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Abstract

The characterization of density correlations in the presence of strongly fluctuating inter-
faces has always been considered a difficult problem in statistical mechanics. Here we
study – by using recently developed exact field-theoretical techniques – density correla-
tions for an interface with endpoints on a wall forming a droplet in 2D. Our framework
applies to interfaces entropically repelled by a hard wall as well as to wetting transi-
tions. In the former case bubbles adsorbed on the interface are taken into account by
the theory which yields a systematic treatment of finite-size corrections to one- and two-
point functions and show how these are related to Brownian excursions. Our analytical
predictions are confirmed by Monte Carlo simulations without free parameters. We also
determine one- and two-point functions at wetting by using integrable boundary field
theory. We show that correlations are long ranged for entropic repulsion and at wetting.
For both regimes we investigate correlations in momentum space by generalizing the
notion of interface structure factor to semi-confined systems. Distinctive signatures of
the two regimes manifest in the structure factor through a term that we identify on top
of the capillary-wave one.
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1 Introduction

The study of interfacial phenomena in the presence of boundaries constitutes one of the most
important chapters in statistical mechanics in which theory faces with experiments and tech-
nological applications [1]. The archetypical scenario is the one of a liquid on a substrate in
coexistence with its vapor. In general, a liquid layer intrudes between the substrate and the
vapour. The transition from a microscopic (finite) to a macroscopic (infinite) layer thickness
as the temperature is increased towards a wetting temperature Tw is termed wetting transi-
tion [2, 3]. Beside the morphological change of the interfacial shape, the latter is a surface
phase transition accompanied by the divergence of thermodynamic quantities whose singular
behavior is characterized in terms of critical exponents and surface universality classes [1,4–8].
From the theoretical side, boundary-induced effects on near-critical systems have been inten-
sively studied by means of several techniques ranging from mean field theory, perturbative
field theory [9–11], and numerical simulations [12]. Despite the vast literature, exact re-
sults in the field of interfacial phenomena are scarce and predominantly limited to the two
dimensional (2D) Ising model [13]. This circumstance naturally raises the legitimate question
whether the already existing exact findings are related to the solvability of the lattice model,
or whether they are universal. For more than 40 years the Ising model in 2D allowed for the
investigation of interfacial phenomena with exact techniques [13]. In a seminal paper, D. B.
Abraham [14] provides the first example of an exactly solvable system exhibiting a wetting
transition. Almost half a century ago Wertheim [15] predicted – by using integral equation
theories for the liquid state [16] – that density fluctuation at the interface separating coexisting
phases are long-ranged and confined within the interfacial region. Such findings influenced
the development of the field of interfacial phenomena but at the same time they also posed
questions that so far have received partial answers. In particular, how to compute correlation
functions within interfaces in an exact fashion by going beyond the Ising model in 2D? How
to test Wertheim’s prediction in the strongly fluctuating regime of 2D systems? Does a wetting
transition affect the long-range character of interfacial fluctuations? If so, is it possible to mea-
sure them via the interface structure factor? How to quantify finite-size corrections due to the
finiteness of the interface extent? In the present work we provide answers to these questions,
a task that now is possible thanks to the exact field theory of phase separation developed in
the last decade [17–22].

Interfaces arising from phase separation in 2D are particularly intriguing for a twofold
reason. On the one side because thermal fluctuations have strong effects on correlations and
effective descriptions based on mean-field theories are – de facto – unable to capture the exact
form of correlations. On the other hand, the 2D case can be analyzed in a mathematically
precise and controllable fashion by exploiting analytical techniques yielding exact solutions.
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The intrinsic inadequacy of mean-field theory treatment below the upper critical dimension is
nicely illustrated by the case of the 2D Ising model in bulk (i.e., the unbounded plane). The cel-
ebrated Onsager’s solution yields the exact result for the decay of scaled truncated two-point
function, g2(r) ∼ r−2 exp(−2r) [23]. This result is in sharp contrast with the prediction of
Ornstein-Zernike theory, g(OZ)

2 (r) ∼ r−1/2 exp(−r), which exhibits an anomalous power-law
exponent [16, 24], a phenomenon that goes under the name of Kadanoff-Wu anomaly [25].
While the exact form of two-point correlation functions for the Ising model in the unbounded
plane is nowadays textbook knowledge [26], the exact analytic form of correlations in the pres-
ence of strongly fluctuating interfaces is largely unknown to date up to some notable exceptions,
this because the actual shape of boundaries, the implementation of boundary conditions, and
features of the universality class, come into play altogether and the way they interplay is far
from being trivial.

Although the density profile for the interface of the Ising model on the strip has been
known since 1974 [27], the two-point function for other universality classes in such a geometry
has been obtained 40 years later [22]. The next problem in this hierarchy is the droplet on
the half-plane shown in Fig. 1 (a). For this geometry we know the density profile for the
Ising model [14] while the exact calculation of the two-point function resisted to analytical
investigations until recent times [28].

The analytical progresses along mentioned above have been put forward in the last decade
with the exact theory of phase separation in 2D for a broad range of universality classes [17–
22]. By exploiting low-energy properties of field theories it has been possible to calculate
one- and two-point correlation functions from the underlying field theory in the presence of
an interface on a finite strip [22]. More recently, many-body correlation functions have been
computed analytically [29] and the predictions have been successfully confirmed by accurate
Monte Carlo simulations (MC) simulations in the absence of free parameters [30–32].
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Figure 1: Panel (a): the half-plane with boundary conditions leading to the formation
of a droplet with pinning points in (0,±R/2). Panel (b): the order parameter profile
as a function of x and y rescaled to the bulk value. The black curve is an arc of ellipse
corresponding to the isoline at which the density attains the zero value, the latter
defines a sharp interface with average distance from the wall h(y)∝

p

R− (2y)2/R
given by the mean value of the Brownian excursion (17). The dashed black line is
the isoline at vanishing value including the finite-size correction ∝A in (1). The
yellow line is the density profile at leading order sliced along the x-axis; see (2). The
dashed green line is the density profile including the interface structure effects for
R/ξb = 20; see (1).
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Besides exactly solvable models, the typical approach to the study of interfacial correla-
tions – especially for three dimensional systems – follows the route of interfacial Hamiltonian
models and capillary wave theory [33] (see [34] and references therein). In such phenomeno-
logical theories it is assumed that interfacial undulations are Gaussian [35,36] and correlations
are investigated in both real and momentum space, in the latter case through the notion of
interface structure factor (ISF) [37–41]. However, the exact form of correlations both in real
and momentum space for the case in which the wall undergoes a wetting transition is still
missing.

In the present work we fill this gap by showing how the first-principle approach based on
recently developed field-theoretical techniques [20, 22] yields exact results in 2D for density
profiles and interfacial correlations for the droplet of Fig. 1 both in real and momentum space.
The formalism is applied to two interesting regimes: i) a pinned interface experiencing en-
tropic repulsion by a hard wall, ii) temperatures close to the wetting transition in which the
interface binds/unbinds from the wall and leads to a diverging wetting layer. In the regime
of entropic repulsion we show that interface structure effects, missing in previous treatments,
cannot be ignored and their effect resolve a longstanding discrepancy observed in early simu-
lations [42].

The picture that emerges is that both regimes of entropic repulsion and wetting are char-
acterized by long-range correlations along the interface but these correlations are confined
within the interfacial region. This can be concluded by inspection of the density-density cor-
relation function in real space, something that we find in closed-form. To further establish
a connection with observables considered in experiments [43–45], we extend the notion of
ISF to semi-confined systems and analyze correlations in momentum space. In particular, we
show that for large wavenumber q both regimes share the typical form of the ISF predicted
by capillary wave theory, i.e., S(q) ∼ A/q2. The coefficient is A= (ρl −ρv)2/γl v and the 1/q2

behavior emerges for wave-numbers q much bigger than a lower momentum cutoff Λ that is
regime-dependent. For the case of entropic repulsion Λ(er) = 1/R is the inverse of the sessile
droplet extent, the latter plays the role of the capillary length mimicking by the pinning. For
the case of wetting instead Λ(w) = 1/ξ‖ and ξ‖ ∼ (Tw− T )−ν‖ dictates the typical length of in-
terfacial fluctuations along the interface. In capillary-wave theory the large-distance behavior
yielding the small momentum singularity 1/q2 is the signature of a Goldstone mode related to
a continuous symmetry in the system [46]. This symmetry is translational invariance, which
asymptotically emerges at the wetting transition since the interface can be displaced with no
cost in energy. Surprisingly, the 1/q2 behavior emerges also in a system with finite but large
extent in which translational invariance can be recovered only within a limiting procedure
in which R → ∞; this is the case of a sessile droplet of diameter R experiencing entropic
repulsion in two dimensions. Although wetting and entropic repulsion are characterized by
the same behavior of S(q) for q � Λ, characteristic signatures distinctive of the two regimes
appear in the form of corrections that involve higher powers of the wave number.

