Φ̃ = ã2|z̃0 − ˜̄z0|2
(|z − z̃0||z − ˜̄z0|)2(1−ã)

4
(

Im
(
z−˜̄z0
z−z̃0

)a)2 .

(173)
We should note that we have implicitly assumed that the particles move in different planes
of constant Imz, i.e. Imz0 6= Imz̃0. Otherwise they pass through each other at some time in
the future or past, which produces a singularity that we will not analyze here.

Perturbative solution for a second Liouville source

The above explicit example required solving Liouville’s equation with a single delta-function
source under ZZ boundary conditions. For the case of two or more chiral (or non-chiral) par-
ticles, we would need to know the Liouville solution with two or more sources, or equivalently
a classical sphere block with at least four insertions. Since this function is not known in
closed form we will, following [44], construct a perturbative solution in the regime that one of
the sources is much weaker than the other. We summarize the computation of [44] (see also
[7]) here, which will allow us to perform an important check of our derived relation (154) to
vacuum blocks on the sphere.

It is convenient to work in the Poincaré disk coordinate w, see (94). We choose to place
the heavier particle with strength α := 1−a in w = 0, and the lighter one of dimension ε� 1
at w = r with r real. We expand the Liouville stress tensor as

T = T0 + εT1 +O(ε2) (174)

T0 =
1− a2

4z2
(175)

T1 =
1

(z − r)2
+

1

(z − 1/r)2
+
d0

z
+

dr
z − r

+
d 1
r

z − 1/r
. (176)
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The conditions on the accessory parameters (245-247) can be used to solve for for d0 and d 1
r
,

leading to

T1 =

(
r − 1

r

)2
(z − r)2

(
z − 1

r

)2 +
2r − dr(1− r2)

z(z − r)
(
z − 1

r

) , (177)

and in addition they imply that dr is real.
One then proceeds to solve the ordinary differential equation (131) to first order in ε. We

are interested in the monodromy δM picked up when encircling the point z = r; this can be
shown to be [44]

δM j
i = 2πiεjk

(
drψ

0
i (r)ψ

0
k(r) + ψ0′

i (r)ψ0
k(r) + ψ0

i (r)ψ
0′
k (r)

)
, (178)

where ψ0
i are the zeroth-order solutions

ψ0
1 =

1√
a(1− |z0|2)

(z − z0)
1+a

2 (1− z̄0z)
1−a

2 (179)

ψ0
2 =

1√
a(1− |z0|2)

(z − z0)
1−a

2 (1− z̄0z)
1+a

2 . (180)

Evaluating (178) gives

δM1
1 = −δM2

2 =
2πi

a
(1 + rdr) (181)

δM2
1 =

−2πira

a
(a+ 1 + rdr) (182)

δM1
2 =

−2πir−a

a
(a− 1− rdr). (183)

To obtain a single-valued Liouville field we should impose that δM belongs to SU(1, 1) ⊂
SL(2,C). This leads to

δM i
i = 0 (184)

δM2
2 = δM1

1 (185)

δM1
2 = δM2

1 . (186)

The first and second conditions are automatically satisfied (recalling that dr is real), while
the third one determines dr to be

dr = −1

r

(
1 + a

ra + r−a

ra − r−a

)
. (187)

We can now verify that our main identity (154) relating the Liouville accessory parameters
to classical blocks holds in this example. The classical four-point block was calculated in the
same perturbative approximation in [50]:

F0(x) =

(
lnx+ 2 ln

x−
a
2 − x

a
2

a

)
ε (188)

where x is the crossratio

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (189)
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For the configuration of interest, the insertion points are

z1 =∞, z2 =
1

r
, z3 = r, z4 = 0, (190)

and the crossratio is x = r2. The accessory parameter corresponding to the z3 insertion is

c3 = F ′(x)
∂x

∂z3
(191)

=

(
1 + a

x
a
2 + x−

a
2

x
a
2 − x−

a
2

)(
1

z1 − z3
+

1

z3 − z4

)
ε. (192)

In particular, for the configuration (190) we find

c3 = drε (193)

with dr given in (187). This confirms our basic property (154).

