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We investigate separability and entanglement of Rokhsar-Kivelson (RK) states and resonating
valence-bond (RVB) states. These states play a prominent role in condensed matter physics, as
they can describe quantum spin liquids and quantum critical states of matter, depending on their
underlying lattices. For dimer RK states on arbitrary tileable graphs, we prove the exact separability
of the reduced density matrix of k disconnected subsystems, implying the absence of bipartite
and multipartite entanglement between the subsystems. For more general RK states with local
constraints, we argue separability in the thermodynamic limit, and show that any local RK state
has zero logarithmic negativity, even if the density matrix is not exactly separable. In the case of
adjacent subsystems, we find an exact expression for the logarithmic negativity in terms of partition
functions of the underlying statistical model. For RVB states, we show separability for disconnected
subsystems up to exponentially small terms in the distance d between the subsystems, and that
the logarithmic negativity is exponentially suppressed with d. We argue that separability does hold
in the scaling limit, even for arbitrarily small ratio d/L, where L is the characteristic size of the
subsystems. Our results hold for arbitrary lattices, and encompass a large class of RK and RVB
states, which include certain gapped quantum spin liquids and gapless quantum critical systems.
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I. INTRODUCTION

Arguably the most fascinating phenomenon of quan-
tum mechanics, entanglement has confounded many
a physicist since Einstein, Podolsky, Rosen [107] and
Schrödinger [108]. Once mainly a subject of philosophi-
cal debates, entanglement now constitutes a central no-
tion in the modern field of quantum information [109],
where it is recognized as a resource, enabling tasks such
as quantum cryptography [110] or quantum teleportation
[111].

More recently, entanglement has been shown to play
a prominent role in quantum many-body systems [112–
114]. In particular, groundstate entanglement of many-
body Hamiltonians is related to critical properties [115–
117] and topological order [118, 119]. The detection and
quantification of entanglement is a fundamental issue,
and despite a considerable amount of work [120–122], it
still remains extremely challenging to determine whether
a given quantum state is entangled or separable, and no
general solution to the separability problem is known as
of yet.

Let ρA1∪A2
act on the Hilbert space H = HA1

⊗HA2
.

A state ρA1∪A2
is called separable [123, 124] if it can be

written as a finite convex combination of pure product

states ρ
(i)
A1
⊗ ρ(j)

A2
, i.e.

ρA1∪A2
=
∑
i,j

pij ρ
(i)
A1
⊗ ρ(j)

A2
, (1)

where the probabilities pij sum to one. This definition

of separability usually requires ρ
(`)
Ak

to be projectors on
normalized pure states. However, since any mixed state
can be written as a convex sum of pure states, it suffices

that ρ
(`)
Ak

be Hermitian positive semidefinite operators.
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There exist several criteria that imply that a state is
entangled or not. The quintessential example is the en-
tanglement entropy for bipartite pure states; if it van-
ishes, then the state is separable. For mixed states, de-
tecting entanglement reveals to be more complicated. A
simple computable measure of entanglement for mixed
states is the logarithmic negativity [125–127], which is
based on the positive partial transpose (PPT) criterion
[128, 129], and defined as

E(A1 :A2) = log Tr |ρT1

A1∪A2
| , (2)

where Tr |O| ≡ Tr
√
O†O is the trace-norm of O, and

ρT1

A1∪A2
is the partial transpose of ρA1∪A2

with respect to
the degrees of freedom of A1. A vanishing logarithmic
negativity provides, in general, only a necessary but not
sufficient condition for separability, i.e. there exist entan-
gled states that remain positive under partial transposi-
tion (PPT states) [124]. Such states have the interesting
property that their entanglement cannot be distilled.

The definition of separability and entanglement is more
complex in the multipartite scenario than in the bipartite
case, see [130, 131] and references therein. Full separa-
bility, a direct extension of bipartite separability, exists
along with various forms of partial separability. For in-
stance, a state which is separable for each possible bipar-
tition is not necessarily fully separable. The structure of
entanglement is much richer when more than two parties
are involved. In particular, several inequivalent classes of
entanglement can be identified. To fully characterize the
entanglement structure of a system, it is thus crucial to
investigate its multipartite entanglement and separability
properties. Recently, there has been a burst of theoret-
ical activities aiming at better understanding multipar-
tite entanglement in quantum many-body systems, both
in [132–139] and out of equilibrium [140–142].