This paper is organized as follows: In Sec. 2 we briefly motivate the choice of the model
used in simulations and in Sec. 3 we discuss the comparison between theory and MC simula-
tions for the regime of entropic repulsion in the Ising model. In Sec. 4 we recall the essential
phenomenological features of a wetting transition and its connection with exact results in
field theory. We illustrate theoretical predictions for one- and two-point correlation functions
of the order parameter and discuss them. We then proceed with the analysis of correlations
in momentum space in Sec. 5. Sec. 6 illustrates in a rather pedagogical manner the key ideas
underlying the exact field theory of phase separation and its connection with the language of
interfacial phenomena. Our conclusions and perspectives for future research are presented
in Sec. 7. Details about the field-theoretic calculations of one-point functions at wetting are
supplied in Appendix A. Two-point functions of the energy density at wetting are considered
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in Appendix B. The calculation is sketched and the full details of it, including also the calcu-
lation of order parameter correlation functions will be disclosed in a forthcoming publication.
Appendix C contains the details for the material covered in Sec. 5.

2 Models

Before presenting the results of our study, we provide a concise motivation about the choice of
theoretical models. We consider the two-dimensional Ising model on the half-plane x > 0 with
boundary conditions enforcing a droplet shape, as schematically illustrated in Fig. 1 (a). This
model, which has been thoroughly studied both numerically and analytically, is the simplest
lattice model able to reproduce the key phenomenological features of wetting and entropic
repulsion [5]. Although the Ising universality class provides the minimal model for the study
of interfacial phenomena and their interplay with bulk criticality, more complex models yield-
ing richer wetting phenomena have been proposed [5]. The conceptual simplicity of the Ising
model is due to the fact that below the critical temperature the system has only two degen-
erate ground states. This features suffices for the description of phase equilibrium in a single
component system, for instance, a liquid in coexistence with its vapor phase. Although the
theoretical framework that we present in this paper applies to any 2D model exhibiting a sec-
ond order phase transition and phase coexistence of at least two phases, the theory is tested
against MC simulations for the Ising model. We present the comparison between theory and
simulations for entropic repulsion in Sec. 3 and then we will consider the wetting scenario in
Sec. 4.

3 Entropic repulsion

3.1 Order parameter profile

Phase separation in Ising systems is studied by imposing a wall which plays the role of a
substrate. The wall with patches of boundary conditions favoring different phases implements
the formation of a droplet separating phases a and b. For the Ising model with a = − and
b = +1 this protocol introduces a droplet of negative magnetization enclosed in the Peierls
contour of Fig. 1 (a) [47]. When referring to the Ising model, we can alternatively rephrase
results within the fluid-magnetic analogy. The mapping between variables in the lattice gas and
Ising model is ni = (1+si)/2, where ni ∈ 0,1 stands for an empty/filled site [6,24,48]. Without
loss of generality, we can stipulate that the negative magnetization is the liquid phase and the
positive magnetization is the vapor phase. When referring to the a-rich phase, we will simply
term it as the liquid phase, while we will identify the vapor phase as the b-rich phase. In a
real system this situation corresponds to a substrate with patch-wise inhomogeneous chemical
composition, hydrophobic and hydrophilic.

The system is studied for temperatures T such that the bulk correlation length ξb is much
larger than the microscopic scale a0 (lattice spacing in MC simulation) and, at the same time,
ξb ∼ (Tc − T )−ν is much smaller than the separation R between interface endpoints, i.e.,
a0 � ξb � R. In simulations, we consider the square lattice Ising model with couplings
J > 0 between neighboring bulk spins and fixed boundary conditions as shown in Fig. 3. In
general, the coupling between (non-fluctuating) boundary spins and those in the adjacent
layer is taken to be of the form Jb = aJ , where 0 ¶ a ¶ 1, meaning that Jb is a weakened
bond; these are represented with zigzags in Fig. 3. It is known that for a ∈ (0,1) there exist a
wetting temperature Tw(a) < Tc such that Tw(a→ 0+) = T−c and Tw(a→ 1−) = 0+; we refer
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to [14] for the exact derivation of the wetting phase diagram for the square lattice Ising model.
The scenario of entropic repulsion is expected for temperatures bigger than the wetting one.
To be definite, in our simulations for the case of entropic repulsion we simply take1 Jb = J ,
corresponding to a = 1, meaning that for all subcritical temperatures the system is non-wet.

When bulk and boundary bonds in the Ising Hamiltonian have the same strength J > 0 the
energy minimum for the Peierls contour at temperature T = 0 is attained by minimizing its
length. However, for T > 0 the contour gains entropy by wandering in the semi-space x > 0,
hence the entropic repulsion occurs [49]. The interface is pushed away from the wall but it
cannot be expelled indefinitely far away from it because the contour is pinned to the boundary.
As a result, the interface fluctuates as an elastic string with fixed endpoints. It is obvious that
the volume enclosed by the droplet is not conserved. Parenthetically, we remark that is possible
to investigate strongly fluctuating systems within the canonical ensemble corresponding to
those instantaneous configurations with fixed total mass of the droplet. Interesting effects
emerge both at the level of free energies [50] and correlations in interfacial phenomena [51].

Coming back to the droplet of Fig. 1 (a), bulk and interfacial fluctuations build up a smooth
density profile interpolating between the spontaneous bulk density 〈σ〉a inside the droplet
and 〈σ〉b outside it. The quantities 〈σ〉a and 〈σ〉b depend on the system; e.g., for the Ising
model 〈σ〉± = ±M where M ∼ (Tc − T )1/8 is the spontaneous magnetization [52]. The exact
expression of the density profile is [28]:

〈σ(x , y)〉ab =
〈σ〉a + 〈σ〉b

2
−
〈σ〉a − 〈σ〉b

2
Υ (χ) +A P(x , y) +O(R−1) ; (1)

some comments are in order. In the above, Υ (χ) is the universal scaling function

Υ (χ) = −1−
4
p
π
χe−χ

2
+ 2erf(χ) , (2)

the coordinates x , y enter via χ = x/(κλ) where λ =
p

Rξb, and κ =
p

1− (2y/R)2 is a
y-dependent rescaling factor. Leaving aside the term A P(x , y), it is simple to show how
the density profile reaches the bulk value 〈σ〉b for x � λ; the parameter λ ∼ R1/2 sets the
length scale associated to interfacial fluctuations in the x direction. Although the function
Υ (χ) appeared in the literature of Ising interfaces [14,18,53–55], the termA P(x , y), which
has not been found in previous analyses, is a novel result.

Let us discuss the subsequent term appearing in the density profile. The quantity P(x , y) is
the probability density to find the interface in the point (x , y)whileA is a factor that depends
on the specific universality class; it will be discussed later. The probability for the interface to
cross the horizontal axis (y = 0) in the interval (x , x + dx) is P(x , 0)dx where

P(x , 0) =
4x2

p
πλ3

e−x2/λ2
, (3)

while for |y| < R/2 the corresponding result is P(x , y) = κ−1P(x/κ, 0). It has to be noticed
that P(x , y) vanishes along the wall. This is a signature of the entropic repulsion experienced
by the interface which is encoded in the factor x2 in (3). There is another remark to point
out: while Υ (χ) and P(x; y) are super-universal, i.e., they are shared by several universality
classes (e.g., Ising, Potts, etc [28]), the amplitudes 〈σ〉a, 〈σ〉b andA depend on the universal-
ity class of the model2. For the Ising model, which is the system we examined in simulations,

1In our MC simulations we set J = 1 without loss of generality.
2The factor A – as well as the scaling function Υ – depends also on the geometry of the system, e.g., it takes

different values for strip and the half-plane [28]. See also Sec. 7 for additional remarks on this point.
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A = M/γl v and γl v is the surface tension (in kB T units) of the a− b interface, i.e., the anal-
ogous of te liquid-vapor interface. The surface tension is related to the subcritical correlation
length via

γl vξb =
1
2

. (4)

Although this relation is derived within the field-theoretical framework that applies in the
scaling region near criticality, for the Ising model the identity (4) is an exact form of Widom’s
relation valid for all subcritical temperatures, a result that follows from duality arguments [13,
56, 57]; see also [58, 59]. It follows from (3) that A P(x , y) yields a correction proportional
to R−1/2 times some function of χ, therefore it provides a finite-size correction to the density
profile. In general, these corrections can be organized in the form of a series expansion in the
small parameter

p

ξb/R and the term∝A is the first one of such an expansion.
It follows from (1) that the leading form of droplet shapes – i.e., when R is large enough

to neglect the interface structure effect – is given by the isolines of the density profile Υ (χ).
Since the latter depends on x and y via χ, the isolines are arcs of ellipses, as illustrated with
the solid white lines in Fig. 1 (b), with the solid black line as the isoline at zero value. This
theoretical prediction is confirmed by MC simulations carried out for both Ising and Potts
models [60]. Upon including the interface structure correction the isoline shift, this is shown
with the dashed black line in Fig. 1 (b) corresponding to the shift of the solid black line.
Alternatively, the droplet shape can be also characterized as the locus in the (x , y) plane in
which the passage probability P(x , y) is maximum or, similarly, as the average height with
respect to the wall. The average height, which is given by (17), is indicated in Fig. 1 (b). It is
obvious that all these definitions are equivalent up to an overall numerical coefficient which
is of order O(1).