A scaling limit

The 2D hyperbolic metrics ds2
2 and ds̃2

2 that we introduced in Section 2 are generically auxiliary
objects which are not embedded in the (2+1)D geometry in any simple way (see (28)). There
is however a certain scaling limit in which the (2+1)D geometry becomes a fibration over a
hyperbolic base manifold with metric ds2

2. As we shall presently see, the limit corresponds to
zooming in on a small region of ds̃2

2 such that the geometry becomes approximately flat. This
makes contact with [7, 51] where such limiting solutions were explored in detail.

In order to zoom in on an approximately flat (with possible conical singularities from the
sources) region of ds̃2

2, we perform a scaling limit in which the potential term in the Liouville
equation can be neglected. For this purpose we make a field redefinition

Φ̃→ Φ̃′ + Λ, (194)

and then taking the Λ → ∞ limit while keeping Φ′ and all other variables fixed. The new
field satisfies Poisson’s equation

∂z∂z̄Φ̃
′ = π

n∑
i=1

α̃iδ
(2)(z − zĩ). (195)

and the metric ds̃2
2
′
= e−2Φ′ is locally flat. For solutions containing only chiral and antichiral

particles, performing the scaling limit in the (2+1)D metric (80) leads to

ds2 = e−2Φ(z+,z̄+)dz+dz̄+ −
[
Im
(
∂z+Φ(z+, z̄+)dz+ − ∂z−Φ̃′(z−, z̄−)dz−

)]2
, (196)

One can verify that this satisfies Einstein’s equations. Note that attempting to take a similar
scaling limit on both Φ and Φ̃ would lead to a degenerate metric.

In the absence of antichiral sources, α̃i = 0 ∀i, we can take the following solution for Φ̃:

Φ̃′(z, z̄) = Im z. (197)
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The metric then becomes

ds2 = e−2Φ(z+,z̄+)dz+dz̄+ −
(
dt− Im

((
i

2
+ ∂z+Φ(z+, z̄+)

)
dz+

))2

. (198)

In this limit, the (2+1)D geometry takes the form of a timelike fibration over a hyperbolic
base manifold with metric ds2

2. This particular scaling limit for solutions with chiral particles
was studied extensively in [7, 51]. We note that, as Ãτ ∼ L0, our criterion (70) is obeyed and
the chiral particles move on geodesics. This was also checked explicitly in [7].

4 Towards holography for closed universes

So far we have considered a time slice Σ0 with an asymptotic boundary, as appropriate for
describing particles in an asymptotically AdS spacetime. However our formalism applies in
principle to time slices of arbitrary topology, and it is interesting to consider the case where
Σ0 is a compact Riemann surface without boundary. The corresponding (2+1)D solutions are
closed universes evolving from a big bang to big a crunch singularity and were considered in a
related context in [21, 22], see also [52] for a review and further references. The study of such
boundary-less slices generalizes the standard AdS/CFT setup and could be a step towards
studying cosmological singularities.

If Σ0 is a surface of genus g, the Gauss-Bonnet theorem places a necessary condition on
the parameters 0 ≤ αi < 1 for a solution to exist [53]:

n∑
i=1

αi > 2(1− g). (199)

For simplicity we assume in what follows that Σ0 has spherical topology, g = 0. Note that we
need n ≥ 3 to satisfy (199). The classical result going back to Picard [54] is that, when (199)
is obeyed, a solution to the inhomogeneous Liouville equation (68) exists and is unique.

As we did in the case with asymptotic boundary, we will study a semiclassical Hartle-
Hawking path integral preparing the multi-particle state on Σ0, which will again be closely
related to the Liouville action on Σ0. We then go on to examine the role of classical Virasoro
blocks in determining this wavefunction and the gravity solution.

4.1 Hartle-Hawking wavefunction and Liouville action

We are interested in computing a Chern-Simons path integral, which is analogous to the
Hartle-Hawking [37] path integral over metrics, and prepares a multi-particle state on the
Riemann sphere Σ0 = C at t = 0. We take the particles to be located at zi, i = 1, . . . , n
with quantum numbers αi, α̃i. By applying Möbius isometries of Σ0 we can fix the last three
particle locations to

zn−2 = 0, zn−1 = 1, zn =∞. (200)

Near the sources, the Liouville field Φ has the asymptotics

Φ
z → zj∼ αj ln |z − zj |+O(1), j = 1, . . . , n− 1 (201)
z →∞∼ (2− αn) ln |z|+O(1), (202)
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Figure 4: The state-preparing path integral when the initial slice Σ0 is a two-sphere with two
pairs of identical particles as in the lower half of Figure 1(c). The path integral is performed
on a ball with particle worldlines connecting points on the boundary two-sphere through the
bulk.

