
SciPost Physics Submission

Constant-time Quantum Algorithm for Homology
Detection in Closed Curves

Nhat A. Nghiem1*, Xianfeng David Gu2,3, Tzu-Chieh Wei1,4,5

1 Department of Physics and Astronomy, State University of New York at Stony Brook,
Stony Brook, NY 11794-3800, USA

2 Department of Computer Science, State University of New York at Stony Brook, Stony
Brook, NY 11794, USA

3 Department of Applied Mathematics & Statistics, State University of New York at
Stony Brook, Stony Brook, NY 11794, USA

4 C. N. Yang Institute for Theoretical Physics, State University of New York at Stony
Brook, Stony Brook, NY 11794-3840, USA

5 Institute for Advanced Computational Science, State University of New York at Stony
Brook, Stony Brook, NY 11794-5250, USA

* nhatanh.nghiemvu@stonybrook.edu

March 24, 2023

Abstract

Given a loop or more generally 1-cycle r of size L on a closed two-dimensional
manifold or surface, represented by a triangulated mesh, a question in com-
putational topology asks whether or not it is homologous to zero. We frame
and tackle this problem in the quantum setting. Given an oracle that one can
use to query the inclusion of edges on a closed curve, we design a quantum
algorithm for such a homology detection with a constant running time, with
respect to the size or the number of edges on the loop r, requiring only a sin-
gle usage of oracle. In contrast, classical algorithm requires Ω(L) oracle usage,
followed by a linear time processing and can be improved to logarithmic by
using a parallel algorithm. Our quantum algorithm can be extended to check
whether two closed loops belong to the same homology class. Furthermore,
it can be applied to a specific problem in the homotopy detection, namely,
checking whether two curves are not homotopically equivalent on a closed
two-dimensional manifold.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Overview of essential concepts in homology and cohomology 3
2.2 Mesh Data Structure 4

3 Setup for the quantum approach 6

4 Quantum Algorithm 8
4.1 A Hadamard test procedure for estimating phases 8
4.2 Algorithm for Detecting Homology Class of a Closed Curve r 9

1

SciPost Physics Submission

4.3 Potential Applications 12
4.3.1 Homotopy Detection 12
4.3.2 Winding Number Estimation 13

5 Discussion and Conclusion 14

A More on homology/cohomology basis 15
A.1 Encoding of Cohomology Basis in a Quantum State 15

B Elaboration of The Main Method 15

C Details on Cohomology Basis State Preparation 16

References 18

1 Introduction

Topology and geometry are among the most classic and fundamental areas in pure mathe-
matics. Despite being abstract and sometimes counter-intuitive, their role in both science
and engineering has been impactful. In physics, ideas from topology have provided a frame-
work that explains phases of matter beyond Landau’s symmetry-breaking theory [1], such
as the so-called topological phase of matter, and offered the prospect of fault tolerance with
schemes of topological quantum computation [2]. In engineering and applied sciences, for
example, topological data analysis [3,4] employs techniques from topology to analyze and
identify patterns or shapes of high-dimensional data. The foundation of computational
conformal geometry has also been laid out [5–7], providing valuable tools for applications,
such as mechanical designs, medical imaging, computer vision, and so on.

At the same time, the notion of quantum computers [8–11] has generated an entirely
new frontier in computational science. By harnessing the enigmatic properties of quan-
tum mechanics, such as entanglement and superposition, quantum computers possess the
potential to handle specific challenging computational problems that are not thought to
be efficient within reach of classical computers. Some famous classic problems including
factorization [9], unstructured search [10], and linear system solvers [12], etc. The use
of quantum computers has also been extended to the modern context, such as machine
learning and data science [13–23]. In Ref. [24], quantum computational techniques were
applied to topological data analysis; specifically, a quantum algorithm was constructed to
estimate Betti numbers of a given simplicial complex, which yields an exponential speedup
compared to classical algorithms.

Inspired by the development in both quantum computation and computational topol-
ogy and geometry, here, we attempt to apply quantum approaches to advancing tools and
solving problems in topology and geometry. As a small step, we consider the problem of
detecting the homology class of closed curves or 1-cycles. As explained below, the ability
to detect homologically trivial curves provides a means to a related problem in the homo-
topy detection. The precise statement of our main problem is as follows: given a closed
surface, represented as a triangular mesh, and a closed curve (or loop) on the surface, we
want to know whether or not the curve is homologous to zero, i.e., trivial homologically.
Remarkably, given a sufficient number of qubits and the oracle that queries the curve, our

2

SciPost Physics Submission

algorithm can detect a given closed curve’s homology class of with certainty at a constant
time complexity. We remark that reducing efficient classical solutions to even more effi-
cient quantum algorithms is also of interest from the complexity perspective. One such
example is the 2D hidden linear function problem [25].

The structure of this paper is as follows. First in Sec. 2, we introduce and clarify some
terms/terminologies that are relevant to our subsequent construction. We mention some
assumptions that our algorithm relies on in Sec. 3. In Sec. 4, we explicitly construct the
quantum algorithm for detecting the homology class of closed curves. We conclude with
some discussions and an outlook in Sec. 5. Along the way, we have also developed an
efficient algorithm that creates a uniform superposition of computational basis states that
are in a consecutive sequence; see the Appendix.

2 Preliminaries

2.1 Overview of essential concepts in homology and cohomology

Figure 1: Illustration of chains and the boundary operation. The subscript of
each boundary operator ∂ indicates which chain space it acts on (from the higher
to lower order).

Here, we give a quick overview of homology and cohomology concepts. In the language
of algebraic topology, see, e.g., Ref. [26], we can treat a (discrete) surface as a simplicial
complex, consisting of different dimensional simplices. The linear combinations of sim-
plices, in which the coefficients belong to some ring R, form chains. Two common rings
that are usually used are Z2 and Z. A curve is then a 1-chain in the discrete setting. The
set of k-chains forms a linear vector space called the chain space, denoted by Ck. There is
a map between two chain spaces Ck and Ck−1 called the boundary map ∂k : Ck → Ck−1,
which maps a k-chain to its boundaries, as illustrated in Fig. 1.

A k-chain σk is called closed if ∂kσk = 0, and it is also referred to as a k-cycle. A loop
is such an example. A k-chain σk is called exact if there exists a (k+1)-chain σk+1 such
that

σk = ∂k+1σk+1.

We note that exact chains are closed by virtue of an important property of boundary
map [6]: δ ◦ δ = 0. Two closed k-chains are equivalent if they differ by an exact k-chain.
The equivalence relation divides k-chains into the so-called homology classes, denoted as
Hk(M,Z) (where we assume the ring is Z, for simplicity). Homology theory reflects the
algebraic structure (note that connectivity between points is the key) of a given simplicial
complex via the corresponding homology classes, or more precisely, homology groups.

