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Abstract

We study spectral and steady-state properties of generic Markovian dissipative systems
described by quadratic fermionic Liouvillian operators of the Lindblad form. The Hamil-
tonian dynamics is modeled by a generic random quadratic operator, i.e., as a featureless
superconductor of class D, whereas the Markovian dissipation is described by M random
linear jump operators. By varying the dissipation strength and the ratio of dissipative
channels per fermion, m = M/(2NF ), we find two distinct phases where the support of
the single-particle spectrum has one or two connected components. In the strongly dis-
sipative regime, this transition occurs for m= 1/2 and is concomitant with a qualitative
change in both the steady-state and the spectral gap that rules the large-time dynamics.
Above this threshold, the spectral gap and the steady-state purity qualitatively agree with
the fully generic (i.e., non-quadratic) case studied recently. Below m= 1/2, the spectral
gap closes in the thermodynamic limit and the steady-state decouples into an ergodic
and a nonergodic sector yielding a non-monotonic steady-state purity as a function of
the dissipation strength. Our results show that some of the universal features previ-
ously observed for fully random Liouvillians are generic for a sufficiently large number
of jump operators. On the other hand, if the number of dissipation channels is decreased
the system can exhibit nonergodic features, rendering it possible to suppress dissipation
in protected subspaces even in the presence of strong system-environment coupling.
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1 Introduction

The vast majority of systems in nature have their own time evolution deeply influenced by
the interaction with their environment. Under the assumption of either a very weakly or very
strongly coupled environment, with memory times much shorter than all other characteristic
time scales (Markovian approximation), the time evolution equation for the system’s reduced
density matrix ρ, assumes the Lindblad form [1–3]:

dρ
d t
= L [ρ] = −i

�

Ĥ,ρ
�

+ g
M
∑

µ=1

�

2 L̂µρ L̂†
µ − { L̂

†
µ L̂µ,ρ}

�

, (1)
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where the superoperator L is known as the Liouvillian and g is a parameter that quantifies the
dissipation strength. The M independent jump operators, L̂µ, represent channels of interaction
with the environment that act, e.g., as sources of dephasing and dissipation. In the absence
of these operators, the evolution is that of a closed system, and the Liouvillian becomes just
the von Neumann generator, −i

�

Ĥ,ρ
�

. Note that, although for strictly zero dissipation the
ensuing unitary time evolution is completely determined by the Hamiltonian, Ĥ, for any finite
dissipation strength there is a (generically unique) steady-state the system relaxes to at large
times. Although the Markovian approximation leads to a considerable simplification to the
time-evolution equation, it leaves out the possibility of studying, for instance, some quantum
transport setups,for which different approaches need to be taken [4, 5]. Nevertheless, it still
finds many valuable applications in various subjects, namely in quantum optics and quantum
computation [6].

Despite the clear simplification the Markovian approximation brings to the problem, the
determination of the spectral and steady-state properties of the Liouvillian for generic Hamil-
tonian and jump operators remains a formidable task and is the object of intense ongoing
research. A further simplification can be achieved if we restrict our analysis to quadratic sys-
tems, which are characterized by a quadratic Hamiltonian and linear jump operators in bosonic
or fermionic creation and annihilation operators [7–15]. More precisely, and focusing on a sys-
tem with NF complex fermions satisfying {ci , c†

j } = δi j , the Liouvillian of Eq. (1) is said to be
quadratic if

Ĥ =
1
2

2NF
∑

i, j=1

C†
i Hi jC j and L̂µ =

2NF
∑

j=1

lµ jC j , (2)

with C = {c1, . . . , cNF
, c†

1, . . . , c†
NF
}T a vector of fermionic creation and annihilation operators

that satisfies {Ci , C†
j } = δi j . The quadratic Lindblad operator obtained from this construction

ensures that the dynamics preserve the Gaussian form of an initial density matrix. Thus, the
time evolution of the 2NF ×2NF density matrix can be encoded by its second moments matrix—
the correlation matrix—of size 2NF×2NF . Analogously to quadratic Hamiltonian systems, it is
possible to construct a single-particle basis whose dimension scales linearly with the number of
fermionic modes, NF . Many-body observables, such as the Liouvillian’s many-body spectrum
and steady-state correlators, can be straightforwardly computed from single-particle quanti-
ties. Moreover, the single-body spectrum can be identified with that of a non-Hermitian Hamil-
tonian [7], leaving the determination of the Liouvillian’s spectral properties only dependent
on the specification of the single-particle Hamiltonian H and jump operators l.

However, most systems of interest are extremely complex, with many degrees of freedom
and exhibiting very complicated dynamics, rendering the task of determining these operators
impossible in practice. We thus resort to Jayne’s principle of maximal entropy [16, 17], con-
straining these operators to a manifold compatible with their symmetries and randomizing all
other degrees of freedom. This principle has proven immensely successful for complex closed
quantum systems, as pioneered by Wigner, who proposed to approximate the Hamiltonian of
a compound nucleus by a random matrix [18]. The success of the approach led to the formu-
lation of the celebrated Bohigas-Giannoni-Schmit conjecture [19] that states that the spectral
correlations of quantum chaotic Hamiltonians coincide with those of a random matrix of the
appropriate symmetry class. Besides level correlations, also level densities are captured by
many-body random matrix models with few-body interactions (quartic in creation and annihi-
lation operators), the random embedded ensembles [20–25] and the Sachdev-Ye-Kitaev (SYK)
model [26–30]. Finally, the interplay of single-body chaos and many-body integrability in
random quadratic fermionic Hamiltonians has also been studied [31–35].

More recently, the random matrix theory (RMT) approach has been extended to generic
open quantum systems with Markovian dissipation [36–42]. A random Liouvillian was shown
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to have a lemon-shaped spectral support [36, 42] and its spectral gap was extensively stud-
ied [37]. The dependence of spectral and steady-state properties of the random Liouvil-
lian with system size, dissipation strength, and number of jump operators was addressed in
Ref. [39]. Considering jump operators with few-body interactions has clarified the role of lo-
cality in the separation of dissipative timescales [43,44] and metastability [45] and allowed for
the analytic computation of the spectral gap of the strongly-coupled SYK Liouvillian [46–49].
An important open question is to establish the universality of these results. Encouraging first
steps showed that, besides local level statistics [50], the steady-state of fully random Kraus
maps and Liouvillians coincide [40] and that global spectral features of quartic Liouvillians
are qualitatively similar to the fully random case [46,47].

In this paper, we extend this ongoing effort and study the single-body spectral and steady-
state properties of fermionic random quadratic Liouvillians. The rest of the paper is organized
as follows. In Sec. 1.1 we summarize the main results of this work, which are then worked out
in detail in the following sections. In Sec. 2 we review the formalism of quadratic Liouvillians
and explain our random sampling. Spectral properties (spectral boundary, phase transition,
and spectral gap) are discussed in Sec. 3 and steady-state properties (distribution, purity, and
statistics) in Sec. 4. In Sec. 5, we present concluding remarks and possible further directions.
Technical calculations and proofs are presented in a series of six appendices.

1.1 Main results

In the thermodynamic limit NF → ∞, the single-particle properties of random quadratic
Liouvillian, specified by Eqs. (1) and (2), are determined by two parameters: the dissipa-
tion strength g and the ratio of the number of jump operators to the number of fermions
m = M/(2NF ). In Fig. 1(a), we plot the phase diagram of this system in the 1/g versus m
plane. For large enough m and small enough g, the system is in phase I, characterized by
a single-body spectrum supported on a simply-connected region of the complex plane, see
Fig. 1(b). When g is increased or m decreased across a critical value, a phase transition oc-
curs and, in phase II, the single-body spectrum splits into two disconnected components, see
Fig. 1(c). The existence of these two regions signals the existence of an intermediate period
of metastability, during which an extensive number of modes coexist without (considerable)
decay. The critical line separating the two phases [dashed line in Fig. 1(a)] and the boundaries
of the single-body spectral support can be computed analytically [51–54].

For very strong dissipation g →∞, the transition occurs at m= 1/2 and corresponds to the
decoupling of some fermionic degrees of freedom from the dynamics. Indeed, the Hamiltonian
contribution vanishes when g → ∞ and there is an insufficient number of jump operators
(M < 2NF ) to couple all 2NF fermionic creation and annihilation operators to the environment.
Below the transition [m< 1/2, red line in Fig. 1(a)] the decoupled fermions exhibit nonergodic
features, discussed in detail below. As g is lowered to a finite value, the Hamiltonian starts
to couple the dissipatively-decoupled fermions and the critical value of m decreases. At weak
dissipation g < 1/

p
2, the Hamiltonian contribution is strong enough to couple all fermions

and there is no transition.
The spectral gap, which sets the (inverse) timescale of relaxation to the steady-state, coin-

cides for the single- and many-body spectra. It can also be obtained analytically and assumes a
very simple form in the limits g → 0 and g →∞. For weak dissipation, the spectral gap closes
linearly with g and m (for all m), as expected from perturbation theory. On the other hand,
for large dissipation, the spectral gap acts as an order parameter of the transition at m= 1/2.
For m < 1/2, in the limit g → ∞ the gap closes like 1/g leading to a gapless Liouvillian,
signalling a slow approach to the steady-state. For m > 1/2, the gap has the linear scaling
in g, typical of a dissipation-driven relaxation, growing with m as (

p
2m − 1)2, as dictated

by the Marchenko-Pastur law. At the critical point m = 1/2, the gap closes as (m/g)1/3. For

4



SciPost Physics Submission

Figure 1: Schematic representation of the main results of this paper, the single-
particle spectral and steady-state properties of random quadratic Liouvillians. (a)
Phase diagram in the 1/g versus m plane. Phases I and II are separated by the crit-
ical line gc(m) (dashed line). In the limit g → ∞, the phase transition occurs at
m = 1/2, with the spectral gap vanishing for m < 1/2 (red line). (b, c) Single-body
spectrum in the complex plane, with a single connected component in phase I (b)
and two disconnected components in phase II (c). The spectral boundary (red line)
can be obtained analytically. (d, e) Steady-state properties for g →∞ and m> 1/2
(phase I). The steady-state has a single sector with the single-particle effective Hamil-
tonian eigenvalues, ω, distributed according to RMT (d) and GUE statistics for the
spacing ratio r̃ (e). (f, g) Steady-state properties for g →∞ and m < 1/2 (phase
II, red line). The steady-state spectrum splits into an ergodic and a nonergodic sec-
tors, in which the effective-Hamiltonian eigenvalues follow, respectively, RMT and
a normal distribution (f). The r̃ statistics are Poisson in the nonergodic sector and
interpolate from GUE to GOE in the ergodic sector as m→ 0 (g).

large but finite g, the gap is nonzero for any value of m, but still exhibits qualitatively different
behaviours above and below the transition.

The steady-state, to which the system relaxes in the long-time limit, is Gaussian for quadratic
Liouvillians and is thus fully characterized by its single-particle properties. In the limit g → 0
(where there is no decoupling transition), the steady-state single-body spectrum is Gaussian,
fully-mixed, and displays Poisson statistics irrespectively of the value of m. As g increases,
there is a perturbative crossover well-below the threshold g = 1/

p
2 for the appearance of

the decoupling transition and the steady state becomes distributed according to RMT [see
Fig. 1(d)], is mixed but not fully mixed, and exhibits GUE statistics [see Fig. 1(e)]. The purity
interpolates monotonously between the two limits g → 0 and g →∞.

When g is further increased, the steady state is also influenced by the decoupling transition.
In the limit g → ∞, the results can be obtained analytically through perturbation theory.
Above the transition, m > 1/2, the properties attained after the perturbative crossover do
not change. However, for m < 1/2, the spectrum of the steady state also splits into two
independent sectors, see Fig. 1(f). The sector of the fermions coupled to the environment
retains the properties of m> 1/2, except for the spectral statistics which, remarkably, crossover
from GUE to GOE as m→ 0, see Fig. 1(g). The spectrum of the decoupled sector, on the other
hand, is composed of uncorrelated Gaussian random variables displaying Poisson statistics
(nonergodic behavior), see Fig. 1(g). These two sectors are well-separated for small-enough
m, see Fig. 1(f), but overlap for larger m.

We emphasize that the nonergodic features of the steady state were obtained in the limit
g →∞. However, they leave strong imprints in the dynamics at large but finite g and NF .
Indeed, the interplay of the two sectors leads to a decrease of the purity, with a nonmonotonic
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behavior as a function of g, and to an interpolation between RMT and Poisson statistics.
Finally, we note that the properties of random quadratic Liouvillians above the transition

are quantitatively similar to those identified in previous studies of fully random Liouvillians
with unconstrained interactions [39,40] 1. The nonergodic behaviour below the transition is,
however, not accessible to these fully-random Liouvillians.