and similarly for Φ̃.
In analogy with the Hartle-Hawking no-boundary proposal we want to perform a path

integral on a 3-manifold X whose boundary at t = 0 is Σ0 and without boundaries in the
past. Each particle location zi is the endpoint of a worldline in X. Since our framework is
not equipped to deal with worldlines ending on each other16 - for one thing, our gauge choice
would break down at such an endpoint - each worldline needs to connect two particle locations
on Σ0. We therefore restrict attention to configurations of particles at Σ0 which come in pairs
with the same quantum numbers αi, α̃i. The manifold X is then a ball containing particle
worldlines which connect pairs of boundary points (see Figure 4).

Proceeding as in Section 3.2, we find that the total action evaluates to a boundary term
which reads

iStotCS = −k
4
SL[Φ] +

3ik

8π
lim
ε→0

∫
Cε
dz ∧ dz̄e−2Φ, (203)

16To describe more general configurations, we need a framework where worldlines can end on each other, in
other words which incorporate bulk interactions. This is beyond the scope of the present work, see however
[55].
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where SL[Φ] is the standard, regularized, Liouville action [56]:

SL[Φ] = lim
ε→0

SεL[Φ]

SεL[Φ] =
i

2π

(∫
Cε
dz ∧ dz̄

(
|∂zΦ|2 + e−2Φ

)
+ rε

−
n−1∑
j=1

αj
2

∮
Cεj

Φ

(
dz̄

z̄ − z̄j
− dz

z − zj

)

−
(

1− αn
2

)∮
Cεn

Φ

(
dz̄

z̄
− dz

z

))
. (204)

Here, Cε is the extended complex plane with disks of radius ε removed around the insertion
points zi (including zn =∞) and Cεi are the corresponding boundary curves. The constant

rε = −π

n−1∑
j=1

α2
j + (2− αn)2

 ln ε. (205)

is included to obtain a finite result in the ε→ 0 limit.
Using the fact the source-free Liouville equation holds on Cε and the asymptotic behavior

(201,202), the last term can be evaluated to yield

iStotCS = −k
4
SL[Φ]− 3k

8

 n∑
j−1

αj − 2

 . (206)

Therefore, the on-shell Chern-Simons action is once again proportional to the on-shell Liouville
action, up to an additive constant depending only on the quantum numbers αi of the particles
but not on their locations zi.

4.2 Liouville action, accessory parameters and classical blocks

Let us review the Polyakov relations satisfied by the on-shell Liouville action, as well as its
interpretation in terms of the geometry of Teichmüller space. As in the case with conformal
boundary, the problem of solving the sourced Liouville equation can be recast as a monodromy
problem for a set of accessory parameters. The Liouville stress tensor (43) is a meromorphic
function of the form

T (z) =
n−1∑
i=1

(
εi

(z − zi)2
+

ci
z − zi

)
, (207)

In addition, from (202) the behavior of T near z →∞ is given by

T (z) ∼ εn
z2

+
cn
z3

+O(z−4), z →∞. (208)

The accessory parameters ci are subject to three three linear relations imposed by the
asymptotics (208),

n−1∑
i=1

ci = 0,

n−1∑
i=1

(εi + cizi) = εn,

n−1∑
i=1

(2εizi + ciz
2
i ) = cn. (209)
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Therefore the independent accessory parameters can be taken to be c1, . . . , cn−3.
The Liouville solution is again obtained from solutions to the ODE (131), whose mon-

odromies around the singular points should once again lie in the subgroup SL(2R) of SL(2,C).
One can show (see e.g. [7]) that this imposes 2(n − 3) real conditions, precisely as many as
there are undetermined accessory parameters . The existence and uniqueness of the Liouville
solution implies that this monodromy problem indeed uniquely fixes the accessory parameters.