3

SciPost Physics Submission

On the other hand, cohomology is dual to homology. Given a k-chain σ, a k-cochain
w maps it to a real number w(σ) ∈ R. We can think of cohomology as the association
of elements in homology with a real number. Due to the linearity of their vector spaces,
it is convenient to use a basis in homology and the dual basis in cohomology groups. For
a closed surface of genus g, the dimension of homology/cohomology basis is 2g. Given
a homology basis ⟨h1, h2, . . . , h2g⟩, the corresponding cohomology basis, denoted by as
⟨Ω1,Ω2, . . . ,Ω2g⟩, can be constructed, such that∫

hi

Ωj = δij .

An arbitrary closed curve γ is homologous to zero if and only if∫
γ
Ωα = 0, ∀α ∈ {1, 2, . . . , 2g}. (1)

More concretely, if the closed curves γ has L oriented edges labeled by e⃗j , such that

∂1

 L∑
j=1

βj e⃗j

 =

L∑
j=1

βj(∂1e⃗j) = 0,

where βj ∈ Z. Then the above condition of being homologically zero means that for every
α, we have:

Ωα(γ) =
L∑

j=1

Ωα(βj e⃗j) =
L∑

j=1

βjΩα(e⃗j) = 0. (2)

This formulation is more suitable for constructing of our quantum algorithm, presented
later.

The run time for a naive classical algorithms is O(2g · L) [5], where L is the number
of edges (1-chains) on the closed curve r, and, therefore, the larger the loop is, the more
computational time is required [6, 7, 27]. This seems reasonable, as whether a loop is
homologically zero is a global and topological property. We remark that the key step is
to perform the summation along the curve r (see equation 2), so the running time can
be improved to logarithmics by using parallel algorithm (for example, we can divide the
edges into groups and sum them individually, then summing over). However, this parallel
algorithm increases the memory usage by O(L) (naive approach takes constant memory).
Regarding oracle usage, those above two classical approaches require Ω(L) usages, as
classical algorithm is supposed to query all the edges to completely specify the loop.
However, we will provide a quantum algorithm below and show that it can determine the
homology property of a given closed curve (specified by some oracle Or that only checks
local properties) with running time O(2g), where g is the genus of the surface, and a single
usage of oracle. Thus, as we will show, if there are sufficient ancillary qubits in the phase
estimation step in our algorithm, then the homology class of the given closed curve could
be determined in constant time, with respect to the size L of the curve.

2.2 Mesh Data Structure

Despite the fact that surfaces are continuous, in real applications, such as digital geometry
processing, they are usually represented as a triangulated polyhedron surface, namely a
triangular mesh; see, e.g. Fig. 2 for illustration. A mesh M = (V,E, F) consists of sets of
vertices V , edges E, and faces F . We can think of it as a graph with vertices and edges

4

SciPost Physics Submission

(a)

(b)

Figure 2: Examples of genus-1 and genus-2 oriented surface, represented as a
triangular mesh, with the corresponding homology basis. (a) Top figure: two
1-chains (red and blue) are homology basis. (b) Bottom figure: four 1-chains
(red, blue, yellow, purple) are homology basis.

5

SciPost Physics Submission

that connect vertices. In terms of the algebraic topology, it is precisely a two-dimensional
simplicial complex.

We denote the set of vertices as V = {v0, v1, ..., vM}. For a given edge ei that connects
two vertices vj , vk, for instance, a half-edge is an oriented edge e⃗i = [vj , vk], which implies
the orientation vj → vk. We simply denote −e⃗i = [vk, vj] for the reverse order of the
edge and vertices and use the vector notation e⃗i just to emphasize the orientation. The
importance of half-edges is apparent for the purpose of computation with cohomology.
Suppose w is a 1-cochain, then for a given 1-chain (edge) ei connecting vj and vk, we have
w([vj , vk]) = −w([vk, vj]), i.e., w(−e⃗i) = −w(e⃗i). An exact 1-cochain can be constructed
from some 0-cochains f by taking the coboundary map d:

df([vj , vk]) = f(vk)− f(vj).

Using this, we explain in Appendix A how the cohomology basis (which is exact) can be
constructed simply by subtracting some carefully initialized 0-form.

3 Setup for the quantum approach

Here we describe several assumptions for the input of our quantum algorithm to be de-
scribed in the next section.

Preprocessing Mesh: We remark that we do not consider the problem of generating
triangulated mesh here. We assume that such a step is done classically.

Homology and Cohomology Basis: Similar to classical algorithms, we assume that
the homology basis has been pre-computed classically, and the cohomology basis has also
been constructed accordingly. In other words, we have predefined values for each edge
(with orientation) of the mesh. In fact, for most such half-edges, these values are 0, except
for a few that connect those neighboring points on and off the homology basis, which can
have values 1 or -1, dependent on the orientation of the half-edge; see also Appendix A.
For each cohomology basis Ωα, denote the number of those non-zero values as cα. We
further assume that two curves in the homology basis only intersects at no more than
one vertex, which means that the two cohomology basis elements have nonzero value at
no more than one common edge. Those conditions can always be satisfied, using a result
of [28]. Moreover, we assume the number edge E is known and that the value of cα (num-
ber of edges on which Ωα has a nonzero value) is known for all α via classical pre-processing.

Encoding of Cohomology Basis in a Quantum State: As described above, we can
think of cohomology as the association of each half-edge (1-simplex) with a real number.
Therefore, in principle, we could map these values to some quantum state with correspond-
ing entries using ∼ O(log2(E)) qubits, where E is the total number of edges on the mesh.
We remark that the values on most edges are zero, except for those edges that connect
points on the homology basis to their neighboring points that are not on the basis [7]; see
also Appendix A. We first need to map such a cohomology basis to the quantum state. A
vector corresponding to a basis Ωα (with α = 1, . . . , 2g) has the form

Ω⃗α = [ω
(α)
1 , ω

(α)
2 , . . .]T = [±1, 0, ...,±1, ...0]T ,

where the component in the vector represents the value Ωa(e⃗j) = ω
(α)
j on each edge. By

choosing the orientations of the edges appropriately and using Ωα(−e⃗j) = −Ωα(e⃗j), we

6

SciPost Physics Submission

can make the nonzero entries be uniformly +1. We can also re-arrange the edge labeling
so that Ω⃗1 = [1, 1, . . . , 1, 0, . . . , 0]T and Ω⃗2 = [0, . . . , 1, 1 . . . , 1, 0, . . . , 0]T , etc., where if Ω⃗2

overlaps with Ω⃗1 on an edge, we will arrange such that the particular overlapped edge
corresponds to the last nonzero entry in Ω⃗1 and the first nonzero entry in Ω⃗2; otherwise,
the first nonzero entry of Ω⃗2 will be the next entry to the last nonzero one in Ω⃗1.

