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Abstract

We study the open XXZ spin chain with a PT -symmetric non-Hermitian boundary field.
We find an interaction-induced scale-free non-Hermitian skin effect by using the coor-
dinate Bethe ansatz. The steady state and the ground state in the PT broken phase are
constructed, and the formulas of their eigen-energies in the thermodynamic limit are
obtained. The differences between the many-body scale-free states and the boundary
string states are explored, and the transition between the two at the isotropic point is
investigated. We also discuss an experimental scheme to verify our results.
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1 Introduction

Exactly solvable models play important roles in condensed matter physics, statistical physics,
and mathematical physics. Certain experimentally relevant one-dimensional systems can be
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modeled by open spin chains with boundary fields, some of which belong to the category of
Yang-Baxter integrability. Examples include spin chains with diagonal [1–8] or off-diagonal [9–
12] magnetic field. The problem is also related to classical dynamics of molecules with drain
and source [13–17], and spin transport within the framework of Lindblad master equation [18–
25]. Many mathematical tools, such as coordinate Bethe ansatz [1, 2, 6, 7, 14, 26], Sklyanin’s
reflection algebra (an open boundary version of algebraic Bethe ansatz) [3–5,8–12,27], matrix
product operator ansatz [13,15–19,21–24], etc, have been developed to treat those systems.

In this article, we investigate a non-Hermitian open XXZ chain using coordinated Bethe
ansatz. The chain is subjected to opposite imaginary magnetic field on two ends, pointing
to a prescribed direction called z. Here, the non-Hermiticity naturally stems from the ubiq-
uitous coupling with the environment. A special case has been studied thoroughly in previ-
ous literature, where the strength of the boundary field takes a specific value depending on
the anisotropic interaction strength between adjacent spins. The Hamiltonian then respects
the q−deformed SU(2) symmetry [28] with |q| = 1, and serves as a representation of the
Temperley-Lieb algebra [29,30]. The spectrum of the model is purely real, though the Hamil-
tonian is non-Hermitian. Furthermore, when q is a root of unity (i.e., qn = 1 for a certain
integer n) for some values of the boundary field, the representation of the symmetry group
enjoys richer structures, such that an exact duality exists between the spin model and free-end
quantum Potts model. The duality leads to the same conformal field theory (CFT) structure of
two models, thus the negative central charge obtained from the side of Potts model makes the
non-Hermitian spin chain a typical example of recently introduced “non-unitary” CFT [31,32].

A significant consequence of q being a root of unity is that the spin Hamiltonian develops
Jordan blocks, which feature exceptional points. The number of Jordan blocks for given q and
size N has been counted [33], followed by the constructions of the corresponding generalized
eigenstates [34]. Given the existence of many-body exceptional points, it is natural to identify
different phases around them. Our article exhausts the parameter space of boundary imagi-
nary field and anisotropic interaction. For a small boundary field, the spectrum remains real,
and the Bethe roots of the ground state only shift slightly compared with the Hermitian case.
The spectrum becomes complex, however, when the boundary field exceeds the q−deformed
SU(2) symmetric value. We show that, despite the breaking of the quantum group invariance,
the model possesses a novel behaviour of scale-free localization. We figure out the structure
of the steady state (with the largest imaginary part of energy) and the ground state (with the
lowest real part of energy) as the combination of a boundary Bethe root and a set of continu-
ous Bethe roots in the thermodynamic limit. The continuous Bethe roots all have an imaginary
part proportional inversely to the system size N , corresponding to a small imaginary wavevec-
tor (or momentum) κ ∼ α/N . In the single-particle context, when the localization length of
wavefunction is proportional to the system size N , the density |ψN (x)|2 ∼ exp(2αx/N) is in-
variant under re-scaling transformation with a factor s: |ψN (x)|2 = |ψsN (sx)|2, and therefore
called scale-free non-Hermitian skin effect (NHSE) or critical NHSE [35–37]. The original
NHSE means the exponential localization of most eigenstates near the boundary, with local-
ization lengthes independent of the system size [38–44]; the scale-free NHSE is therefore a
weaker version of NHSE. Scale-free NHSE has also been found in Hermitian systems with
non-Hermitian boundary field, though the mechanism is different [45]. In the present work,
the imaginary part of wavevector is attributed to the scattering between the boundary mode
and magnons traveling in the bulk, and these Bethe roots contribute a non-negligible imag-
inary part to the energy. Thus, unlike previous works, our scale-free behaviour has a many-
body origin. More precisely, it originates from the interplay between boundary dissipation
and many-body interactions. On one hand, the interaction among magnons is an indispens-
able ingredient for the scale-free NHSE. On the other hand, we also note that the Hermitian
counterpart, namely the open XXZ model subjected to real boundary field, has only isolated
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boundary modes, and such continuous skin modes are lacking [6–8]. We derive an integral
equation, dubbed imaginary Bethe equation, to solve the scale-free localization length in the
thermodynamic limit. We then give an exact formula for the imaginary part of the steady
state energy, which are then compared to finite-size numerical results. We also explain how to
measure these physical quantities in cold-atom experiments.