Early numerical simulations3 for an Ising droplet in 2D exhibited discrepancies when com-
pared against the leading-order profile [42] Υ (χ). The correction term A P(x , y)∝ R−1/2,
which we have identified, turns out to resolve the aforementioned mismatch and eventually
yields – if included in the profile – an accurate comparison between theory and numerics, as
shown in Fig. 2. The agreement is perfect due to such a term and without taking it into ac-
count the MC data fall systematically away from the analytic prediction. The small deviations
for x → 0 are due to the fact that the exact result does not take into account wall effects
which fade away only for x � ξb; see [62] about exact calculations for the square lattice Ising
model. Deviations for large x in Fig. 2 are simply due to the finiteness of the simulation box.
For the sake fo completeness we point out that MC simulations of Ref. [42]were performed for
T ≈ 1.9 and R ≈ 46. In this work, we examined larger system sizes ranging from R = 151 to
R= 451 and temperatures T = 2, T = 2.1, and T = 2.15, which are even closer to the critical
point (Tc = 2/ ln(1+

p
2) = 2.269 19... [23]). In the domain of applicability of the theoretical

result, which is x � ξb, the analytic expression (1) and the data points from simulations are
superimposed with good accuracy.

3.2 Passage probability

The comparison between theory and simulations provided in Fig. 2 corroborates the neces-
sity of the interface structure correction∝ P(x , y). However, it would be optimal to test the
theoretical prediction (3) in a direct fashion even without detecting the order parameter pro-
file. This is what will be discussed in this section. The idea is to extract P(x , y) directly by
collecting statistics of lattice-defined interfacial shapes.

The interface on the square lattice can be constructed in several ways. One way is to draw
a segment on the dual lattice for bonds which connect opposite spins [47]. A schematic picture

3See [61] for MC studies of interfaces in Ising films and [12] for a review on simulations.
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Figure 2: Density profiles for T = 2 (•) and T = 2.15 (�) and R shown in the inset.
Lines are the exact prediction [Eq. (1)].

of the resulting interface is illustrated with the green curve (continuous and dashed) in Fig. 3.
In general, it is possible to regard the interface as the result of an exploration process which
starts from one pinning point and ends at the other; see points denoted “in” and “out” in Fig. 3.
The process constructed on the dual lattice is however ambiguously defined in correspondence
of those plaquettes in which the interface splits in three, as indicated with dashed lines in Fig. 3.
The occurrence of plaquettes in which the exploration process is not uniquely defined causes
the formation of loops and overhangs.

From the viewpoint of simulation studies it is crucial to employ a definition of interface
that allows for tracking without ambiguities induced by the formation of branching and loops.
In order to remove such an ambiguity it is possible to employ the definition of interface on
the medial lattice [63]. Interfaces on the medial lattice are always well defined and do not
self-intersect; see blue and red curvy lines in Fig. 3. Alternatively, the loops represented by
dashed green bonds can be removed by defining the interface as a loop erased random walk
(LERW) [63]. The result of this procedure is the solid line in Fig. 3 which connects the two
pinning points. As can be seen in Fig. 3, the pinning points emanate two interfaces on the
medial lattice with the LERW-defined interface enclosed in between.

The passage probability P(x , 0) is obtained from MC simulations by sampling the number
of crossings at different intervals on the lattice. The number of crossings in each interval is
used in order to construct a histogram, which thus represent a discretized version of P(x , 0).
The result of this analysis is summarized in Fig. 4. The theoretical result is found to be in good
agreement with the MC simulations without fitting parameters. As emphasized, overhangs are
inevitably observed in MC simulations and, as a consequence, multiple crossings of the hori-
zontal axis are generated. To this end it is necessary to give a certain prescription which deals
with multiple crossings, or to consider the sampling over the ensemble of single crossings. In
our simulations, we have first traced the interface on the lattice by restricting the statistics to
single crossings. We have observed that defining the interface with the LERW or the medial
lattice construction does not provide appreciable deviations. The remarkable agreement be-
tween theory and MC data at different T and R corroborates the validity of the field theory for
off-critical interfaces presented in this paper. The reader interested on interfaces at the critical
point can find pedagogical review material in [63,64].
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out

Figure 3: The interface for the square lattice Ising model seen as an exploration
process starting in the point denoted in and terminating in the point denoted out.
Green bonds denote the interface on the dual lattice. Curvy lines are the cluster
boundaries on the medial lattice. Bulk spins fluctuate while boundary spins (in gray
blocks) are fixed. Bulk bonds and zigzag ones have strength J > 0 in our simulations
for entropic repulsion effects.
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Figure 4: Rescaled passage probability density λP(x , 0) as a function of the rescaled
horizontal coordinate η = x/λ. Symbols are obtained from MC simulations, the
theoretical result [Eq. (3)] is indicated with the solid red line.
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Figure 5: The connected parallel correlation function in units of the squared bulk
magnetization M2. Data points are obtained from MC simulations of the Ising model
at T = 2.0 and R= 201 with y reported in the inset.

3.3 Correlations

The density-density correlation function in direction parallel to the wall reads [28]

〈σ(x , y)σ(x ,−y)〉ab =
〈σ〉2a + 〈σ〉

2
b

2
+
〈σ〉2a − 〈σ〉

2
b

2
Υ (η)−

4
π
(〈σ〉a − 〈σ〉b)2

√

√2y
R
η2e−η

2

+ O((y/R)3/2) , (5)

where η= x/λ is the rescaled distance from the wall. For the sake of simplicity of exposition
we provide a result that applies to small vertical separations such that ξb � y � R. An
expression valid for arbitrary positions of the two fields has been elaborated in [28], including
corrections proportional to 1/

p
R. Recalling that interfacial fluctuations in the presence of a

wall exerting entropic repulsion are described in terms of Brownian excursions, the result (5)
is nothing but a joint cumulative distribution function of a Brownian excursion, as we show in
the theoretical section; see Sec. 6.

The comparison against MC simulations is shown in Fig. 5 for the connected correlation
function, Gc

‖(x , y) = 〈σ(x , y)σ(x ,−y)〉ab − 〈σ(x , y)〉ab〈σ(x ,−y)〉ab. The term proportional

to
p

y in Eq. (5) is the signature of long-range correlations. The factor η2 – responsible for
entropic repulsion – penalizes correlations in proximity of the wall, while the Gaussian term
exp(−x2/Rξb) suppresses correlations far from the wall over the length

p

Rξb. The combined
effect along parallel and perpendicular directions is the confinement of long-range correlations
in the interfacial region, a feature pointed out long time ago [15] but the analytic form of
these correlations has never been derived before.
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4 Wetting transition

4.1 Phenomenology and results from field theory

In the partially wet state a sessile droplet on a flat substrate is characterized by a contact angle
Θ satisfying Young-Laplace equation [1,65]

γsv = γsl + γl v cosΘ , (6)

where γsv , γsl are the surface tensions of the solid-vapor and solid-liquid interface, respectively,
and γl v is the surface tension of the liquid-vapor interface; see Fig. 6 (a). Beside the picture of
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(b)

Figure 6: Panel (a): a sessile droplet separates a liquid (l) in equilibrium with its
vapor (v) phase forming a contact angle Θ on a solid wall (s). Panel (b): parallel
and perpendicular correlation lengths for an infinitely long interface.

surface unbinding mentioned in the introduction, wetting transitions can be formulated as the
process in which the contact angle Θ vanishes as T approaches T−w . When Θ = 0 the surface
tensions satisfy Antonow’s rule γsv = γsl + γl v [66]; we refer to Appendix A for a discussion
about this point in connection with entropic repulsion.

The mechanism of interface binding manifests in the field-theoretic formalism as a bound-
ary bound state between the wall and the particle excitation associated to the interface [67];
see Appendix A. The interaction between the wall and interfaces is accounted for by a ma-
trix element that exhibits a pole-type singularity of the form 1/(θ − iu) for θ → iu, where θ
is the rapidity of relativistic particles associated to fluctuating interfaces4; i.e., p = m sinhθ
is the momentum, m coshθ is the energy. A simple energy-balance argument implies that
e′B = eB + m coshθ0 is the bound state energy, with eB the energy of the system when the
boundary is uniform. The virtual rapidity θ0 = iu characterizing the bound state leads to the
Young-Laplace equation (6) with the identification e′B = γsv , eB = γsl and the contact angle in
the macroscopic model is given by the location of the wetting pole; hence, Θ = u.