In this paper, we investigate entanglement and sep-
arability of Rokhsar-Kivelson (RK) states and resonat-
ing valence-bond (RVB) states. Introduced by An-
derson [143, 144] as trial groundstates for the anti-
ferromagnetic spin-1/2 Heisenberg chain on the triangu-
lar lattice, such RVB states are celebrated instances of
quantum spin liquid where pairs of electrons form sin-
glet (valence) bonds, a superposition of which yields a
liquidlike, non-Néel groundstate. Quantum spin liquids
are phases of matter with no long-range order which ex-
hibit exotic features arising from their topological na-
ture [145, 146], such as fractional excitations [147], spin-
charge separation [146], protected groundstate degener-
acy [148–150] and relation to gauge theory [151–154]. A
unifying and essential property of spin liquids is long-
range entanglement, which implies that the wavefunc-
tion cannot be continuously deformed into a product
state. Since entanglement plays such an important role
in the definition and properties of quantum spin liquids,
it is natural to investigate their expected representatives
through that lens (see, e.g., [114, 118, 119, 155–159]).

Quantum dimer models are paradigmatic examples of
strongly-correlated systems subject to hard local con-

straints. They were originally introduced on the square
lattice by Rokhsar and Kivelson [148, 160] to describe
the low-energy physics of short-range RVB states; here
a valence bond is represented by a dimer linking the
two electrons which form it. Crucially, quantum dimer
models exhibit an “RK point” where the wavefunction
is an equal-weight superposition of all dimer coverings,
which is the characteristic RVB form. The dimer RK
wavefunction is known to be a critical liquid state on
the square lattice [161, 162], whereas a gapped Z2 liquid
state is realized on triangular and kagome (frustrated)
lattices [163–165]. Dimer and RVB states have also been
investigated on three-dimensional lattices [166]. Simi-
larly as in two dimensions, they may describe critical or
gapped phases, depending on whether the underlying lat-
tice is bipartite or not. Quantum dimer models thus come
in many different flavors. Their study have unearthed a
wealth of phenomena, such as rich phase diagrams [167–
172], mapping to height models [173, 174], gauge theory
[154, 165, 175], and more.

The construction of RK states is not limited to lattice
models, nor are the wavefunctions required to be equal-
weight superpositions of all configurations [174, 176, 177];
one can, e.g., construct an RK state from the Boltzmann
weights of their favorite statistical model. Some entangle-
ment properties of RK states have been studied in [178–
184]. Recently, continuum RK states for which the un-
derlying models are local quantum field theories (QFTs)
have been shown to be separable for two disconnected
regions [185] (see also [186]), which can be traced back
to the locality of the theory. In particular, taking the
local QFT to be the free scalar field describes the con-
tinuum limit of the dimer RK and RVB wavefunctions
on the square lattice [159, 174, 176, 187]. We note that
separability implies a vanishing logarithmic negativity,
and mention that the logarithmic negativity for disjoint
subsystems vanishes for other systems as well, such as
the toric code [188, 189], the AKLT model [190, 191],
Motzkin and Fredkin spin chains [192, 193], and Chern-
Simons theories [194, 195]. Inspired by these results, one
may wonder whether separability and vanishing logarith-
mic negativity hold for dimer and more general RK states
on arbitrary graphs, as well as for RVB states. The goal
of this work is therefore to address this important issue.

This paper is organized as follows. We start in Sec. II
with RK states. We study the separability of the reduced
density matrix of two disconnected subsystems, for dimer
RK states and more general RK states with local con-
straints, on arbitrary graphs. We give general expressions
for the logarithmic negativity of such states at the end
of the section, both for disconnected and adjacent sub-
systems. In Sec. III, we study the separability of RVB
states on arbitrary graphs. We discuss their logarithmic
negativity as well as relevant higher-spin generalizations
at the end of the section. Finally, we investigate multi-
partite separability of RK and RVB states in Sec. IV. We
conclude in Sec. V with a summary of our main results,
and give an outlook on future study.
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II. ROKHSAR-KIVELSON STATES

In this section, we review the definition of RK states
and investigate their separability. These are quantum
states whose Hilbert space is spanned by the configura-
tions of an underlying statistical model.