Thus, for simplicity, we shall fix the orientation of edges such that all the nonzero
entries are +1. That is those oriented edges e⃗i are regarded as the ‘positive’ half-edges,
Ωα(e⃗i) = +1. For any edge ei, we can label it by some computational basis state, which we
also denote as |ei⟩ (e.g. |0101 . . . ⟩) and its orientation will be flagged by another ancillary
qubit,

|e⃗i⟩ ≡ |0⟩ |ei⟩ , (3)

|−e⃗i⟩ ≡ |1⟩ |ei⟩ . (4)

One can easily see that the quantum state corresponds to each of the vector Ω⃗α (nor-
malized to 1) is just a uniform superposition of some basis states that encode the edges
that are labelled in a consecutive way, and this superposition can be prepared with a very
low cost, as we elaborate further in Appendix C. In the simplest scenario, for example, the
number of non-zero values is a power of 2, and all those entries lie in “perfect” locations
that could give us a simple, convenient way to prepare the corresponding quantum co-
homology basi, using Hadamard gates H⊗n only. For example, we consider the following
vector of represent their cohomology basis values on four edges:

x⃗ = [1, 1, 0, 0]T ,

whose corresponding quantum state |x⟩ is simply |0⟩ |+⟩, which can be prepared simply
by applying I ⊗H to |0⟩ |1⟩.

However, we may not have those nice conditions in a general mesh. One certainly
has the freedom to relabel edges. Still, one may need to locally modify the mesh so
that the number of edges (with a nonzero value) in each cohomology basis is a power of
two. Even if this is the case, the nonzero entries may not necessarily range from (in the
binary representation) |0000....0ab..c⟩ to |0011..1ab..c⟩, and their superposition cannot be
obtained simply by applying Hadamard gates. But even if it were the case, how could
one prepare a corresponding superposition? One could use a two-step procedure of (1)
Hadamard gates to create a uniform superposition from |00...000..0⟩ to |0011..100..0⟩ and
then (2) a quantum adder [29] to add the appropriate shift |00...0ab..c⟩, which is efficient.

In Appendix C, we show that even without modifying the mesh structure, by choosing
the appropriate labeling of edges (as described above), we can efficiently prepare all the
cohomology basis states, as stated below.

Claim 1 A quantum state associated |Ωα⟩ =
∑

j ω
(α)
j |ej⟩/

√
cα with the cohomology basis

with cα non-zero amplitudes can be prepared using a circuit of depth O(log(cα)).

As we will point out later, given a mesh with M points, then the number of edges used
for each cohomological basis is small, i.e., cα ≪ M . The cost to prepare the cohomology
basis state is negligible and is of O(log(cα)), as detailed in Appendix C ,and thus it does
not incur substantial computational time.

Quantum oracle for loop specification: We remark that in this problem, we are
interested in the homology property of a given closed curve r. The orientation of the curve
is also important. We have assumed that certain orientation for each edge is fixed, so that
all the cohomology bases have a uniform sign in their nonzero components, as discussed

7

SciPost Physics Submission

earlier. Classically, we can specify the loop r by listing all its half-edges. Naively, on
quantum computers, we would like to have a single quantum state in a superposition of
basis states that encode the edges on r. But this requirement is too strong. Instead we
would like to have a quantum oracle that we can use to probe the relation of an edge e to
the loop r. More precisely, it should be a half-edge e⃗ (where the arrow indicates a certain
orientation, chosen for convenience as positive). Its representation by a quantum state is
illustrated in Eq. (3) and the corresponding half-edge with the negative orientation −e⃗ is
represented in Eq. (4). The unitary Or, or oracle, associated with a given closed curve r,
is designed so that, when queried with an input of an edge |e⃗i⟩ and an ancillary qubit,

Or |e⃗i⟩ |0⟩ =

{
|e⃗i⟩ |1⟩ if half-edge e⃗i ∈ r

|e⃗i⟩ |0⟩ if half-edge e⃗i /∈ r
(5)

Essentially, the function of the oracle is to check whether a given half-edge e⃗i is on the
curve r. However, the above functioning of the oracle did not take into account the possibly
multiple appearances of some edges on the loop. If the above oracle is given, then we can
only deal with the case where the coefficients of chain space belong to Z2. If we have
access to the oracle that performs the following operation instead:

Or |e⃗i⟩ |00..0⟩ =

|e⃗i⟩ |a⟩
if half-edge e⃗i ∈ r and

appears a times,

|e⃗i⟩ |00..0⟩ if half-edge e⃗i /∈ r,

(6)

where the binary string a = ans−1...a1a0 denotes the number of times the given half-edge
e⃗i appears on r. (In fact, in the above, the top line already includes the bottom line as
a special case with a = 0.) Then we can deal with Z2ns coefficients. Note that if a = 0
or 1, then we recover the (Z2) oracle given by Eqn. 5. We do not expect our algorithm
can work in the case where an edge appears infinite times (for example, a loop winding
around infinitely). Therefore, a reasonable assumption is that each half-edge only appears
a bounded number of times less than 2ns = K (with K being a constant) or, alternatively,
the oracle only checks the number of times modulo K.

4 Quantum Algorithm

In this section, we present our main result: a quantum algorithm for the homology detec-
tion of a loop. We will employ a Hadamard test procedure and combine it with quantum
phase estimation to evaluate whether the sum described in Eq. (2) for each cohomology
basis on the curve r is zero or not.

4.1 A Hadamard test procedure for estimating phases

Our primary method is built upon the techniques in Refs. [10], [30] and [31], which were
recently employed in the setting of quantum neural networks, e.g., see Ref. [32]. We
quickly review the routine as it will be generalized to form the main ideas of our quantum
algorithm.

Suppose we have some unitary U that generates the following (n+1)-qubits state by
|0⟩⊗n+1:

U |0⟩⊗n+1 = |ϕ⟩ = 1√
2
(|+⟩ |x⟩+ |−⟩ |y⟩), (7)

8

SciPost Physics Submission

where |x⟩ , |y⟩ are some n-qubits states. We can then use it to construct the Grover-like
unitary G = US0U

†(Z ⊗ I⊗n) [10, 30, 32], where S0 = I⊗n+1 − 2(|0⟩ ⟨0|)⊗n+1, such that
|ϕ⟩ can be written as a linear combination below,

|ϕ⟩ = −ieiθ√
2

|w+⟩+
ie−iθ

√
2

|w−⟩ , (8)

in which |w±⟩ ∼ |0⟩ (|x⟩+|y⟩)/∥ |x⟩+|y⟩ ∥)±i |1⟩ (|x⟩−|y⟩)/(∥ |x⟩−|y⟩ ∥) are two eigenstates
of G,

G |w±⟩ = e±i2θ |w±⟩ , (9)

and the angle θ satisfies the relation

sin(θ) =

√
1 + ℜ ⟨x|y⟩√

2
, (10)

or equivalently cos(2θ) = −ℜ⟨x|y⟩. This relation suggests that the real part of the overlap
⟨x|y⟩ is encoded in the phase θ, which is related to the two eigenvalues. We also note that
e−i2θ = ei(2π−2θ), and therefore, in principle, the phase estimation algorithm [31] allows us
to estimate the value of 2θ. Furthermore, we do not need to prepare an eigenstate of G,
as the phase estimation will give either 2θ or −2θ randomly. Estimation of either of the
values suffices. We will show shortly that the trivial closeness of a given curve r on the
triangulated mesh is encoded in the corresponding phase, and therefore could be revealed
by looking at the outcome of the quantum phase estimation algorithm.