One- and two-point correlation functions for temperatures close to the wetting transition
can be calculated within the framework of the exact field theory of phase separation [18].
One-point functions of both the spin field and energy density are computed in Appendix A and
the results are summarized in Sec. 4.2. The calculation of two-point correlation functions is
technically more involved but nonetheless the mathematical determination of these quantities

4See Sec. 6 for an overview on the theory.
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follows the same strategy adopted for one-point functions. The result for the density-density
correlation is given in Sec. 4.3 and its calculation is sketched in Appendix B.

4.2 Order parameter profile

The density profile is given by

〈σ(x)〉ab ≈ 〈σ〉b + (〈σ〉a − 〈σ〉b)e−2x/ξ⊥ , (7)

where ξ−1
⊥ = mu is the perpendicular correlation length and for the Ising model u= Θ ∼ Tw−T

[20] measures the departure from the wetting temperature. As expected, there is no y-
dependence in the profile (7). The translational invariance along the direction parallel to
the wall follows since we are dealing with an infinitely long interface. As in Sec. 3.1, m= γab
is the surface tension of the a− b interface. From (7) it follows that the passage probability for
the wetting regime is P(w)(x) = (2/ξ⊥)e−2x/ξ⊥; we refer to Sec. 6 and in particular to (28) for
details about the probabilistic interpretation. The thickness ` of the wetting layer is defined
as the average distance of the interface from the wall, hence it is given by the first moment of
P(w)(x), i.e ` =

∫∞
0 dx x P(w)(x). A simple calculation gives ` = (ξ⊥/2) ∼ (Tw − T )−βs . For

the Ising model the scaling law ξ⊥ ∼ (Tw − T )−ν⊥ is satisfied with critical exponent ν⊥ = 1.
The latter gives for the thickness of the wetting layer ` ∼ (Tw − T )−βs , with surface critical
exponent βs = 1, in agreement with path-integral formulations [54].

4.3 Correlations

Let us consider the pair function of the energy density field ε(x , y). It can be shown that

〈ε(x1, y1)ε(x2, y2)〉c−+∝ P(w)2 (x1, x2; y1 − y2) , y1 > y2 , (8)

in the above, P(w)2 (x1, x2; y1 − y2)dx1dx2 is the net probability for the interface to cross the
interval (x1, x1+dx1) and (x2, x2+dx2) separated by the distance y1− y2, as shown in Fig. 6
(b). The analytic expression of P(w)2 is provided in Appendix B. As a matter of fact, P(w)2 depends
only on the rescaled coordinates

X j = x j/ξ⊥ , Y = (y1 − y2)/ξ‖ , (9)

where ξ⊥ = 1/(mu) and ξ‖ = 2/(mu2), where m is the surface tension of the interface (in
kB T units). Calculation entails

P(w)2 (x1, y1; x2, y2) = ξ
−2
⊥ Π2(X1 − X2, X1 + X2; Y ) , (10)

with Π2(X , X̄ ; Y ) given by (B.3). The connection between energy density correlations and
passage probabilities at wetting has been established long time ago for the Ising model by
means of exact calculations on the square lattice [68] and in [54] for Solid-On-Solid models.
The result we derived applies, more generally, to those models which exhibit the wetting phe-
nomenon – i.e., a bound state pole appearing in the boundary S-matrix –, with the Ising model
as the simplest representative [67].

Focusing on the Ising model below wetting temperature, the parallel correlation function
in direction parallel to the wall is

〈σ(x , y)σ(x ,−y)〉−+ = M2
�

−1− 4e−2X erf
�p

Y
�

+ 2erf
�

Y + X
p

Y

�

+ 2e−4X erfc
�

X − Y
p

Y

��

,
(11)
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Figure 7: The density-density correlation function 〈σ(x1, y1)σ(x2, y2)〉−+/M2 be-
low the wetting temperature as a function of the rescaled distances from the wall
x j/ξ⊥. In this figure (y1− y2)/ξ‖ = 0.1 and the analytic result is given by (B.8). The
solid black line obtained for x1 = x2 corresponds to the parallel correlation func-
tion [Eq. (11)]. The dashed green lines are the density profile (1 − 2exp(−2X1))
and (1 − 2 exp(−2X2)) obtained either for large x2, and x1, respectively, these are
obtained from the clustering property (13).

where X = x/ξ⊥ and Y = y/ξ‖. The plot of the density-density correlation function for
arbitrary X1 and X2 is shown in Fig.7. The result for X1 = X2, corresponding to the parallel
correlation function, is indicated with the solid black curve in Fig.7. For small separations in
direction parallel to the wall such that y � ξ‖ the result (11) can be expanded as follows

〈σ(x , y)σ(x ,−y)〉−+ = M2 − 8M2

√

√

√
2y
πξ‖

e−
2x
ξ⊥ +O(y3/2) , (12)

up to terms of order O((y/ξ‖)3/2). This expansion shows how the points (x , y) and (x ,−y)
are indeed long-range correlated because the correlation approaches the bulk value M2 with a
power-law term proportional to

Æ

y/ξ‖. In analogy with entropically repelled interfaces (see
Eq. (5)),

p
y is the signature of long-ranged correlations. For arbitrary separations y it is still

possible to work out the analytic form of the pair correlation function, as shown in Appendix
B. In particular, it is possible to check the clustering property, e.g.,

lim
x2→+∞

〈σ(x1, y1)σ(x2, y2)〉−+ = 〈σ(x1, y1)〉−+ , (13)

the latter is visualized with dashed green lines in the plot of Fig. 7.
The structure of (5) and (12) are strikingly similar to each other, apart from two differ-

ences that is worth highlighting. Firstly, the entropic repulsion term∝ x2 – which multiplies
the exponential envelope in (5) – does not occur in (12). Secondly, the result obtained for
entropic repulsion can be brought in the form (12) provided one identifies the parallel and
perpendicular correlation lengths with ξ(er)

‖ = R and ξ(er)
⊥ = λ =

p

Rξb. This identification

allows us to write, for R→∞, ξ(er)
⊥ ∼ (ξ(er)

‖ )
ζ with the wandering exponent ζ = 1/2, which

is the well-known exponent for interfaces driven by thermal disorder in two dimensions.
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5 Interface structure factor

The starting point towards a definition of ISF for the droplet commences with the introduction
of a connected pair correlation function Gconn.

‖ which carries only interfacial degrees of freedom
and not bulk ones. The natural way of proceeding is to define

Gconn.
‖ (x1, x2; y) = 〈σ(x1, y)σ(x2,−y)〉ab − 〈σ(x1, y)〉ab〈σ(x2,−y)〉ab − Gbulk ,

where Gbulk = 〈σ(x1, y)σ(x2,−y)〉b − 〈σ(x1, y)〉b〈σ(x2,−y)〉b is the two-point function in
the phase outside the droplet, the b-phase. This prescription removes bulk correlations when
spin fields are infinitely far from the interface but at finite separation between them [22].

Let us consider first the case of entropic repulsion from the hard wall. Since the interface
extends from y = −R/2 to y = R/2, the ISF S(q) is defined as the finite parallel Fourier
transform of the integrated connected correlator, something that we write as follows

S(q) =
1
2

∫ R/2

−R/2
dy eiq y

+∞
∫∫

0

dx1dx2 Gconn.
‖ (x1, x2; |y|) . (14)

It can be shown that integrating the connected density-density correlation function is equiv-
alent, up to a proportionality factor, to the integral of the height-height correlation function
C (|y|) given by

C (y) = h(y)h(−y)− h(y) h(−y) . (15)

The proportionality factor is the squared jump of density across the interface, the latter reads
(∆〈σ〉)2 ≡ (ρl −ρv)2. Hence, the interface structure factor can be equivalently expressed as

S(q) =
(ρl −ρv)2

2

∫ R/2

−R/2
dy eiq yC (|y|) . (16)

For the regime of entropic repulsion the average distance of the interface from the wall
reads

h(y) =
2
p
π

Æ

Rξb

Æ

1− (2y/R)2 , (17)

a result that follows by computing the first moment of the Brownian excursion. As expected,
h(y) is symmetric under reflections about the x-axis and it vanishes in the pinning points
y = ±R/2. The most probable interface location is thus proportional to h(y) and yields the
solid black arc of ellipse shown in Fig. 1 (c). The height-height correlation function is the
covariance of the Brownian excursion; hence,

