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Abstract

We analyze the effect of a simple coin operator, built out of Bell pairs, in a 2d Discrete Quantum
Random Walk (DQRW) problem. The specific form of the coin enables us to find analytical and closed
form solutions to the recursion relations of the DQRW. The coin induces entanglement between the spin
and position degrees of freedom, which oscillates with time and reaches a constant value asymptotically.
We probe the entangling properties of the coin operator further, by two different measures. First, by
integrating over the space of initial tensor product states, we determine the Entangling Power of the
coin operator. Secondly, we compute the Generalized Relative Rényi Entropy between the corresponding
density matrices for the entangled state and the initial pure unentangled state. Both the Entangling
Power and Generalized Relative Rényi Entropy behaves similar to the entanglement with time. Finally,
in the continuum limit, the specific coin operator reduces the 2d DQRW into two 1d massive fermions
coupled to synthetic gauge fields, where both the mass term and the gauge fields are built out of the coin
parameters.
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1 Introduction

Discrete Quantum Random Walk (DQRW) algorithm has been in study and applications in physics [1, 2, 3, 4]
and mathematics [5, 6] as well as in the areas of computational intelligence [7, 8], and optimization techniques
[9]1. While the basic features of classical and quantum discrete random walk are essentially the same, one
crucial difference between classical and quantum walks is a non-trivial coin operator [11] in the latter case.
Most of the random walk explorations are numerical in nature. 1d random walks admit analytical solutions,
as demonstrated in [12]. However with increasing dimensions, the most general parametric choice for the
coin operator also increases and analytical solutions become difficult to obtain. We analyze the DQRW for a
two dimensional walk using a special SU(4) coin operator that admits an analytical solution. Our notations
follow [11], [13]. We consider a two dimensional walker described by a wave function |Ψw(t)〉

|Ψw(t)〉 =
3∑
i=0

t∑
m,n=−t

A(i)
m,n(t) |i〉 × |m,n〉 ∈ Hspin ⊗Hposition , (1.1)

that lives in a product space of spin and coordinate degrees of freedom. The product space Hspin ⊗Hposition

is spanned by a basis of orthonormal vectors |i〉 ∈ Hspin and |m,n〉 ∈ Hposition such that,

〈i|j〉 = δij , and 〈m,n|p, q〉 = δmpδnq . (1.2)

The wave function |Ψw(t)〉 is a function of the evolution time t and coordinates ~x = (m,n) such that −t ≤
(m,n) ≤ t. The wave function evolves discretely with time under the action of the unitary operator U =
S ·C⊗ Ipos, where Ipos is the identity operator in position space, S is the 2d shift operator and C is the coin
operator

C(x, y, z) =


e−2iπz cos(2πy) 0 0 −ie−2iπz sin(2πy)

0 e2iπz cos(2πx) −ie2iπz sin(2πx) 0
0 −ie2iπz sin(2πx) e2iπz cos(2πx) 0

−ie−2iπz sin(2πy) 0 0 e−2iπz cos(2πy)

 . (1.3)

Main Results: A SU(4) coin operator has 15 parameters. However, we made a minimal choice involving 3
parameters and it still demonstrates the non-trivial properties of the coin. The simple form (1.3) renders our
2d DQRW algorithm analytically solvable. However (1.3) induces a non-trivial entanglement between spin
and position degrees of freedom. It also exhibits non-trivial entangling properties, which we examine using
two different measures. a) Entangling power: where we integrate out the effect of the initial state on the
walk. b) Generalized Rényi entropy: where we do a POVM (Positive Valued Operator Measurements) on
two density matrix operators between the entangled state and a reference unentangled state. As a bonus, the
continuum limit of the algorithm maps to two massive 1 + 1d fermions coupled to gauge fields. We briefly
discuss each of these claims below:

• Exact Solutions: Due to the evolution equation, |Ψw(t + 1)〉 = U|Ψw(t)〉, the coefficients A
(i)
m,n(t) in

(1.1) satisfy a set of discrete recursion relations. Given the specific coin operator (1.3), we can find

closed form analytic solutions for the coefficients A
(i)
m,n(t), given by,

A(0)
m,n(t) = δm,n(1− δm,−t)e−2πitz

(
Fm(y)A

(0)
0,0(0) +Gm(y)A

(3)
0,0(0)

)
.

A(1)
m,n(t) = δm,−n(1− δm,−t)e2πitz

(
Fm(x)A

(1)
0,0(0) +Gm(x)A

(2)
0,0(0)

)
.

A(2)
m,n(t) = δm,−n(1− δm,t)e2πitz

(
G−m(x)A

(1)
0,0(0) + F−m(x)A

(2)
0,0(0)

)
.

A(3)
m,n(t) = δm,n(1− δm,t)e−2πitz

(
G−m(y)A

(0)
0,0(0) + F−m(y)A

(3)
0,0(0)

)
.