A. Definition

Consider a statistical model on an arbitrary graph,
with allowed configurations c ∈ Ω, “energy” functional
E(c), Boltzmann weights e−E(c) and partition func-
tion Z. For each configuration c, we assign a quantum
state |c〉 and impose 〈c|c′〉 = δc,c′ . The corresponding
normalized RK state is

|ψ〉 =
1√
Z

∑
c∈Ω

e−
1
2E(c)|c〉, Z =

∑
c∈Ω

e−E(c). (3)

Different underlying statistical models yield different
RK states. We shall focus on RK states built from models
whose degrees of freedom reside on the edges of the graph,
with a local energy functional. Moreover, we assume that
the models satisfy local constraints, where the state of
all but one edge connected to a common vertex fixes the
state of the remaining edge. Such models include vertex
models with generalized ice-rule and dimer models.

B. Tripartition and disconnected subsystems

Let the underlying statistical model be defined on a
graph which consists of three subregions, A1, A2 and B.
In this setting, a subregion is a set of edges of the graph.
Two edges are said to be adjacent if they are connected to
a common vertex. We assume that A1 and A2 are discon-
nected, namely edges in A1 and A2 are never adjacent.
By convention, the boundary between A1, A2 and B con-
sists of the edges in A1, A2 that are adjacent to edges
in B. We denote the configurations on these boundaries
by i and j, respectively. In contrast, the bulk configu-
rations of A1, A2 (and B) do not include the boundary
edges. We illustrate such a tripartition in Fig. 1 for the
dimer model on the square lattice.

The state corresponding to a configuration c can be
decomposed as

|c〉 = |a1, i〉 ⊗ |b〉 ⊗ |a2, j〉. (4)

Here, a1, a2 are bulk configurations of A1, A2, while b is
the configuration of B, and i, j are the boundary configu-
rations. We have 〈ak, `|a′k, `′〉 = δak,a′kδ`,`′ with k = 1, 2,

` = i, j, as well as 〈b|b′〉 = δb,b′ . We denote by Ω`Ak
the set

of all bulk configurations of Ak that are compatible with
the boundary configuration `. Similarly, ΩijB is the set of
all configurations of B compatible with both boundary

i

A1

j

A2

FIG. 1. Illustration of a tripartite geometry for a specific
configuration of the dimer model on the square lattice. Re-
gions A1 and A2 are tiled with green and blue dimers, respec-
tively, and consist of the edges encircled or crossed by the
dotted lines; region B is tiled with gray dimers. The bound-
ary dimers are those that cross the boundaries (dotted lines)
of the subsystems. Indices i and j correspond to the boundary
configurations between B and A1 or A2, respectively.

configurations. Moreover, because the energy functional
E(c) is local, we may express it as

E(c) = E(a1, i) + E(b, i, j) + E(a2, j) , (5)

where E(ak, `) encodes the interaction in the bulk of
subsystem Ak, as well as interactions between bulk and
boundary degrees of freedom. It is similar for E(b, i, j),
except B has degrees of freedom adjacent to both bound-
aries i and j.

With these conventions, the RK wavefunction (3) reads

|ψ〉 =
∑
i,j

(
ZiA1
ZjA2
ZijB

Z

)1/2

|ψiA1
〉 ⊗ |ψijB 〉 ⊗ |ψ

j
A2
〉 , (6a)

with subsystem RK states

|ψ`Ak
〉 =

1√
Z`Ak

∑
ak∈Ω`

Ak

e−
1
2E(ak,`)|ak, `〉 ,

|ψijB 〉 =
1√
ZijB

∑
b∈Ωij

B

e−
1
2E(b,i,j)|b〉 ,

(6b)

and the normalizations

Z`Ak
=

∑
ak∈Ω`

Ak

e−E(ak,`) , ZijB =
∑
b∈Ωij

B

e−E(b,i,j) .

(6c)

C. Reduced density matrix

In this section, we compute the RK reduced density
matrix ρA1∪A2

= TrB(|ψ〉〈ψ|) of the subsystem A1 ∪A2.
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The calculation depends on the underlying statistical
model, the lattice and the shape of the subsystems.