C (er)(y) =
4
π

Rξb(1−τ2)
�

V (τ)− 1
�

, (18)

the above is expressed in terms of Gauss’ hypergeometric function

V (τ) = 2F1

�

−1/2,−1/2, 3/2; (1−τ)2/(1+τ)2
�

. (19)

By plugging (18) into (16) we obtain the interface structure factor for the regime of entropic
repulsion. Focusing on the physical aspects, we observe how the wave-vector q has to be
much larger than the lower momentum cutoff Λ = 1/R imposed by the system size. Analo-
gously, q cannot exceed the upper momentum cutoff set by the inverse bulk correlation length,
which plays the role of a microscopic scale. Consequently, the following result is obtained for
R−1� q� ξ−1

b :

S(q)'
(∆〈σ〉)2

γl vq2

�

1−
32
p
π

1
(qR)3/2

+ . . .
�

, (20)
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up to corrections due to the interface structure∝A , these corrections have been computed
in [28]. Notably, the underlying entropic repulsion affects the ISF with the term enclosed in
square brackets. This feature is absent in the ISF of an interface on the strip because entropic
effects in such a case do not occur and the capillary-wave result, S(q)≈ (ρl−ρv)2/γl vq2, is ob-
tained up to finite-size corrections of order O(1/R) [22]. We recall that the vicinity of bulk crit-
icality γl v ∼ (Tc−T )µ, therefore the overall factor (ρl−ρv)2/γl v scales as M2/m∼ (Tc−T )−ω

with the critical exponentω= µ−2β . Equivalently, we can use Widom’s hyperscaling relation
µ= (d − 1)ν [9] to express, in d = 2, ω= ν− 2β . The signature of entropic-repulsion effects
– which in real space are encoded in the term y1/2 x2 exp(−x2/Rξb) in the pair correlation
function [Eq. (5)] – appear in momentum space with the term enclosed in square brackets in
(20).

The wetting scenario can be analyzed mutatis mutandis. For an infinitely long interface
(R → ∞) the integration over the parallel coordinate y extends over the real line and the
appropriate correlation function has to be used. As shown in Appendix C, the connected height-
height correlation function at wetting

C (w)(y1 − y2) = h(y1)h(y2)− h(y1) h(y2) , (21)

is translational invariant, i.e., it depends only on |y1 − y2| and for y1 − y2 is given by

C (w)(y1 − y2) =
ξ2
⊥

4
I((y1 − y2)/ξ‖) , (22)

where I(Y ) is the function

I(Y ) = 2
p
π
(1+ 2Y )

p
Y e−Y − (4Y 2 + 4Y − 1)erfc

�p
Y
�

. (23)

Deferring to Appendix C for the details of the calculation, the interface structure factor reads

S(q) =
(ρl −ρv)2

γl vq2

�

1−
p

2
�

1+
r

1+ q2ξ2
‖

�−1/2�

. (24)

Notably, as shown in Appendix C, the parallel and perpendicular correlation length appear
in front of the q2 term with the combination ξ‖/2ξ

2
⊥ = γlv, which coincides with the surface

tension of the interface. As a result, the large-q asymptotic behavior, which is captured by the
term in front of the square bracket in (24), is the expected form of S(q) for thermally excited
capillary waves. The quantity in square brackets leads to a correction term that is definitely
subleading for large wave numbers, q� Λ, where Λ= ξ−1

‖ is an upper cutoff.

6 Theoretical framework in a nutshell

We now illustrate how the results presented in the previous sections can be rationalized into
a unified theoretical framework5.

We consider the scaling limit of a ferromagnetic spin model below the critical temperature
Tc but sufficiently close to it in order to use a continuum description. The near-critical behavior
in 2D can be described by analytic continuation of a (1+ 1)-relativistic quantum field theory
to a 2D Euclidean field theory in the plane (y = −it). Quite generally, it has been possible to
show that certain notions in field theory have a one-to-one correspondence with the theory of
interfacial phenomena. The two languages are brought in touch by means of a dictionary that
is summarized in Tab. 1 and here is explained.

5The material summarized in this section has been developed in [17–20].
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Interfacial Phenomena Field Theory

2D Euclidean plane ↔ (1+1) Minkowski: Wick rotation

(x , y) ↔ (x , t = iy)

rotation with angle α ↔ imaginary Lorentz boost θ → θ + iα

density field ↔ spin field: σ(x , y)

coexisting phases ↔ ground states

a− b interface ↔ trajectory of the kink Kab(θ )

surface tension γab ↔ mab: mass of the lightest kink

contact angle u at a flat wall ↔ virtual rapidity θ = iu
of surface bound state

mechanical equilibrium (Young’s
equation, etc.)

↔ energy conservation (P0)

spreading coefficient
S = γsv − γsl − γl v [1]

↔ ml v(cos u− 1)

interfacial bifurcation ↔ three-kink vertex (Fig. 9 (a))

angle γ of adsorbed bubbles ↔ resonant rapidity (Fig. 9 (a))

Neumann’s triangle (Fig. 9 (b)) ↔ relativistic kinematics for three kinks

Wedge covariance (see [69–71]) ↔ Lorentz invariance [20]

Table 1: The dictionary establishing the correspondence between concepts in inter-
facial phenomena and field theory.

Homogeneous fluid phases in thermodynamic equilibrium can be described as the set of de-
generate ground states in field theory, which we denote as {|0a〉}a=1,...,n. In a system exhibiting
coexistence of two phases, say |0a〉 and |0b〉, an interface separates two clusters occupied by
the distinct phases, as shown in Fig. 8. This is the archetypical situation of the equilibrium of
two phases like a liquid in coexistence with its vapor phase. The interface separating phases a
and b corresponds, in field theory, to the trajectory in the (1+1) dimensional space time (x , t)
of a particle excitation that connect the vacuum |0a〉 to |0b〉, as depicted in Fig. 8. Excitations
in 2D have topological nature and are termed kinks. The corresponding relativistic field theory
is formulated in terms of massive particles states denoted |Kab(θ )〉 with energy-momentum

Pµ = (e, p) = (m coshθ , m sinhθ ) (25)

m is the kink mass, θ is the rapidity which trivially ensures the energy-momentum condition
PµPµ = e2 − p2 = m2, µ = 0,1. Indexes are raised and lowered with the metric tensor in
Minkowski space time given by the Pauli matrix gµν = diag(1,−1) = σz .

The equivalent of the number density field in liquid state theories is represented by the
order parameter field, or spin, σ(x , y) in the field-theoretical language. For a uniform system
filled by a pure phase |0a〉 the average density is translationally invariant and given by the
vacuum expectation value 〈σ〉a ∼ (Tc−T )β in the near-critical region. For a system exhibiting
phase separation, like the droplet we are examining in this paper, the average density field is
a function that interpolates between 〈σ〉a and 〈σ〉b. In general, the calculation of the density
profile reduces to the analysis of a matrix element between the spin field σ and the asymptotic
one-particle kink states. Leaving aside the involved technicalities, field theory shows that the
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x

y

Figure 8: The worldline of a particle moving in the (1+ 1)-dimensional space time
corresponds to the interface separating the left and right clusters.

derivative of the leading order density profile along the x direction is proportional to the
probability density of a Brownian walker emitted in the lower pinning point and absorbed in
the upper pinning point. This result is condensed in the exact expressions

∂x〈σ(x , y)〉ab = (〈σ〉a − 〈σ〉b)P(x , y) . (26)

and for the energy-density field

〈ε(x , y)〉cab∝ P(x , y) . (27)

P(x , y) is the probability density of the so-called Brownian excursion. It is worth emphasize
that interfacial models typically assume a priori (26) with a Gaussian form for P(x , y). The
field-theory viewpoint is logically different: the left hand side of (26) is determined from first
principles and it is found that (26) is indeed satisfied when P(x , y) is the Brownian excursion.

Field theory then allows to reconstruct the density profile by averaging over configurations
in which the interface is a sharp entity separating the bulk densities 〈σ〉a and 〈σ〉b. By fixing
the correct asymptotic densities it follows that the leading order form of the density profile is

〈σ(x , y)〉ab =

∫ ∞

0

du P(u, y)σ(x |u) , (28)

with the sharp profile σ(x |u) = 〈σ〉a if x < u and σ(x |u) = 〈σ〉b if x > u. As a result, the
density profile is basically the cumulative distribution function of the Brownian excursion.

Field theory allows for an exact treatment of finite size correction, which in general can be
systematized in the form of an expansion in powers of R−1/2. The interface structure correction
at order R−1/2 still admits a probabilistic interpretation provided the sharp profile is endowed
with a correction term localized on the interface. The resulting conditional magnetization has
the form

σ(x |u) = 〈σ〉aθ (u− x) + 〈σ〉bθ (x − u) +Aδ(x − u) (29)

up to additional terms that yield corrections at order R−1 and higher. Although this may appear
a guess based on phenomenological considerations, it is consistent with exact field theoretical
results, both on the strip [17] and on the half-plane [28]. Moreover, field theory allows us to
fix the exact value of the amplitude A , which depends on both the universality class of the
model and the geometry. For the Ising model on the strip A (strip)

Ising = 0 while for the q-state
Potts model on the strip the amplitude takes a non-vanishing value [17].