(1.4)

1For a more comprehensive overview of the subject regarding applications and algorithms, please see, [10].
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Fm(x) =
(−1)

t−m
2 sin2(2πx)Γ

(
m+t+2

2

)
cosm(2πx)

Γ(m+ 1)Γ
(−m+t+2

2

) 2F1

(
m− t+ 2

2
,
m+ t+ 2

2
;m+ 1; cos2(2πx)

)
Gm(x) = −i sin(2πx) cost−1(2πx) 2F1

(
2−m− t

2
,
m− t

2
; 1;− tan2(2πx)

) (1.5)

• Probablity and Entanglement: The probability distribution as a function of the coordinates is given
by,

Pm,n(t) =
3∑
i=0

|A(i)
m,n(t)|2 ,

t∑
m,n=−t

Pm,n(t) = 1 . (1.6)

The density matrix for the walker,

ρ(t) = |Ψw(t)〉〈Ψw(t)| , ρ̃(t) = tr pos|Ψw(t)〉〈Ψw(t)| . (1.7)

E(t) = −ρ̃(t) log ρ̃(t) is the entanglement entropy between Hspin and Hposition degrees of freedom. If
we consider the spin Hilbert space to be Hspin = HA ⊗HB, where A,B are the subsystems in the spin
space, then the entanglement between A and B as a function of the grid is obtained from,

Em,n(t) = −ρAm,n(t) log ρAm,n(t) , where ρAm,n(t) = tr B
〈m,n|ρAB(t)|m,n〉

〈Ψw(t)|m,n〉〈m,n|Ψw(t)〉
. (1.8)

The function is normalized so that tr ρAm,n(t) = 1. The entanglement between the position and spin
dofs, is given by, EC(t) = −ρ̃(t) log ρ̃(t). The asymptotic entanglement (for x = y = 1/8 and z = 1/10)
is given by,

E1/8,1/8,1/10(t) = 0.693156− cos2(πt/2)

4t2
+

sin2(πt/4 + π/8)

2t5/2
+ . . . , (1.9)

while the same functional behavior is also evident for other parametric choices, as demonstrated in (3.7).

• Entangling Power: The entangling power [14, 15] of the coin on the random walk is defined as,

EC (t) =
1

V

∫
ψinitial

dV
√
g
(
1− tr ρ̃(t)2

)
. (1.10)

where ρC(t) is the reduced density matrix after tracing over position. For example, the asymptotic
entangling power of the coin operator,

EC(t) = 0.671914 −
0.0318321 sin

(
π
8
− πt

2

)
4
√
t

+ . . . , x = y = 1/8 , z = 1/10 . (1.11)

oscillates with time and approaches a constant as t → ∞. The entanglement follows the exact same
functional behaviour for other parametric choices as well, albeit with different numerical coefficients as
demonstrated in (4.4).

• Generalized Rényi Entropies: We compute and compare two distinct definitions [16, 17, 18, 19], viz.
α−Sandwiched Renyi Divergence (SRD) and α−Relative Renyi Entropy (RRE). Given two operators ρ
and σ, the α−SRD and α−RRE are given by,

Dα−RRE =
1

α− 1
log

tr ρaσ1−α

tr ρ
, D̃α−SRD =

1

α− 1
log

tr σ(1−α)/2αρσ(1−α)/2α

tr ρ
, (1.12)
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for ρ 6⊥ σ and α ∈ [0, 1). For our case, ρ = ρ̃(t) denotes the density operator for the final entangled
mixed state |Ψw(t)〉 and σ is a reference operator corresponding to a pure state. For our case, the
asymptotic form of the α−SRD and α−RRE for large t is given by,

D1/4−SRD = 0.379594 +
0.106996 sin

(
πt
4

+ π
16

)
t3/2

−
0.157844 cos

(
πt
2

+ π
16

)
√
t

+ . . . , x = y = 1/8 (1.13)

D1/4−RRE = 0.389889 +
0.0955922 sin

(
πt
4

+ π
16

)
t3/2

−
0.179794 cos

(
πt
2

+ π
16

)
√
t

+ . . . , x = y = 1/8 (1.14)

We compute similar expressions for asymptotic forms of the α−SRD and α−RRE for other parametric
choices of the coin operator and for α = 1/2 , 3/4 in (5.7)-(5.11). The functional forms of the asymptotic
expansions for large t are similar with different numerical coefficients depending on the coin parameters
and α.

• Continuum limit: In the continuum limit [1, 20, 21] , the recursion relations reduce to the Dirac
equation in 1 + 1 dimensions,

(γµD±µ −M±)ψ± = 0 , (1.15)

of two massive fermions (ψ+ , ψ−) coupled to gauge fields. D±µ = ∂µ − iA±µ where A±µ = (V, 0, 0, 0). The
Random walk wave function in the continuum limit is related to the fermions, by,

|Ψw(t, ~x)〉 = M · (| ↑〉 ⊗ |ψ+〉+ | ↓〉 ⊗ |ψ−〉) , where M =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 . (1.16)

The spectrum of such a two particle system, is given by,

E(p1, p2) = 2α±
√
p2

1 + θ2
1 ±

√
p2

2 + θ2
2 . (1.17)

Positive energy conditions, imply that θi ≤ Vi.