The accessory parameters have an important interpretation in terms of the Kähler geom-
etry of Teichmüller space. It can be shown [9] that they are real-analytic functions of the
moduli. They are however not holomorphic, and their antiholomorphic derivatives give the
Weil-Petersson metric on Teichmüller space:

∂ci
∂z̄j

= gWP
ij̄ . (210)

A conjecture by Polyakov, which was rigorously proven in [9, 10], states that the on-shell
Liouville action (204) is a generating function of the accessory parameters:

∂SL
∂zi

= ci. (211)

Combining this with (210) shows that SL is a Kähler potential for the Weil-Petersson metric.
Due to the property (206), this is also the case for the total action iStotCS .

A derivation of Polyakov’s conjecture (211) along the lines of [10] proceeds as in Section
3.3. We want to compute

lim
ε→0

∂ziS
ε
L, (212)

with SεL given in (204). The following identity takes into account the variations of the inte-
gration domain Cε

∂zi

∫
Cε
dz ∧ dz̄ G =

∮
Cεi

Gdz̄ +

∫
Cε
dz ∧ dz̄ ∂ziG. (213)

Making use of (139) we find

∂ziS
ε
L =

i

2π

∮
Cεi

(
|∂zΦ|2 + e−2Φ

)
dz̄ +

n∑
j=1

∮
Cεj

∂ziΦ (∂z̄Φdz̄ − ∂zΦdz)

−1

2

n−1∑
j=1

αj

∮
Cεj

(∂ziΦ + δij∂zΦ)

(
dz̄

z̄ − z̄j
− dz

z − zj

)

−
(

1− αn
2

)∮
Cεn

∂ziΦ

(
dz̄

z̄
− dz

z

))
, (214)

where each line in this expression is the derivative of the corresponding line in (204). To
evaluate this in the ε → 0 limit we need the first subleading terms in the expansions (201,
202). The form of the stress tensor (207) determines these to be of the form

Φ
z → zj∼ αj ln |z − zj |+ σj −

cj
αj

(z − zj)−
c̄j
αj

(z̄ − z̄j) + . . . , j = 1, . . . , n− 1

z →∞∼ (2− αn) ln |z|+ σn −
cn
αn

1

z
− c̄n
αn

1

z̄
+ . . . , (215)
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where the σi are functions of (zj , z̄j). Using these expansions in (214) and taking the ε → 0
limit we obtain

∂ziSL =
n−1∑
j=1

αj∂ziσj + (αn − 2)∂ziσn + ci

−
n−1∑
j=1

αj∂ziσj

−(αn − 2)∂ziσn. (216)

Adding these up we arrive at (211).
Having reviewed the Polyakov relation (211) we can now relate the accessory parameters ci

to the classical Virasoro blocks. The unique solution to the inhomogeneous Liouville equation
determines a stress tensor T (z) whose associated ODE, in some chosen OPE channel, has
monodromies corresponding to a specific set of exchanged families ν∗i′ . Therefore the ci should
coincide with the accessory parameters in the monodromy problem determining a classical
block in the chosen channel. In the notation of section (3.3) we have

ci(zj , z̄j) = Di(zj , εi, ν
∗
i′). (217)

We note that, for consistency with (210), the dimensions ν∗i′ must implicitly depend on the zj
and their complex conjugates z̄j . We can say a bit more on this dependence from the known
properties of Liouville theory. It can be argued from the large-k behavior of of Liouville
correlators that the on-shell action is of the form [56]

SL =
(
S(3)(εi, νi′) + F (zi, εi, νi′) + F̄ (z̄i, εi, νi′)

)∣∣∣
νi′=ν

∗
i′

(218)

Here, S(3) contains the contribution from three-point coefficients at large-k, and the right-
hand side is evaluated on exchanged dimensions ν∗i′(zj , z̄j) which extremize this contribution.
This property, together with the Polyakov relations (211), then implies the relation (217),
since

∂SL
∂zi

=
∂F (zi, εi, ν

∗
i′)

∂zi
. (219)

To conclude, we have established that the Hartle-Hawking wavefunction for a closed uni-
verse containing some point particles is once again determined by the on-shell Liouville action.
In contrast to the situation with asymptotic boundary however, the action and accessory
parameters contain dynamical information of Liouville theory beyond the kinematical data
contained in conformal blocks. This information enters through the nontrivial dependence of
the exchanged families on the insertion points ν∗i′(zj , z̄j).