17



SciPost Physics Submission

Quite interestingly, a non-vanishingA on the strip is associated to those models in which
the scattering of two kinks produces a bound state [19], i.e., |Kac(θ1)Kcb(θ2)〉 → |Kab(0)〉, for
some resonant rapidity θ1 − θ2 = iγ, γ ∈ (0,π); this process is illustrated in Fig. 9 (a). The
resonant rapidity gives the contact angle of the drop of phase c adsorbed on the a−b interface.

The point where the three phases meet is the analogous – in d = 2 – of the three-phase
contact line in three dimensions (see e.g., [65]). Since the contact point has to be in mechani-
cal equilibrium, it follows that the surface tensions γi j and the (dihedral) contact angles must
be related. The condition for mechanical equilibrium at the three-phase contact is encoded in
the relationship γab+γac cosα+γbc cosβ = 0. Alternatively, the equilibrium can be rephrased
in terms of the Neumann triangle [65], which is shown in Fig. 9 (b). Recalling that the sur-
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(b)

Figure 9: Panel (a): a bubble of phase c adsorbed along the a− b interface forming
a contact angle γ. Panel (b) the Neumann triangle corresponding to the three phases
a, b, and c meeting at a common point with angles α, β , and γ.

face tension γab is identified in field theory with the lightest mass of the kink connecting the
ground states a and b, i.e., γab = mab, the cosine formula – or al-Kashi’s theorem – applied
to the Neumann triangle yields m2

ab = m2
ac +m2

cb + 2macmcb cosγ. The latter is the relativistic
kinematic relation expressing energy conservation at the three-particle vertex.

Turing to correlation functions, it has been recently shown within field theory that the
probabilistic picture applies also to the pair correlation function [28]. In this case we have

∂x1
∂x2
〈σ(x1, y1)σ(x2, y2)〉ab = (〈σ〉a − 〈σ〉b)2P2(x1, y1; x2, y2) , (30)

for the two-point function of the order parameter, and

〈ε(x1, y1)ε(x2, y2)〉cab∝ P2(x1, y1; x2, y2) , (31)

for the two-point function of the energy density field. These two relations are the analogous,
for pair functions, to (26) and (27), respectively. Here, P2(x1, y1; x2, y2) is the joint probability
density of a Brownian excursion. The reconstruction of the profile at leading order in the large
R expansion occurs by inversion of the above relation, which yields a straightforward extension
of (28). Field theory yields a systematic treatment of the finite-size corrections at order R−1/2.
These interface structure effects are∝A , where A is given by (A.16). We refer to [28] for
a detailed account on this matter.

7 Conclusions

In this paper we applied a field-theoretical approach to describe, in a completely novel way, cor-
relations in phase separating systems in the presence of boundaries encompassing the relevant
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regimes of entropic repulsion and wetting in two dimensions. Our results can be summarized
as follows.

The regime of entropic repulsion due to a hard wall is studied by fixing the extremities
of the interface in two points separated by a distance R. Field theory yields exact results
for order parameter profiles and correlations in the regime of subcritical temperatures with
R � ξb. The theory predicts that the order parameter is affected by a finite-size correction
of order R−1/2 which is proportional to the passage probability density of a Brownian excur-
sion, P(x , y). We have tested this prediction in two different but complementary approaches.
Firstly, we measured the order parameter profile and showed that upon including the cor-
rection term A P(x , y = 0) an excellent agreement with MC simulations is obtained. This
comparison, which is carried out in the absence of free parameters, resolves a longstanding
discrepancy observed in early simulations [42] in which the order parameter profile obtained
in simulations has been compared against the leading order profile which, in our notations, is
proportional to Υ (η). Secondly, we have extracted the probability density P(x , y = 0) directly
by sampling interfacial crossings on the horizontal axis. For this analysis we properly defined
the off-critical interface both on the medial lattice and in terms of the loop erased random walk.
The prediction for P(x , 0) is successfully tested without any fitting parameter. Then, we also
compared MC simulations with the analytical prediction for the connected two-point function
of the order parameter. In particular, we showed that correlations are long-range along the
interface and are confined within the interfacial region for the regime of entropic repulsion.

In the second part of the paper we examined one- and two-point correlations at the wetting
transition. In particular, we examined both the energy density and the order parameter field.
Firstly we showed that n-point energy density correlations (at wetting) are proportional to
a n-point passage probability density; in this paper we considered n = 1 and n = 2 but the
result should apply to arbitrary n, in analogy with the case of the strip [29]. On the basis
of a probabilistic interpretation we derived both one- and two-point correlation functions of
the order parameter field. The probabilistic reconstruction of one-point functions, which is
encoded in the identities (26) and (27), has been established in this paper. The extension
to the case of two-point functions, encoded in (30) and (31), will be reported in full detail
in a forthcoming publication [72]. The result we obtain for the energy-density correlation
coincides with the existing result obtained for the Ising model [68] and for Solid-On-Solid
models [54]. However, the approach we employed applies to a wide class of models which
exhibit the wetting phenomenology, meaning the existence of a bound state in the boundary S-
matrix. What we showed in this paper is that such a singularity exhibited by matrix elements in
field theory is the counterpart of the so-called wetting pole in the Ising model [68]. In analogy
with the regime of entropic repulsion, correlations are still long ranged along the interface
but for the wetting regime the characteristic entropic factor ∝ x2 does not occur; see (5)
and (12), which apply for y � Λ−1 with Λ(er) = R−1 and Λ(w) = ξ−1

‖ . Moreover, we show that
both the regimes share similarities when a suitable identification of the associated parallel and
perpendicular correlation lengths is performed; see the last paragraph of Sec. 4.3.

Finally, we illustrated how the classical notion of ISF can be extended to system defined in
the semi-space bounded by a flat wall. For both the regimes of entropic repulsion and wetting
the large-q asymptotic form of the interface structure factor coincides with the familiar result
from capillary wave theory, i.e., S(q) ∼ A/q2. In both the regimes we find the same prefactor
A= (ρl −ρv)2/γl v . This large-q result is obtained for q� Λ with a cutoff Λ that depends on
the regime of interest; Λ(er) for entropic repulsion and Λ(w) at wetting. We also identify the
next-to-leading term in the large-q expansion and show that it carries additional powers in q
and is a distinctive feature of the regime.

We stress that in our calculation of the ISF we do not rely on a particular definition of the
interface since S(q) is defined as a twofold integral of a connected density-density correlation
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function, and the latter does not rely on any definition of the interface location. However,
in order to make the bridge between field theory and effective theories such as the capillary
wave model, we prove the equivalence between the calculation based on the density-density
correlation function and on the height-height correlation function, which indeed assumes a
specific location of the interface. This analysis is carried out for both entropic repulsion and
wetting.

Finally, in Sec. 6 we described in a pedagogical fashion the essential ideas underlying the
exact field theory of phase separation [17–20,73,74]. The material covered in such a section
is certainly not an exhaustive review on the subject but rather the intent is to show in a rather
simple way how to establish a clear connection between the the language of field theory and
the one of interfacial phenomena.

Looking at perspectives, it would be interesting to further investigate how the interplay
between geometry and universality classes affects the interface structure factor. The promising
candidate for these studies is the q-state Potts model in a wedge-shaped geometry [20]. For
such a model it is possible to characterize both the filling transition [75, 76] and the elusive
symmetry named wedge covariance [69–71, 77] at the level of correlation functions. In those
cases it is expected to find a non-trivial geometry-dependent interface structure coefficientA .
The results presented in this paper and show how to initiate these promising studies. Other
interesting directions point towards three-dimensional systems with the recently establishes
techniques of Refs. [78,79].

Acknowledgements

A. S. is grateful to Gesualdo Delfino for collaborations on closely related topics and to Douglas
B. Abraham for discussions and for having drawn the attention to the numerical results of
Ref. [42]. A. S. acknowledges S. Dietrich for helpful correspondence.

Funding information A. S. acknowledges FWF Der Wissenschaftsfonds for funding through
the Lise-Meitner Fellowship (Grant No. M 3300-N).