2 Random quadratic Liouvillians

2.1 Liouvillian dynamics

The dynamics of the system can be entirely specified by looking at the Liouvillian eigenvalue
problem. In fact, after determining a complete set of Liouvillian eigenmodes ρ j with eigen-
value Λ j [L(ρ j) = Λ jρ j], we can write the evolution of any initial state ρ(0) =

∑

j c jρ j as2

ρ(t) =
∑

j

c je
Λ j tρ j . (3)

All Λ j have a non-positive real part as ensured by the complete positivity of the Lindblad
equation. Moreover, the Hermiticity preservation property guarantees that eigenvalues are
real or come in complex-conjugated pairs. Generically, because of trace preservation, there
is a single eigenstate, the steady state ρNESS, with corresponding zero eigenvalue. ρNESS is
invariant under time evolution, as

dρNESS

d t
= L(ρNESS) = 0. (4)

If there are no other eigenvalues with ReΛ j = 0, the system will relax to the steady state
as t →∞, since all the other eigenmodes of the Liouvillian decay to zero. The rate at which
the system relaxes to the steady state is dictated by the Liouvillian spectral gap, defined as

Gap= −max
Λ j ̸=0

Re(Λ j). (5)

2.2 Vectorization and adjoint fermions

To study the eigenvalue problem of the quadratic Liouvillian superoperator, it is convenient to
recast the it as a matrix acting in an enlarged Hilbert space, a procedure known as vectoriza-
tion. In the Fock space of NF fermions, pure states are represented by 2NF -dimensional vectors
and mixed states and operators by 2NF × 2NF matrices. Alternatively, we can see mixed states
and operators as 22NF -dimensional vectors over a tensor product of two copies of the fermionic
Fock space, while superoperators are represented by 22NF × 22NF matrices. More explicitly, if
|α〉 and |β〉 are basis elements in the fermionic Fock space and Ô1,2 Fock-space operators, we
map

|α〉 〈β | → |α〉 ⊗ 〈β |T , (6)

Ô1 |α〉 〈β | Ô
†
2 →

�

Ô1 ⊗ Ô†T

2

�

|α〉 ⊗ 〈β |T . (7)

1With the important caveat that here we studied the single-particle properties, whereas for non-quadratic mod-
els many-body properties have to be considered. Nonetheless, unconstrained fully-random Liouvillians also exhibit
a connected spectrum, the gap (which is the same in the single- and many-body case) has the exactly same scaling
as here, and the steady state exhibits an nonergodic-to-ergodic crossover and corresponding change in purity as
function of g.

2We assume a generic case where Liouvillian has no non-trivial Jordan blocks. For the most general treatment
see, e.g., Ref. [9].
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Following this procedure, the Liouvillian [Eq. (1)] is mapped to:

L= −i
�

Ĥ ⊗ 1− 1⊗ ĤT
�

+ g
M
∑

µ=1

¦

2 L̂µ ⊗ L̂∗µ − L̂†
µ L̂µ ⊗ 1− 1⊗ (L̂†

µ L̂µ)
T
©

. (8)

It is possible to generalize the notion of creation and annihilation operators to this space
while keeping the Liouvillian quadratic, resembling the Hamiltonian of a free theory [7]. To
enforce the canonical anticommutation relations in the vectorized representation also, we de-
fine the vector

ã =
�

c1 ⊗ eiπN T
, . . . , cNF

⊗ eiπN T
, c†

1 ⊗ eiπN T
, . . . , c†

NF
⊗ eiπN T

,

1⊗ c†T

1 eiπN T
, . . . ,1⊗ c†T

NF
eiπN T

,1⊗ eiπN T
cT
1 , . . . ,1⊗ eiπN T

cT
NF

�T
,

(9)

where N =
∑

i c†
i ci is the number operator, which satisfies {ãi , ã†

j } = δi j as required. ãi
are known as adjoint fermions. An important feature of this vector is that it is particle-hole
symmetric, i.e.,

�

ã†
�T
= S̃ã, S̃ =

�

S 0
0 S

�

, S =

�

0 1
1 0

�

. (10)

S and S̃ implement the particle-hole in the original and vectorized spaces, respectively. This
vectorization scheme is equivalent to third quantization [7]. For an explicit demonstration,
we refer the reader to Appendix A.

2.3 Single-particle spectrum and diagonalization

Recall that, as mentioned in Sec. 1 [see Eq. (2)], the Liouvillian in Eq. (1) for a system of NF
fermions is said to be quadratic if

Ĥ =
1
2

2NF
∑

i, j=1

C†
i Hi jC j and L̂µ =

2NF
∑

j=1

lµ jC j .

The 2NF×2NF matrix H, the so-called single-particle Hamiltonian, is Hermitian and can always
be chosen to satisfy particle-hole symmetry, SHT S = −H. In turn, the dissipative contribution
to the Liouvilian is determined by the M×2NF non-Hermitian (and in general complex) matrix
{lµ j}

j=1,...,NF
µ=1,...,M (recall that M is the number of independent decay channels).

Next, we define the matrices

N jk =
∑

µ

lµ j l
∗
µk, NS = SN T S, (11)

the particle-hole-symmetric and antisymmetric combinations

Γ =
N + NS

2
, ΓB =

N − NS

2
, (12)

and the non-Hermitian single-particle effective Hamiltonian

K = H − i gΓ . (13)

In Appendix B.1 we show that

L= − i
2

ã† Lã−
i
2

Tr (K) , (14)
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where the single-particle Liouvillian is given by

L =

�

H − i gΓB −i gNSSJ
−i gJSN −J (H + i gΓB)

T J

�

, (15)

with

J =

�

1 0
0 −1

�

. (16)

Note that the matrix L also satisfies particle-hole symmetry, S̃ LT S̃ = −L.
As shown in Appendix B.2, we can (almost) always find a change of basis that renders the

Liouvillian diagonal,

L= − i
2

2NF
∑

i

βi b
′
i bi , (17)

where bi and b′i (note, however, b′i ̸= b†
i ) satisfy the canonical anticommutation relations

{bi , b j}= 0, {b′i , b′j}= 0, and {bi , b′j}= δi j , (18)

and {β j} j∈{1,...,2NF } constitutes the single-body spectrum of the Liouvillian. Moreover, the βi
coincide with the eigenvalues of the non-Hermitian Hamiltonian K . It is clear that due to the
form of Eq. (17), the many-body spectrum of the Liouvillian is completely determined by the
single-body spectrum (take all possible sums of subsets of {−iβ j/2} j), which implies that all
its properties are encapsulated in the latter. We will thus focus on studying the features of the
single-body spectrum in Sec. 3.1.

Since the Liouvillian is quadratic and the single-body spectrum is entirely contained in the
left-half plane, the Liouvillian spectral gap corresponds to the gap of the single-body spectrum.
Thus, the following definition holds:

Gap= −
1
2

max Imβi . (19)

2.4 Steady state

From the diagonal form (17), the steady state ρNESS is found to be the state annihilated by
all bi . For a quadratic Liouvillian, any initial Gaussian state will remain Gaussian under time
evolution, which implies that the steady state must be Gaussian as well. We can thus describe
the steady state entirely by its correlation matrix3,

χi j = Tr
�

ρNESSCiC
†
j

�

, (20)

which satisfies the particle-hole symmetry

SχT S = 1−χ. (21)

Alternatively, we can define an effective thermal-like Hamiltonian Ω̂ as

ρNESS =
1
Z

eΩ̂, Z = Tr eΩ̂. (22)

This parametrization is convenient as it automatically takes care of the normalization and
positive-definiteness of the steady-state density matrix. Moreover, because the steady state is
Gaussian, Ω̂ can be fully characterized by the single-particle matrix Ω,

ρNESS =
1
Z

e
1
2

∑

i j C†
i Ωi j C j , (23)

3Also referred to as covariance matrix.
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with normalization
Z = Tr

�

e
1
2

∑

i j C†
i Ωi j C j

�

=
Æ

det (1+ e−Ω), (24)

which is related to the correlation matrix through the matrix relation:

χ =
�

1+ eΩ
�−1

. (25)

Remarkably, the steady-state correlation matrix can also be entirely determined by the single-
particle non-Hermitian Hamiltonian. Indeed, as shown in Appendix B.3, one can solve the
steady-state Lyapunov equation for the correlation matrix:

χK† − Kχ = i gN . (26)

Alternatively, χ can be constructed more efficiently using the right and left eigenvectors of the
single-particle matrix L, see Eq. (100) below and Ref. [7]. The equivalence of the two methods
is established in Appendix B.3.

2.5 Majorana basis

At this point, we change to the Majorana basis, which is more convenient for our purposes. It
is implemented by the unitary transformation

U =
1
p

2

�

1 1
i1 −i1

�

. (27)

From it, we define the Majorana operators

f = { f1, . . . , f2NF
}T =
p

2UC , (28)

where C is the Nambu vector defined after Eq. (2), satisfying f †
i = fi and the anticommutation

relation { fi , f j}= δi j .
In this basis, K is transformed into a more suitable matrix, K(U),

K(U) = H(U) − i gΓ (U) = UKU† (29)

where H(U) is an anti-symmetric matrix,

H(U)
T
= U∗HT U T = USHT SU† = −H(U), (30)

and Γ (U) is a symmetric matrix,

Γ (U) = U
lT l∗ + Sl†lS

2
U† =

1
2

�

l(U)
T

l(U)
∗
+ l(U)

†
l(U)

�

=
1
2

�

N (U) + N (U)
T
�

, (31)

with N (U) = l(U)
T

l(U)
∗

and
l(U) = lU T . (32)

2.6 Random sampling

The characterization of the Liouvillian’s spectrum and steady state is now completely deter-
mined by the specification of matrices H(U) and l(U), which can only be obtained from the
knowledge of the system’s Hamiltonian and interactions with the environment. However, as-
suming that the dynamics is generic, one can argue based on Jayne’s principle of maximal
entropy that they are well described by a random matrix of a symmetry class consistent with
the symmetries of the system. In this case, we restrict H(U) to the set of Hermitian matrices

9
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satisfying particle-hole symmetry H(U)
T
= −H(U) and randomize all other degrees of freedom,

corresponding to 2NF × 2NF Gaussian random matrices of class D in the Altland-Zirnbauer
classification [55]. The simplest way to achieve this is to draw a matrix Hint from the Ginibre
orthogonal ensemble (GinOE) [56], i.e., sample a real matrix from the probability distribution
∼ exp{−NF Tr

�

H†
intHint

�

} and then set

H(U) =
i
2

�

Hint −HT
int

�

. (33)

On the other hand, since we do not impose any restriction on the jump operators, we sample
l(U) from the Ginibre unitary ensemble (GinUE) [56] of rectangular M × 2NF matrices, i.e.,

sample a complex matrix from the probability distribution ∼ exp
¦

−NF Tr
�

l(U)
†
l(U)

�©

. This

is equivalent to saying that the 2NF × 2NF matrix N (U) is drawn from the complex Wishart
ensemble [also known as the Laguerre unitary ensemble (LUE)].

Now that we have established a procedure to determine matrices H(U) and l(U), we can
turn to the study of the spectral and steady-state properties of random Liouvillians, which are
entirely determined by single-body ones, allowing us to focus just on the properties of the
latter. We start with the spectral properties.

3 Spectral properties

We are interested in the support of the single-body spectrum, as it contains the information on
the relevant timescales of the problem. The rightmost boundary point gives the spectral gap
(recall that the single- and many-particle gaps coincide). The width of the spectrum along the
imaginary axis is related to the timescale for the oscillations of the states’ phases. Finally, if the
spectral support splits into several components there is a hierarchy of decay times [43,44], with
separate sets of modes decaying at different rates, interspersed by periods of metastability [45].

We first show that our random model can be mapped exactly, in the limit NF →∞, to a
slightly different non-Hermitian Hamiltonian whose boundary has been computed using free
probability and use it to identify a phase transition in the single-body spectrum, see Sec. 3.1.
Then, in Sec. 3.2, we focus on the spectral gap, studying it it detail, both numerically and
analytically, as a function of g and m.

3.1 Single-body spectrum

3.1.1 Spectral boundary

As mentioned in Sec. 2 and proven in Appendix B.2, the spectrum of the single-body Liou-
villian matrix L coincides with that of K = H − i gΓ . In Refs. [51–54], the authors studied
the spectrum of a related random matrix Heff = Hr − i grΓr , with Hr and Γr = AAT being
2NF ×2NF Hermitian matrices drawn from the Gaussian Orthogonal Ensemble (GOE) and the
real Wishart ensemble [also known as the Laguerre orthogonal ensemble (LOE)], respectively.
(A is a real 2NF × M matrix.) Using replicas [51], supersymmetry [52], diagrammatics [53],
or free probability [54], they established that, in the limit NF →∞, the spectrum of Heff is
supported on a bounded region in the complex plane delimited by a boundary that satisfies
the equation

x2 = −
m

gr y
−
�

gr

1− 2gr y
+

m
2y
−

1
2gr

�2

, (34)

where m= M/(2NF ) and x + i y represents a point in the complex plane4.
4Note that Eq. (34) differs from that in Refs. [53] by some numerical factors, which have their origin in

the different normalizations used. Using our conventions, Hr is sampled from the probability distribution

10
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In our case, the problem is slightly different as, to obtain the single-body spectrum, we
need to calculate the eigenvalues of K(U) = H(U)− i gΓ (U) rather than Heff = Hr − i grΓr . Quite
remarkably, apart from numerical prefactors and subleading 1/NF corrections, the eigenvalue
distribution of K(U) and Heff coincide, as we argue below.

The difference between H(U) and Hr stems from the fact that the former is Hermitian
and anti-symmetric whereas the latter is Hermitian and symmetric. Although they belong to
distinct symmetry classes, their resolvents and, hence, their eigenvalue distributions match to
leading order in 1/NF , as we review in Appendix C. Because the resolvent is the only property
of H(U) that enters the determination of the eigenvalue distribution of K(U), we can interchange
it with Hr .