4.2 Algorithm for Detecting Homology Class of a Closed Curve r

We have described our quantum preliminaries in Sec. 3. In our algorithm, all qubits will be
divided into five different quantum registers: (1) a single qubit anchor register (denoted by
subscript a), which plays the same role as the first qubit of Eqn. (7); (2) an orientation flag
(denoted by subscript o), which is used to indicate the orientation of the edge: |0⟩o|e⟩e = |e⃗⟩
and |1⟩o|e⟩e = |− e⃗⟩; (3) the edge data register (denoted by subscript e), such as |e⟩e which
we have just illustrated in (2); (4) the status register (denoted by subscript s), which is
used to store the status from querying the oracle about a half-edge; and (5) the extra
qubit (labelled by subscript t) to implementation rotation corresponding to the status
register. We remind that that for each cohomology basis there is an efficient unitary Uα to

create the cohomlogy basis state |Ωα⟩ = Uα |0⊗ log2(E)⟩e =
∑

j ω
(α)
j |ej⟩e/

√
cα in the edge

(e) register without the orientation label (see Claim. 1 and Appendix C). Moreover, it
is also easy to create a superposition of all edges, |E⟩ ≡ 1√

E

∑E
i=1 |ei⟩e = UE |0 . . . 0⟩e =

H⊗ log2(E)|0 . . . 0⟩e, and we have assumed that the total number of edges (without counting
the orientation) is a power of two. (If this is not the case, one can always add ‘fictitious’
edges to pad the total number to be a power of 2.) The goal is to construct a unitary
process U that takes |0 . . . 0⟩ to (|+⟩|x⟩+ |−⟩|y⟩)/

√
2.

We are now ready to describe the procedure of our algorithm:

1. [Initialization] First, we construct the following state:

|φ⟩ = 1√
2

(
|0⟩a|−⟩o|Ωα⟩e + |1⟩a|+⟩o|E⟩e

)
, (11)

which can be created from |0⟩a|0⟩o|0 . . . 0⟩e by first applying H ⊗H to |0⟩a|0⟩o → (|0⟩a +
|1⟩a)|+⟩o/

√
2, followed by a controlled operation |0⟩a⟨0| ⊗ Zo ⊗ Uα + |1⟩a⟨1| ⊗ Io ⊗ UE .

9

SciPost Physics Submission

We will keep the first qubit (a) in the |0/1⟩ basis until the end, where we will turn it
into |+ /−⟩. Equivalently, |φ⟩ can be rewritten as

|φ⟩ = 1√
2

(
|0⟩ 1√

2

∑
i

ωi(|e⃗i⟩ − | − e⃗i⟩) (12)

+ |1⟩ 1√
2E

E∑
i=1

(|e⃗i⟩+ | − e⃗i⟩)
)
.

2. [Applying oracle]. Next we append the status ancillas |00..0⟩s and apply the black-
box oracle Or to the e register (the log2(E)-qubit system) plus status register, we obtain:

|φ1⟩ ≡ Or|φ⟩ |00..0⟩s =
1√
2

[
|0⟩a

1√
2cα

∑
i

ωi

(
|e⃗i⟩|st(e⃗i)⟩s

−|−e⃗i⟩|st(−e⃗i)⟩s
)
+ |1⟩a

1√
2E

∑
i

(
|e⃗i⟩|st(e⃗i)⟩s

+|−e⃗i⟩|st(−e⃗i
)
⟩s)

]
, (13)

where st(±e⃗i) is used to denote the status value after the query.

3. [Conditional rotation]. Append an ancilla |0⟩t (noting the subscript t) to |φ1⟩
and apply a rotation on qubit t, conditioned on the anchor qubit a being |0⟩a and the
degree of rotation on the status qubit |st(±e⃗i)⟩s, so that: |0⟩t → |Rot(e⃗)⟩t ≡ st

K |0⟩t +√
1− st2/K2|1⟩t.
This operation only affects the part entangled with |0⟩a, which becomes

1√
2cα

∑
i

ωi

(
|e⃗i⟩|st(e⃗i)⟩s |Rot(e⃗i)⟩t− (14)

|−e⃗i⟩|st(−e⃗i)⟩s |Rot(−e⃗i)⟩t
)
. (15)

The other part entangled with |1⟩a remains unaffected.

4. [Oracle unquery] After the conditional rotation, we uncompute or unquery the
status register by applying Or one more time, assuming that its operation is addition
bitwise. We then arrive at a state of the form |φ2⟩ = (|0⟩a|x⟩+ |1⟩a|y⟩)/

√
2. The first part

then becomes

|x⟩ ≡ 1√
2cα

∑
i

ωi

(
|e⃗i⟩ |Rot(e⃗i)⟩t

− |−e⃗i⟩ |Rot(−e⃗i)⟩t
)
⊗ |0 . . . 0⟩s, (16)

where we have factorized out the status register at the end. The second part becomes

|y⟩ ≡ 1√
2E

∑
i

(|e⃗i⟩+ |−e⃗i⟩)⊗ |0⟩t ⊗ |0 . . . 0⟩s. (17)

10

SciPost Physics Submission

Here we can evaluate the inner product of |x⟩ and |y⟩, and we obtain

⟨x|y⟩ = 1√
4cαE

∑
i

ωi

(
⟨Rot(e⃗i)|0⟩t − ⟨Rot(−e⃗i)|0⟩t

)
=

1√
4cαEK

∑
i

ωi

[
st(e⃗i)− st(−e⃗i)

]
=

1√
4cαEK

Ωα(r). (18)

Note that st(±e⃗i) is counting the number of times a half-edge ±e⃗i appears on the curve
r. K = 2 reduces to the case where the coefficients in half-edges are in Z2.

5. [Hadamard test state] Apply the Hadamard gate to the anchor qubit a, and we have
the final state,

|φ3⟩ =
1√
2

[
|+⟩a |x⟩+ |−⟩a |y⟩

]
,

which will be used for the Hadamard test. We denote the whole procedure from step
1 to step 5 as a unitary gate U , i.e., |φ3⟩ = U |0⟩a|0⟩o|0 . . . 0⟩e|0 . . . 0⟩s|0⟩t. What we
have achieved here is to translate our problem directly into the Hadamard test formalism
described earlier, including the construction of the operator G = US0U

†(Z⊗ I⊗N), where
N = 2 + ns + log2(E) with ns being the number of qubits in the status register.

If the curve r is closed trivially, which means that the sum Ωα(r) along the curve
vanishes identically (see Eqn. 1), i.e., cos(2 ·θ′) = 0, implying that 2 ·θ′ = π/2 ⇒ θ′ = π/4.
If we write θ′ = 2πw′ ⇒ w′ = 1/8, which can be represented by finite bits (more precisely,
3 bits as 1/8 = 0.001 in binary fraction). Therefore, ideally, it means that the phase
estimation algorithm can output such a value with certainty, which again, can be used to
verify whether or not Ωα(r) = 0. Moreover, in the case that the curve r is not homologi-
cally trivial, the value Ωα(r) can still be obtained from quantum phase estimation, given
sufficient ancillas to encode the phase.