To emphasize the increased challenge associated to the closed surface situation, it is helpful
to compare how the Liouville problem on a closed surface and on the pseudosphere problem
relate to the conformal block problem of section 3.4. The Liouville monodromy problem
requires us to restrict the monodromies to fall within SL(2,R), while in the conformal block
problem one fixes a smaller number of monodromies but in addition one fixes the exact
conjugacy classes of SL(2,R). In the case of the pseudosphere these problems coincide due
to the additional structure provided by the reflection symmetry. This fixes the resulting
conformal block to the identity block of the channel depicted in figure 3.
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In the closed surface case, where there is no such additional structure, the solution to
the Liouville problem will once again provide a conformal block, but which conformal block
one obtains is a non-kinematical question that is sensitive to the OPE structure of Liouville
theory.

5 Outlook

We can summarize our results in the following way, we constructed a ‘doubly hyperbolic’
parametrization of the Chern-Simons fields such that the problem of solving the initial con-
straint on a fixed time slice reduces to solving two Liouville problems with additional sources.
In addition we prepared this initial state in a Hartle-Hawking-like fashion by completing the
initial slice to a 3-manifold and evaluating the on-shell Chern-Simons action on this topology.
It was found that this computation reduces to a boundary term that, in the double-hyperbolic
parametrization, is given by the Liouville action plus some additional terms. This modified
Liouville action still satisfies an important property; it is a generating functional for the ac-
cessory parameters that play a key role in the construction of 2d conformal blocks at large
central charge. In particular for the punctured pseudosphere this led to the conclusion that
this Hartle-Hawking-like wavefunctional is in fact given by the Virasoro identity block at large
central charge.

Intriguingly, the relevant conformal block lives on a space which is the initial slice surface of
AdS rather than the asymptotic conformal boundary. This is a main feature that sets this work
apart from most of the body of earlier literature, e.g. in [11, 12] where similar uniformization
techniques had been implemented on the asymptotic conformal boundary. Another added
benefit is that this work incorporates in a natural manner particles with spin, something
which was out of the scope from the body of work that focused primarily on entanglement
entropy.

We conclude by listing some open problems and future directions.

• In this work we restricted attention to spacetimes containing point particles but no black
holes. It is of obvious interest to generalize our discussion to bulk states containing
black holes. A first interesting configuration would be to consider states containing
point particle excitations on top of an eternal BTZ black hole (see also [57]). In this
case the slice Σ would contain a second asymptotic boundary. A second question would
be to address dynamical black hole formation from the collapse of point particles [58].
We would for example hope that our framework could make more explicit make the
link between conformal blocks with a continuous operator distribution and Vaidya-type
metrics proposed in [59].

• Since the considerations in this work were semiclassical, it would be of great interest to
extend them to the quantum regime. One of the difficulties in doing so is the quotient
by the mapping class group in the gravitational phase space (see Footnote 8), which is
hard to implement in the Chern-Simons path integral as pointed out in [20]. It would
also be useful to clarify how our semiclassical wavefunctions emerge at large k from
those considered in [13], which were derived in the ‘quantize first and then constrain’
approach.
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A MPD equations

The Mathisson-Papapetrou-Dixon (MPD) equations describe the motion of an intrinsically
spinning particle in general relativity. They take the form [35]

∇s(muµ + uν∇sSµν) =
1

2
Rµνρσu

νSρσ (220)

∇sSµν + uµuρ∇sSνρ − uνuρ∇sSµρ = 0 (221)

where Sµν is an antisymmetric tensor called the spin tensor and uµ = dxµ

ds is the velocity of
the worldline parametrized by proper time, uµuµ = −1. The worldline covariant derivative is
defined as

∇svµ =
dvµ

ds
+ Γµνρu

νvρ. (222)

We are interested in the MPD equations in (2+1)D spacetimes which are locally AdS. The
right-hand side of (220) simplifies in this case to

1

2
Rµνρσu

νSρσ = Sµνuν . (223)

The MPD equations then allow for special class of solutions where the worldline is a geodesic,
i.e.