The remainder of the work will be organized as follows. In section 2, we give the mathematical setup of
the problem. We clarify the notations and construct the analytical solutions to the recursion relations. In
section 3, we consider the probability and entanglement distributions over the two dimensional grid. We also
provide the entanglement of the spin and position degrees of freedom as a function of time. In section 4 we
discuss the entangling power of the coin operator on the walk as a function of time and coin parameters. The
function approaches a constant at large times similar to the entanglement. Section 5 discusses and compares
the distinct definitions of the Quantum Dynamical Entropy from the random walk perspective. For very
simple reference matrices, we can obtain exact analytical solutions for both, while numerical results suffice
for generic reference states. Section 6 discusses the continuum limit of the walk, which reduces to two one
dimensional fermions coupled with gauge fields. We end the work with discussions of future directions in
section 7.

2 Setup: Coin Operator

The wave function for the two dimensional Quantum Discrete Random Walk, can be written in a form,

|Ψw(t)〉 =
3∑
i=0

t∑
m,n=−t

A(i)
m,n(t) |i〉 ⊗ |m,n〉 . (2.1)
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The wave function |Ψw(t) ∈ Hspin⊗Hposition where |i〉 ∈ Hspin is the spin Hilbert space and |m,n〉 ∈ Hposition

is the coordinate Hilbert space. |i〉 ∈ Hspin and |m,n〉 ∈ Hposition are set of orthornormal vectors, such that,

〈i|j〉 = δij and 〈m,n|p, q〉 = δmpδnq . (2.2)

The position grid is a finite size system dim(m,n) = (2t+ 1)× (2t+ 1). The unitary evolution of the random
walk is governed by the equation,

|Ψw(t)〉 = U|Ψw(t− 1)〉 , U = S ·C⊗ Ipos , (2.3)

where U is a unitary operator, and

S =
3∑
i=0

∑
~x

|i〉〈i| ⊗ |~x+ αi〉〈~x| . (2.4)

with α0 = (1, 1), α1 = (1,−1), α2 = −α1 and α3 = −α0, is the Shift Operator and we choose a specific coin
operator C for our purposes, built out of Bell pairs,

C =
4∑

k=1

eiλk |Φk〉〈Φk| ,
4∑

k=1

λk = 0 , (2.5)

for λ1 + λ2 = −4πz , λ1 − λ2 = −4πy , λ3 − λ4 = −4πx and where,

|Φ1,2〉 =
|0〉 ± |3〉√

2
, |Φ3,4〉 =

|1〉 ± |2〉√
2

. (2.6)

Explicitly,

C(x, y, z) =


e−2iπz cos(2πy) 0 0 −ie−2iπz sin(2πy)

0 e2iπz cos(2πx) −ie2iπz sin(2πx) 0
0 −ie2iπz sin(2πx) e2iπz cos(2πx) 0

−ie−2iπz sin(2πy) 0 0 e−2iπz cos(2πy)

 . (2.7)

From the explicit form of the unitary operator U and the evolution equation (2.3), the recursion relation for

the coefficients A
(i)
m,n(t) reads,

A(0)
m,n(t) =e−2iπz cos(2πy)A

(0)
m−1,n−1(t− 1)− ie−2iπz sin(2πy)A

(3)
m−1,n−1(t− 1) , 2− t ≤ m,n ≤ t

A(1)
m,n(t) =e2iπz cos(2πx)A

(1)
m−1,n+1(t− 1)− ie2iπz sin(2πx)A

(2)
m−1,n+1(t− 1) , 2− t ≤ m ≤ t ,−t ≤ n ≤ t− 2

A(2)
m,n(t) =− ie2iπz sin(2πx)A

(1)
m+1,n−1(t− 1) + e2iπz cos(2πx)A

(2)
m+1,n−1(t− 1) ,−t ≤ m ≤ t− 2 , 2− t ≤ n ≤ t

A(3)
m,n(t) =− ie−2iπz sin(2πy)A

(0)
m+1,n+1(t− 1) + e−2iπz cos(2πy)A

(3)
m+1,n+1(t− 1) ,−t ≤ m,n ≤ t− 2

(2.8)

Due to the special nature of the coin operator, the recursion relations decouple in the sense that (A
(0)
m,n(t), A

(3)
m,n(t))

decouple from (A
(1)
m,n(t), A

(2)
m,n(t)). The recursion relations can be solved exactly and we can write the analytical

forms of these coefficients in the form,

A(0)
m,n(t) = δm,n(1− δm,−t)e−2πitz

(
Fm(y)A

(0)
0,0(0) +Gm(y)A

(3)
0,0(0)