A One-point functions at wetting

As a warmup, and to fix the notations, we con calculate the partition function for the system
depicted in Fig. 1,

Z = Bb
〈0|µba(R/2)µab(−R/2)|0〉Bb

, (A.1)

the notation |0〉Bb
stands for the vacuum state in which the wall has fixed boundary condition

with spin in state b. Then, µab(±R/2) is the boundary condition changing operator which
implements the switch of boundary condition from b to a at the pinning point (0,±R/2). The
calculation is performed by inserting a resolution of the identity between the µ-operators and
then by summing over fundamental excitations of the bulk theory [18,20]. Excitations in two
dimensions are topological kink particles |Kab(θ j)〉 whose worldline propagation in Euclidean
space-time corresponds to the interface between coexisting phases. The rapidity variable θ j
parametrizes energy and momentum satisfying the relativistic dispersion relation e2

j −p2
j = m2

through e j = m coshθ j , p j = m sinhθ j . The matrix element of µba between the vacuum and
the single-kink state |Kab(θ j)〉 reads

Bb
〈0|µba(y)|Kab(θ )〉= e−myFµ(θ ) ; (A.2)
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m is the kink mass and Fµ(θ ) is the form factor of the boundary condition changing operator
µba; these quantities have been studied intensively in the framework of massive integrable
quantum field theories and are known for a wide class of models [80–82]. The fact that µba
exhibits a non-vanishing matrix element with the one-kink state corresponds to the pinning
of a single domain wall in those points in which the boundary condition switches from a to
b [18, 20]. As a side remark, we mention that in certain models Fµ(θ ) = 0 and the first
nontrivial form factor is a two-particle one [21]. In these cases the pinning of a double kink
corresponds to the formation of an intermediate phase which ultimately leads to a different
phase separation pattern [21]. The overall exponential in (A.2) follows by using translational
invariance of bulk fields,

Φ(x , y) = eix P+yHΦ(0, 0)e−ix P−yH , (A.3)

where H and P are the Hamiltonian and momentum operators in field theory, i.e.,

H|Kab(θ )〉 = m coshθ |Kab(θ )〉 , (A.4)

P|Kab(θ )〉 = m sinhθ |Kab(θ )〉 . (A.5)

The regime R/ξb � 1 – which is the one pertinent for the study of phase separation – is
completely captured by the low-energy behavior of form factors, i.e., θ → 0. The asymptotic
form of the partition function is dominated by the single-particle term in the spectral series
and therefore

Z '
∫ ∞

0

dθ
2π
|Fµ(θ )|2e−mR coshθ . (A.6)

where' stands for the omission of subleading contributions involving the propagation of more
than one-particles. The wall restricts the integration to positive rapidities of incoming kinks
which are elastically reflected by the wall upon collision. In the case of entropic repulsion the
boundary form factor admits the low-energy behavior

Fµ(θ ) = iaθ + bθ2 +O(θ3) ; (A.7)

the model-dependent coefficients a and b – and all subsequent ones in the expansion – are
known for integrable quantum field theories with boundaries [80–83]. We refer the reader
interested in integrable field theories to [84, 85] and [67] for the bulk and boundary cases,
respectively. The linear behavior at low rapidities exhibited by Fµ(θ ) is ultimately responsible
for the entropic repulsion of the interface from the wall [18]. In particular, no singular behavior
is expected in the physical strip Im(θ ) ∈ (0,π). In contrast to this situation, in the wetting
regime the scattering of a particle off the boundary exhibits a simple pole in the boundary
S-matrix, which behaves as R(θ ) ∼ ig2/(θ − iu) for θ → iu [67]. The pole is interpreted as
a bound state in the particle+wall system, as illustrated in (A.9). It follows that the matrix
element Fµ(θ ) inherits a pole in the physical strip for a virtual value of the rapidity θ = iu.
The singular behavior in the closeness of the pole is of the form

Fµ(θ )∼
ig

θ − iu
〈0|µ|B′a〉 , θ → iu , (A.8)

where g is the strength of the boundary bound state, the latter is proportional to the residue
of the boundary form factor at the virtual rapidity θ = iu. Equation (A.8) is pictorially repre-
sented in (A.9). The wall adsorbs phase b as a result of the bound state pole in the emission
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amplitude of the kink Kab.

R(θ ) =

a

a

b

g

g

Fµ(θ ) =

b

a

µba

∼
b

a

µba

(A.9)
The large-mR asymptotic behavior of the partition function is dominated by the wetting

pole, which yields

Zw '
g2

2u
e−mR cos u . (A.10)

This implies that the excess free energy associated to the interface is

γwa − γwb = − lim
R→∞

1
R

ln Z . (A.11)

Some comments are in order. Let us consider the wetting regime, i.e., Z = Zw. By plugging
the partition function (A.10) into (A.11), we obtain γwa − γwb = m cos u. The latter is ex-
actly Young’s equation [65]; m = γab can be identified with the surface tension of the, say,
liquid-vapor interface, and u is the associated contact angle. In the regime dominated by en-
tropic repulsion the partition function is Zer ∼ R−3/2 exp(−mR) [18]. In this case (A.11) yields
γwa − γwb = γab, which is the so-called Antonow’s rule [66]. This result is consistent with a
contact angle that formally vanishes, i.e., u = 0. Of course, the contact angle at the pinning
point is not zero but nonetheless this result can be intuitively understood since the droplet –
within the limit R→∞ – undergoes macroscopic fluctuations which completely wet the wall.
We refer to [65] for an accurate account on the domain of validity of Antonow’s rule.

Let us consider a field Φ(x , y) that can be either the energy density or the spin field. Fol-
lowing the method outlined [18], the connected part of the one-point function is

〈Φ(x , y)〉CP
ab '

1
Z

∫

C

dθ1

2π

∫

C

dθ2

2π
Fµ(θ1)F∗µ(θ2)FΦ(θ12 + iπ)Y (θ1,θ2) , (A.12)

where

Y (θ1,θ2) = exp
�

−m
�

R
2
− y

�

coshθ1 −m
�

R
2
+ y

�

coshθ2 + imx(sinhθ1 − sinhθ2)
�

(A.13)

and FΦ(θ12) = 〈0|Φ(0,0)|Kab(θ1)Kba(θ2)〉 is the two-particle form factor of the operator Φ
[85]. The integration contour C can be split into a path which runs on the real axis and a
circular loop around the bound state pole, as prescribed in [67]; see Fig. 10.

In the regime of entropic repulsion the boundary form factor Fµ(θ ) admits the low-energy
expansion (A.7). The form factor Fσ(θ + iπ) admits the following low-energy expansion [17,
86]

Fσ(θ + iπ) =
i(〈σ〉a − 〈σ〉b)

θ
+ c0 + c1θ + . . . , (A.14)

the kinematical pole 1/θ yields the leading-order term in the large-R expansion of the order
parameter profile. The terms ck with k ¾ 0 contribute to interface structure corrections. In
particular, c0 is the coefficient entering the interface structure amplitudeA where

A =
c0

m
+

b

a

∆〈σ〉
m

; (A.15)
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Im(θ)

Re(θ)

iu

C

iπ/2

Figure 10: The integration contour C surrounding the wetting pole θ = iu [67].

∆〈σ〉 = 〈σ〉a − 〈σ〉b is the jump of order parameter across the a − b interface and m is the
surface tension [28]. In general, we can decompose (A.15) into the sum of two terms by
writingA =A half−plane with

A (half−plane) =A (strip) +δA , (A.16)

where
A (strip) =

c0

m
(A.17)

is the result corresponding to the strip geometry [17], and

δA =
b

a

∆〈σ〉
m

(A.18)

is an excess contribution distinctive of the half-plane geometry. The term proportional to
b/a is a specificity of the half-plane geometry which does not occur for phase separation in
the strip [17]. In contrast with the case of the Ising model on the strip – in which c0 = 0
rules out the correction∝ R−1/2 – the term b/a does not vanish on the half-plane and gives
A (half−plane) = M/m.

Let us consider now the wetting regime characterized the existence of the wetting pole in
θ = iu. The calculation of the density profile follows from (A.12). The vertical sides of the
path C which join the real axis with the pole give a vanishing contribution since the integrand
does not exhibits branch cuts. As a matter of fact the C-integral is dominated by the pole
contributions originated by the boundary form factors Fµ(θ1) and F∗µ(θ2). Taking into account
that such residues are picked up by loops with opposite orientations, we find

〈Φ(x , y)〉CP
ab '

g2

Z
FΦ(2iu+ iπ)Y (iu,−iu) , (A.19)

where CP stands for the contribution generated by the connected matrix element, which is
depicted in (A.20) as a blob connecting an incoming and outgoing momenta θ1 and θ2. Within
the pictorial representation, the boundary bound state detaches from the wall with contact
angle Θ = u, reaches the spin field, and then it is reabsorbed on the wall.