6. [Phase estimation] We run the phase estimation algorithm for the operator G.
As remarked earlier, it does not require us to prepare an eigenstate of G and the phase
estimation procedure will allow us to estimate ±2θ, which is sufficient for extracting Ωα(r).
We then repeat the whole procedure for different cohomology basis state |Ωα′⟩. A curve
that is homologically trivial will have all Ωα(r)|2g1 = 0. Furthermore, complete information

for all Ωα(r)|2g1 determines the homology class of the curve r. However, whether we can

determine nonzero values of Ωα(r)|2g1 with sufficient accuracy remains to be checked.

Analysis of accuracy. In the homologously trivial case, the phase can be represented
exactly with finite bits and our algorithm can return an exact result with certainty. How-
ever, we need to distinguish this case from the nontrivial cases and there is indeed a finite
gap in the phase between the two cases as we show below. Therefore, O(1)-time running of
quantum phase estimation can already determine whether or not the curve is homologous
to zero. More specifically, the analysis of [30] shows that generally, the phase register
returns two closest values to our true phase value with high probability (> 4/π2). In
particular, the success probability of measuring best approximated phase value could be
amplified to arbitrarily closed to 1 using additional qubits in phase registers [33]. There-
fore, in principle, O(2g) (since we need to repeat the procedure for all cohomology basis
{Ωi}) repetitions are enough to determine if the curve r, which is specified by Ur, is closed.

11

SciPost Physics Submission

Let us further analyze the precision, as in the case of homologously non-trivial curve,
the value of angle θ′ might be very closed to π/4, which means that the outcome of phase
estimation circuit with low number of precision bits might not suffice to determine the
phase and hence the value Ωα(r). If the curve r is homologous to zero, we definitely have
⟨x|y⟩ = 0. Since the value of wi is either -1, 0, or 1 (taking the orientation into account),
if the curve is not homologously zero, then the minimum absolute value of such overlap is
| ⟨x|y⟩ | = 1/(2 ·

√
cα · E ·K). More specifically, let:

| cos(2 · θ0)| = 0,

| cos(2 · θm)| = 1/(2 ·
√
cα · E ·K),

where θ0 refers to the case if the curve is homologically trivial, and θm refers to the smallest
angle in the non-trivial case. We apply the following inequality

|x− y| ≥ | cos(x)− cos(y)|, (19)

and obtain that |2(θ0 − θm)| ≥ 1/(2 ·
√
cα · E · K). This means that there is a gap

∆ between the trivial phase value and non-trivial phase value. To distinguish between
those phases, we require our phase estimation algorithm to have the error δ ≤ ∆ (the
smaller the better). Therefore, the number of qubits p in the phase register required to
have the desired accuracy is Ω(log(1/δ)) = Ω(log(

√
cα · E · K)). We can simply choose

p = ⌊log(
√
cα · E · K)⌋ + k, where k is some integer. We recall that cα is the number

of edges with non-zero values for a given cohomology basis element Ωα. This number is
usually much smaller than E, which is the total number of edges on the mesh. We also
have the condition that K is bounded above. Assume that the mesh has M vertices, then
E is O(M), which means that log(

√
cα · E ·K) is O

(
log(M)

)
. Therefore, in our algorithm,

as long as we can have enough qubits ∼ O(log(M)) in the phase estimation algorithm,
then the accuracy ∆ is always guaranteed.

We summarize our main result with the following theorem.

Theorem 1 (Homology detection) Given a closed triangular mesh M of genus g, co-
homology basis ⟨Ω1,Ω2, ...,Ω2g⟩, and quantum oracle Ur that specifies a given closed curve
r. There exists a quantum algorithm that determines the homology class of r in O(2g)
time.

In comparison, the naive classical running time is O(2g · L) (which can be improved
to O(log(L)) by parallelization) where L is the ‘size’ of the curve r, i.e., the number
of edges on it, as one needs to sum up all the values ωi on the all edges e⃗ of r for all
cohomology basis elements Ωα=1...2g. Our quantum algorithm substantially improve the
time complexity from linear (in L) to constant. We note that our algorithm works even if
the given curve has a self-crossing, which can be regarded as a sum of 1-cochains that are
loops.

If two closed curves corresponding to two chains σ1 and σ2 are homologous, i.e., in the
same equivalence class, then they differ by an exact 2-chain. This means for any 1-cochain
ω, we have ω(σ1) = ω(σ2). If we decompose the 1-cochain ω into the basis {Ωi}2gi=1 then
for each basis element we need to have Ωi(σ1) = Ωi(σ2). We can compute Ωi(σ1) and
Ωi(σ2) directly and separately using our quantum algorithm (given the respective oracles)
to compute Ωi(σ1/2) and check if they equate each other for all i = 1, . . . , 2g.

4.3 Potential Applications

4.3.1 Homotopy Detection

Given the ability to efficiently determine the homology class of a closed curve, it is natural
to seek applications of the quantum algorithm. Here we point out an instance that also

12

SciPost Physics Submission

Figure 3: A loop r winds around the torus 5 times.

arises in the computational conformal geometry and topology context [5, 7], i.e. the
so-called homotopy detection. The statement of the problem is the following.

Problem 1 (Homotopy Detection) Given a closed triangular mesh M, two loops γ1
and γ2 through a base point p. Verify whether or not γ1 is homotopic to γ2, γ1 ∼ γ2.

Such a problem also has a linear time classical solution [34]. While homology groups are
commutative, homotopy groups are usually non-commutative; therefore, homotopy can
generally be harder to deal with than homology, such as computing its groups. There
are also hard problems related to homotopy. For example, the shortest word problem
[35] for a given homotopy class is NP-hard [36]. While we do not know whether we
could completely solve the homotopy detection problem with a constant time algorithm,
we observe an essential property that, two loops are homotopic to each other implying
that they are homologous (the reverse may not be true). In particular, in the homotopy
detection problem, if γ1 ∼ γ2, then γ = γ1 · γ−1

2 is homotopic to e, i.e, the loop is trivial
(constant loop). Thus, if γ ∼ e, then γ is necessarily homologous to 0 as well. As we can
only check whether the curve is homologous to 0, we can apply our algorithm to check
the converse, i.e., we can ascertain the case when two curves (on a closed surface) are not
homotopic to each other by verifying that the loop γ is not homologous to zero.

In Ref. [6], an alternative classical solution to the homotopy detection problem was
described. The key idea is that, we first compute a finite portion of the universal covering
space M̃ of M . We then lift γ1 · γ−1

2 to M̃ , and denote the lifted path as γ. If γ is a loop,
then γ1 ∼ γ2. However, converting the above solution into an efficient quantum algorithm
is an open problem.

4.3.2 Winding Number Estimation

It is pretty interesting that aside from the homology detection problem, the algorithm
that we use in this paper (integration of cohomology basis) can be employed to estimate
the numbers of times that a loop winds around the torus.