)
,

A(3)
m,n(t) = δm,n(1− δm,t)e−2πitz

(
G−m(y)A

(0)
0,0(0) + F−m(y)A

(3)
0,0(0)

)
,

A(1)
m,n(t) = δm,−n(1− δm,−t)e2πitz

(
Fm(x)A

(1)
0,0(0) +Gm(x)A

(2)
0,0(0)

)
,

A(2)
m,n(t) = δm,−n(1− δm,t)e2πitz

(
G−m(x)A

(1)
0,0(0) + F−m(x)A

(2)
0,0(0)

)
,

(2.9)
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with the initial wave function at the origin,

|Ψ(0)〉 =


A

(0)
0,0(0)

A
(1)
0,0(0)

A
(2)
0,0(0)

A
(3)
0,0(0)

⊗ |0, 0〉 . (2.10)

The functions Fm and Gm are,

Fm(x) =
(−1)

t−m
2 sin2(2πx)Γ

(
m+t+2

2

)
cosm(2πx)

Γ(m+ 1)Γ
(−m+t+2

2

) 2F1

(
m− t+ 2

2
,
m+ t+ 2

2
;m+ 1; cos2(2πx)

)
Gm(x) = −i sin(2πx) cost−1(2πx) 2F1

(
2−m− t

2
,
m− t

2
; 1;− tan2(2πx)

) (2.11)

For the rest of the paper, we will use specific choice for the coin parameters. These are,

C(1/8, 1/8, 1/10) ,C(1/8, 1/12, 1/10) and C(1/6, 1/8, 1/10) . (2.12)

3 Probability and Entanglement

The probability distribution is a function of the 2D grid, and is given by,

Pm,n(t) = 〈m,n|Ψw(t)〉〈Ψw(t)|m,n〉 =
3∑
i=0

∣∣A(i)
m,n(t)

∣∣2 , t∑
m,n=−t

Pm,n(t) = 1 . (3.1)

The density operator given by,
ρ(t) = |Ψw(t)〉〈Ψw(t)| , (3.2)

lives in (8t+ 4)× (8t+ 4) dimensions, from which we can define the density matrix on the 2D grid to be,

ρm,n(t) =
〈m,n|ρ(t)|m,n〉
|〈m,n|Ψw(t)〉|2

. (3.3)

An alternative way to look at this expression is the following. As a small digression, if we consider the spin
Hilbert space Hspin(= HA ⊗ HB) to be composed of two subsystems A and B (meaning ρm,n = ρABm,n), then
tracing over either subsystem, provides a definition of the entanglement between A and B

Em,n(t) = −tr ρAm,n(t) log ρAm,n(t) , ρAm,n(t) = tr Bρ
AB
m,n(t) , (3.4)

as a function of the grid. We plot the probability and entanglement distribution over the two dimensional grid
in figure 1 for the coin parameters x = 1/6 , y = 1/8 and z = 1/10. The plots for other parametric choices
are similar. Note that the probability and entanglement distribution on the grid is non-vanishing only along
the diagonals, which reflects the decoupled recursion relations in (2.8). On the other hand, tracing over the
entire grid, gives a reduced density matrix,

ρ̃(t) = tr posρ(t) , E(t) = −ρ̃(t) log ρ̃(t) , (3.5)

that defines the entanglement between the spin and position degrees of freedom. Below we plot the probability
and the entanglement distribution for a tensor product initial state,

|Ψw(0)〉 = |0〉 ⊗ |0〉+ |1〉√
2
⊗ |0, 0〉 . (3.6)
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The entanglement of the spin and position degrees of freedom, as given by (3.5), is a function of the time, as
we show in figure 2. For the choices of coin parameters, we can fit the asymptotic entanglement to the forms,

E1/6,1/8,1/10(t) = 0.695062− 0.042797
cos2(πt/4 + π/8)√

t
− 0.0567782

sin2(πt/3 + π/6)√
t

+ . . . , (3.7)

E1/8,1/8,1/10(t) = 0.693156− cos2(πt/2)

4t2
+

sin2(πt/4 + π/8)

2t5/2
+ . . . , (3.8)

E1/8,1/12,1/10(t) = 0.69212− 0.0207781
cos2(πt/6 + π/12)√

t
− 0.046477

sin2(πt/4 + π/8)√
t

+ . . . , (3.9)

where . . . represent sub-leading terms. The asymptotic entanglement for the entangled coin is below the
minimal value for entanglement for Grover’s and Kempe’s coin for 2d random walk [22], [23].
A general form of the asymptotic form of entanglement for our choice of coin can be written as,

Ex,y,z(t) = A0(x, y, z) +
∑
i,m≥0

ρi
sin2(πt/ai + γi)

tm
+
∑
i,n≥0

σi
cos2(πt/bi + δi)

tn
, (3.10)

where we have the first leading coefficients in (3.7).