Before proceeding, we compare our results to earlier studies on boundary-driven spin
chains as open quantum systems. The evolution of those open quantum systems is gener-
ated by the Linbladian operator, composed of an integrable Hamiltonian and quantum jump
operators on the boundary. A typical example relevant to our work is [19]

L(ρ) = −i[HXXZ,ρ] +
∑

µ=1,N

LµρL†
µ −

1
2
{L†
µLµ,ρ}

= −iHeffρ + iρH†
eff +
∑

µ=1,N

LµρL†
µ,

with L1 =
p

gS−1 , LN =
p

gS+N and Heff = HXXZ −
i
2

∑

µ=1,N L†
µLµ. Here, Heff is the non-

Hermitian Hamiltonian we shall focus on below (see Eq. (1)). Although the Lindbladian
breaks integrability, the density matrix of non-equilibrium steady state (NESS) has been estab-
lished by the matrix product operator (MPO) ansatz exactly. Furthermore, it has been found
that the local matrix of MPO ansatz is indeed the infinite-dimensional solution of Yang-Baxter
relations, and thus exterior integrability emerges in the NESS [46,47]. However, the dynam-
ics towards NESS is unknown yet. Our work about the non-Hermitian effective Hamiltonian
is complementary to the NESS solution because Heff governs the time evolution of the open
quantum system under post-selection, which is relevant to numerous experiments [48]. Our
solution is enabled by the Yang-Baxter integrability of the model. Another related system is
the XXZ model with only one jump operator L1 on the left boundary [26]. Since the dissipator
is purely lossy, the Lindbladian becomes upper-triangular under an appropriate basis choice,
so that the Liouvillian spectrum can be completely determined by the effective non-Hermitian
Hamiltonian. The Hamiltonian has scale-free eigenstates even in the single-magnon sector,
but PT symmetry is absent due to that the dissipator occurs only on one of the two ends.
By contrast, our Hamiltonian preserves PT symmetry, and in single-magnon sector there are
only Bloch-wave modes and exponentially localized states. Scale-free modes originate from
many-body interactions in our model.

The rest part is organized as follows. In the next section, we introduce the model Hamilto-
nian, its general Bethe equations, and the phase diagram. In Sections 3.1 and 3.2, we consider
the single-magnon and two-magnon state as a warm-up. We then generalize the results to the
many-body cases to obtain the steady state with scale-free NHSE in Section 3.3. Section 3.4
is devoted to another type of steady state solution, the boundary string states, which emerges
for the highly anisotropic case. In Section 4, we apply the ansatz of scale-free solutions to the
ground state for different parameters. A possible experimental setup for the non-Hermitian
model is discussed in Section 5. We give some concluding remarks in Section 6 .

2 Non-Hermitian XXZ model and the phase diagram

The Hamiltonian reads:

H = −
N−1
∑

j=1

(S x
j S x

j+1 + S y
j S y

j+1 +∆Sz
j S

z
j+1) +

i g
2
(Sz

N − Sz
1). (1)

where Sα = 1
2σ

α(α = x , y, z) is the spin-1/2 operator; the anisotropic interaction strength
∆ and boundary field strength g are purely real, with g > 0. The unit circle ∆2 + g2 = 1
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has been the focus in previous literatures [1, 28–31] because it enjoys the q-deformed SU(2)
symmetry which greatly simplifies the problem. Here, we explore the entire (∆, g) parameter
space beyond this circle. We find new phenomena, including the interaction-induced scale-free
non-Hermitian skin effect, that exist outside the unit circle.

The model respects the PT symmetry with TiT = −i and PSαj P = SαN− j , and therefore
the eigenvalues are either real or form complex conjugate pairs. When the whole spectrum
is purely real, the model is said to be in the PT exact (or PT -symmetric) phase, otherwise it
is in the PT broken phase [49, 50]. The steady state, which has the largest imaginary part
of eigen-energy in the PT broken phase, is of great importance because it captures the long-
time behaviour of the system. A generic initial wavefunction evolving for a sufficiently long
time under exp(−iH t) will converge to the steady state; we shall study the phase diagram of
this steady state. The Hamiltonian also commutes with total z magnetization m=

∑N
j=1 Sz

j , so
that it can be block diagonalized in each sector with definite total magnetization. Furthermore,
there is another symmetry operator PX with X =

∏N
j=1σ

x
j which sends m to−m, and therefore

it suffices to study non-positive magnetization (m ≤ 0) states. For the odd length chain, PX
symmetry leads to the two-fold degeneracy of the steady states. Thus, we only take even site
number N throughout the paper.

Ferromagnetic (∆ > 0) and anti-ferromagnetic (∆ < 0) models can be related by the
transformation Z =

∏N/2
j σz

2 j−1:

Z T H(∆, g)Z T = ZH(∆,−g)Z = −H(−∆, g). (2)

As such, an eigenstate of ferromagnetic Hamiltonian with H(∆, g)|ψ〉 = E|ψ〉 can be trans-
formed to an eigenstate of the anti-ferromagnetic one: H(−∆, g)(Z T |ψ〉) = −E∗(Z T |ψ〉). If
E has the largest imaginary part among the spectrum, so does −E∗. Thus, the steady state
properties remain the same for ±∆, and it suffices to study the ferromagnetic case.

Δ

g

PT exact

Scale-free skin effect 
Boundary 

string

Boundary 

string

1-1

1

Figure 1: Steady-state phase diagram of model Eq. (1) in the zero magnetization
sector. The critical curve ∆2 + g2 = 1 separates PT exact and broken phases. When
|∆| < 1 and g > gc =

p
1−∆2, the steady state is the many-body scale-free state;

when |∆|> 1, the steady state is the boundary string state.