In addition, Γ (U) is drawn from a symmetrized complex Wishart ensemble, in contrast
to Γr , which is drawn from the real Wishart ensemble. However, we can also simply draw
Γ (U) from the real Wishart ensemble, provided we double the number of jump operators
(m= M/2NF → 2M/2NF = 2m):

Γ
(U)
j,k =

1
2

M
∑

µ=1

�

�

l(U)
�

µ, j

�

l(U)
�∗
µ,k +

�

l(U)
�

µ,k

�

l(U)
�∗
µ, j

�

=
M
∑

µ=1

�

�

l(U)
�R
µ, j

�

l(U)
�R
µ,k +

�

l(U)
�I
µ, j

�

l(U)
�I
µ,k

�

=
2M
∑

µ=1

�

l(U)r

�

µ, j

�

l(U)r

�

µ,k ,

(35)

where
�

l(U)
�

µ, j =
�

l(U)
�R
µ, j + i

�

l(U)
�I
µ, j and l(U)r is a 2M × 2NF real matrix built from concate-

nating
�

l(U)
�R

(taken as the first M rows of l(U)r ) and
�

l(U)
�I

(the last M rows).
With the equivalence of the spectra of K(U) and Heff established, to obtain the boundary

of the single-body spectrum of the Liouvillian in the limit NF →∞, we must simply replace
m by 2m in Eq. (34), together with x by −2y and y by 2x (since the single-body spectrum is
obtained from the spectrum of K by multiplication by −i/2):

y2 = −
m

4g x
−
�

g/2
1− 4g x

+
m
4x
−

1
4g

�2

. (36)

In Fig. 2, we plot the curve parametrized by Eq. (36) in the complex plane and compare it
with the single-body spectrum of −iK/2 obtained numerically by exact diagonalization (ED),
for three different points in the parameter space (m, g). We observe that it adjusts perfectly to
the boundary of the spectrum in all cases. The very small number of outliers can be attributed
to finite-size effects, since the boundary becomes sharp in the limit NF →∞. In particular,
one can show [51–54] that for NF →∞, no states lie outside the boundary with probability
going to 1.

All the spectral information, including the phase diagram in the 1/g versus m plane and
the spectral gap, can be extracted from Eq. (36), as we discuss in the remainder of this section.

3.1.2 Phase diagram

From Fig. 2, we can observe that two different behaviours of the single-body spectrum emerge
for different values of m, for a given g > 1/

p
2. For large enough m and small enough g,

the single-body spectrum is supported on a simply-connected region of the complex plane, see
Fig. 2(a). We call this region of (m, g) space phase I. When g is increased or m decreased across
some critical value gc(m) or mc(g), a phase transition occurs [51–54], see Fig. 2(b), and the
single-body spectrum splits into two disconnected components. In phase II, for large enough

∼ exp{−NF Tr
�

H2
r

�

} and A from the distribution ∼ exp{−NF Tr
�

AAT
�

}.
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Figure 2: Single-body spectrum of the Liouvillian for m= 0.2 and g = 1 (a), g ≈ 5.2
(b), and g = 20 (c). The the 2NF blue points are obtained numerically by exact
diagonalization (for a single realization with NF = 4000) and are bounded by the
red curve, which is parametrized by Eq. (36).

m and small enough g, the two components of the single-body spectrum are well separated,
see Fig. 2(c).

In the 1/g versus m plane, phases I and II are separated by a critical line that can be
obtained analytically from Eq. (36), see Fig. 1(a). Indeed, assuming the spectrum to be the
union of convex sets in the complex plane (an assumption verified in all numerical simulations)
and since the boundary described by Eq. (36) is clearly symmetric under reflections across the
real axis, the number of components of the spectrum is determined by the number of real roots
of the equation y2 = 0, which can be rewritten as:

x4 +
�

(1+ 2m)g −
1

2g

�

x3 +

�

1
16g2

+
g2(1− 2m)2

4
−m−

1
4

�

x2

+
mg
4

�

1
2g2

+ 1− 2m
�

x +
m2

16
= 0.

(37)

Since Eq. (37) is quartic in x , it can have at most four real roots. In that case, the spectrum of
the Liouvillian is formed by two disconnected components, each bounded between two real
roots of Eq. (37), i.e., the system is in phase II. Alternatively, there could be only two real
roots (and a pair of complex-conjugated roots that do not contribute to the boundary of the
spectrum), in which case the system would be in phase I. The phase transition between these
two situations occurs when two real roots coalesce into a double root. The number of real
roots of Eq. (37) is controlled by its discriminant

∆4 = −
m3

128

�

�

1− 2(1− 2m)g2
�3
+ 216mg4

�

. (38)

As discussed, the phase transition corresponds to the merger of two distinct real roots into a
double root, which occurs if and only if the discriminant vanishes. Setting ∆2

4 = 0 thus gives
the critical line in the 1/g vs m plane [51,52,54]:

1
gc
=
r

2
�

1− (2m)1/3
�3

. (39)

If∆4 > 0, i.e., g > gc, then Eq. (37) has four real roots and we are in phase II. In the converse
case ∆4 < 0, i.e., g < gc, there are only two real roots and the spectrum belongs to phase I.

From Fig. 1(a) and Eq. 39), it is clear that a critical point exists at (m, g) = (1/2,∞).
Below m = 1/2, there is always a finite value of g for which the spectrum splits into two
distinct regions. However, the closer m gets to 1/2, the larger are the values of g required for
the phase transition to occur, tending to infinity as m→ 1/2. Above m = 1/2, the spectrum
is connected for all values of g and just stretches indefinitely as we increase g. On the other
hand, for g < 1/

p
2, the system also belongs to phase I for all values of m. As discussed in
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Figure 3: Average spectral gap as a function of the dissipation strength g and number
of jump operators m. Left: Gap as a function of g for three different values of m:
m = 0.25, 0.50, and 0.75. The full colored curves give the numerical results, the
dashed black curve gives the exact result in the limit NF →∞ obtained by solving
Eq. (36). Right: Gap as function of m in limit g →∞. The red dots correspond to the
numerical results for g = e10 and black curve to the exact result of Eq. (40). In both
panels, the numerical results were obtained by exact diagonalization, for NF = 500
and 400 realizations, and match perfectly the analytical predictions.

Sec. 1.1, below g = 1/
p

2 the Hamiltonian contribution to the Lindbladian is strong enough to
couple all degrees of freedom, preventing the system to split into two decoupled components.

In phase II, when we increase g, the two regions drift further and further apart from each
other, both becoming very thin stripes in the limit g → ∞, one of them aligned with the
imaginary axis with increasingly small absolute real part and the other aligned with the real
axis with increasingly large absolute real part. Physically, the existence of these two distinct
regions of eigenvalues means that the group of modes associated to the region with larger
absolute real part will decay much faster than the others. In an intermediate time window,
the system will evolve to a metastable state in which only the modes that belong to the region
with smaller absolute real part are populated. Eventually, those also fade away and the system
reaches the the steady state.

3.2 Spectral gap

We now turn to the computation of the spectral gap, obtained from the single-body spectrum
through Eq. (19). In the limit NF →∞, the boundary of the single-body spectrum is deter-
mined by Eq. (36) and, thus, the gap is just the largest real root of Eq. (37). In Fig. 3(a), we
plot the gap as a function of g for three different values of m obtained both numerically from
ED and exactly from Eq. (37), showing perfect agreement between the two. While the expres-
sion for the gap can be obtained analytically for any g, its precise functional form is rather
complicated and not particularly enlightening. In what follows we will see, however, that sim-
ple scaling expressions can be obtained in the limits of weak (g → 0) and strong (g →∞).
The latter case is particularly interesting due to the influence of the decoupling transition.

3.2.1 Weak dissipation

Regardless of the value of m, the gap goes to zero in the limit g −→ 0. This behaviour is
expected as, for g = 0, there is just unitary evolution (the Liouvillian becomes simply the von
Neumann generator) and so all the eigenvalues lie on the imaginary axis, which means that, by
definition, the gap vanishes. In fact, since in Fig. 3(a) the slope of all curves approaches 1 for
very small g, we see that, in this limit, Gap∝ g, a result that can be understood perturbatively.

13
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Since a Taylor expansion of the gap around g = 0 yields Gap =
∑∞

n=1 cn gn, the mentioned
scaling behaviour holds unless c1 = 0. Now, H(U) is a random Hermitian and anti-symmetric
matrix and, in the space of all such matrices, the set of degenerate matrices has measure
zero. Thus, we can safely apply non-degenerate first-order perturbation theory and conclude
that c1 = min

�

{v†
i Γ
(U)vi}i

�

, where {vi}i is the set of normalized eigenvectors of H(U). Γ (U)

is a positive semi-definite matrix and thus c1 = 0 only if there is a vi that belongs to the
nullspace of Γ (U). Clearly, Eq. (35) implies that, for m< 1/2, Γ (U) has a nullspace of dimension
2NF − 2M = 2NF (1− 2m). However, except for the trivial case m = 0, this is always a set of
measure zero and, thus, the probability that one of the vi belongs to the nullspace of Γ (U) is
0. For m > 1/2, the nullspace of Γ is empty. As a consequence, c1 ̸= 0 and Gap∝ g, when
g → 0, for all m.

3.2.2 Strong dissipation

On the other hand, the limit g −→∞ has a nontrivial dependence on m as depicted in Fig. 3(a).
In fact, for m< 1/2, the spectral gap closes in this limit (Gap∝ g−1), whereas for m> 1/2 it
grows linearly with g →∞, which suggests a phase transition in the gap at m = 1/2, where
an intermediate behaviour is observed, Gap∝ g−1/3. The quantity limg→∞ (Gap/g) can be
used as an order parameter for the phase transition as it vanishes for m≤ 1/2 and acquires a
nonzero finite value for m > 1/2. In Fig. 3(b), we plot it as a function of m and compare it
with the exact result

lim
g→∞

Gap
g
=

1
2

max
¦

�p
2m− 1

�2
, 0
©

(40)

that follows from the Marchenko-Pastur law [57]. Indeed, we have limg→∞ iK(U)/g = Γ (U),
where Γ (U) is a 2NF × 2NF matrix drawn from a real Wishart ensemble with rank 2M , and
hence the gap coincides the the hard edge of the Marchenko-Pastur distribution.

The critical behaviour can be traced to the existence or not of zero eigenvalues in the
spectrum of Γ (U) and understood perturbatively. Since K(U) = g

�

H(U)/g − iΓ (U)
�

, we can
expand the eigenvalues of K(U)/g in powers of 1/g and write the gap as Gap= g

∑∞
n=0 dn g−n.

To zeroth order, the spectrum of K(U)/g is the spectrum of−iΓ (U). If m> 1/2, Γ (U) is a positive-
definite matrix and thus d0 = min(Im({γi}i)) > 0 , where {γi}i is the spectrum of Γ (U). This
justifies the linear growth of the spectral gap with g for m> 1/2. However, for m< 1/2, some
of the γi vanish and, consequently, d0 = 0. We must look at the next term in the expansion
and since, to do that, we need to calculate first order corrections to the zero eigenvalues of
Γ (U), we must resort to degenerate perturbation theory. The corrections are thus given by the
eigenvalues of (1/g)w†

i H
(U)w j , where {w j} j is an orthonormal basis of the nullspace of Γ (U).

Since, however, H(U) is Hermitian, all the corrections to these eigenvalues are real and thus
do not affect the gap, leading to d1 = 0. Only at second order in 1/g do non-zero corrections
to the gap arise, which means that Gap = g

∑∞
n=2 dn g−n. In the large g limit, Gap∝ g−1 as

confirmed by Fig. 3(a).
Since m = 1/2 is the critical point, the above expansion in powers of 1/g does not hold.

We need, therefore, to resort to Eq. (36) to determine the gap’s scaling behaviour with g. In
Appendix D we perform an asymptotic analysis of the solutions of Eq. (36) for large g and show
that, at m = 1/2, Gap∝ g−1/3. The same procedure can be employed as an alternative to
the perturbation theory above, in order to obtain the scaling behaviour of the gap for m> 1/2
and m< 1/2 (and the corresponding prefactors), which is also done in Appendix D.

3.2.3 Comparison with non-quadratic models

We conclude this section by comparing the results obtained here with the gap of a fully-random
(non-quadratic) Liouvillian [37–39]. Because the single-body gap coincides with the many-
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body gap the results of the two models can be directly compared. In the weak dissipation
regime, the same linear growth with the dissipation parameter is found in both cases and it
is the expected perturbative result. The strong dissipation regime is, as we have seen, richer.
In the fully-random case, the role of the parameter m is played not by the ratio of dissipation
channels to the number of degrees of freedom (2NF here), but by the number of channels itself
m → M/2. The regime m < 1/2 is, therefore, inaccessible since M is a positive integer. For
fully-random Liouvillians with more than one decay channel (corresponding to m > 1/2) we
also observed a linear-in-g growth of the gap, which again is the expected perturbative result
for the dissipation-dominated dynamics. For the case of a single decay channel (corresponding
to m = 1/2 here) shows the same closing of the gap with ∼ g−1/3 (once one accounts for
different normalization conventions). This closing was interpreted as a Zeno-like phase, but
it was not understood why it is not observed for more than one decay channel (corresponding
to m > 1/2). We can now understand the difference between m > 1/2 and m < 1/2 as a
transition in which some degrees of freedom become decoupled from the environment and,
thus, protected from dissipation, with m = 1/2 corresponding to the critical transition point.
Our findings thus shine a new light to the special role played by fully-random Liouvillians with
a single jump operator (corresponding here to m= 1/2). Remarkably, the scaling with m also
coincides in both cases (see Appendix D for a computation of the prefactors, which can be
compared with Ref. [39]) and we conclude that the spectral gap coincides in quadratic and
fully random Liouvillians in the mutually accessible regimes (m ≥ 1/2), pointing towards a
high degree of universality in dissipative quantum chaos. On the other hand, realistic models
with constrained interactions, such as quadratic Liouvillians, contain an additional regime
(m< 1/2) of suppressed dissipation.