1. Arbitrary graphs

Let us consider an RK state defined on an arbitrary
graph. We only impose that the two regions A1 and
A2 are disconnected. In general, there might be vertices
connected to edges in B and to more than one edge in A1

or A2. This is for example the case for the square lattice
in the case where the boundaries have concave angles, or
the triangular lattice, see Fig. 2 below. Hence, there may
be different boundary configurations compatible with the
same configurations in B.

To proceed, we introduce the notation i ∼ i′ for bound-
ary configurations i, i′ that are compatible with the same
configurations in B. By definition, we also have i ∼ i,
namely we do not impose that i 6= i′. This translates to

ΩijB = Ωi
′j′

B , i ∼ i′, j ∼ j′ , (7)

and we have the orthogonality relation

〈ψijB |ψ
i′j′

B 〉 = δi∼i′δj∼j′
Zij,i

′j′

B√
ZijBZ

i′j′

B

, (8)

where δi∼i′ = 1 if i ∼ i′, and vanishes otherwise. More-
over, we introduced

Zij,i
′j′

B =
∑
b∈Ωij

B

e−
1
2 (E(b,i,j)+E(b,i′,j′)) . (9)

The reduced density matrix reads

ρA1∪A2 =
∑
i,j

∑
i′∼i

∑
j′∼j

Pij,i′j′ |ψiA1
〉〈ψi

′

A1
| ⊗ |ψjA2

〉〈ψj
′

A2
| ,

(10a)
with

Pij,i′j′ =
(ZiA1

Zi′A1
ZjA2
Zj

′

A2
)1/2Zij,i

′j′

B

Z
. (10b)

2. Square lattice and no concave angles

Let us assume that the graph is the two-dimensional
square lattice, and the subsystems A1 and A2 do not have
any concave angles (they can be rectangles, strips, cylin-
ders, etc). In that case, the calculation of the reduced
density matrix simplifies greatly.

If a configuration b of B is compatible with a boundary
configuration (i, j), then the local constraints imply that
b is incompatible with all other possible choices (i′, j′) 6=
(i, j). In other words,

ΩijB ∩ Ωi
′j′

B = ∅ , (i, j) 6= (i′, j′) , (11)

FIG. 2. Illustration of two different configurations of the
dimer model for a region with a concave angle (top) and on
the triangular lattice (bottom). In both cases, the two config-
urations have different boundary configurations (highlighted
darker green dimers), but are both compatible with the same
configuration of dimers outside the green region.

and the relation (8) becomes 〈ψi
′j′

B |ψ
ij
B 〉 = δi,i′δj,j′ .

The density matrix ρ = |ψ〉〈ψ| is a double sum over the
pairs of indices (i, j) and (i′, j′) that involve projectors

of the form |ψijB 〉〈ψ
i′j′

B |. Using the orthogonality of the
RK wavefunctions for B, we obtain

ρA1∪A2
=
∑
i,j

ZiA1
ZjA2
ZijB

Z
|ψiA1
〉〈ψiA1

| ⊗ |ψjA2
〉〈ψjA2

| .

(12)
We note that this is a simplification of (10), because in
this case δi∼i′ = δi,i′ .

The reduced density matrix (12) can be cast in the
form

ρA1∪A2 =
∑
i,j

pij ρ
(i)
A1
⊗ ρ(j)

A2
, (13a)

with

pij =
ZiA1
ZjA2
ZijB

Z
, ρ

(`)
Ak

= |ψ`Ak
〉〈ψ`Ak

| . (13b)

Here, ρ
(`)
Ak

are pure states, and hence the reduced density
matrix ρA1∪A2 is separable in the sense of (1).

D. Separability for disconnected subsystems

For disjoint A1 and A2 with no concave angles on the
square lattice, we showed with (13a) that the reduced
density matrix for any RK state with local constraints
is separable. For the more general situation of disjoint
subsystems with concave angles and/or a model defined
on an arbitrary lattice, the reduced density matrix given
in (10) is not trivially separable. We investigate the sep-
arability of the reduced density matrix in this case.
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1. Dimer states

We first focus on RK states whose underlying statisti-
cal model is the dimer model. An allowed configuration
of dimers on a graph, or tiling, is such that each vertex is
covered by exactly one dimer, and allowed configurations
have the same Boltzmann weight. Dimer states are thus
particular types of RK states, where E(c) = 0 for allowed
dimer configurations, and E(c) =∞ for forbidden ones.