Figure 1: Pm,n(t) and Em,n(t) for t = 100 for C(1/6, 1/8, 1/10) for the initial tensor product state in (3.6).

4 Entangling Power

To probe the entangling properties of the coin operator in (2.7) further, we analyze its Entangling power [14],
[15], [24], [25, 26], [27], which describes the capacity of the coin operator to produce an entangled state from
the initial tensor-product states. For concreteness, consider the initial state,

|Ψw(0)〉 = (|ψ1〉 ⊗ |ψ2〉)⊗ |0, 0〉 , (4.1)

where,

|ψi〉 = cos
θi
2
|0〉+ eiαi sin

θi
2
|1〉 . (4.2)

implying that |Ψ(0)〉 ∈ CP1 ⊗ CP1.

EC(t) =
1

16π2

∫
M
dθ1dθ2dα1dα2 sin θ1 sin θ2

(
1− tr ρ̃(t)2

)
, (4.3)
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0 20 40 60 80 100
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

t

E
(t
)

Figure 2: E(t) vs. t for coins C(1/6, 1/8, 1/10) (blue), C(1/8, 1/8, 1/10) (orange) and C(1/8, 1/12, 1/10)
(green).

gives the entangling power or equivalently “the capacity to entangle” for the coin operator in the random walk.
The integral is over the entire manifold of tensor product states, M = CP1 ⊗ CP1. The integral limits are
0 ≤ (θ1, θ2) ≤ π and 0 ≤ (α1, α2) ≤ 2π. In Fig (3), we explore the entangling power EC(t) for three parametric
choices of the coin operator.

0 10 20 30 40 50
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

t

ℰC(t)

Figure 3: The plot shows the fitted functional forms (solid lines) against the data obtained for EC(t) vs.
t for up to t = 50 for three parametric choices C(1/8, 1/8, 1/10) (blue), C(1/6, 1/8, 1/10) (orange) and
C(1/8, 1/12, 1/10) (green).
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The functional forms for the asymptotic (t� 1) entangling power (for fixed z = 0.1), are given by,

EC(t) =

0.671914 − 0.0318321 sin(π8−
πt
2 )

4√t + . . . , x = y = 1/8

0.676256 +
0.0123798 sin(πt2 )

4√t − 0.0219393 sin(π6−
2πt
3 )

4√t + . . . , x = 1/6, y = 1/8

0.662477 +
0.00779714 sin(πt3 + π

12)
4√t +

0.0131973 sin(πt2 + π
16)

4√t + . . . , x = 1/8, y = 1/12

(4.4)

This suggests that the leading general asymptotic form of the Entangling Power as a function of time and
the coin parameters will take the form,

EC(t) = AC +
∑
i,m≥0

ρi
sin2(πt/ai + γi)

tm+1/4
+
∑
i,n≥0

σi
cos2(πt/bi + δi)

tn+1/4
+ . . . , (4.5)

where AC is time independent and function of the coin parameters. The parameters, ρi , σi , ai , bi , γi , δi
depend on the coin parameters.

5 Generalized Relative Rényi Entropy

In addition to the Entangling Power, a second measure to elucidate the entangling properties of the coin, is
using the definitions of Generalized Relative Rényi Entropy. Since the walk algorithm describes a quantum
process, it is necessary to use observables which capture the quantum nature of the algorithm. Following
[16] [17], [19, 18], we compute two definitions from our quantum walk perspective viz. α−Sandwiched Rényi
Divergence and α−Relative Rényi Entropy. These are defined as follows. Given two positive operators ρ and
σ such that ρ 6⊥ σ, we can define,

Dα−SRD(ρ, σ) =
1

α− 1
log

tr σ
1−α
2α ρσ

1−α
2α

tr ρ
,Dα−RRE(ρ, σ) =

1

α− 1
log

tr ρασ1−α

tr ρ
, (5.1)

for α ∈ [0, 1). For any quantum operation Λ : ρ→ Λρ, the definitions satisfy,

Dα(ρ, σ) ≥ Dα (Λ(ρ),Λ(σ)) . (5.2)

Note that,
[ρ, σ] = 0 , ⇒ Dα−SRD = Dα−RRE = Dcl

α . (5.3)

where,

Dcl
α (p, q) =

1

α− 1
log

∑
x∈X p(x)αq(x)1−α∑

x∈X p(x)
, supp p(x) ⊆ supp p(x) ∧ α 6= 1 . (5.4)

is the classical Relative Rényi Entropy for two positive probability distributions p(x) and q(x) over a set
x ∈ X, such that supp p(x) ⊆ supp q(x) 2. For computational purposes, we take the following definitions of
ρ and σ. We take,

ρ(t) = tr pos|Ψw(t)〉〈Ψw(t)| , and σ = |Ψw(0)〉〈Ψw(0)| . (5.5)

Note that ρ(t) is the density operator for a mixed state (from tracing over the position coordinates) while σ is
the density operator for a pure state. Both satisfy tr ρ = tr σ = 1. We will choose specific initial conditions
for the entropic measures3,

|Ψw(0)〉 =
(1, i, 0, 0)√

2
⊗ |0, 0〉 . (5.6)
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Figure 4: The plot shows the fitted functional forms (given by the dashed lines) against the data obtained for
α−SRD and α−RRE vs. t for up to t = 100 for the chosen coin parameters labelling the plots. We choose
α = 1/4, 1/2, 3/4.