4 Steady-state properties

We now turn to the characterization of the steady state, to which the system relaxes in the
long-time limit. Because of its Gaussian nature (see Sec. 2), we will base our discussion at the
level of the single-particle correlation matrix χ or the thermal-like Hamiltonian Ω, which are
related through Eq. (25) (proven in Appendix B.3). We will start by studying the spectrum
of these single-body operators, which describe the occupation probabilities of different single-
particle states in the long-time limit, see Sec. 4.1. We will focus on the limits of very weak
(g → 0) and very strong dissipation (g →∞), which can be studied perturbatively. To infer
the behavior of the steady state as a function of g, we will consider, in Sec. 4.2, the first
nontrivial moment of the steady-state distribution—the purity—which captures its degree of
mixing. Finally, in Sec. 4.3 we probe the ergodicity of the steady state by analyzing the single-
particle level statistics of Ω. As was the case for the single-body spectrum and spectral gap,
the results are qualitatively different for m> 1/2 and m< 1/2.

4.1 Spectral distribution

The correlation matrix χ is the solution of Eq. (26), reproduced here for convenience:

χK† − Kχ = i gN .

Because of the particle-hole symmetry of χ, Eq. (21), its eigenvalues come in pairs {λi , 1−λi},
i ∈ {1, ..., NF}. Consequently, the spectrum of Ω (denoted as {ωi}i) is formed by the pairs
{ωi ,−ωi}. The statistical behaviour of λi and ωi depends on the value of the parameters
g and m. Equation (26) can be solved perturbatively for g → 0 and g → ∞, allowing us
to analytically study the spectral distribution in these two limiting cases. The details of the
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perturbative expansion are given in Appendix E, while here we state the final results and work
out the consequences for the single-particle effective Hamiltonian Ω.

4.1.1 Weak dissipation

In the weak dissipation limit (g → 0), the eigenvalues of χ to first order in g are determined
by Eq. (113) of Appendix E, which we rewrite in the Majorana basis by performing the unitary
transformation U , Eq. (27):

λi =
v†

i N (U)vi

v†
i

�

N (U) +
�

N (U)
�T�

vi

, (41)

with vi an eigenvector of H(U). Since H(U) is Hermitian and anti-symmetric, it can always be
diagonalized by a unitary matrix of the form OU , for some orthogonal matrix O. Therefore,
in the eigenbasis of H(U), Eq. (41) reads

λi =

�

N (H)
�

i,i
�

N (H) + (U T U)†
�

N (H)
�T

U T U
�

i,i

=

�

N (H)
�

i,i
�

N (H) +
�

SN (H)S
�T�

i,i

, (42)

where U T U = S, N (H) =
�

l(H)
�T �

l(H)
�∗

and
�

l(H)
�

= l(U)OU∗. From Eq. (42), we conclude
that the spectrum of χ is composed of NF independent pairs {λi , 1−λi}, with

λi =

∑M
µ=1

�

�

�

�

l(H)
�

µ,i

�

�

�

2

∑M
µ

�
�

�

�

�

l(H)
�

µ,i

�

�

�

2
+
�

�

�

�

l(H)
�

µ,i+NF

�

�

�

2� =






1+

∑M
µ

�

�

�

�

l(H)
�

µ,i+NF

�

�

�

2

∑M
µ

�

�

�

�

l(H)
�

µ,i

�

�

�

2







−1

. (43)

The eigenvalues of Ω, in turn, are:

ωi = log







∑M
µ

�

�

�

�

l(H)
�

µ,i+NF

�

�

�

2

∑M
µ

�

�

�

�

l(H)
�

µ,i

�

�

�

2






. (44)

Each
�

�

�

�

l(H)
�

µ,2i

�

�

�

2
= Re

�

�

l(H)
�

µ,i

�2
+ Im

�

�

l(H)
�

µ,i

�2
is a sum of two random variables with

average σ2 = 1 and variance 2σ4 = 2 (recall that Re
�

l(H)
�

µ,i and Im
�

l(H)
�

µ,i are sampled
from a normal distribution with zero mean and standard deviation σ = 1). We can now resort
to the central limit theorem to argue that, for sufficiently large M ,

ωi ≈ log

 

1+ 1p
M

Z ′i+NF

1+ 1p
M

Z ′i

!

≈

√

√ 2
M

Zi , (45)

where Z ′ and Z are, respectively, a set of 2NF and NF random variables following a normal
distribution with unit variance. We conclude that the steady-state single-body spectrum in the
weak dissipation limit is composed of a set of uncorrelated Gaussian random variables with
variance 2/M . In Fig. 4, we plot this prediction against the numerical results obtained by exact
diagonalization and find perfect agreement.

It is clear from Eq. (45) that limM→∞χ = 1/2, which means that, in the limits N , M →∞
with m fixed and g → 0, the steady state of a random quadratic Liouvillian is the fully-mixed
state. We will elaborate on this in Sec. 4.2 below. Moreover, we expect single-body Poisson
spectral statistics because of the uncorrelated nature of different ωi , a prediction confirmed
in Sec. 4.3.
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Figure 4: Spectrum of the effective Hamiltonian Ω for NF = 500, m = 0.25 (a) and
m= 0.75 (b), and g = 10−10. The histograms were obtained by exact diagonalization
for 100 disorder realizations, with the correlation matrix obtained by the method
described in Appendix E. The blue line represents a normal distribution with variance
p

2/M , as predicted by Eq. (52).

4.1.2 Strong Dissipation

In the strong dissipation limit (g →∞), m plays a significant role in the statistical behaviour
of the spectrum of Ω, with two qualitatively different regimes for m> 1/2 and m< 1/2, which
can be traced back to the decoupling transition at m= 1/2.

If m> 1/2, χ is determined, in the eigenbasis of Γ (U), by Eq. (116) of Appendix E:

χi, j =
w†

i N
(U)w j

γi + γ j
, (46)

where {γi}i and {wi}i are the set of eigenvalues and orthonormal eigenvectors of Γ (U), re-
spectively. Since Γ (U) is positive semidefinite, γi ≥ 0. Note that, for m > 1/2, there are no
zero eigenvalues of Γ (U), and hence γi + γ j ̸= 0 always holds. From Eq. (46) it follows that
the eigenvalues of χ are, in general, correlated. Since they are completely determined by the
eigenvectors and eigenvalues of a Wishart matrix, we conjecture that they can be related to
the Marchenko-Pastur law, although we were not able to do so explicitly.

When m< 1/2, χ cannot be obtained from Eq. (116) since γi+γ j = 0 for some pairs (i, j).
More precisely, χ becomes a matrix that acts separately in two subspaces (see Appendix E):
subspace N̄ spanned by the eigenvectors of Γ (U) with a corresponding non-zero eigenvalue,
�

wN̄

�

i , and its complement, subspace N , which is also the nullspace of Γ (U), spanned by the
eigenvectors (wN )i . Correspondingly, the spectrum splits into two independent components.
Anticipating the results found below, we call N̄ the RMT or ergodic sector and N the Poisson
or nonergodic sector.

The component of χ that acts in N̄ (i.e., in the sector with no vanishing γi), χN̄ N̄ , is directly
obtained from Eq. (116) by replacing wi with

�

wN̄

�

i . The only difference to the case m> 1/2
is thus a reduction of dimensionality. On the other hand, in Appendix E, we show that the
eigenvalues of χNN (i.e., in the sector with zero eigenvalues of Γ (U)) are given by Eq. (126),
which can be rewritten as

λi =
1
2



1+
(wN )

†
i H(U)

NN̄

�

Γ
(U)
N̄ N̄

�−1 �

Γ
(U)
B

�

N̄ N̄

�

Γ
(U)
N̄ N̄

�−1
H(U)

N̄N
(wN )i

(wN )
†
i H(U)

NN̄

�

Γ
(U)
N̄ N̄

�−1
H(U)

N̄N
(wN )i



 , (47)

where we used that
�

Γ
(U)
N̄ N̄

�T
=
�

Γ
(U)
N̄ N̄

�

,
�

H(U)
NN̄

�T
= −

�

H(U)
N̄N

�

and Γ (U)
N̄ N̄
+
�

Γ
(U)
B

�

N̄ N̄
= N (U)

N̄ N̄
.

Given the similarity of Eqs. (41) and (47), it is possible to replicate the argument we used for
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the weak-dissipation case to find the eigenvalues λi and ωi in this sector. To do so, we first
note that H(U)NN is anti-symmetric and thus we can diagonalize it with the matrix OU , for an
orthogonal matrix O. As a consequence, Eq. (47) can be rewritten as

λi =
1
2
+

�

H(H)
NN̄

�

Γ
(U)
N̄ N̄

�−1 �
Γ
(U)
B

�

N̄ N̄

�

Γ
(U)
N̄ N̄

�−1
H(H)

N̄N

�

i,i
�

H(H)
NN̄

�

Γ
(U)
N̄ N̄

�−1
H(H)

N̄N

�

i,i

, (48)

where H(H)
NN̄
= H(U)

NN̄
OU . H(U)

NN̄
is a 4NF m×2NF (1− 2m) matrix with random purely imaginary

entries. As a consequence, the first NF (1− 2m) columns of H(H)
NN̄

are independent complex-

valued random vectors and
�

H(H)
NN̄

�

j,k
=
�

H(H)
NN̄

�

j,k+NF (1−2m)
, for k ∈ {1, ..., NF (1− 2m)}. Just

as in the weak dissipation case, this implies that the spectrum of χ associated to this sector is
also composed of pairs {λi , 1−λi}. Due to this symmetry, from now on we will just focus on
i ∈ {1, ..., NF (1− 2m)} in Eq. (48).

To proceed, we assume that different unitary transformations were performed in the N̄ sec-
tor in the numerator and in the denominator: in the former to the eigenbasis of

�

Γ (U)
�−1
Γ
(U)
B

�

Γ (U)
�−1

and in the latter to the eigenbasis of Γ (U)
N̄ N̄

. Note that since all these transformations are unitary

in their respective subspaces and independent of H(H)
NN̄

, the entries of H(H)
NN̄

remain indepen-
dent and (complex) normally distributed after the transformation. Therefore, denoting the
eigenvalues of

�

Γ (U)
�−1
Γ
(U)
B

�

Γ (U)
�−1

by αi , we conclude that

�

H(H)
NN̄

�

Γ
(U)
N̄ N̄

�−1 �
Γ
(U)
B

�

N̄ N̄

�

Γ
(U)
N̄ N̄

�−1
H(H)

N̄N

�

i,i
=

2M
∑

µ=1

αµ

�

�

�

�

H̃(H)
N̄N

�

µ,i

�

�

�

2

�

H(H)
NN̄

�

Γ
(U)
N̄ N̄

�−1
H(H)

N̄N

�

i,i
=

2M
∑

µ=1

γ−1
µ

�

�

�

�

H̃(H)
N̄N

�

µ,i

�

�

�

2
(49)

Since
�

�

�

�

H(U)
NN̄

�

i,µ

�

�

�

2
is a random variable with average σ = 1 and variance 2σ2 = 2, by

applying the central limit theorem we conclude that

2M
∑

µ=1

αµ

�

�

�

�

H(H)
N̄N

�

µ,i

�

�

�

2
∼

2M
∑

µ=1

αµ + X = X , X ∼ Normal

 

0, 2
2M
∑

µ=1

α2
µ

!

2M
∑

µ=1

γ−1
µ

�

�

�

�

H(H)
N̄N

�

µ,i

�

�

�

2
∼

2M
∑

µ=1

γ−1
µ + Y, Y ∼ Normal

 

0,2
2M
∑

µ=1

γ−2
µ

! (50)

In fact, it is central to this argument that
∑2M
µ=1αµ = 0, which is due to the fact that

�

Γ (U)
�−1
Γ
(U)
B

�

Γ (U)
�−1

is anti-symmetric and thus Tr
�

�

Γ (U)
�−1
Γ
(U)
B

�

Γ (U)
�−1�

= 0.
Note that, despite hidden in the notation, the variables X and Y are not independent.

However, it does not pose any problem as, in the thermodynamic limit,
∑2M
µ=1 γ

−1
µ = 2M〈γ−1〉

and therefore

λi ∼
1
2
+

1
2M

X

〈γ−1〉+ Y
2M

∼
1
2
+

1
p

2M
Normal

�

0,2
〈α2〉
〈γ−1〉2

�

+O
�

1
M

�

(51)

For ωi , this yields

ωi ∼
4
p

M
Normal

�

0,
Var (α)
〈γ−1〉2

�

, (52)
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Figure 5: Spectrum of the effective Hamiltonian Ω, for NF = 500, m = 0.25 (a) and
m = 0.75 (b), g = 106. The histograms were obtained by exact diagonalization for
100 disorder realizations, with the correlation matrix obtained by the method de-
scribed in Appendix E. In (a), the spectrum splits into two independent sectors. The
central region corresponds to the nonergodic sector (subspace N), and the distribu-
tion is Gaussian, as shown in the left inset, where we compare the eigenvaluesω cen-
tered at their mean and normalized by their standard deviation [ω̃= (ω−〈ω〉)/σω]
against a normal distribution with unit variance (red line). The remaining eigenval-
ues belong to the ergodic sector and are perfectly described by Eq. (46), see right
inset (red line). In (b), there is no nonergodic sector, and all eigenvalues are dis-
tributed according to Eq. (46).