In Fig. 3, denote the homology and cohomology basis as (h1, h2) and (Ω1,Ω2) (see
Fig. 2a). W.O.L.G., let h1 be the red curve, and h2 be the blue curve. The integration of
cohomology basis along the winding loop is:∫

r
Ω1 = 1,

∫
r
Ω2 = m, (20)

where m is the number of times that the given loop r winds around the torus. Given an
oracle, the algorithm developed in Sec. 4.2 can estimates the above integral (more precisely,
a discrete summation). Therefore, our algorithm can estimate the winding numbers of the

13

SciPost Physics Submission

given loop r. In this case, as shown in Fig. 3, no half-edge appears twice, therefore, the
simpler Z2-version of the oracle (i.e., K = 2) is sufficient.

5 Discussion and Conclusion

Topology and geometry are very rich and deep area of mathematics and their applications
to science and engineering have been increasingly broadened due to the connection from
the profound mathematical foundation to classical computational geometry algorithms.
This, in turn, yields powerful tools to solve many practical problems. Quantum computer
is also undergoing a second wave of fast development, and concurrently, the potential
power and applicability of quantum computers have always been an important question
to address. Our work has added to the few existing works and extended the application of
quantum computation to computational topology, in particular, the problem of homology
detection. Our quantum method relies on important observation: cohomology assigns
real values to half-edges of a mesh, which could be stored efficiently using a logarithmic
number of qubits. The summation along a loop (which is specified by an oracle) is done
using the orthogonal relation of basis states |ei⟩. Key tools include the Hadamard test,
amplitude amplification, and quantum phase estimation.

Even though the particular problem we have considered is not a hard one from classical
complexity’s perspective (e.g., with a running time O(log(L)) in the number L of edges
on the curve), our quantum algorithm achieves a constant time complexity, yielding a
substantial speedup. We note that there are other problems where classical solutions
are efficient, but the quantum algorithms are even more efficient, such as the 2D hidden
linear function problem, where the classical solution requires at least a logarithmic depth
whereas the quantum solution requires a shallow depth [25]. This problem was further
generalized to yield an exponential separation between the classical fan-out circuits and
shallow-depth quantum circuits [37].

We have also pointed out the potential application of our quantum algorithm in the
homotopy detection problem. As described above, the homotopic relation implies homol-
ogy relation, therefore, we could check the homology condition as a mean to rule out the
non-homotopic relation. We have also suggested an open problem regarding how to con-
struct a quantum algorithm that elevates the (classical) universal-covering-space approach
provided in [6].

We now discuss an important open point of our work, which appears in most oracle-
based quantum algorithms, including Grover’s search, namely, the construction of the
oracle itself. We have assumed that the oracle Or could efficiently query the half-edge,
but left aside the detail of such an oracle. How to implement the oracle explicitly (and effi-
ciently) is an open question. We remark that a mesh is mathematically a graph, therefore,
and we could in principle use the graph Laplacian to encode the necessary information of
the mesh (i.e., connectivity), for example, in a QRAM [38], then the connectivity (plus
proper orientation) could be accessed coherently. If an explicit construction for the oracle
Or were known, then we could deal with an arbitrary curve on the graph, which in turn
might provide more flexibility for applications.

Homology and homotopy detection are critical for a broad range of applications. In
medical imaging, for example, virtual colon cancer detection, the colon surface is recon-
structed from CT-images. Due to the segmentation error, there are many fake handles
and tunnels on the reconstructed surfaces. It is crucial to detect these spurious topologi-
cal noises and remove them by topological surgery using homological method [39, 40]. In
wireless sensor network field, homology is applied for coverage and hole detection in sensor

14

SciPost Physics Submission

networks [41] and location tracking [42]. It is interesting to see potential applications of
quantum algorithms on these practical problems. As a final remark, our work mainly deals
with the first homology group H1 and it is natural to ask how to extend our algorithm to
deal with arbitrary homology group Hk (k > 1), which is left for future exploration.

Acknowledgements

The research reported in this work was partially supported by the National Science Foun-
dation under Grants No. PHY 1915165 (T.-C.W.), No. 2115095 (X.D.G.), and No.
1762287 (X.D.G.), as well as NIH R21EB029733 (X.D.G.).

A More on homology/cohomology basis

Here we elaborate further on the concept of cohomology basis and its computation. For
more details, we refer the readers to [6, 7, 27]. For illustration, we denote the red and
blue curves in Fig. 2(a) as γ1 and γ2, respectively. We remark that the cohomology
group contains the equivalence classes of closed cochain, which could be constructed from
homology basis as follows. We slice the whole mesh along, for example, γ1 and obtain an
open mesh with two boundaries γ+1 and γ−1 . We then initialize 0-form fi that satisfies:
fi(vj) = 1 for vj ∈ γ+1 and 0 otherwise. With this initialization, dfi is then closed but
non-exact on the original mesh, hence forms the first cohomology basis. The same process
yields the remaining cohomology basis. From such construction we easily notice that with
a given cohomology basis dfi, dfi(ej) is then 0 everywhere except those ‘half-edges’ ej that
connect a point vi ∈ γi and a neighboring vk /∈ γi. We note that the two half-edges of an
edge correspond to its two ‘sides’ with opposite orientations; but we do not need to invoke
half-edges in the main text of this paper.

A.1 Encoding of Cohomology Basis in a Quantum State

We remark that cohomology assigns each edge (with specified orientation) a real number,
therefore, the set of those numbers on given mesh M can be stored in a quantum state
(more precisely, a vector). Suppose we are given some 1-cochain w, and can define a
corresponding quantum 1-cochain:

|w⟩ =
E∑
i=1

wi |ei⟩ /
√∑

i

w2
i , (21)

where wi = w(e⃗i) (note the orientation) and E is the total number of edges. In general,
it is nontrivial to create such a quantum state. However, for the cohomology basis states
|Ωα⟩s, many of the coefficients wi’s are zero and those nonzero ones can be chosen to be
unity and there is an efficient circuit to construct these states, see Appendix C.

B Elaboration of The Main Method

We remind that the main tool used for detecting closed curves was based on the integral
(or summation in our discrete case) of each cohomology basis {Ωα} along such a curve r,
and we require all of them to be 0, if r is homologically trivial. Here we explain further
why we require such a condition.

15

SciPost Physics Submission

A k-chain σk is said to be exact if it is the image of some (k+1)-chain under the
boundary map ∂k+1

∂k+1σk+1 = σk (22)

As a dual relation between homology and cohomology, for each boundary operator ∂k,
there is a co-boundary operator dk that maps a k-cochain to a (k + 1)-cochain. Let ω′ be
a (k − 1)-cochain, σk be a k-chain, we have the following property:

dk−1ω′(σk) = ω′ · (∂kσk) (23)

Now we apply (closed) k-cochain ωk on both sides of Eqn. 22:

ωk(∂k+1σk+1) = ωkσk (24)

Employing the property in B2, we have:

ωk(∂k+1σk+1) = dkωkσk+1 (25)

Since ωk is closed, dkωk = 0, therefore, it means that ωkσk = 0. Set ωk ≡ ω for brevity.
Now we use an important property of the cochain space: it is a linear vector space,

and therefore, a given cochain ω can be decomposed into a set of bases. Denote the set
of basis as {ωi}ki=1. We then have: ω =

∑
i aiωi, where each ai is generally a complex

component. We now obtain the following:∑
i

aiωi(σk) = 0. (26)

We remark that as the basis {ωi}ki=1 is linearly independent, therefore, in order for the
above sum to be 0, we need every term to be 0, and since {ai}’s generally are not zero,
this implies that, for each i,

ωi · (σk) = 0. (27)

In our problem, we are interested in 1-chains, i.e. k = 1. The summation along the curve
is simply the summation along all the (half-)edges on the boundary.