Eigenstates of the model can be solved by coordinate Bethe ansatz [1]. Take all spin down
state as the reference state with energy E0 = −

1
4(N−1)∆, we can excite M magnons by flipping

M spins up (M ≤ N/2). We can construct the ansatz state |ψ〉 , whose wavefunction in the
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onsite magnon number basis is given by:

〈n1 · · ·n j · · ·nM |ψ〉=
∑

P

∑

{η j}

(−1)PA({eik j};P , {η j})eiη1kP1n1 · · · eiη j kP j n j · · · eiηM kPM nM ,

where n1 < · · · < n j < · · · < nM are the positions of up spin, P refers to all possible permuta-
tions, and chirality η j = ±1 corresponds to right-moving and left-moving magnons. Relabeling
the momentum of magnon by β j = eik j [38,51], we have the equivalent form:

〈n1 · · ·n j · · ·nM |ψ〉=
∑

P

∑

{η j}

(−1)PA({β j};P , {η j})β
η1n1
P1 · · ·β

η j n j

P j · · ·β
ηM nM
PM . (3)

The coefficient A({β j};P , {η j}) is a function of magnon momenta {β j}, permutation P , and
chirality {η j}. Imposing the condition that |ψ〉 is an eigenstate of H with energy

EM ({β j}) = E0 +
M
∑

j=1

(∆− (β j + β
−1
j )/2) (4)

and the boundary condition, these coefficients can be found as [1]:

A({β j};P , {η j}) =
M
∏

j

(1−∆+β
η j

P j)β
−(N+1)η j

P j

∏

0≤k<l≤M

(1− 2∆βηl
P l + β

ηl
P lβ

−ηk
Pk )(1− 2∆βηk

Pk + β
ηk
Pkβ

ηl
P l)β

−ηl
P l ,

where ∆± =∆± i g. Here, the M momenta have to satisfy the so-called Bethe equations:

β
2(N−1)
j

(β j −∆+)(β j −∆−)

(β−1
j −∆+)(β

−1
j −∆−)

=
M−1
∏

l 6= j

1− 2∆β j + β jβl

1− 2∆βl + β jβl

1− 2∆β j + β jβ
−1
l

1− 2∆β−1
l + β jβ

−1
l

. (5)

Intuitively, the left hand side is the phase accumulated by a magnon when it travels freely
from one end of the chain to the other and then gets reflected back; each term of the right
hand side represents the scattering phase between magnon j and l. Note that for the periodic
XXZ model there is only the β j ,βl term in the scattering phase, while for the open boundary
condition β j also scatter with β−1

l . The solutions are inversion-symmetric in the sense that β j
and β−1

j always appear in pairs in the solutions. After solving a set of Bethe roots {β j}, the
energy of M magnon state is Eq. (4). Notably, if |β j| = 1 ( j = 1, · · · , M), i.e., all β j ’s belong
to the unit circle, one must have Im(EM ({β j})) = 0. Thus, PT symmetry breaking requires
|β j| 6= 1 for certain β j ’s, which implies the presence of NHSE (which turns out to be scale-free
here). Although it remains unclear whether all eigenstates of the non-Hermitian XXZ model
have the form of Bethe ansatz, it turns out that the ground state and the steady state can be
solved exactly.

Our results on the steady states for different parameters are summarized in Fig. 1. We
focus on the zero magnetization sector (m = 0) since for the Hermitian X X Z model (with
∆< 1) the ground state lies in this sector. Our numerical results support that the steady state
belongs to the zero magnetization sector. The phase boundary between PT -exact and broken
phase is ∆2 + g2 = 1. Given the transformation between H(∆, g) and H(−∆, g), the steady-
state phase diagram is symmetric about the g axis. Apart from the many-body scale-free modes
which will be investigated in detail in Section 3, we identify the “boundary string” state as the
steady state when |∆| > 1. A boundary string corresponds to a multi-magnon bound state
localized at the boundary, which will be explained in Section 3.4.
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3 Bethe ansatz solutions for scale-free skin modes

3.1 Single-magnon state

In the single-magnon sector (M = 1), the Bethe equation (5) is simplified to

β2(N−1) (β −∆+)(β −∆−)
(β−1 −∆+)(β−1 −∆−)

= 1. (6)

When |∆±| < 1, or equivalently g < gc , solutions of the equation have been found to be
on the unit circle [52]. We briefly review the proof. We define complex variable function
h(β) : C→ C as

h(β) = βN−1(β −∆+)/(β−1 −∆−).

Eq. (6) is then transformed to h(β) = h(β−1). For g < gc , the image of the disk |β |< 1 under
h is still inside the disk, that is, |h(β)| < 1, and vice versa. The statement can be verified by
writing β = ρ exp(iφ),∆+ = ρ0 exp(iφ0) with ρ0 < 1, then

|β −∆+|2 − |β−1 −∆−|2 = (ρ −ρ−1)(ρ +ρ−1 − 2ρ0 cos(φ −φ0)).

Since ρ + ρ−1 ≥ 1 > 2ρ0 cos(φ − φ0), we have |β − ∆+| < |β−1 − ∆−| when |β | < 1
(ρ < 1 < ρ−1), therefore |h(β)| < 1. A similar argument works for |β | > 1. Thus, possible
solutions of h(β) = h(β−1)must be on the unit circle, corresponding to purely real momentum.