In summary, for m> 1/2, the eigenvalues ofΩ are correlated according to RMT, as dictated
by Eq. (46). In contrast, for m< 1/2, the steady-state spectrum splits into two sectors: in the
first, the eigenvalues of Ω are still distributed according to Eq. (46), but in a space of smaller
dimension; the second sector is formed by a set of uncorrelated Gaussian random variables
(Poisson level statistics are checked in Sec. 4.3). As in the weak dissipation case, it becomes
clear from Eq. (52) that limM→∞χNN = 1/2, signalling that the Poisson sector is fully mixed.

In Fig. 5, we plot the spectrum of the single-particle effective Hamiltonian obtained numer-
ically form ED. In Fig. 5(a) (phase II, m < 1/2), the spectrum splits into two well-separated
sectors. The central eigenvalues are normally distributed, see left inset, while the larger eigen-
values (in absolute value) follow Eq. (46), see right inset. The parameters 〈γ−1〉 and Var(α)
appearing in the variance of the nonergodic eigenvalues can be written in terms of the matrices
Γ (U) and Γ (U)B as

〈γ−1〉= Tr
�
�

Γ
(U)
N̄ N̄

�−1�

and Var(α) = Tr
�

�
�

Γ
(U)
N̄ N̄

�−1�2�

+Tr

�

�

�
�

Γ
(U)
N̄ N̄

�−1�2
(Γ (U)B )N̄ N̄

�2�

,

(53)
where averaging over the appropriate random ensemble is understood. While 〈γ−1〉 and the
first term in Var(α) can be re-expressed in terms of the Marchenko-Pastur distribution, we were
unable to evaluate the second term in Var(α). While this prevents a parameter-free comparison
with the numerical results, we still confirmed perfect Gaussianity of the nonergodic sector of
the steady state in the inset of Fig. 5(a). In Fig. 5(b) (phase I, m> 1/2), all eigenvalues belong
to a single ergodic sector.

4.2 Purity

To study the steady-state spectral distribution away from the limits g → 0,∞, we look at its
moments as a function of g. The first moment is identically one, because of the normalization
of probability. The purity, P = Tr

�

ρ2
NESS

�

, is the lowest nontrivial moment and quantifies the
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Figure 6: Reduced purity as a function of the dissipation strength g for seven different
values of m= 0.10–0.95, as given by Eq. (54). These results were obtained by exact
diagonalization, with the correlation matrix obtained by the method described in
Appendix E, for NF = 60 and by averaging over 400 different realizations.

degree of mixing of the steady state.
Since it is possible to express the steady-state density matrix as a function of its correlation

matrix χ, the same same applies to the purity:

P = Tr
�

ρ2
NESS

�

=
Tr
�

eC†ΩC
�

Tr
�

e
1
2 C†ΩC

�2 =
det

�

1+ e−2Ω
�

1
2

det (1+ e−Ω)
=
Ç

det
�

(1−χ)2 +χ2
�

, (54)

where we applied Eqs. (23)–(25) to obtain the third and fourth equalities.
In the following, instead of the purity itself, we consider the quantity

1
NF

log
P
PFM

= log2+
1

NF
logP , (55)

which we dub reduced purity, and where PFM = 2−NF is the purity of the fully-mixed state.
The reduced purity, coincides with the shifted and rescaled second Rényi entropy, is finite in
the limit NF →∞ and its lower bound (corresponding to the fully-mixed state) is zero.

In Fig. 6, we plot the reduced purity as function of g for different values of m and NF = 60.
In the limit g → 0, it tends to a fixed value close to zero, for all m. In fact, it is expected
to converge to zero in the limit NF → ∞ regardless of m, since, as we proved in the last
subsection, limM→∞χ = 1/2 (note that this proof also justifies the slower convergence for
smaller values of m depicted in Fig. 6).

As we increase g, two different behaviours of the purity emerge independently of NF in
the large-NF limit. If m ≥ 1/2, it increases monotonically with g, stabilizing to a constant in
the limit of very large g. The value of this plateau decreases with m. On the other hand, for
m < 1/2, the purity initially increases, attaining a maximum at a finite value of g, and then
it starts decreasing, converging in the limit g →∞ to a value smaller than for m > 1/2, and
which increases with m. The nonmonotonic behavior of the purity is a consequence of the
splitting of the steady-state spectrum into two independent sectors at m = 1/2. In the RMT
sector, the steady state has a finite reduced purity, which follows the same functional form as
for m> 1/2. On the other hand, in the Poisson sector, the steady-state is fully mixed, as shown
in the previous section, and hence has vanishing reduced purity. The competition of the two
sectors determines the total purity of the steady-state. Since the nullspace of Γ has dimension
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Figure 7: Mean level-spacing ratio 〈r̃〉 as a function of as a function of the dissipation
strength g for six different values of m = 0.1–0.75. These results were obtained by
exact diagonalization, with the correlation matrix obtained by the method described
in Appendix E, for NF = 60 and by averaging over 400 different realizations.

2NF (1− 2m), the Poisson sector becomes increasingly dominant as m decreases. In the limit
m→ 0, almost all eigenvalues of χ are obtained from the component χNN and we conclude
that the reduced purity converges to zero.

4.3 Spectral statistics

We conclude our study of the steady state by studying the single-particle spectral statistics of
Ω, which characterize the ergodicity, or lack thereof, of the steady state. We will focus on the
distribution of consecutive spacing ratios, r̃n [58, 59]. Let sn be the sequence of differences
between consecutive eigenvalues of Ω. Then, r̃n is defined as [58]

r̃n =min
�

sn+1

sn
,

sn

sn+1

�

. (56)

This quantity has the advantage of being independent of the local level density and bounded
(0< r̃n < 1). If the steady state is ergodic, the spectral correlations of Ω coincide with those of
a random matrix of the appropriate symmetry class. On the other hand, if it is nonergodic, it
will display Poisson statistics characteristic of uncorrelated random variables. The spacing ra-
tio distributions for all three classes of level repulsion—the Gaussian Unitary Ensemble (GUE),
Gaussian Orthogonal Ensemble (GOE), and Gaussian Symplectic Ensemble (GSE)—are well
known and approximated by [59]

Pβ(r̃) =
2
Zβ

(r̃ + r̃2)β

(1+ r̃ + r̃2)3β/2+1
, (57)

with Z1 = 8/27 (β = 1, GOE), Z2 = 81
p

3/4π (β = 2, GUE), and Z4 = 729
p

3/4π (β = 4,
GSE), while for Poisson statistics it is

PPoi(r̃) =
2

(1+ r̃)2
. (58)

The average spacing ratio 〈r〉 =
∫ 1

0 d r̃ P(r̃) has become a popular measure of ergodicity and
of the presence of time reversal in the ergodic phase. Its value for the GOE, GUE, and Poisson
statistics is given by, respectively [59]:

〈r̃〉1 = 4−2
p

3≈ 0.536, 〈r̃〉2 =
2
p

3
π
−

1
2
≈ 0.603, and 〈r̃〉Poi = 2 log2−1≈ 0.386. (59)
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Figure 8: Level spacing ratio distribution r̃ for NF = 500, m= 0.25 (a) and m= 0.75
(b), in the limit g → 0. The histograms were obtained by exact diagonalization,
with the correlation matrix obtained by Eq. (41), for 100 different realizations. The
colored lines correspond to the analytical results of Eqs. (57) and (58). We find
perfect agreement with the Poisson prediction, confirming nonergodic behavior.

(In the following, the GSE will play no role and will not be referred to further.)
As a first indication of the influence of m and g on the spectral statistics of Ω, we plot 〈r̃〉

as a function of g for different values of m in Fig. 7. We observe that, in the limit g → 0, 〈r̃〉
converges to 〈r̃〉Poi (the Poisson value) for all m. Figure 8 corroborates this result by clearly
showing that the full distribution of r̃ in the limit g → 0 perfectly matches PPoi(r̃). In fact,
this result follows from Eq. (45), where we showed that the spectrum of Ω is Gaussian and
composed of NF uncorrelated pairs of eigenvalues.

On the other hand, in the limit g →∞, two distinct behaviors are observed in Fig. 7: if
m > 1/2, r̃ converges to 〈r̃〉2 (the GUE value), whereas, if m < 1/2, it converges to different
values depending on m. The GUE ratio statistics for m > 1/2 are confirmed in Fig. 9(d). The
results for m < 1/2, however, show that there is a crossover from GUE statistics at m = 1/2
to Poisson statistics as m → 0. Again, this behaviour can be understood from our results in
Sec. 4.1. There, we showed that, in the Poisson sector (N), the spectrum of ΩNN is composed
of uncorrelated pairs of eigenvalues [Eq. (52)]. This prediction is confirmed in Fig. 9(c).
In contrast, in the ergodic sector (N̄), the eigenvalues of ΩN̄ N̄ are in general correlated. In
our generic setting, χ (and hence Ω) has no symmetries besides particle-hole symmetry and,
consequently, we expect GUE statistics in the ergodic sector, see Fig. 9(b). Remarkably, in
the m→ 0 limit, the ergodic sector supports GOE statistics instead, see Fig. 9(a), a point we
elaborate on further at the end of this section. Moreover, the relative weight of the ergodic
and Poisson sectors changes as a function of m, although their dimensions always add up to
2NF . As a consequence, the spectra of ΩNN and ΩN̄ N̄ coexist in the interval m ∈ (0;1/2) and
it is the variation of their relative contributions that causes the crossover from GUE to Poisson
statistics as m decreases. In the limit m → 0, the dimension of N̄ converges to 2NF and the
spectral statistics of Ω becomes Poissonian.

These two limits (weak and strong dissipation) have implications in the spectral statistics
of the steady state at finite g. As depicted in Fig. 7, as g increases from −∞ the spectral
correlations of the steady state exhibit a perturbative crossover from Poisson to GUE statistics
for all m. A plateau is reached when g is of the order of the inverse mean level spacing of
the Hamiltonian. The plateau extends to infinity in the case m > 1/2, in agreement to the
previous discussion of the limit g →∞. On the other hand, for m < 1/2, the plateau is of
finite length and, for sufficiently large g, the effects of the nullspace of Γ become relevant.
Therefore, the curve 〈r̃〉 decreases again to meet its expected value in the limit g →∞, that
is, the result of the overlap of the two independent spectra previously mentioned.

Having established the main features of the dependence of the spectral correlations of
the steady state on g and m, we now discuss a curious aspect of the strong dissipation limit,
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Figure 9: Level spacing ratio distribution r̃ in the RMT sector for m= 0.025, the RMT
(b) and Poisson (c) sectors for m= 0.25, and for m= 0.75 (d), in the limit g →∞.
The histograms in panels (a), (b), and (d) were obtained by exact diagonalization
of Eq. (46) for NF = 3000 and 1000 different realizations. The histogram of panel
(b) was obtained by solving Eq. (47) for NF = 500 and 100 distinct realizations.
The colored lines correspond to the analytical results of Eqs. (57) and (58). We find
perfect agreement with the theoretical predictions in each case.

namely, that the ergodic sector displays GOE statistics in the limit m→ 0, contrarily to a the
expectation of GUE statistics discussed above. As shown in Fig. 9(a) and (b), for finite NF , there
is a GUE-to-GOE crossover as m decreases from m = 1/2 to m → 0. In the thermodynamic
limit, GUE statistics are attained for any finite m, while GOE statistics hold only in the strict
limit m→ 05. In Appendix F, we show that the spectrum of χN̄ N̄ can be expanded in powers
of
p

m and, to lowest nontrivial order (∼ m), it coincides with the spectrum of a matrix from
class CI [55], which has the same level correlation as the GOE. We thus conclude that inside
the phase m < 1/2 the spectral correlations of the steady state gradually change with m due
to two competing phenomena: a RMT-to-Poisson crossover due to the relative weight of the
ergodic and nonergodic sectors and a GUE-to-GOE crossover in the ergodic sector.

5 Conclusions and outlook

In this paper, we studied the single-body spectral and steady-state properties of a fermionic
random quadratic Liouvillian. We studied the spectral support and boundary of the single-body
Liouvillian spectrum, the spectral gap ruling the approach to the steady-state, and the single-
body distribution, purity, and single-body level statistics of the steady state. Our analysis fo-
cused on the phase transition observed in the single-body spectrum and its repercussions in the
steady-state properties. More precisely, in phase I, the spectral and steady-state properties of
quadratic and fully-random Liouvillians are qualitatively similar: the spectrum is formed by a
single connected component; the gap grows linearly with dissipation strength; the steady-state

5Note that m→ 0 corresponds to any value of M that is either fixed or grows slower than NF . The limit m→ 0
therefore still covers a wide range of physical systems.
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purity is monotonic with dissipation strength; and there is a nonergodic-to-ergodic crossover
in the steady-state level statistics, the full steady state being ergodic for sufficiently strong
dissipation. In phase II, there are qualitative differences: the single-body spectrum splits into
two disconnected components at a finite system-environment coupling strength; the spectral
gap closes for strong dissipation; the purity is non-monotonic with dissipation strength; and
the steady-state decouples into an ergodic and a nonergodic sectors.