Since all allowed configurations have the same Boltz-
mann weight, and using (7), we have

Zij,i
′j′

B = ZijB = Zi
′j′

B = Zij
′

B = Zi
′j
B , i ∼ i′, j ∼ j′,

(14)
such that

Pij,i′j′ =
(ZiA1

Zi′A1
ZjA2
Zj

′

A2
ZijBZ

i′j′

B )1/2

Z
. (15)

From Pij,i′j′ in (15) and the symmetry of ZijB given
in (14), the reduced density matrix (10) is symmetric in
i↔ i′ and j ↔ j′. In particular, we may rewrite it as

ρA1∪A2
=
∑
i,j

ZiA1
ZjA2
ZijB

Z
ρ

(i)
A1
⊗ ρ(j)

A2
, (16a)

where we explicitly symmetrized the density matrices,

ρ
(`)
Ak

=
1

2

∑
`′∼`

√
Z`′Ak

Z`Ak

(
|ψ`Ak

〉〈ψ`
′

Ak
|+ |ψ`

′

Ak
〉〈ψ`Ak

|
)
. (16b)

The reduced density matrix corresponding to two dis-
joint regions is hence separable. As a consistency check,
we note that (16b) reduces to (13b) for regions with no
concave angles on the square lattice.

We thus conclude that for the dimer RK states, two
disconnected regions are not entangled. This is in accor-
dance with the result of [185] where it was shown that
continuum RK states are separable if the subsystem con-
sists of two disjoint regions. However, we emphasize that
here, we prove exact separability on the lattice, without
taking any thermodynamic/continuum limit.

2. Rokhsar-Kivelson states with local constraints

Taking a generic underlying statistical model (still sat-

isfying local constraints), we have ΩijB = Ωi
′j′

B for i ∼ i′

and j ∼ j′. However, in general we cannot absorb the
sums over i′ and j′ separately to define reduced density
matrices for A1 and A2, as in (16). This issue arises be-

cause of the term Zij,i
′j′

B in Pij,i′j′ , see (10). We can
however argue that the reduced density matrix ρA1∪A2

is nearly separable in the thermodynamic limit where
the volume of each subsystem A1, A2, B becomes large,
whereas their ratio is kept constant. We stress that the
following argument also holds in the limit where B be-
comes large with A1, A2 finite.

Owing to the locality of the energy functional and
the fact that A1 and A2 are disjoints, we may express
E(b, i, j) as

E(b, i, j) = Ebulk(b) + Ebd(b, i) + Ebd(b, j) , (17)

where Ebulk(b) encodes the bulk energy of the configu-
ration b, whereas Ebd(b, i) is the energy arising from the
interactions between B and the boundary i.

In general, we can write

E(b, i, j) = Ebulk(b)(1 + ∆ij) , (18)

and we expect |∆ij | � 1, because boundary energies
are negligible compare to bulk energies in the thermo-

dynamic limit. We thus approximate Zij,i
′j′

B as

Zij,i
′j′

B '
∑
b∈Ωij

B

e−Ebulk(b) ≡ ZijB,bulk . (19)

Since by definition ZijB,bulk = Zi
′j
B,bulk = Zij

′

B,bulk = Zi
′j′

B,bulk

for i ∼ i′ and j ∼ j′, the construction of the previous
section holds, and the reduced density matrix takes the
separable form of (16) where ZijB is replaced by ZijB,bulk.
Again, this is in agreement with the separability of con-
tinuum RK states for disconnected subsystems [185].

E. Logarithmic negativity

As alluded in the introduction, the logarithmic nega-
tivity is given as the violation of the PPT criterion and
serves as a measure of entanglement for mixed states. In
its original definition (2), the logarithmic negativity re-

quires the knowledge of the spectrum of ρT1

A1∪A2
, which is

very difficult to obtain for quantum many-body systems.
To circumvent this difficulty, a replica method was de-
veloped in [196, 197], which relates the logarithmic neg-

ativity to the moments of ρT2

A1∪A2
, i.e.