When g > gc , no theorem prohibits the existence of non-unitary solutions, and one can
notice that a pair of isolated boundary modes with β± ≈ ∆± is possible. For such a solution,
|β±| > 1 leads to the divergence of the term β2(N−1) in Eq. (6) in the thermodynamic limit,
but this can be compensated by the factor (β −∆+)(β −∆−), which is close to zero. Most of
the energy levels remain real, and the scale-free localization behavior is absent in this sector.
We define the boundary imaginary energy contributed by one boundary mode as

Eb = −
1
2

Im(∆− +∆
−1
− ) =

1
2
(g −

g
∆2 + g2

). (7)

3.2 Two-magnon state

In the M = 2 sector, scale-free modes appear and contribute to the 1/N scaling behaviour of
energy. Fig. 2(a1) shows a typical finite-size two-magnon spectrum. We color the eigenval-
ues by many-body participation entropy [53–55], a measure of localization generalized from
single-particle inverse participation ratio (IPR):

S2(|ψ〉) = − log

∑

i |ψi|4

(
∑

i |ψi|2)2
,

where the index i sums over all the basis functions in the relevant Hilbert space, |ψ〉 is a many-
body eigenstate. We choose |i〉 to be local magnon number basis for the following calculations.
The participation entropy gets smaller when the eigenstate is more localized in the Hilbert
space, as we observed in Fig. 2(a1): Two dark points correspond to isolated states bounded
to the boundaries, and both two magnons are localized to the same side; around Im(E) = ±Eb
there is a continuum of states, which are the combination of a boundary mode with β1 ≈∆±
and a scale-free mode with β2 ≈ eik; the continuum on the real axis is brighter, though there is
one localized mode, corresponding to the state with two magnons localized on different ends.

We apply Bethe equation to the state with one magnon bounded to the boundary while the
other has momentum β2:

|β2|2N ≈ |
1− 2∆β2 +∆−β2

1− 2∆∆− +∆−β2

1− 2∆β2 +∆−1
− β2

1− 2∆∆−1
− +∆−β2

|. (8)
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Figure 2: (a1) and (b1) The spectrum of M = 2 sector for N = 40,∆= 0.8, g = 0.8.
Eigenvalues are colored by the participation entropy of the corresponding eigenstate.
(a2) and (b2) Finite-size scaling for the average of the imaginary part of the energy.
Only those states with Im(E) > 0 in the continuous spectrum are taken into consid-
eration. (a1) and (a2) are based on the pristine model eq. (1); for (b1) and (b2),
additional next-nearest-neighbor coupling ∆′ = 0.3 is added [see eq. (10)].

The right hand side, which will be denoted by exp(2κ), is of order O(1). Taking logarithm of
both sides, we have 2N ln|β2| = 2κ+O(1/N). Thus, lnβ2 acquires a first order correction to
the real part:

Re(lnβ2) = ln|β2|= κ/N +O(1/N2).

Traveling along the chain, the corresponding magnon accumulates an amplitude change A= |β2|N ∼ exp (κ).
This magnon localization is distinguished from the disorder-induced Anderson localization and
the original NHSE, both of which have exponential eigenstate decay ψ(x) ∼ exp(κ′x) with
size-independent localization lengthes, so that the wavefunction amplitude change (∼ exp(κ′N))
diverges as the system size N grows to infinity. In contrast, the amplitude change A in our case
saturates as the size N grows. In terms of the generalized Brillouin zone (GBZ) of the non-
Bloch band theory [38, 51], ln|β2| ≈ κ/N means that the GBZ (more precisely, the finite-size
GBZ [56]) deviates from the unit circle by amount O(1/N). Notably, the scale-free localization
in our model has an intrinsic many-body origin because in the non-interacting limit∆= 0, the
right hand side of Eq. (8) equals 1, and the imaginary momentum vanishes. Therefore, the
phenomenon in our model is dramatically different from that of free-particle models [35–37].
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The energy of such two-magnon state is

Im(E) = Eb −
1
2

Im(β2 + β
−1
2 ) = Eb −

1
N
κ sin(k). (9)

The statement is verified by finite-size scaling of the average of those complex energy. As
shown in Fig. 2(b1), the imaginary part scales linearly with 1/N . In the thermodynamic limit,
it will converge to ±Eb. Moreover, we add a next-nearest-neighbor zz interaction

Hnn = −
N−2
∑

j=1

∆′Sz
j S

z
j+2 (10)

to break integrability, yet the numerical results [Fig. 2(b1)(b2)] show no qualitative differ-
ences, which supports the universality of scale-free behaviour.

3.3 Imaginary Bethe equation at 0<∆< 1

After the warm-up on two-body scale-free modes, we now generalize it to the many-body
cases. We will study the parameter space 0 <∆ < 1, where it is the Luttinger liquid phase in
the Hermitian limit and the ground state lies in M = N/2 sector (with zero magnetization).
We assume that the steady state is composed of a boundary mode and a set of continuous
scale-free Bethe roots, and then derive the Bethe equations in the thermodynamic limit.

We adopt a conventional parametrization of magnon momentum [57,58]:

β j = −
sinh[γ(x j − i)/2]

sinh[γ(x j + i)/2]
, (11)

where γ= arccos(−∆) such that 0< γ < π. The kinetic energy of the magnon is

E(x j) = −
1
2
(β j + β

−1
j ) =

1− cos(γ) cosh(γx j)

cos(γ)− cosh(γx j)
. (12)

Taking the logarithm of Bethe equations (5), we have

2Nθ1(x j) +φb(x j) = 2πI j +
∑

l 6= j

[θ2(x j − x l) + θ2(x j + x l)], (13)

where the function θn is defined as

θn(x) = 2 arctan[cot(nγ/2) tanh(γx/2)]. (14)

The second term φb(x j) on the left of Eq. (13) is the scattering phase between the magnon j
and the boundary, which has the form:

φb(x) = θm+(x) + θm−(x),

where θm± is obtained by taking n in Eq. (14) as complex numbers

m± =
1
γ
θ1(

ln(cos(γ)± i g)
γ

) +
iπ
2γ

.