In summary, our work identifies a regime of universal random Markovian dissipation but
also illustrates the possibility of nonergodic behaviour in quadratic open quantum systems (see
also Ref. [60]) and the potential to suppress dissipation even in the presence of strong system-
environment coupling. A natural extension of this work is to ask whether these nonergodic
features survive interactions. Their robustness could be addressed, for instance, with the SYK
Lindbladian [46–48]). Moreover it is also not clear whether the nonergodic features of the
steady state survive in the thermodynamic limit NF →∞ at large but finite g (i.e., whether
the red line in Fig. 1(a) is smoothly connected to the rest of the diagram). This interesting
question would require a more detailed finite-size scaling analysis and is deferred to future
work. Other interesting possibilities are to consider bosonic Liouvillians and non-Markovian
generators. Finally, further work is needed to determine whether the properties of stochastic
Markovian dissipative models that we described are also present in more realistic models of
open quantum systems.
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A Vectorization and third quantization

In this appendix we explicitly show the equivalence between our vectorization scheme and the
more standard third quantization, first introduced in Ref. [7].

In Ref. [7], it was noted that an orthonormal basis under the Hilbert-Schmidt inner product
〈O1|O2〉= 2−N f Tr

�

O†
1O2

�

can be defined on the (vectorized) space of operators by considering
the set of all possible vectors

�

�

�Pα
�

=
�

�

� f α1
1 f α2

2 ... f
α2NF

2NF

¶

, (60)

where αi ∈ {0, 1} and { fi}i represents a set of 2NF Majorana fermions satisfying the Clifford
algebra { f j , fk}= 2δ j,k.They can be obtained from the creation and annihilation operators, c†

j
and c j , through

fi =
p

2
∑

j

Ui jC j , (61)

where U is defined in Eq. (27).
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At this point, creation and annihilation operators can be naturally defined on the vectorized
space through

d j

�

�

�Pα
�

= δα j ,1

�

�

� f j Pα
�

=
1
2

�
�

�

� f j Pα
�

−
�

�

�ΠPαΠ f j

�

�

d†
j

�

�

�Pα
�

= δα j ,0

�

�

� f j Pα
�

=
1
2

�
�

�

� f j Pα
�

+
�

�

�ΠPαΠ f j

�

�

,
(62)

where Π = eiπN is the fermionic parity. The Liouvillian becomes quadratic when written as
a function of these creation and annihilation operators and its diagonalization proceeds in a
very similar manner to our case (see Appendix B).

Our goal is to find a linear transformation from the elements of ã to d j and d†
j . In order to

do this, we first note that

(Π⊗ 1) d j

�

�

�Pα
�

=







−1
2

�
�

�

� f j PαΠ
�

+
�

�

�PαΠ f j

�

�

=
∑4NF

k=1 Q(1)jk ãk

�

�

�Pα
�

,
�

Π⊗ΠT
�

�

�

�Pα
�

=
�

�

�Pα
�

1
2

�
�

�

� f j PαΠ
�

−
�

�

�PαΠ f j

�

�

= −
∑4NF

k=1 Q(2)jk ãk

�

�

�Pα
�

,
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Π⊗ΠT
�

�

�

�Pα
�

= −
�

�

�Pα
�

,

(Π⊗ 1) d†
j

�

�

�Pα
�
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−1
2

�
�

�

� f j PαΠ
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−
�

�

�PαΠ f j

�
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k=1 Q(2)jk ãk

�

�

�Pα
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�
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�Pα
�

1
2

�
�

�

� f j PαΠ
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+
�

�

�PαΠ f j

�

�

= −
∑4NF

k=1 Q(1)jk ãk
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�Pα
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,
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�

�

�

�Pα
�

= −
�

�

�Pα
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(63)

where

Q(1) = −
1
p

2

�

U USJ
�

and Q(2) = −
1
p

2

�

U −USJ
�

. (64)

It is now easy to see that, after building the matrices

Q1 =

�

Q(1)

Q(2)

�

= −
1
p

2

�

U 0
0 U

��

1 SJ
1 −SJ

�

,

Q−1 = −
�

Q(2)

Q(1)

�

=
1
p

2

�

U 0
0 U

��

1 −SJ
1 SJ

�

,

(65)

we can relate ã with D = {d1, . . . , d2NF
, d†

1, . . . , d†
2NF
}T through







Q†
1 (Π⊗ 1)D = ã, if

�

Π⊗ΠT
�

�

�

�Pα
�

=
�

�

�Pα
�

,

Q†
−1 (Π⊗ 1)D = ã, if

�

Π⊗ΠT
�

�

�

�Pα
�

= −
�

�

�Pα
�

.
(66)

The two subspaces that appear in the previous equation correspond to the two parity sectors

of Ref. [7]. In fact, if
�

Π⊗ΠT
�

�

�

�Pα
�

=
�

�

�Pα
�

(respectively,
�

Π⊗ΠT
�

�

�

�Pα
�

= −
�

�

�Pα
�

), Pα contains

an even (respectively, odd) number of Majorana fermions.
We can now apply this transformation to Eq. (15) to reproduce the results in Ref. [7]:

L= − i
2

ã† Lã−
i
2

Tr(K) =







− i
2 D̃† L(1)D D̃− i

2 Tr(K), if
�

Π⊗ΠT
�

�

�

�Pα
�

=
�

�

�Pα
�

− i
2 D̃† L(−1)

D D̃− i
2 Tr(K), if

�

Π⊗ΠT
�

�

�

�Pα
�

= −
�

�

�Pα
�

, (67)

where

L(γ)D =QγLQ†
γ =





H(U) − i
2

�

N (U) +
�

N (U)
�T� −iδγ,1

�

N (U) −
�

N (U)
�T�

−iδγ,−1

�

N (U) −
�

N (U)
�T�

H(U) + i
2

�

N (U) +
�

N (U)
�T�



 , (68)
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and γ ∈ {−1, 1} is an eigenvalue ofΠ⊗ΠT . The matrices H(U) (Hermitian and anti-symmetric)
and N (U) (Hermitian) of the previous expression are defined in Sec. 2.

It is now clear that Eqs. (67) and (68) in the even-parity sector (γ = 1) yield the same
result as Eq. (22) of Ref. [7] 6. We have thus successfully established the equivalence between
both paths to vectorization.

B Spectrum and steady state of fermionic quadratic Liouvillians

In this appendix, we prove the statements made in Sec. 2 about the spectrum and steady-
state of quadratic fermionic Liouvillians. In Appendix B.1 we show how to write the single-
body matrix of the Liouvillian using our vectorization scheme, proving Eq. (15). Then, in
Appendix B.2 we show how to diagonalize this single-body matrix and, thus, prove Eq. (17).
Finally, in Appendix B.3, we connect the steady-state and the single-body spectrum, proving
Eq. (26).

B.1 Single-body Liouvillian

In this section, we start by showing how to arrive at Eq. (15) from the vectorization of the
Lindblad equation, given in Eqs (6)–(9). First, the von Neumann generator,

−i
�

Ĥ,ρ
�

= −
i
2

∑

i j

Hi, j

�

C†
i C jρ −ρC†

i C j

�

, (69)

becomes, after vectorization,

−
i
2

∑

i j

Hi, j

�

C†
i C j ⊗ 1− 1⊗ C T

j C†T

i

�

|ρ〉

=−
i
2

∑

i j

Hi, j

�

C†
i C j ⊗ 1+ 1⊗ C†T

i C T
j

�

|ρ〉

=−
i
2

ã†

�

H 0
0 −JHT J

�

ã |ρ〉 .

(70)

Particle-hole symmetry, SHT S = −H, was implicitly used in the first equality.
One can proceed in a similar way to determine the vectorized version of the jump term in

the Lindblad equation:

g
∑

µ

L̂µρ L̂†
µ = g

∑

µi j

l∗µ,i lµ, jCiρC†
j →

1
2

ã†

�

0 −gNSSJ
−gJSN 0

�

ã |ρ〉 . (71)

Finally, the dissipative contribution,

−g
∑

µ

1
2

¦

ρ, L̂†
µ L̂µ

©

= −g
∑

µi j

1
2

lµ,i l
∗
µ, j

�

C†
i C jρ +ρC†

i C j

�

(72)

becomes
�

−
1
2

ã†

�

gΓB 0
0 gJΓ T

B J

�

ã−
i
2

Tr (K)

�

|ρ〉 , (73)

6Note that these equations seem to differ by some factors, but they are just a consequence of dif-
ferent definitions of the Lindblad equation (a factor of 2 in the dissipation part) and the fact that
Ĥ = 1

2

∑

i j C†
i Hi j C j =

1
4

∑

i j

�

H (U)
�

i j
wi w j .
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where we used Tr(H) = Tr(SHS) = −Tr(H) = 0.
Note that similarly to the case of H, we can always chose the adjoint fermionic creation

and annihilation operators to satisfy particle-hole symmetry, which, in the vectorized space,
reads as S̃AT S̃ = −A, where S̃ is defined in Eq. (10).

Summing Eqs. (70), (71), and (73), we can finally write the Liouvillian single-particle
matrix:

L= − i
2

ã†

�

H − i gΓB −i gNSSJ
−i gJSN −J (H + i gΓB)

T J

�

ã−
i
2

Tr (K) , (74)

concluding the proof of Eq. (15).

B.2 Single-body spectrum

To diagonalize the Liouvillian, we must look at transformations of the form ã −→ b̃ = UãU−1,
so that the canonical anticommutation relations are preserved. Let us consider the matrix
exp{− i

2

∑

i j ã†
i∆i j ã j} with ∆ = −S̃∆T S̃ (note that ∆ can always be chosen to satisfy particle-

hole symmetry). It follows that

∑

i j

�

1
2

ã†
i∆i j ã j , ã†

k

�

=
∑

i

ã†
i∆ik, (75)

which implies that

e
i
2

∑

i j ã†
i∆i j ã j ã†e−

i
2

∑

i j ã†
i∆i j ã j = ã†ei∆. (76)

Defining b̃ =R−1ã and b̃′T = ã†R, where R= ei∆, we find:

L= − i
2

b̃′T
�

R−1 LR
�

b̃−
i
2

Tr (K) . (77)

We have reduced the diagonalization of the Liouvillian to the determination of the matrix e−i∆

that diagonalizes L. Note that in general b̃′T ̸= b̃†, all we know is that {b̃i , b̃′j}= δi j . Also, the

particle-hole symmetry of ∆ leads to the following restriction for the choice of e−i∆:

S̃RT S̃ = S̃ei∆T
S̃ = e−i∆ =R−1. (78)

Any R that diagonalizes L can be made to satisfy Eq. (78) by reordering columns, if necessary.
To see this, suppose first that vL is a left eigenvector of L, i.e., LTνL = τννL . Then,

LS̃νL = −S̃ LTνL = −τνS̃νL . (79)

If {τ(i)}i is a set of 2NF eigenvalues of L with, for example, non-positive imaginary part and
{ν(i)L }i and {ν(i)R }i are the corresponding left and right eigenvectors, respectively, then one can
easily check that the matrix

R=R1P23, (80)

with
R1 =

�

ν
(1)
R , . . . ,ν(2N)

R , S̃ν(1)L , . . . , S̃ν(2N)
L

�

(81)

and

P23 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






(82)
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does indeed satisfy Eq. (78).
At this point, all that is left to complete the diagonalization of the Liouvillian is to determine

the matrix R1 explicitly. To this end, we first note that L can be made block upper triangular

after application of the transformation U = 1p
2

�

1 −1
JS JS

�

:

U−1 LU =

�

K 2i gΓB
0 K†

�

. (83)

Note that the previous equation implies the eigenvalues of L and K coincide. It is straightfor-
ward to see that the matrix L can be finally diagonalized by application of another change of
basis, implemented by

V =

�

R XR†−1

0 R†−1

�

, (84)

where X is the solution of
X K† − KX = 2i gΓB. (85)

Indeed,

(UV )−1 L(UV ) =

�

R−1KR 0

0
�

R−1KR
�†

�

=

�

DK 0
0 D∗K

�

, (86)

Recalling that K = H − i gΓ , with Γ a positive semidefinite matrix, all the eigenvalues of K are
non-positive, which implies that

�

v(1)R , . . . , v(2NF )
R

�

=
1
p

2

�

R
JSR

�

. (87)

To calculate the corresponding left eigenvectors we note that, after choosing the correct nor-
malization, X LXR = 1, where X L (XR) is a matrix whose rows (columns) are the left (right)
eigenvectors of L. Thus, inverting UV and keeping the first 2NF rows gives us the desired
result:

�

v(1)L , . . . , v(2NF )
L

�

=
1
p

2

� �

1+ X T
�

RT−1

JS
�

1− X T
�

RT−1

�

(88)

and, therefore,

R1 =
1
p

2

�

R S
�

1+ X T
�

RT−1

JSR −J
�

1− X T
�

RT−1

�

. (89)

Finally, the Liouvillian assumes the form

L= − i
2

�

b̃′T DL b̃
�

−
i
2

Tr (K) , (90)

where DL =R−1 LR obeying the particle-hole symmetry:

S̃DL S̃ = S̃RT LT
�

R−1
�T

S̃ = −R−1 LR= −DL . (91)

Therefore, we can write Diagonal (DL) = {β (1),−β (1),β (2),−β (2)}, where β (1) and β (2) are
both vectors of NF distinct eigenvalues of K . Actually, Eq. (90) can be further simplified by
noting that it follows from Eq. (78) that

S̃ b̃ = S̃R−1ã =
�

ã†R
�T
= b̃′, (92)
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which means that b̃ = {b(1), b′(1), b(2), b′(2)} and b̃′ = {b′(1), b(1), b′(2), b(2)}, where b(1) and
b(2) are both vectors of NF annihilation operators and b′(1) and b′(2) of the corresponding
creation operators. Equation (90) can be finally reduced to

L= − i
2

2
∑

k=1

NF
∑

j=1

β
(k)
j

�

b′(k)j b(k)j − b(k)j b′(k)j

�

−
i
2

Tr (K)

= −
i
2

2
∑

k=1

NF
∑

j=1

β
(k)
j b′(k)j b(k)j +

i
2

 

2
∑

k=1

N
∑

j=1

β
(k)
j − Tr (K)

!