C Details on Cohomology Basis State Preparation

Here we elaborate further the claim 1, which is probably the most crucial part of the
algorithm. Uniform superposition of data is useful in quantum computation, or more
specifically, in quantum machine learning, where s amplitude encoding is one of the most
popular approaches to load classical data into a quantum state [18,43,44].

We remind that the geometrical object is represented as a triangular mesh in the
discrete setting. Therefore, there is naturally a hardware structure equipped with the
object. In our case specifically, it is the (ordered) set of vertices, edges and faces. In
general, cohomology theory deals with a linear vector space. The key idea of our quantum
algorithm is to map cochains to quantum states, so as to leverage the quantum resources.
A subtle point in the construction of cohomology basis state as in Claim 1 is the order of
those edges that we impose on via classical processing (we have remarked that the mesh
generation process is done classically). For each cohomology basis Ω⃗α (or we can write

16

SciPost Physics Submission

|Ωα⟩ in quantum setting), there are cα non-zero entries, and these entries have consecutive
order. As we mentioned, the cohomology basis vector has the following form:

Ω⃗α = [0, ...,±1,±1, ...0]T

with cα non-zero entries. The corresponding quantum state is simply

|Ωα⟩ = Ω⃗α/
√
cα.

The reason why we want to order those edges (the order of those non-zero entries) in
consecutive order is to achieve a low-cost way to prepare such a state, which we describe
now.

An efficient algorithm for uniform superposition. First, we argue that we can always
label edges in the cohomology basis states such that they are consecutive in number. We
argue that two different cohomology basis states can have only one overlapping edge and
that it can be arranged so that for any one cohomology basis state, there is at most one
other cohomology basis state that has an overlapping edge. Therefore, all the edges in
involved in all cohomology basis states can be labeled consecutively. If there is an overlap,
then the last edge of the cohomology basis state is the first edge of the next one that has
an overlap.

Once the labelling is settled, then we need to show that we can create an equal su-
perposition of basis states that are binary representation of consecutive numbers, i.e.,
|ψ⟩ =

∑a2
j=a1

|j⟩/
√
a2 − a1 + 1 can be created efficiently. We then argue that this reduces

to creating |ψ0⟩ =
∑a2−a1

j=0 |j⟩/
√
a2 − a1 + 1, as there is an efficient adder (of log(|a2−a1+1)

depth); see e.g., Ref. [29]. Namely by adding |ψ0⟩ to |a1⟩.
An example. Next, we will focus on creating |ψ0⟩ and describe an efficient way to create
some superposition of |0...0⟩ to |an, an−1, ..., a0⟩. Let us first illustrate this by an example.
Suppose we want to make a superposition from 0000 to 1011 (and we will take the last
configuration 1011 as a reference, so we can apply gates conditioned on some of the digits).

First, we start with |0000⟩ and, recognizing the most significant digit of ‘1011’ is
one, we create a superposition c0|0000⟩ + d0|1000⟩ (denoting this operation by UIII),
followed by a product of Hadamard gates conditioned on the first quantum bit being 0:
|0⟩⟨0| ⊗H2 ⊗H1 ⊗H0 + |1⟩⟨1| ⊗ I ⊗ I ⊗ I, with the operation denoted by 0HHH. Thus,
we obtain a state d0|1000⟩+ c0|0 + ++⟩.

Then, we move down the bit string in ‘1011’ and it is ‘0’, so we do nothing in this step.
(If it were ‘1’ we would split 1000 to c|1000⟩ + d|1100⟩.) We move down the bit string
again to reach ‘1’, and we split (conditioned on the significant qubit being in |1⟩) 1000 to
c2|1000⟩+d2|1010⟩ (i.e. an operation labeled as 10UI), followed by a controlled gate 100H
(i.e., a Hadamard gate conditioned on the first three qubits being in |100⟩ state), where the
first two bits ‘10’ are from the string ‘1011’ and the ‘0’ before H is fixed. And we arrive at
c0|0+++⟩+d0(c2|100+⟩+d2|1010⟩). Finally, we reach the last digit of ‘1011’, which is ‘1’. If
it were zero, we would do nothing. But given this is ‘1’, we perform an operation controlled
on the first three qubits being 101 (denoting this operation as 101U) to take |1010⟩ to
c3|1010⟩+d3|1011⟩, so the final state is c0|0+++⟩+d0(c2|100+⟩+d2(c3|1010⟩+d3|1011⟩)).
We can check the number of computational-basis terms is 23 + 21 + 20 + 1 = 12 and it
contains the all the desired components. If we adjust the coefficients appropriately, we
can obtain a uniform superposition from |0000⟩ to |1011⟩. In summary, the operations
are: {(UIII, 0HHH), (10UI, 100H), (101U)} acting on the initial |0000⟩ state.
General case. So the algorithm for creating a superposition of components from |0 . . . 0⟩
to |an, an−1, . . . , a0⟩ is as follows. Start with the |0 . . . 0⟩ state (if there are more qubits
than n + 1, then pad the remaining qubits to |0⟩ and the following procedure applies to

17

SciPost Physics Submission

the relevant part of the qubits). One reads the bit string anan−1 . . . a0. Begin with k = n.
If ak = 0, then one moves on to the next bit. If ak = 1, split |an, an−1, . . . , 0k, . . . , 0⟩
into a superposition of |an, an−1, . . . , 1k, . . . , 0⟩ and |an, an−1, . . . , 0k, . . . , 0⟩ (via operation
an, an−1, . . . UkI . . . I) followed by the operation an, an−1, . . . 0kH . . .H. Iterate this (de-
crease the index k by one) until we read a0. If a0 = 0, nothing needs to be done. If
a0 = 1, then we split the state |an, an−1, . . . , a1, 0⟩ via operation (an, an−1, . . . , a1, U) into
a superposition of |an, an−1, . . . , a1, 0⟩⟩ and |an, an−1, . . . , a1, 1⟩. We note the coefficients
(that determine the superposition by U ’s) can be computed beforehand so the final output
state is a uniform superposition.

The time complexity is proportional to the number of qubits nontrivially involved in
the superposition, the procedure of applying gates follows checking the bits sequentially,
i.e., the complexity is roughly log2(|a2 − a1 +1|) = log2(n). Generalizing this to arbitrary
bit strings, we have an efficient algorithm for creating uniform superposition.

An alternative approach. We claim that one can always modify the mesh and triangu-
lation so that the number of nontrivial edges in every cohomology basis state is a power
of 2. Then we only need to use Hadamard gates and additionally the quantum addition
gate.

References

[1] X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to
an origin of light and electrons, OUP Oxford (2004).

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-abelian
anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008),
doi:10.1103/RevModPhys.80.1083.