This involved boundary term will not have significance in the rest part of solution. For the
right hand side, I j is an integer and the set of {I j} determines the set of Bethe roots. We take

8
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the occupation of one boundary mode and I j = j on the steady state, and the corresponding
boundary Bethe root β0 =∆− has the parametrization

x0 =
1
γ

ln
g − sin(γ)
g + sin(γ)

− i = λ0 − i. (15)

The steady-state Bethe equations becomes

2Nθ1(x j) +φb(x j) = 2π j +
∑

l 6=0, j

[θ2(x j − x l) + θ2(x j + x l)] + θ2(x j − x0) + θ2(x j + x0). (16)

We rewrite x j = λ j + iσ j/N with purely real λ j ,σ j . We note that |σ j/N | � λ j , and
therefore any real function of x j can be expanded as

f (x j) = f (λ j) + i f ′(λ j)σ j/N +O(1/N2). (17)

The real and imaginary part of Bethe equations are:

2Nθ1(λ j) +φb(λ j) +O(1) = 2π j + [
∑

l 6=0, j

θ2(λ j −λl) + θ2(λ j +λl)]

+Re[θ2(λ j − x0) + θ2(λ j + x0)], (18)

(2θ ′1(λ j) +
1
N
φ′b(λ j))σ j +O( 1

N
) =

1
N

∑

l 6=0, j

θ ′2(λ j −λl)(σ j −σl) + θ2(λ j +λl)(σ j +σl)]

+Im[θ2(λ j − x0) + θ2(λ j + x0)]. (19)

Eq. (18) and Eq. (19) is accurate only to the O(N) and O(1) order, respectively, and their
leading terms are:

2Nθ1(λ j) = 2π j + [
∑

l 6=0, j

θ2(λ j −λl) + θ2(λ j +λl)], (20)

2θ ′1(λ j)σ j =
1
N

∑

l 6=0, j

θ ′2(λ j −λl)(σ j −σl) + θ2(λ j +λl)(σ j +σl)]

+Im[θ2(λ j − x0) + θ2(λ j + x0)]. (21)

Eq. (21) indicates that each scattering between the ( j, l) magnon pair generates a O(1/N)
contribution to σ j , and therefore the sum over l is of order O(1). Since a nonzero σ j ∼O(1)
characterizes the scale-free NHSE (with imaginary part of momentum ∼ σ j/N), Eq. (21)
clearly demonstrates the many-body origin of the scale-free NHSE in the present model.

Eq. (20) is the same as the ground state Bethe equations of the Hermitian open XXZ
model [1]. It is standard to calculate the difference between ( j+1)−th and the j−th equation,
taking f (λ j+1)− f (λ j) = f ′(λ j)(λ j+1 −λ j):

2Nθ ′1(λ j)(λ j+1 −λ j) = 2π+ [
∑

l 6=0, j

θ ′2(λ j −λl) + θ
′
2(λ j +λl)](λ j+1 −λ j). (22)

The thermodynamic limit is taken by sending

lim
N→∞

1
N(λ j −λ j+1)

= ρ(λ j), lim
N→∞

1
N

∑

l

f (λl) =

∫ ∞

0

dλρ(λ) f (λ), (23)

then the integral equation of ρ(λ) is

1
2
ρ(λ) +

∫ +∞

−∞
dλ′

K2(λ−λ′)
2π

1
2
ρ(λ′) =

K1(λ)
2π

, (24)

9
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where Kn(λ) is the derivative of θn(λ) with respect to λ:

Kn(λ) = θ
′
n(λ) =

γ sin(nγ)
cosh(γλ)− cos(nγ)

.

Notably, the energy function is proportional to K1 up to a constant:

E(λ) = − sin(γ)K1(λ)/γ+ cos(γ). (25)

Note that only when the steady state belongs to the zero magnetization sector, the integral
interval of λ can be taken as (−∞,∞). This is the case here, and it corresponds to filling
the Fermi sea k ∈ (−π+ γ,π− γ). The integral equation (24) is commonly solved by Fourier
transformation:

ρ̃(ω) =

∫ +∞

−∞

dλ
2π
ρ(λ)eiωλ,

K̃n(ω) =

∫ +∞

−∞

dλ
2π

Kn(λ)e
iωλ =

sinh(πγ − n)ω

sinh πγω
. (26)

Applying the convolution formula on Eq. (24), we have a linear equation

1
2
(1+ K̃2(ω))ρ̃(ω) =

K̃1(ω)
2π

, (27)

then the distribution function is solved: ρ̃(ω) = 1/(2π coshω),ρ(λ) = 1/(2 cosh(πλ/2)).
Eq. (21) counts two kinds of mechanisms of scale-free localization. On the right hand side,

the first term sums interactions between magnons in the bulk, while the second term is the
scattering with the boundary mode. The last one is much smaller than the first in a few-body
state, but becomes comparable when the magnon number is the same order of system size N ,
e.g. in the zero magnetization sector. Define σ(λ) as a function of λ, the continuous version
of this equation is

ρ(λ)σ(λ) +

∫ +∞

−∞
dλ′

K2(λ−λ′)
2π

ρ(λ′)σ(λ′) =
1

2π
Im[θ2(λ− x0) + θ2(λ+ x0)]. (28)

Dubbed “imaginary Bethe equation”, it is a central result of this article. To derive the linear
equation of σ̃ρ(ω) =

∫ +∞
−∞

dλ
2π eiωλρ(λ)σ(λ), we need to take the Fourier transformation. The

left hand side reads (1+ K̃2(ω))σ̃ρ(ω), while the right hand side is:
∫ +∞

−∞

dλ
2π

eiωλIm[θ2(λ− x0) + θ2(λ+ x0)]

=

∫ +∞

−∞

dλ
2π

eiωλIm[θ2(λ−λ0 + i) + θ2(λ+λ0 − i)]

=2i sin(ωλ0)