= −
i
2

2NF
∑

j=1

β j b
′
j b j ,

(93)

where b = {b(1), b(2)} and β = {β (1),β (2)}. The levels −iβ j/2 are the single-particle eigenval-
ues of the Liouvillian. The many-body eigenvalues are immediately obtained as

Λn = −
i
2

∑

j

n jβ j , (94)

where n= {n1, . . . , n2NF
} and n j = 0, 1.

B.3 Steady state

From the discussion above, all elements of β have nonpositive imaginary part, which implies
that if Im(βi) ̸= 0 holds for all βi , then the steady state, which satisfies L(ρNESS) = 0, is unique
and it is annihilated by all bi . To see this, we note that L†(1) = 0 or, in vectorized notation,
〈1|L = 0. Thus, 〈1| and |ρNESS〉 form a biorthogonal left-right eigenvector pair. Using the
anticommutation relations of bi and Eq. (93), this implies that

〈1| b′iL |O〉= −〈1|Lb′i |O〉+
i
2
βi 〈1| b′i |O〉 , (95)

or equivalently,

〈1| b′i

�

L− i
2
βi

�

|O〉= 0, (96)

for all vectorized operators O. Since the single-body spectrum of the Liouvillian is contained in
the lower-half plane and, by assumption Im(βi) ̸= 0, we have L− i

2βi ̸= 0 and, hence, Eq. (96)
implies that, for all i, 〈1| b′i = 0 and, consequently, bi |ρNESS〉= 0.

For quadratic systems, the steady state is Gaussian and completely determined by its 2NF×2NF
correlation matrix,

χi j = Tr
�

ρNESSCiC
†
j

�

=
2N
∑

k=1

S jk 〈1| ãi ãk |ρNESS〉 , (97)

where i ∈ {1, ..., 2NF}. Remarkably, χi j is also easily determined in terms of the single-body
matrices K and ΓB. Indeed, we can write ã as a combination of b and b′

χi j =
2NF
∑

k=1

4NF
∑

α,β=1

S jkRiαRkβ 〈1| b̃α b̃β |ρNESS〉 , (98)

and use the relations

〈1| bi b j |ρNESS〉= 〈1| b′i b
′
j |ρNESS〉= 〈1| b′i b j |ρNESS〉= 0 and 〈1| bi b

′
j |ρNESS〉= δi j (99)
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along with Eq. (89) to simplify Eq. (98):

χi j =
2N
∑

k,n=1

S jkR
(1)
in R(2)kn =

1
2
(1+ X )i j , (100)

with R(1), . . . ,R(4) particle-hole blocks of the matrix R1, i.e., R1 =

�

R(1) R(2)
R(3) R(4)

�

, and X

defined through Eq. (85). The single-particle matrix X thus completely determines the steady
state.

C Resolvent of antisymmetric Hermitian random matrices

In this appendix, we show that the resolvent (also known as the Green’s function) of anti-
symmetric random Gaussian matrices (class D) coincides with that of GUE and GOE matrices
(classes A and AI, respectively), in the large-NF limit. We will use the method of moments, in
which we find the exact leading-order behaviour of the pth moment of a matrix Q and then
infer the resolvent through the relation

G(z) =
1

NF
Tr


1
z −Q

·

=
1

NF

∞
∑

p=0

1
zp+1
〈TrQp〉 . (101)

Let us first compute the resolvent of a GUE matrix Q, with probability distribution P(Q)∼
exp{−NF/2Tr M2}. All odd moments vanish. All even moments can be related to the second
moment (the propagator),

〈QabQcd〉=
1

NF
δadδbc (102)

through Wick’s theorem, i.e., by summing over all possible pair contractions of the indices a,
b, c, etc. For instance, the second moment is trivially




TrQ2
�

=
∑

a,b

〈QabQba〉= NF , (103)

while the first nontrivial moment, the fourth, is given by:




TrQ4
�

=
∑

a,b,c,d

〈QabQbcQcdQda〉

=
∑

a,b,c,d

(〈QabQbc〉 〈QcdQda〉+ 〈QabQda〉 〈QbcQcd〉+ 〈QabQcd〉 〈QbcQda〉)

= NF

�

2+
1

N2
F

�

.

(104)

We can associate to each Wick contraction a perfect matching of the p matrices Q in the trace.
Schematically, for p = 4:




TrQ4
�

= 〈TrQQQQ〉= 〈TrQQQQ〉+ 〈TrQQQQ〉+ 〈TrQQQQ〉.

Then, non-crossing (or planar) perfect matchings (e.g., the ones corresponding to the first
two contractions in the fourth moment) contribute with a factor NF to the trace, while each
crossing in the perfect matching suppresses the contribution of that contraction by 1/N2

F (e.g.,
the third contraction in the fourth moments has a single crossing). The number of non-crossing
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perfect matching of p elements is well-known to be the pth Catalan number, Cp, and, hence,
we conclude that 〈TrQp〉= NF Cp in the large-NF limit. Equation (101) can then be resummed.

Let us now turn to symmetric and antisymmetric random matrices, Q± = (Q ±QT )/
p

2.
Q+ is a GOE matrix, while Q− belongs to class D, as considered in the main text. As before,
we can express each moment of Q± in terms of the propagator of Q using Wick contraction.
The second moment is given by




TrQ2
±

�

=



TrQ2
�

±



TrQQT
�

=



TrQ2
�

±
∑

ab

QabQab = NF ± 1. (105)

We see that the contribution due to (anti)symmetrization is subleading in 1/NF . This carries
over to higher moments: any contraction of Q and QT is suppressed by 1/NF . We note that,
incidently, the corrections due to (anti)symmetrization are less suppressed than those arising
due to nonplanarity. We can proceed similarly for the fourth moment, which is given by:




TrQ4
±

�

=
1
2




TrQ4 ± 4TrQ3QT + 2 TrQ2(QT )2 + TrQQTQQT
�

. (106)

The only nonsupressed contractions (either by symmetrization or nonplanarity) are

1
2

�

〈TrQQQQ〉+ 〈TrQQQTQT 〉
�

=



TrQ4
�

. (107)

For the sixth moment, we find

1
4

�

〈TrQQQQQQ〉+ 3〈TrQQQQQTQT 〉
�

=



TrQ6
�

, (108)

and similarly for higher moments. We conclude that



TrQp
±
�

= 〈TrQp〉 and, hence, their resol-
vents coincide.

D Spectral gap from the asymptotic analysis of Eq. (36)

In this appendix, we extract the leading-order behavior of the gap from an asymptotic analysis
of Eq. (36), which we reproduce here for convenience,

y2 = −
m

4g x
−
�

g/2
1− 4g x

+
m
4x
−

1
4g

�2

,

in the limits g → ∞ and g → 0. This procedure can be employed as an alternative to the
perturbation theory of Sec. 3.2 and yields not only the leading scaling with g but also the
exact prefactor.

Let us fix the notation first. We say that A(g)≍ B(g) if the leading order terms of A and B
are equal (more rigorously, limg→∞ A(g)/B(g) = 1). We are therefore interested in computing
C and α in xg(g) ≍ −C gα, where xg is (minus) the gap and C ≥ 0. We can now proceed as
described before, setting y = 0 and replacing x by −C gα in order to estimate the asymptotic
behavior in Eq. (36). After some manipulations becomes:

±
�s

m
4C

g−(α+1)/2 +
p

4mC g(α+1)/2
�

≍
�

1
2
−m

�

g − C gα −
m
4C

g−α −
1
4

g−1. (109)

If none of the exponents of g in the previous equation match, then every term must vanish
identically and the equation becomes trivial. There are five different values of α for which
some of the exponents match: α= 1, α= 0, α= −1/3, α= −1, and α= −3.
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• At α = −3 the leading order term in the right hand side is −m/(4C)g3 and it is un-
matched in the left hand side, which implies that m= 0. Since the gap at m= 0 trivially
vanishes, we must rule out α= −3.

• Similarly, for α = 0, we obtain that m = 1/2 and then C = 0, which also means that
α= 0 is not allowed.

• For α= −1, Eq. (109) becomes

1
2
−m−

m
4C
= 0⇔ C =

m/4
1/2−m

. (110)

Note that this equation is only valid for m< 1/2 as C must be positive.

• If we instead assumeα= −1/3, then m= 1/2 and±
p

4mC = −m/(4C)⇔ C3/2 = ±
p

m/8.
Since C is positive, C = m1/3/4= 2−1/3/4.

• Last but not least, for α = 1, ±
p

4mC = 1/2 − m − C ⇔ C =
�

1±
p

2m
�2
/2. This

solution exists for all values of m.

By inspection of the graphics present in Fig. 2 of the main text, we can assign one of the
asymptotic behaviours above to each of the intersection points of the boundary with y = 0.

• For m< 1/2, the system is in phase II and thus there are two disconnected regions in the
spectrum and four intersection points. The ones that delimit the region of eigenvalues
with smaller real part correspond to the two solutions for the case α= 1. The other two
must correspond to the other solution available, at α= −1, which means that they have
the same scaling behaviour with g. Since the gap is given by (minus) the intersection
point with largest real part, we conclude that for m< 1/2, Gap∼ m/4

1/2−m g−1.

• For m≥ 1/2 there is just a single connected region (phase I) and thus there are just two
intersection points. At m= 1/2, Gap∼ 2−1/3 g−1/3/4.

• For m> 1/2, Gap∼
�

1−
p

2m
�2

g/2, in agreement with the Marchecko-Pastur formula,
Eq. (40).

The behaviour of xg(g) in the limit g → 0 can also be extracted from Eq. (109) (note that
now A(g) ≍ B(g) means that limg→0 A(g)/B(g) = 1). The non-positive solutions of α cannot
represent the asymptotic behaviour of the gap, since it is clear from the expression for K(g)
that the gap converges to 0 in the limit g → 0. Therefore, we are left with α= 1, for which the
condition ±

p

m/(4C) = −1/4−m/(4C)must be verified. Since C > 0, this equation becomes
p

m/(4C) = 1/2⇔ C = m and thus Gap∼ mg, in agreement with perturbation theory.

E Perturbative steady state spectrum

In this appendix, we compute perturbatively the steady-state correlation matrix and its spec-
trum, in the limits of very weak and very strong dissipation. From Eqs. (85) and (100) in
Appendix B.3, we can write the following equation for the correlation matrix of the steady
state:

χK† − Kχ = i gN . (111)

We are interested in determining the solution to Eq. (111) in the limits g −→ 0 and g −→∞.
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E.1 Weak dissipation

In the weak dissipation limit, we expand χ in powers of g, χ = χ(0) + χ(1)g + χ(2)g2 + . . . ,
and plug it in Eq. (111). Comparing terms order by order, we obtain that:

�

χ(0), H
�

= 0,

− i
�

χ(1), H
�

+ Γχ(0) +χ(0)Γ = N .
(112)

Let {vi}i be an orthonormal eigenbasis of H (the element v j is to be understood as a column
vector). Since χ(0) commutes with H, {vi}i can always be chosen to also form an eigenbasis
of χ(0). Thus, denoting the eigenvalues of H and χ(0) as εi and λi , respectively, the second
equality in Eq. (112) yields

−i
�

χ
(1)
i,i εi −χ

(1)
i,i εi

�

+ 2λi v
†
i Γ vi = v†

i N vi ⇐⇒ λi =
1
2

v†
i N vi

v†
i Γ vi

, (113)

where χ(1)i,i is short-hand notation for v†
i χ
(1)vi . Note that we used that both H and χ(0) are

Hermitian and, consequently, their spectrum is real. We thus find that

lim
g→0
χ(g) = χ(0) =

∑

i

λi vi v
†
i , (114)

with λi given by Eq. (113). Note that, in general, we could have to be more careful here. If
some of the v†

i Γ vi were zero, this result would not be valid and we would have to look at terms
of higher order in g in the power expansion of Eq. (111). This could only happen if vi belongs
to the nullspace of Γ , since Γ is a positive semidefinite matrix. However, since in the present
paper we work with random and independent H and Γ , the probability of v†

i Γ vi = 0 is zero as
the nullspace of Γ is a set of measure zero.

E.2 Strong dissipation

In the strong dissipation limit, χ is expanded in powers of 1/g, χ = χ(0)+χ(1)/g+χ(2)/g2+. . .
and the comparison of terms of the same order in Eq. (111) yields

Γχ(0) +χ(0)Γ = N ,

Γχ(1) +χ(1)Γ = i
�

χ(0), H
�

,

Γχ(2) +χ(2)Γ = i
�

χ(1), H
�

.