[3] L. Wasserman, Topological data analysis, arXiv preprint arXiv:1609.08227 (2016).

[4] T. K. Dey and Y. Wang, Computational topology for data analysis, Cambridge
University Press (2022).

[5] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson and S.-T. Yau, Genus zero surface
conformal mapping and its application to brain surface mapping, IEEE Transaction
on Medical Imaging (TMI) 23(8), 949 (2004).

[6] X. D. Gu and S.-T. Yau, Computational conformal geometry, vol. 1, International
Press Somerville, MA (2008).

[7] X. Gu and S.-T. Yau, Computing conformal structure of surfaces, arXiv preprint
cs/0212043 (2002).

[8] R. P. Feynman, Simulating physics with computers, In Feynman and computation,
pp. 133–153. CRC Press (2018).

[9] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM review 41(2), 303 (1999).

[10] L. K. Grover, A fast quantum mechanical algorithm for database search, In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp.
212–219 (1996).

18

https://doi.org/10.1103/RevModPhys.80.1083

SciPost Physics Submission

[11] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. Brandao, D. A. Buell et al., Quantum supremacy using a programmable
superconducting processor, Nature 574(7779), 505 (2019).

[12] A. W. Harrow, A. Hassidim and S. Lloyd, Quantum algorithm for linear systems of
equations, Physical review letters 103(15), 150502 (2009).

[13] S. Lloyd, M. Mohseni and P. Rebentrost, Quantum algorithms for supervised and
unsupervised machine learning, arXiv preprint arXiv:1307.0411 (2013).

[14] S. Lloyd, M. Mohseni and P. Rebentrost, Quantum principal component analysis,
Nature Physics 10(9), 631 (2014).

[15] P. Wittek, Quantum machine learning: what quantum computing means to data
mining, Academic Press (2014).

[16] N. Wiebe, D. Braun and S. Lloyd, Quantum algorithm for data fitting, Physical
review letters 109(5), 050505 (2012).

[17] I. Cong, S. Choi and M. D. Lukin, Quantum convolutional neural networks, Nature
Physics 15(12), 1273 (2019).

[18] M. Schuld and F. Petruccione, Supervised learning with quantum computers, vol. 17,
Springer (2018).

[19] M. Schuld, I. Sinayskiy and F. Petruccione, The quest for a quantum neural network,
Quantum Information Processing 13(11), 2567 (2014).

[20] M. Schuld, A. Bocharov, K. M. Svore and N. Wiebe, Circuit-centric quantum classi-
fiers, Physical Review A 101(3), 032308 (2020).

[21] M. Schuld, Machine learning in quantum spaces (2019).

[22] M. Schuld and N. Killoran, Quantum machine learning in feature hilbert spaces,
Physical review letters 122(4), 040504 (2019).

[23] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow and
J. M. Gambetta, Supervised learning with quantum-enhanced feature spaces, Nature
567(7747), 209 (2019).

[24] S. Lloyd, S. Garnerone and P. Zanardi, Quantum algorithms for topological and
geometric analysis of data, Nature communications 7(1), 1 (2016).

[25] S. Bravyi, D. Gosset and R. König, Quantum advantage with shallow circuits, Science
362(6412), 308 (2018).

[26] A. Hatcher, Algebraic topology, Cambridge University Press (2002).

[27] D. X. Gu and E. Saucan, Classical and discrete differential geometry .

[28] T. K. Dey, K. Li and J. Sun, On computing handle and tunnel loops, In 2007
International Conference on Cyberworlds (CW’07), pp. 357–366. IEEE (2007).

[29] S. A. Cuccaro, T. G. Draper, S. A. Kutin and D. P. Moulton, A new quantum
ripple-carry addition circuit, arXiv preprint quant-ph/0410184 (2004).

[30] G. Brassard, P. Hoyer, M. Mosca and A. Tapp, Quantum amplitude amplification
and estimation, Contemporary Mathematics 305, 53 (2002).

19

SciPost Physics Submission

[31] A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, arXiv
preprint quant-ph/9511026 (1995).

[32] J. Zhao, Y.-H. Zhang, C.-P. Shao, Y.-C. Wu, G.-C. Guo and G.-P. Guo, Building
quantum neural networks based on a swap test, Physical Review A 100(1), 012334
(2019).

[33] M. A. Nielsen and I. Chuang, Quantum computation and quantum information
(2002).

[34] F. Lazarus and J. Rivaud, On the homotopy test on surfaces, In 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, pp. 440–449. IEEE (2012).

[35] W. Parry, Growth series of some wreath products, Transactions of the American
Mathematical Society 331(2), 751 (1992).

[36] X. Yin, Y. Li, W. Han, F. Luo, X. D. Gu and S.-T. Yau, Computing shortest words via
shortest loops on hyperbolic surfaces, Computer-Aided Design 43(11), 1449 (2011).

[37] A. B. Watts, R. Kothari, L. Schaeffer and A. Tal, Exponential separation between
shallow quantum circuits and unbounded fan-in shallow classical circuits, In Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp.
515–526 (2019).

[38] V. Giovannetti, S. Lloyd and L. Maccone, Quantum random access memory, Physical
review letters 100(16), 160501 (2008).

[39] H. Wei, G. Xianfeng, Q. Feng, J. Miao and K. Arie, Conformal virtual colon flattening,
In Proceedings of the 2006 ACM symposium on Solid and physical modeling, pp. 85–93
(2006).

[40] W. Zeng, J. Marino, K. C. Gurijala, X. Gu and A. Kaufman, Supine and prone colon
registration using quasi-conformal mapping, IEEE Transactions on Visualization and
Computer Graphics 16(6), 1348 (2010).

[41] R. Ghrist and A. Muhammad, Coverage and hole-detection in sensor networks via
homology, In IPSN 2005. Fourth International Symposium on Information Processing
in Sensor Networks, 2005., pp. 254–260, doi:10.1109/IPSN.2005.1440933 (2005).

[42] X. Yin, C.-C. Ni, J. Ding, W. Han, D. Zhou, J. Gao and X. D. Gu, Decentralized
human trajectories tracking using hodge decomposition in sensor networks, In Proceed-
ings of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, p. 54. ACM (2015).

[43] M. Plesch and Č. Brukner, Quantum-state preparation with universal gate decompo-
sitions, Physical Review A 83(3), 032302 (2011).

[44] A. Prakash, Quantum algorithms for linear algebra and machine learning, University
of California, Berkeley (2014).

20

https://doi.org/10.1109/IPSN.2005.1440933

	Introduction
	Preliminaries
	Overview of essential concepts in homology and cohomology
	Mesh Data Structure

	Setup for the quantum approach
	Quantum Algorithm
	 A Hadamard test procedure for estimating phases
	Algorithm for Detecting Homology Class of a Closed Curve r
	Potential Applications
	Homotopy Detection
	Winding Number Estimation

	Discussion and Conclusion
	More on homology/cohomology basis
	Encoding of Cohomology Basis in a Quantum State

	Elaboration of The Main Method
	Details on Cohomology Basis State Preparation
	References