∫ +∞

−∞

dλ
2π

eiωλIm[θ2(λ+ i)]

=−
2 sin(ωλ0)

ω

∫ +∞

−∞

dλ
2π

eiωλ d
dλ

Im[θ2(λ+ i)]

=
2 sin(ωλ0)

ω

∫ +∞

−∞

dλ
2π

eiωλ 2γ cos(γ) sin2(γ) sinh(γλ)
(cosh(γλ)− cos(γ))(cosh(γλ)− cos(3γ))

=2i sin(ωλ0) sinh(ω)
sinh[(πγ − 2)ω]

ω sinh(πγω)
. (29)

10
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Denoting the above expression by Θ(ω), we can solve σ̃ρ(ω):

σ̃ρ(ω) =
1

1+ K̃2(ω)
Θ(ω)

2π
. (30)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
g

0.0

0.1

0.2

0.3

0.4

0.5
Im

(E
s)

Ferromagnetic: = 0.8

BA
Eb

ED

Figure 3: Imaginary part of the steady state energy Es as a function of the non-
Hermitian parameter g. We take ∆ = 0.8, so that gc = 0.6. Red curve is from the
Bethe ansatz (BA). As a comparsion, blue line is imaginary energy of a boundary
mode (Eb). The black dots are computed from exact diagonalization (ED) in the
zero-magnetization subspace, with system size N = 16.

The summation of energy of all those scale-free modes becomes an integral over λ in the
thermodynamic limit. The imaginary part of energy formula of a single magnon is

Im(E(x)) =
1
N

E′(λ)σ(λ) = −
sin(γ)

Nγ
K ′1(λ)σ(λ). (31)

Here, Eq. (25) has been used. While each one contributes O(1/N) to the total imaginary part,
the sum of contributions from all scale-free magnons is comparable to the boundary mode
contribution Eb:

∑

j 6=0

Im(E(x j)) = −
sin(γ)
γ

∫ +∞

0

dλρ(λ)K ′1(λ)σ(λ)

= −
sin(γ)

2γ

∫ +∞

−∞
dω 2πiωK̃1(ω)σ̃ρ(ω)

= −
sin(γ)

2γ

∫ +∞

−∞
dω iω

K̃1(ω)
1+ K̃2(ω)

Θ(ω)

=
sin(γ)
γ

∫ +∞

0

dω sin(ωλ0) tanh(ω)
sinh[(πγ − 2)ω]

sinh(πγω)
. (32)

The imaginary part of the steady-state eigen-energy is then given by adding Eb:

Im(Es) =
∑

j 6=0

Im(E(x j)) + Eb. (33)

In Fig. 3, we compare our formula with the exact diagonalization (ED) results in the
M = N/2 sector (zero magnetization sector), which agrees excellently. The boundary field g
controls the imaginary part of the energy totally via λ0 =

1
γ ln g−gc

g+gc
. As g crosses gc , the steady

state energy becomes complex.

11
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3.4 Boundary bound state at ∆> 1 and phase transition

Anisotropic interaction∆> 1 prefers bounding all magnons together, and therefore the magnons
in the steady state tend to localize to the boundary. Specifically, the first magnon is bound to
the boundary, and the next one is bounded to the previous one recursively. In the context of
integrable spin models, the bound state is named an “string”; we shall follow this terminology
and call our bound state near the boundary a “boundary string”. We note that similar states
have been identified in the spin model subjected to a non-Hermitian magnetic field at only one
end [26]. In the thermodynamic limit, Bethe roots {β j} satisfies a recursive relation:

β j+1 + β
−1
j = 2∆, β1 =∆− i g. (34)

The imaginary part of energy is given by

Im(Es) = −
1
2

M
∑

j=1

Im(β j + β
−1
j )

= −
1
2

M−1
∑

j=1

Im(β−1
j + β j+1)−

1
2

Im(β1 + β
−1
M )

= −
1
2

Im(β1 + β
−1
M ).

For large N , βN/2 approaches the fixed point of recursive relations Eq. (34): β∞ =∆±
p
∆2 − 1,

which is purely real. It follows that Im(Es) = −
1
2 Im(β1) =

g
2 .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
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0.4
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(E
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(a)
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g=0.6

0.06 0.08 0.10 0.12
1/N

0.02

0.04

0.06

0.08

0-I
m

(E
s)

(b)

g = 0.2
g = 1.0
g = 1.6

Figure 4: (a) The imaginary part of the steady state energy in the zero magnetization
sector, which are obtained from exact diagonalization with system size N = 16. (b)
Finite-size scaling of the steady-state energy at the isotropic point ∆ = 1. γ0 = g/2
[see the paragraph above Eq. (36)].

It is clear that the structure of Bethe roots of the steady state is different for 0 < ∆ < 1
and ∆> 1. We may take the isotropic limit ∆= 1 from the two sides to understand the phase
transition point.

In the scale-free phase, we have to deal with the γ→ π limit of Eq. (32) carefully. Note
that the Fermi sea ranging from −π+γ to π−γ shrinks to a Fermi point when γ→ π. We take
the limit by substituting ω by ωγ/ sinγ with sinγ� 1, and the integral can be simplified to

∫ +∞

0

dω sin(2ω/g)exp(−2ω) = g/2(1+ g2), (35)

12
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so that Im(Es) = Eb + g/2(1+ g2) = g/2.
In the boundary-string phase, the imaginary part is a constant γ0 = g/2. Bethe roots can be

determined by the recursive equation Eq. (34) at ∆= 1, which results in an explicit solution:

βn = 1+
1

n− 1+ i
g

. (36)

For small n, the magnon localizes exponentially at the boundary. However, for n sufficiently
large (n/N ∼ O(1)), it behaves in a scale-free fashion. This result is also confirmed by com-
paring the imaginary part with γ0 for different system sizes, and the differences scale linearly
with 1/N (see Fig. 4). We emphasize that the solution Eq. (36), though qualitatively valid,
is not exact because the scattering between the large n scale-free modes have been neglected.
This approximation has been implied in Eq. (34).