Φ

θ1

θ2

a b (A.20)
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We consider now the energy density profile, Ψ = ε. Since the case we examine is u→ 0
the above yields

〈ε(x , y)〉CP
ab ' 2uFε(iπ)e

−2mux . (A.21)

The overall constant Fε(iπ) ∼ mXε , where Xε is the scaling dimension of the field ε [87]. We
observe that now the profile is translationally invariant along the wall (y-direction). Then, the
natural length scale associated to the exponential attenuation is the perpendicular correlation
length ξ⊥ defined by

ξ⊥ = (mu)−1 . (A.22)

Since u ∼ Tw − T , it follows that ξ⊥ ∼ (Tw − T )−ν⊥ with the critical exponent ν⊥ = 1, as
reported in Sec. 4.2. We can repeat the above analysis for the order parameter profile. Now
we have

〈σ(x , y)〉CP
ab ' 2uFσ(2iu+ iπ)e−2mux . (A.23)

The expansion (A.14) implies that uFσ(2iu+ iπ) for u→ 0 yields the jump of order parameter
across the interface [86], i.e.,

lim
u→0

2uFσ(2iu+ iπ) = 〈σ〉a − 〈σ〉b . (A.24)

By imposing the appropriate boundary condition deep into the bulk phase, i.e.,

〈σ(x → +∞, y)〉ab = 〈σ〉b , (A.25)

we obtain
〈σ(x , y)〉ab = 〈σ〉b + (〈σ〉a − 〈σ〉b)e−2mux , (A.26)

which is valid for large x . Parenthetically, we observe that the offset term 〈σ〉b can be obtained
by computing the disconnected part of the matrix element. The latter can be depicted as a
strand connecting the rapidities θ1 and θ2 with the field σ surrounded by the in the b-phase.

The energy density and order parameter profiles, respectively (A.21) and (A.26), are con-
sistent with a probabilistic interpretation in which interfacial fluctuations are distributed ac-
cording to the probability density

P(w)(x) = (2/ξ⊥)e
−2x/ξ⊥ , (A.27)

and the order parameter profile is thus reconstructed by averaging – with the passage proba-
bility P(w) – interfacial crossings along the x-axis, i.e.,

〈σ(x)〉ab =

∫ ∞

0

du P(w)(u)σab(x |u) , (A.28)

with the conditional, or sharp, magnetization profile σab(x |u) = 〈σ〉aθ (x−u)+〈σ〉bθ (u− x).

B Two-point functions at wetting

By following the guidelines outlined in Appendix A it is possible to compute the pair correlation
functions at wetting. The calculation of the order parameter pair correlation turns out to be
rather cumbersome because it involves two kinematic poles stemming from spin fields and two
bound state poles stemming from boundary form factors; see (A.14) and (A.7), respectively.
The calculation of the energy density profile is however much simpler as the kinematic poles
do not arise.
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In order to provide a glimpse on the calculation, we only illustrate the relevant diagrams
which need to be taken into account. Considering the energy density field, the diagrams to be
computed are those depicted in (B.1).

ε

ε

a b +

ε

ε

a

a

b +

ε

ε

a

a

b (B.1)

The first and the second diagrams are similar to those already encountered for the case of
entropic repulsion [28]. Here, however, the incoming and outgoing momenta are those of the
boundary bound state (dashed lines). In the second diagram the intermediate particle between
the two operators is scattered by the wall and acquires a boundary S-matrix R(θ ) [67]. In the
last diagram the interaction with the wall occurs via a boundary bound state. The way to
tackle these diagram retraces the analysis presented in a recent preprint that doesn’t need to
be reproduced here, we therefore refer the interested reader to [28] for a detailed account of
the technicalities. The result we obtain for the connected energy density is

〈ε(x1, y1)ε(x2, y2)〉c−+∝ ξ−2
⊥ Π2(X , X̄ ; Y ) , (B.2)

where X = X1 − X2, X = X1 + X2 are rescaled coordinates appearing in (9) and

Π2(X , X̄ ; Y ) = (πY )−1/2e−X−Y
�

e−X 2/4Y + e−X
2
/4Y
�

+ 2e−2X erfc

�

X

2
p

Y
−
p

Y

�

. (B.3)

The probability density (10) and the rescaled version (B.3) are normalized, meaning that

∫ ∞

0

dx1

∫ ∞

0

dx2 P(w)2 (x1, y1; x2, y2) = 1 (B.4)

and their marginal retrieves the one-body probability density, i.e.,

∫ ∞

0

dx2 P(w)2 (x1, y1; x2, y2) = P(w)(x1) ; (B.5)

the latter does not depend on y1 because of translational invariance.
We can consider now the density-density correlation function. By using the probabilistic

representation given in the main body of the paper, i.e.,

〈σ(x1, y1)σ(x2, y2)〉−+ =
∫ ∞

0

du1

∫ ∞

0

du2 P(w)2 (u1, y1; u2, y2)σ−+(x1|u1)σ−+(x2|u2) ,

(B.6)
For y1 > y2 the calculation entails

〈σ(x1, y1)σ(x2, y2)〉−+ = M2G(X1, X2; Y1 − Y2) , (B.7)
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the scaling function G

G(X1, X2; Y ) = −1+ 2e−2(X1+X2)(1−K+,−) + 2e−2X1K−,− − 2e−2X2K−,+ + 2K+,+ , (B.8)

is expressed in terms of the compact notation

Kα,β(X1, X2; Y )≡ erf
�

X1 +αX2

2
p

Y
+ β
p

Y
�

, α,β = ±1 . (B.9)

An analogous scaling form is obtained for the connected correlation function,

〈σ(x1, y1)σ(x2, y2)〉c−+ =
∫ ∞

0

du1

∫ ∞

0

du2

�

P(w)2 (u1, y1; u2, y2)− P(w)(u1)P
(w)(u2)

�

×σ−+(x1|u1)σ−+(x2|u2)

= M2Gc(X1, X2; Y1 − Y2) ,

(B.10)

where
Gc(X1, X2; Y ) = G(X1, X2; Y )−

�

1− 2e−2X1
� �

1− 2e−2X2
�

. (B.11)

C Interfacial fluctuations and structure factor

For an infinitely long domain wall the interface structure factor is

S(q) =
1
2

∫ +∞

−∞
dy eiq y

∫ ∞

0

dx1

∫ ∞

0

dx2〈σ(x1, |y|)σ(x2,−|y|)〉c−+ . (C.1)

The integrated density-density correlation function can be calculated out as follows

∫ ∞

0

dx1

∫ ∞

0

dx2〈σ(x1, y1)σ(x2, y2)〉c−+ = M2ξ2
⊥

∫ ∞

0

dX1

∫ ∞

0

dX2 Gc(X1, X2; Y1 − Y2)

= M2ξ2
⊥I(Y1 − Y2) , (C.2)

where I(Y ) is the function given in (23). On the other hand, also the connected height-height
correlation function can be expressed in terms of the function I(Y ):

Cwet(y1 − y2) = h(y1)h(y2)− h(y1) h(y2)

=

∫ ∞

0

dx1

∫ ∞

0

dx2 x1 x2

�

P(w)2 (x1, y1; x2, y2)− P(w)(x1)P
(w)(x2)

�

=
ξ2
⊥

4
I((y1 − y2)/ξ‖) . (C.3)

The above implies that S(q) can be cast in the following way

S(q) =
1
4

M2ξ2
⊥ξ‖

∫ +∞

−∞
dY eiQYI(|Y |) , (C.4)

where Q = qξ‖/2 is the rescaled wavenumber. The Fourier transform of I(|Y |) can be parametrized
in a form that is suitable for successive considerations

∫ +∞

−∞
dY eiQYI(|Y |)≡ 8

Q2
Ξ(Q) , (C.5)
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where Ξ(Q) is the function

Ξ(Q) = 1+
1
Q

�
p

Q2 + 1−Q− 1
�

q

p

Q2 + 1+Q . (C.6)

The nested radicals in (C.6) can be further simplified and eventually it can be brought in the
simpler form

Ξ(Q) = 1−
�

1
2

�
p

Q2 + 1+ 1
�

�−1/2

, (C.7)

therefore

S(q) =
8M2ξ2

⊥

q2ξ‖
Ξ(Q) . (C.8)

The rest of the calculation is trivial algebra. We bring in the jump of density across the interface,
i.e., we write (2M)2 = (ρl −ρv)2, and obtain

S(q) =
2ξ2
⊥

ξ‖

(ρl −ρv)2

q2
Ξ(Q) . (C.9)

Although both ξ⊥ and ξ‖ diverge upon approaching wetting, the combination appearing in
(C.9) stays finite because ξ‖ = 1/mu and ξ⊥ = 2/mu2 jointly with m= γl v yield the identity

ξ‖

2ξ2
⊥
= γl v . (C.10)

The above implies that the overall coefficient multiplying the 1/q2 dependence in (C.11) is
the standard one expected for the interface structure factor, i.e.,

S(q) =
(ρl −ρv)2

γl vq2
Ξ(qξ‖/2) , (C.11)

which is the result (24) quoted in the main body of the paper.
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