ρ(t) can be computed analytically using the solutions in (2.9). We plots Dα−SRD and Dα−RRE as functions of
time (t), in figure 4 for three parameter choices of the coin operator in (2.12).

From figure 4, we can fit the leading asymptotic form of Dα−SRD for large t, to the following functional

2This implies that p(x) = 0 whenever q(x) = 0.
3Note that this choices are by no means unique and other initial conditions are equally valid. We however stress that the

functional forms for the asymptotic behavior of the entropy functions as t→∞ will not be affected by the specific forms of the
initial conditions.
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form (we fix z = 0.1 for all computations),

D1/4−SRD =


0.379594 +

0.106996 sin(πt4 + π
16)

t3/2
− 0.157844 cos(πt2 + π

16)√
t

+ . . . , x = y = 1/8

0.352781− 0.0568579 cos(πt3 + π
12)√

t
− 0.0932246 cos(πt2 +π

8 )√
t

+ . . . , x = 1/8, y = 1/12

0.401346− 0.113507 sin(π6−
πt
2 )√

t
− 0.0769188 cos( 2πt

3
+π

4 )√
t

+ . . . , x = 1/6, y = 1/8

(5.7)

The same functional basis exists for α = 1/2 and α = 3/4 as well, such that,

D1/2−SRD ∼ 3D1/4−SRD + . . . and D3/4−SRD ∼ 9D1/4−SRD + . . . . (5.8)

Similarly for the leading asymptotic form of α−RRE at large t, we find the functional form,

D1/4−RRE =


0.389889 +

0.0955922 sin(πt4 + π
16)

t3/2
− 0.179794 cos(πt2 + π

16)√
t

+ . . . , x = y = 1/8

0.363284− 0.0645552 cos(πt3 + π
12)√

t
− 0.10113 cos(πt2 +π

8 )√
t

+ . . . , x = 1/8, y = 1/12

0.411921− 0.118399 sin(π6−
πt
2 )√

t
− 0.0762127 cos( 2πt

3
+π

4 )√
t

+ . . . , x = 1/6, y = 1/8

, (5.9)

D1/2−RRE =


1.15822 +

0.300902 sin(πt4 + π
16)

t3/2
− 0.51888 cos(πt2 + π

16)√
t

+ . . . , x = y = 1/8

1.07782− 0.185198 cos(πt3 + π
12)√

t
− 0.296234 cos(πt2 +π

8 )√
t

+ . . . , x = 1/8, y = 1/12

1.22452− 0.353662 sin(π6−
πt
2 )√

t
− 0.228691 cos( 2πt

3
+π

4 )√
t

+ . . . , x = 1/6, y = 1/8

, (5.10)

and,

D3/4−RRE =


3.44391 +

0.937397 sin(πt4 + π
16)

t3/2
− 1.49066 cos(πt2 + π

16)√
t

+ . . . , x = y = 1/8

3.20219− 0.532561 cos(πt3 + π
12)√

t
− 0.864633 cos(πt2 +π

8 )√
t

+ . . . , x = 1/8, y = 1/12

3.64189− 1.04617 sin(π6−
πt
2 )√

t
− 0.68791 cos( 2πt

3
+π

4 )√
t

+ . . . , x = 1/6, y = 1/8

. (5.11)

Given the asymptotic forms, we can infer a general asymptotic form for both α− SRD and α−RRE, given
by,

F (α,C) = Aα,C +
∑
i,m

ρi
cos(4πt/ai + γi)

tm+1/2
+
∑
i,n

σi
sin(4πt/bi + δi)

tn+1/2
. (5.12)

6 Continuum limit

For our choice of coin (2.7), the continuum limit of the quantum discrete random walk gives rise to synthetic
gauge fields [20, 21]. To start with, we replace the discrete differences with derivatives,

|Ψw(t+ ∆t, ~x)〉 − |Ψw(t, ~x)〉 = ∆t∂t|Ψw(t, ~x)〉 , |Ψw(t, ~x+ ∆~x)〉 − |Ψw(t, ~x)〉 = ∆~x · ∂~x|Ψw(t, ~x)〉 . (6.1)

Using |ψw(t+ ∆t, ~x) = U|Ψw(t, ~x)〉, we can also write the analog continuum version of (2.3),