4 Ground state phase diagram

Δ

g

Luttinger liquid

Luttinger liquid 

(Scale-free) Boundary 

string

Gapped spinon

(Scale-free)

1-1

1

Figure 5: Ground state phase diagram in the zero magnetization sector. The right
half of the diagram, ∆ > 0, coincides with the counterpart of steady state (see Fig.
1). In the PT exact phase (g < gc ≡

p
1−∆2), the ground state is Luttinger liquid

(LL); for g > gc , gapless excitations become scale-free. When ∆ < −1, the gap
between the ground state and excited states opens, yet our ansatz of scale-free skin
modes remains valid.

For the ferromagnetic case ∆> 0, the steady state and the ground state coincide, and the
phase boundary ∆ = 1 separates the scale-free phase and the boundary string. However, the
transformation Z T relating the ferromagnetic and the anti-ferromagnetic steady state is not
applicable to the ground state, because it changes to the highest-energy (real part) state when
reversing the sign of ∆. Therefore, one cannot borrow the ground-state phase diagram from
that of the steady state. Moreover, the comparison between ground states at zero and finite
non-Hermiticity provides another perspective on the effect of boundary dissipation. In Fig. 5,
we summarize the results of the ground state. The ansatz of many-body scale-free state in the
region ∆< 0 is studied in the following subsections.
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Figure 6: Imaginary part of the ground state energy Eg as a function of the non-
Hermitian parameter g. We take ∆ = −0.8, so that gc = 0.6. Red curve is from the
Bethe ansatz (BA). As a comparison, blue curve is imaginary part of the energy of a
boundary mode (Eb). The hollow dots are obtained from exact diagonalization (ED)
with N = 10, and solid dots with N = 16.

4.1 Scale-free solutions for −1<∆< 0

For −1<∆< 0, we find that Eq. (32) can still be applied to the ground state, though it does
not coincide with the steady state anymore. The formula is compared with exact diagonaliza-
tion results in Fig. 6. It seems that the data does not agree as well as in the ferromagnetic
case (see Fig. 3). This is due to the larger finite-size error. In fact, we observe that as size N
increases, the ED results become closer to the analytical ones.

4.2 Imaginary Bethe equation at ∆< −1

The imaginary Bethe equation also works for ∆ < −1, with some technical modifications.
Retaining the parametrization ∆ = − cos(γ), |∆| > 1 now leads to a purely imaginary γ, and
it is convenient to write γ→ iφ:

β j = −
sin[φ(x j − i)/2]

sin[φ(x j + i)/2]
, (37)

where φ = arccosh(−∆). The boundary Bethe root is

x0 = −
2
φ

arctan(
sinh(φ)

g
)− i = λ0 − i. (38)

On the ground state the whole Brillouin zone k ∈ (−π,π) is filled, so that Re(x) ∈ (−π/φ,π/φ).
The single-magnon kinetic energy is

E(x j) =
1− cosh(φ) cos(φx j)

cosh(φ)− cos(φx j)
. (39)

We also adopted here a new definition of the function θn:

θn(x) = 2 arctan[coth(nφ/2) tan(φx/2)].

14
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The imaginary Bethe equation is then given by

ρ(λ)σ(λ) +

∫ +π/φ

−π/φ
dλ′

K2(λ−λ′)
2π

ρ(λ′)σ(λ′) =
1

2π
Im[θ2(λ− x0) + θ2(λ+ x0)]. (40)
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Figure 7: Imaginary part of the ground state energy as a function of the non-
Hermitian parameter g. Left panel: ∆ = −1.2; Right panel: ∆ = −2.0. Red curve is
obtained from the Bethe ansatz (BA). Green triangles and blue squares are numerical
results from exact diagonalization of N = 10 and N = 16, respectively.

Since functions of λ are periodic functions with periodicity 2π/φ, we can expand them as
Fourier series to solve the integral equation:

f̃ (m) =

∫ +π/φ

−π/φ

dλ
2π

f (λ)eimφλ, m ∈ Z (41)

Notably, K̃n(m) = exp(−n|m|φ), and the right hand side of the eq. (40) transforms as
∫ +π/φ

−π/φ

dλ
2π

eimφλIm[θ2(λ− x0) + θ2(λ+ x0)]

=2i sin(mφλ0)

∫ +π/φ

−π/φ

dλ
2π

eimφλIm[θ2(λ+ i)]

=
2sin(mφλ0)

mφ

∫ +π/φ

−π/φ

dλ
2π

eimφλ 2φ cosh(φ) sinh2(φ) sin(φλ)
(cos(φλ)− cosh(φ))(cos(φλ)− cosh(3φ))

=2i
sin(mφλ0)

mφ
sinh(mφ)e−2mφ = Θ(m). (42)

The imaginary part of energy is:

∑

j 6=0

Im(E(x j)) = −
sinh(φ)
φ

∫ +π/φ

0

dλρ(λ)K ′1(λ)σ(λ)

= −
sinh(φ)

2

∑

m∈Z
2πimφK̃1(m)σ̃ρ(m)

= −
sinh(φ)

2

∑

m∈Z
imφ

K̃1(m)
1+ K̃2(m)

Θ(m)

= sinh(φ)
∑

m∈Z+

sin(mφλ0) tanh(mφ)e−2mφ . (43)
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As illustrated in Fig. 7, there are finite-size errors between the numerical results and our
Bethe ansatz formula, which is similar to the gapless antiferromagnetic case.