(115)

Let {γi}i and {wi}i be the set of eigenvalues and orthonormal eigenvectors of Γ , respectively.
Then, it is easy to see that from the first equality in Eq. (115), we can obtain

�

γi + γ j

�

χ
(0)
i, j = w†

i Nw j⇔ χ
(0)
i, j =

w†
i Nw j

γi + γ j
, if γi + γ j ̸= 0, (116)

where χ(0)i, j = w†
iχ
(0)w j . Since Γ is positive semidefinite, γi ≥ 0. If all γi are positive, then

Eq. (116) completely determines χ(0) = limg→∞χ(g).
However, if γi + γ j = 0, Eq. (116) trivially holds for all χ(0)i, j and we have to look at higher

order terms to compute it. Note that the nullspace of the matrix Γ is contained in the nullspace
of N . In fact, since N and NS = SN T S are positive semidefinite matrices, w†

i Nwi ≥ 0 and
w†

i NSwi ≥ 0. If wi belongs to the nullspace of Γ , then w†
i Γwi = 0⇒ w†

i Nwi = 0⇒ Nwi = 0.
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Suppose, for example, that, in Eq. (116), γ j = 0. Then, because of the property we have

just showed, χ(0)i, j = 0. This means that, introducing the projector onto the nullspace of Γ , PN ,

and onto its orthogonal complement, we have PN̄ , χ(0)
NN̄
= PNχ

(0)PN̄ = 0 andχ(0)
N̄N
= PN̄χ

(0)PN = 0.

This is equivalent to the statement that χ(0) is block diagonal,

χ(0) =

�

χ
(0)
N̄ N̄

0

0 χ
(0)
NN

�

, (117)

where χ(0)
N̄ N̄
= PN̄χ

(0)PN̄ and χ(0)NN = PNχ
(0)PN . χ(0)NN can be determined directly from Eq. (116),

�

χ
(0)
N̄ N̄

�

i j
=

�

wN̄

�†
i NN̄ N̄

�

wN̄

�

j

γi + γ j
, (118)

with (wN̄ )i an eigenvector of Γ that does not belong to its nullspace, whereas, to compute χ(0)NN ,
we must resort to the other equalities in Eq. (115). From the second one, we can write

χ
(0)
NN HNN −HNNχ

(0)
NN = 0,

χ
(0)
N̄ N̄

HN̄N −HN̄Nχ
(0)
NN + iΓN̄ N̄χ

(1)
N̄N
= 0,

χ
(0)
N̄ N̄

HN̄ N̄ −HN̄ N̄χ
(0)
N̄ N̄
+ iΓN̄ N̄χ

(1)
N̄ N̄
+ iχ(1)

N̄ N̄
ΓN̄ N̄ = 0,

(119)

where we used that ΓN̄N = ΓNN = χ
(0)
NN̄
= 0. The first equality states that χ(0)NN and HNN share

the same eigenbasis but it does not allow us to compute its eigenvalues. To determine them,
we start by observing that, from the third equality in Eq. (115),

χ
(1)
NN HNN −HNNχ

(1)
NN = HNN̄χ

(1)
N̄N
−χ(1)

NN̄
HN̄N . (120)

Up to this point, we were completely free to choose a basis {(wN )i}i for the nullspace of Γ as
long as we kept it orthonormal. However, we will fix it now in such a way that HNN becomes
a diagonal matrix: HNN =

∑

i εi (wN )i (wN )
†
i (note that it is always possible since HNN is

Hermitian). Plugging this in Eq. (120), we arrive at:
�

χ
(1)
NN

�

j,k

�

εk − ε j

�

=
�

HNN̄χ
(1)
N̄N
−χ(1)

NN̄
HN̄N

�

jk
. (121)

Setting j = k, we can eliminate the new variable χ(1)NN and write a closed equation for the
variables already present in Eq. (119):

�

HNN̄χ
(1)
N̄N
−χ(1)

NN̄
HN̄N

�

j j
= 0. (122)

We can now solve the second equality in Eq. (119) for χ(1)
NN̄

(and its Hermitian conjugate),

insert it in the last equality and use the fact that, since χ(0)NN HNN = HNNχ
(0)
NN , {(wN )i}i is also

an eigenbasis of χ(0)NN , i.e., χ(0)NN (wN )i = λi (wN )i:
�

−iHNN̄Γ
−1
N̄ N̄

HN̄Nχ
(0)
NN + iHNN̄Γ

−1
N̄ N̄
χ
(0)
N̄ N̄

HN̄N − iχ(0)NN HNN̄Γ
−1
N̄ N̄

HN̄N + iHNN̄χ
(0)
N̄ N̄
Γ−1

N̄ N̄
HN̄N

�

j j
= 0,

(123)
which implies:

2
∑

β

�

HNN̄

�

jβ γ
−1
β

�

HN̄N

�

β j λ j =
∑

αβ

�

γ−1
α + γ

−1
β

�

�

HNN̄

�

jβ

�

χ
(0)
N̄ N̄

�

βα

�

HN̄N

�

α j . (124)
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In the preceding equations, the Greek indices label the eigenvectors that do not belong to the
nullspace of Γ and

�

HNN̄

�

jβ = (wN )
†
j H
�

wN̄

�

β
. We can now use Eq. (118) to simplify the above

result,

2
∑

β

�

HNN̄

�

jβ γ
−1
β

�

HN̄N

�

β j λ j =
∑

αβ

�

HNN̄

�

jβ

�

NN̄ N̄

�

βα

γαγβ

�

HN̄N

�

α j , (125)

and, solving for λ j:

λ j =
1
2

(wN )
†
j HNN̄Γ

−1
N̄ N̄

NN̄ N̄Γ
−1
N̄ N̄

HN̄N (wN ) j

(wN )
†
j HNN̄Γ

−1
N̄ N̄

HN̄N (wN ) j
. (126)

In conclusion, we found that

lim
g→∞

χ(g) =
∑

αβ

�

wN̄

�

α

�

wN̄

�†
α

NN̄ N̄

�

wN̄

�

β

γα + γβ

�

wN̄

�†
β
+
∑

i

λi (wN )i (wN )
†
i . (127)

Considering the case m< 1/2, we now show that Eq. (118) can be considerably simplified.
Noting that N = Γ + ΓB, it is easy to see that

�

χ
(0)
N̄ N̄

�

i j
=

1
2
δi, j +

�

wN̄

�†
i ΓB

�

wN̄

�

j

γi + γ j
. (128)

If we now decompose lµ, j = lR
µ, j + il I

µ, j into its real and imaginary parts, Γ and ΓB can be
rewritten as

Γ j,k =
M
∑

µ

�

lR
µ, j l

R
µ,k + l I

µ, j l
I
µ,k

�

=
2M
∑

µ

yµ, j yµ,k

(ΓB) j,k = i
M
∑

µ

�

lR
µ, j l

I
µ,k − l I

µ, j l
R
µ,k

�

=
2M
∑

µν

yµ, jJµ,ν yν,k,

(129)

where J =
�

0 i1
−i1 0

�

and y =

�

lR

l I

�

.

Since we assume that 2M < 2NF , and due to Eq. (128), only the subspace spanned by the
eigenvectors of Γ associated to non-zero eigenvalues is relevant. We therefore restrict all the
following analysis to this subspace. We start by changing coordinates to the basis defined by
yα, writing the eigenvectors of Γ as

�

wN̄

�

i =
∑

α

�

w̃N̄

�

i,α yα.
The action of Γ on a vector x j =

∑

α x̃α yα, j that belongs to this subspace can thus be written
as

∑

j

Γi, j x j =
2M
∑

µ

yµ, j

∑

α

∑

k

yµ,k yα,k x̃α =
2M
∑

µ

yµ, j

∑

α

Γ̃µ,α x̃α, (130)

implying that Γ̃µ,α =
∑

k yµ,k yα,k is the matrix representation of Γ in the new basis 7. Similarly,
it is easy to see that ΓB in the new basis reads Γ̃B = J Γ̃ .

Since the matrix that implements this change of basis is not orthonormal, the metric after
the transformation is no longer the identity. In fact, it becomes Γ̃ , which means that it must be
included in all inner products computed in this basis. This allows us to rewrite Eq. (128) as

�

χ
(0)
N̄ N̄

�

i j
=

1
2
δi, j +

�

w̃N̄

�T
i Γ̃J Γ̃

�

w̃N̄

�

j

γi + γ j
=

1
2
δi, j + γiγ j

�

w̃N̄

�T
i J

�

w̃N̄

�

j

γi + γ j
. (131)

7Note that in the case where the entries yµ,k are independent real random variables, this transformation estab-
lishes an equivalence between the non-zero eigenvalues of a Wishart matrix with dimension 2NF > 2M and 2M
degrees of freedom with the spectrum of another Wishart matrix with dimension 2M and 2NF degrees of freedom.
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Note that, since the eigenvectors
�

wN̄

�

i are normalized, we have

�

w̃N̄

�T
i Γ̃
�

w̃N̄

�

i = 1⇐⇒
�

w̃N̄

�T
i

�

w̃N̄

�

i =
1
p
γi

, (132)

which means that the norm of
�

w̃N̄

�

i under the usual inner product is 1/
p
γi . For conve-

nience, we perform the transformation
�

w̃N̄

�

i →
�

w̃N̄

�

i /
p
γi , leading to our final expression

for
�

χ
(0)
N̄ N̄

�

i j
:

�

χ
(0)
N̄ N̄

�

i j
=

1
2
δi, j +

p

γiγ j

�

w̃N̄

�T
i J

�

w̃N̄

�

j

γi + γ j
. (133)

F GOE statistics for the steady state in the limit g →∞, m→ 0

In this subsection, we are interested in studying the limit m→ 0 of Eq. (133) for the case of a
random Liouvillian (sampled as described in Sec. 2). We show that the steady state supports
GOE statistics in this limit.

Assuming M and NF are sufficiently large, but such that M ≪ 2NF , we can write

Γ̃ = 1+
√

√ M
2NF
Γ̃ (1), (134)

where, from the central limit theorem, the spectrum of Γ̃ (1), γ(1)i (with γi = 1 +
p

mγ(1)i ), is
convergent in the limit M →∞ and NF →∞ and of order one. Plugging this in Eq. (133)
and Taylor expanding it up to second order in

p
m=

p

M/(2NF ), we obtain:

�

χ
(0)
N̄ N̄

�

i j
=

1
2
δi, j +

1
2

w̃T
i J w̃ j −

m
16

�

γ
(1)
i − γ

(1)
j

�2
w̃T

i J w̃ j +O
�

m3/2
�

= w̃Tχ
(w)
N̄ N̄

w̃+O
�

m3/2
�

,

(135)
where we defined

χ
(w)
N̄ N̄
=

1
2
1+

1
2
J − m

16

�

�

Γ̃ (1)
�2 J +J

�

Γ̃ (1)
�2
− 2

�

Γ̃ (1)
�

J
�

Γ̃ (1)
�

�

. (136)

We conclude that the diagonalization of χ(w)
N̄ N̄

provides the eigenvalues of χ(0)
N̄ N̄

up to first order
in m.

We now resort to first-order perturbation theory to simplify the previous equation while
keeping it exact to first order in m. The eigenvalues of J are either −1 or 1, which means
that the spectrum of χ(w)

N̄ N̄
splits into two regions, one close to 0 and the other to 1. J is

diagonalized by the matrix

Ũ =
1
p

2

�

1 1
−i1 i1

�

. (137)

Defining

Γ̃
(1)
Ũ
= Ũ Γ̃ (1)Ũ† =





�

Γ̃
(1)
Ũ

�

11

�

Γ̃
(1)
Ũ

�

12
�

Γ̃
(1)
Ũ

�

21

�

Γ̃
(1)
Ũ

�

22





=
1
2





Γ̃
(1)
11 + Γ̃

(1)
22 + i

�

Γ̃
(1)
21 − Γ̃

(1)
12

�

Γ̃
(1)
11 − Γ̃

(1)
22 + i

�

Γ̃
(1)
21 + Γ̃

(1)
12

�

Γ̃
(1)
11 − Γ̃

(1)
22 − i

�

Γ̃
(1)
21 + Γ̃

(1)
12

�

Γ̃
(1)
11 + Γ̃

(1)
22 − i

�

Γ̃
(1)
21 − Γ̃

(1)
12

�



 , (138)
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the first order correction to the positive eigenvalues of J is given by the spectrum of

−
m
8

�

Γ̃
(1)
Ũ

�

12

�

Γ̃
(1)
Ũ

�

21
= −

m
16

�

Γ̃
(1)
11 − Γ̃

(1)
22 + i

�

Γ̃
(1)
21 + Γ̃

(1)
12

���

Γ̃
(1)
11 − Γ̃

(1)
22 − i

�

Γ̃
(1)
21 + Γ̃

(1)
12

��

= −
m
16

V V †, (139)

where V = Γ̃ (1)11 − Γ̃
(1)
22 + i

�

Γ̃
(1)
21 + Γ̃

(1)
12

�

is a generic complex symmetric matrix. In the limit

of m → 0 the spacings of the eigenvalues of χ(w)
N̄ N̄

are thus determined by the spacing of the

eigenvalues of V V †. Since the eigenvalues of V V † coincide with the positive eigenvalues of
the chiral matrix

�

0 V †

V 0

�

, (140)

V V † belongs to class CI [55, 61], which has the same level statistics as the GOE. This finally
explains the observation that the level correlations of Eq. (133) approach those of the GOE in
the limit m→ 0.
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