∂t|Ψw(t, ~x)〉 =
U− I

∆t
|Ψw(t, ~x)〉 , U = S ·C . (6.2)

In the continuum limit (for ∆~x = (∆x,∆y)),

S =
∑
i

|i〉〈i| ⊗ |~x+ ∆~xi〉〈~x| = I + (I⊗ σ3)∆x∂x + (σ3 ⊗ I)∆y∂y︸ ︷︷ ︸
∆S

, (6.3)
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where σi are the Pauli matrices. Similarly, we can write the coin operator in the form,

C(θ1, θ2, ξ, α) =
ei(α−ξ)

2

[
(I4 + σ3 ⊗ σ3) cos θ1 − i (σ1 ⊗ σ1 − σ2 ⊗ σ2) sin θ1

]
+
ei(α+ξ)

2

[
(I4 − σ3 ⊗ σ3) cos θ2 − i (σ1 ⊗ σ1 + σ2 ⊗ σ2) sin θ2

]
.

(6.4)

where we have introduced another U(1) phase α. Using the parameterization,,

θ1(t, x, y) =θ
(0)
1 (t, x, y) + θ̄1(t, x, y)εµ , θ2(t, x, y) = θ

(0)
2 (t, x, y) + θ̄2(t, x, y)εν ,

ξ(t, x, y) =ξ(0)(t, x, y) + ξ̄(t, x, y)ερ , α(t, x, y) = α(0)(t, x, y) + ᾱ(t, x, y)εω ,
(6.5)

and that C(θ
(0)
1 , θ

(0)
2 , ξ(0), α(0)) = I, translates to,

θ
(0)
1 = k1π , θ

(0)
2 = k2π , ξ

(0) = π(n−m) +
k1 − k2

2
π , α(0) = π(m+ n)− k1 + k2

2
π , (6.6)

subject to (k1, k2, n,m) ∈ Z. Most generally, we can take ∆t ∼ εT, ∆x ∼ ∆y ∼ εδ i.e. all parameters with
different scalings. However to pertain to the most simplest scaling, we will take T = δ = µ = ν = ρ = ω = 1.
This also ensures maximal contribution from all parameters. With this scaling, to the leading order (with
cos θ = 1 +O(θ)2 and sin θ ≈ θ),

C(θ̄1, θ̄2, ξ̄, ᾱ) =I + iε
(
ᾱI− ξ̄σ3 ⊗ σ3

)
− iε

2
σ1 ⊗ σ1Θ+ −

iε

2
σ2 ⊗ σ2Θ− . (6.7)

where,Θ± = θ̄1e
i(α−ξ+k1π)±ei(α+ξ+k2π)θ̄2. Putting (6.3) and (6.7) in (6.2) and expanding to O(ε), we can write

the perturbative equation of motion,

∂tΨw =

(
(σ3 ⊗ I)∂x + (I⊗ σ3)∂y + i

(
ᾱI− ξ̄σ3 ⊗ σ3

)
− i

2
(σ1 ⊗ σ1Θ+ + σ2 ⊗ σ2Θ−)

)
︸ ︷︷ ︸

Hamiltonian

Ψw . (6.8)

Further, defining X = 1/2(x + y) and Y = 1/2(x − y), the eoms of components (A(0),A(3)) and (A(1),A(2))
couple together,(

∂t − ∂X − i(ᾱ− ξ̄)
)
A(0) = − i

2
(Θ+ −Θ−)A(3)

(
∂t + ∂Y − i(ᾱ + ξ̄)

)
A(1) = − i

2
(Θ+ + Θ−)A(2)(

∂t + ∂X − i(ᾱ− ξ̄)
)
A(3) = − i

2
(Θ+ −Θ−)A(0)

(
∂t − ∂Y − i(ᾱ + ξ̄)

)
A(2) = − i

2
(Θ+ + Θ−)A(1) (6.9)

After some rearrangement, (6.9) can be put in the form of Dirac equation for massive fermions,(
iγµD±µ −M±

)
ψ± = 0 , (6.10)

where D±µ = ∂µ− iA±µ and A±µ = (ᾱ∓ ξ̄, 0) and the mass matrix is given byM± = (Θ+∓Θ−)/2. The explicit
solutions for the Dirac equation is,

ψ±(t, y) = ei(ᾱ±ξ̄)tψ̃±(t, y) , ψ̃±(t, y) =

{
e−ip0t−ipyu(p)

eip0t+ipyv(p)
, p2

0 = p2 +m2
i , p0 > 0 , (6.11)

as the positive and negative energy solutions respectively. Explicitly,

u(p) =

(
Q−
Q+

)
, v(p) =

(
Q−
−Q+

)
. (6.12)
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where Q± =
√
p0 ± p, m2 = (Q−Q+)2 and Q2

+ +Q2
− = 2p0. Under p→ −p, Q± → Q∓. The vectors satisfy,

u†(p)u(p) = 2p0 = v†(p)v(p) , u†(p)v(−p) = 0 . (6.13)