16



SciPost Physics Submission

5 Experimental Scheme

The onsite non-Hermiticity can be realized in cold atom systems by coupling the spin down
(up) degrees of freedom of the first (last) site to an auxiliary state by optical pumping [59,60].
Each atom in the bulk has two effective energy levels to mimic a 1/2 spin. XXZ interaction
can be induced by the mixing of even and odd parity states, e.g. in Rydberg atoms [61]. We
may introduce the third energy levels on the two ends so that the effective spin down (up)
state on the left (right) end can decay to it spontaneously. The effective loss is described by a
non-Hermitian term

Hloss = −
i g
2
| ↑〉〈↑ |1 −

i g
2
| ↓〉〈↓ |N = −

i g
2
+

i g
2
(Sz

N − Sz
1).

To evolve the open system under the non-Hermitian Hamiltonian without quantum jump, i.e.,
by post-selection, the population of auxiliary energy levels should be monitored by exciting
the states with laser. The absence of fluorescence signals the absence of the quantum jump
from the magnetization-conserved quantum trajectory. The evolution of the many-body state
is then governed by the effective Hamiltonian Heff = HXXZ+Hloss, which differs from our initial
Hamiltonian Eq. (1) only by an imaginary constant i g

2 .
During the time interval [t, t +δt], the state |ψ〉 evolves as

|ψ(t +δt)〉=
exp(−iHeffδt)|ψ(t)〉
|exp(−iHeffδt)|ψ(t)〉|

,

Starting from an initial state in the zero magnetization sector, the system will relax to the
steady state after sufficiently long time. The imaginary part of the corresponding eigenvalue
can be obtained by measuring the expectation of boundary spin polarization:

Im(Es) = Im〈ψs|Heff|ψs〉+
g
2
=

g
2
〈ψs|(Sz

N − Sz
1)|ψs〉= g〈ψs|Sz

N |ψs〉, (44)

where |ψs〉 is the steady state. The measured boundary spin polarization can be compared to
our analytical result of Im(Es).

Numerical simulations for post-selection evolution under Heff are conducted on N = 14
chain to back up the above proposal. We consider two kinds of initial states. The first one
is a “local quench”, in which the spin chain is prepared in the ground state of HXXZ, and
boundary coupling to the auxiliary energy levels is turned on at certain moment. The other
initial state is a domain-wall configuration, in which the spins of the left half chain point down
while those of the right half point up. We discretize the continuous time evolution by fourth
order Runge-Kutta method, and obtain the spin polarizations in Fig. 8(a-d). It is clear that
for both local quench and domain wall initial states, the edge spin polarization converges
to the predictions of Bethe ansatz solution. For certain parameter choices, e.g., Fig. 8(b),
the relaxation time towards the steady state is comparable to 1/g, which is most convenient
from experimental perspective. The results from Bethe ansatz and numerical simulation are
also confirmed by exact diagonalization Fig. 8(e)(f). Fig. 8(e)(f) also shows clearly that the
steady-state expectation of Sz

N is well below 1/2 for |∆| < 1 , while it saturates to 1/2 for
|∆|> 1.

6 Conclusion

In this work, we applied coordinate Bethe ansatz to solve the steady state and the ground
state of a PT symmetric one-dimensional boundary-dissipated spin chain, focusing on the PT
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Figure 8: (a)-(d) Time evolution of spin polarization under post-selection dynamics.
The dashed lines indicate the values of Im(Es)

g obtained from the Bethe ansatz. For
(a)(b), the time evolution starts from a local quench; in (c)(d), it starts from the
“domain-wall” initial state (see text). The time is measured in unit of 1/g. (e)(f)
Steady-state spin polarization profile obtained from exact diagonalization. Parameter
values: N = 14 and g = 0.8 are fixed. For (a)(c)(e), ∆= 0.8; for (b)(d)(f), ∆= 1.2.
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broken phase. We found the many-body scale-free state, which is composed of one boundary
mode and a continuum of scale-free modes in our particular model. We then derived the
Bethe equations of the scale-free Bethe roots, and obtained a compact formula for the eigen-
energy in the thermodynamic limit. We then proposed an experimental scheme to measure
the dissipative part of the energy, and discussed how to compare it with our analytical results.

Our findings shed a light on exceptional points and PT transition in many-body physics.
Particularly, our solution is a generalization of the concept of scale-free NHSE from free-particle
to many-body systems. Although we focused on the scale-free behaviour in the XXZ spin chain,
it is expected that this feature is universal in a family of non-Hermitian models with interactions
in the bulk and dissipation-induced defect mode at the boundary. For example, non-integrable
models also exhibit scale-free properties, as demonstrated in Fig. 2. Moreover, in integrable
models solvable by nested Bethe ansatz (Fermi-Hubbard model, higher spin XXX chain, etc.),
boundary-operator induced PT symmetry transition and the corresponding steady states may
have richer structures to uncover.

We have demonstrated the scale-free skin effect by the difference between the imaginary
part of the steady state energy and that of a single boundary mode. Intuitively, the scale-free
skin effect may also manifest itself in the excitation spectra near the steady state. A thorough
analysis of those eigenstates requires preserving the O(1/N2)-order terms in the imaginary
Bethe equations, which is left for future studies. Algebraic Bethe ansatz is another possible
approach to the solutions of excitations, though it remains a question how scale-free Bethe
roots emerge in the monodromy and transfer matrices.
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