∇suµ = 0, (224)

One can show that (220,221) then imply that

Sµν = σεµνρuρ, (225)

where σ is an arbitrary proportionality constant.
Following the steps in Appendix E of [33], the MPD equations (220,221) can be rewritten

as

dP

ds
+ [Ωs + Es, P ] = 0 (226)

dP̃

ds
+ [Ωs − Es, P̃ ] = 0 (227)

where Ωs = 1
2ε
a
bcΩµbcu

µJa, Es = Eaµu
µJa, E and Ω are the (2+1)D vielbein and spin connec-

tion, and Ja are sl(2,R) generators satisfying [Ja, Jb] = εabcη
cdJd. The quantitites P and P̃

in (226,227) are defined as

P :=

(
mua + ub∇sSab +

1

2
εabcS

bc

)
Ja (228)

P̃ :=

(
mua + ub∇sSab −

1

2
εabcS

bc

)
Ja. (229)
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The form (226,227) of the MPD equations precisely coincides with the equations of motion
(55) for the Chern-Simons-matter system in the main text. Note that (226,227) imply that
trP 2 and trP̃ 2 are constant, so that the additional equation of motion (56) serves to fix
integration constants in terms of the mass and spin of the particle.

For example, for solutions describing geodesic motion (224,225), the momenta take the
form

P = (m+ σ)uaJa, P = (m− σ)uaJa (230)

The equation (56) then tells us that σ is to be identified with the particle helicity s. From
(224, 230) we infer that general solutions describing geodesic motion are characterized by

[P, P̃ ] = ∇sP = ∇sP̃ = 0, (231)

or, equivalently, making use of (226,227),

[P, P̃ ] = [Es, P ] = [Es, P̃ ] = 0. (232)

B Some formulas for the Poincaré disk model

In this Appendix we collect some formulas relevant when using the Poincaré disk model for
Σ0. As in (94) we use a complex coordinate w, |w| < 1.

Let us start by deriving the form of the (2+1)D metric. A natural choice for the vector
fields V, Ṽ specifying the Chern-Simons gauge choice (19) is

V = −iw∂w + iw̄∂w̄, Ṽ = iw∂w − iw̄∂w̄. (233)

From our time evolution equations (44) we see that the fields λ, λ̃ should be turned on at
times t 6= 0, leading to

Φ(t, w, w̄) = Φ(weit, w̄e−it), Φ̃(t, w, w̄) = Φ(we−it, w̄eit) (234)

λ = −t, λ̃ = t (235)

µ = 0, µ̃ = 0 (236)

Defining the combinations
w+ = weit, w=we

−it, (237)

corresponding 3D metric is

ds2 =
∣∣∣e−Φ(w+,w̄+)dz+ + e−Φ̃(w−,z̄−)dw−

∣∣∣2−[Im(∂w+Φ(w+, w̄+)dw+ − ∂w−Φ̃(w−, w̄−)dw−

)]2
.

(238)
We now summarize some formulas needed for solving the inhomogeneous Liouville equation

on the unit disk with ZZ boundary conditions, referring to [7] for more details. Asymptotically
AdS solutions are described by Liouville fields with ZZ boundary conditions which take the
form

e2Φ = (1− |w|2)2 +O((1− |w|2)4), (239)

and the stress tensor obeys (
w2T (w)

)∣∣
|w|=1

∈ R. (240)
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The doubling trick extending T to the Riemann sphere is

T (w) =
1

w4
T̄ (1/w). (241)

A general Liouville solution is specified by a function g(w) = ψ1(w)/ψ2(w) through

e−2Φ = (ψ1ψ̄1 − ψ2ψ̄2)−2 =
|g′|2

(1− |g|2)2
, (242)

and the appropriate doubling trick for g reads

g(w) =
1

g(1/w)
. (243)

Now let us consider the presence of n particle sources in locations wi, where we assume17

for definiteness that wn = 0. The stress tensor of an inhomogeneous Liouville solution is of
the form

T (w) =
εn
w2

+
cn
w

+

n−1∑
i=1

(
εi

(w − wi)2
+

ε̃i
(w − 1/w̄i)2

+
ci

w − wi
+

c̃i
w − 1/w̄i

)
, (244)

where the accessory parameters ci, c̃i are constrained by regularity at infinity and by the
reflection condition (241) to obey

2εi + ciwi +
¯̃ci
wi

= 0 (245)

cn +
n−1∑
i=1

(ci + c̃i) = 0 (246)

Im

(
n−1∑
i=1

(
ciwi −

¯̃ci
wi

))
= −2εn. (247)

The accessory parameters are determined by requiring the monodromy of the ODE (131)
around each of the sources to lie in SU(1, 1) ⊂ SL(2,C), so that the Liouville field (242) is
single-valued.
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