The explicit solution for each energy (positive or negative frequency) is then ψ̃±(t, y) = e−ip0tψ̃±(y) where,

ψ̃±(y) =

∫ ∞
−∞

dp

2π

e−ipy√
2p0

(
a±p u(p) + b±−pv(−p)

)
. (6.14)

where −p = (p0,−p). The coefficients, ap and b−p can be determined from the inverse transform,

a±p =

∫ ∞
−∞

dy
eipy√
2p0

u†(p)ψ̃±(y) , b±−p =

∫ ∞
−∞

dy
eipy√
2p0

v†(−p)ψ̃±(y) . (6.15)

The normalization condition for each time slice t is,∫ ∞
−∞

dy ψ̃†±(y)ψ̃±(y) = 1 =

∫ ∞
−∞

dp

2π

(
|a±p |2 + |b±−p|2

)
. (6.16)

We choose the initial wave function to be gaussian in the spatial coordinates,

ψ̃+(0, y) =

(
2

πσ2

)1/4

e−y
2/σ2 (

cos θ+/2| ↑〉+ sin θ+/2e
iµ+| ↓〉

)
. (6.17)

that fixes,

a+
p = (2πσ2)1/4 e

−p2σ2/4

√
2p0

(
Q− cos θ+/2 +Q+ sin θ+/2e

iµ+
)
, (6.18)

b+
−p = (2πσ2)1/4 e

−p2σ2/4

√
2p0

(
Q+ cos θ+/2−Q− sin θ+/2e

iµ+
)
. (6.19)

and similarly for the initial wave function for ψ̃−(0, y). The wave-function for the random walk can be
constructed from these fermions, by using the mapping,

|Ψw(t, ~x)〉 = M · (| ↑〉 ⊗ |ψ+〉+ | ↓〉 ⊗ |ψ−〉) , where M =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 . (6.20)

The energy for each fermion is,

E±(p) = V± ±
√
p2 +m2

± . (6.21)

Specifically for V± ≥ m± the lower bound is positive for,

E(p) = V± −
√
p2 +m2

± ≥ 0 → −
√
V 2
± −m2

± ≤ p ≤
√
V 2
± −m2

± . (6.22)

7 Conclusions and future directions

A 2d DQRW requires a SU(4) coin operator which has 15 parameters. In this work, we have chosen a special
coin operator built from Bell pairs and containing only 3 parameters. The relatively simple form of the coin
operator renders the DQRW exactly solvable. However, the coin incudes a non-trivial entanglement in the
system. In order to probe the entangling properties of the coin operator:
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• We compute the entanglement induced by the coin on the spin and position degrees of freedom. This
function oscillates with time around a reference constant value.

• We explore the Entangling Power of the coin operator which measures its capacity to induce entangle-
ment in the state, starting from an initial tensor product state. Numerically, we compute the Entangling
power of the coin as a function of time and for specific choices of the coin parameters.

• We compute the Generalized Relative Rényi Entropy functions between the density matrix operators
for the initial tensor product state and the final entangled state. We analyze the relative entropies as a
function of the coin and time.

Both the measures, behave functionally in the same manner as the entanglement. As a bonus, the continuum
limit of the random walk algorithm reduces to two 1d massive fermions coupled to synthetic gauge fields.
The wave-function for the random walk can be recovered as a non-trivial linear combination of these massive
fermions. We conclude the work with discussions and future questions to be addressed.

• We intend to generalize the algorithm using a non-trivial shift operator and/or a feature dependent
coin operator. Such generalizations can describe variety of phenomenon such as scattering, tunneling,
optimization techniques and so on. An entanglement based random walk approach can also be used to
distinguish between topological phases [4] and for the distinction between pure and mixed states using
the Entanglement of Purification (EoP) [28].

• The generalized version of entangling power is through Concurrence matrix [15, 24] or n−tangle opera-
tors for higher qubits and higher dimensions [25, 26, 27]. It would be interesting to see if the general-
izations can be used as an order parameter to determine entanglement evolutions in real systems. An
interesting avenue would be to explore the entangling power of mixed states [29, 30].

• An immediate question would be to understand the complexity [31, 32] of the quantum circuit describing
the algorithm. This question can be addressed with ease for the random walk algorithm and various
approaches of Neilson-complexity [33, 34] and the Krylov-complexity (state-operator complexity) can
be compared and extended.

• The structure of the coin operator gives us two one dimensional 1d free fermions coupled to synthetic
gauge fields. The same structure of the coin in d dimensions, should give us d one dimensional coupled
fermions. A feature dependent coin will introduce a non-trivial profile for the gauge potential. If we
want to introduce interactions between the fermions, what kind of modification to the coin operator
would we need?
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[18] F. Leditzky, C. Rouzé, and N. Datta, “Data processing for the sandwiched rényi divergence: a
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