E(A1 : A2) = lim
n→1/2

log Tr
(
ρT1

A1∪A2

)2n
. (20)

For pure states, the logarithmic negativity reduces to the
Rényi entropy of order n = 1/2, defined as

Sn(A1) =
1

1− n
log TrρnA1

(21)

for the reduced density matrix ρA1
. We shall give general

expressions for the logarithmic negativity of RK states.

1. Disjoint subsystems

The reduced density matrix ρA1∪A2
for disjoint subsys-

tems is given in (10). Using (9) and (17), one may read-

ily verify that Pij,i′j′ = Pi′j,ij′ , hence ρA1∪A2
= ρT1

A1∪A2
.
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This implies Tr|ρT1

A1∪A2
| = TrρA1∪A2

= 1 and thus a van-
ishing logarithmic negativity,

E(A1 : A2) = 0 . (22)

We conclude that any RK state with local constraints
has zero negativity, even if the density matrix is not ex-
actly separable. Note that for dimer states, the exact
separability implies a vanishing negativity.

In the previous sections, we focused on RK states with
local constraints. However, our arguments can be gener-
alized to RK states for which the local constraints rule is
removed. An example would be an RK state constructed
from an underlying Ising model where the spins are de-
fined on the vertices of the graph. There are no con-
straints in that case, hence all boundary configurations
are compatible with all bulk configurations of B. Expres-
sion (10) remains valid, only the sum

∑
i′∼i becomes a

sum over all possible configurations i′, irrespective of i,
and similarly for j, j′. The locality of the energy func-
tional still implies that (17) holds, such that we have

ρT1

A1∪A2
= ρA1∪A2

and a vanishing negativity.

2. Comment on the mutual information

Commonly used as a measure of entanglement and cor-
relations between separate subsystems, the mutual infor-
mation is defined as

I(A1 : A2) = S(A1) + S(A1)− S(A1 ∪A2) , (23)

where S(A) = limn→1 Sn(A) is the celebrated entangle-
ment entropy. With our results from the previous sec-
tions and that of [180], one can express the mutual infor-
mation of RK states in terms of partition functions of the
underlying model. In particular, it does not vanish iden-
tically for disconnected systems, contrarily to the loga-
rithmic negativity. The mutual information has a well
defined operational meaning [198] as the total amount
of correlations, both quantum and classical, between two
systems, whereas the logarithmic negativity is a genuine
quantum entanglement measure [127]. Separability of
RK states then implies that the mutual information re-
sults entirely from classical and quantum non-entangling
correlations [199, 200].

3. Adjacent subsystems

For two adjacent subsystems A1 and A2, the corre-
sponding reduced density matrix ρA1∪A2

is in general
not separable. Below, we derive an explicit expression
for the logarithmic negativity in terms of partition func-
tions of the underlying statistical model, similarly as for
the Rényi entropies, see [180].

As for the disjoint case, the boundary configurations
between B and A1 and A2 are denoted i and j, respec-
tively. By convention, the edges that connect A1 and A2

i

j

A1

k A2

FIG. 3. Illustration of a tripartite geometry where regions A1

and A2 are adjacent for a dimer state. The boundary dimers
between A1, A2 and B are those that cross the boundaries
of the subsystems. Indices i and i (dotted lines) correspond
to the boundary configurations of A1 and A2 with respect to
B, respectively, while k (dashed line) denotes the boundary
configuration between A1 and A2.

belong to A1, and the corresponding boundary config-
urations are denoted k. We illustrate this geometry in
Fig. 3 for the dimer state. Using similar conventions as
in previous sections, the RK state (3) for two adjacent
subsystems can be written as

|ψ〉 =
∑
i,j,k

(
ZikA1
ZjkA2
ZijB

Z

)1/2

|ψikA1
〉 ⊗ |ψjkA2

〉 ⊗ |ψijB 〉 , (24)

where the partition functions and RK states for A1 and
A2 are defined as in (6), but now also depend on their
common boundary configuration k. For convenience, we
introduce the probabilities pijk as

pijk =
ZikA1
ZjkA2
ZijB

Z
. (25)

For simplicity, we consider RK states with local con-
straints on the square lattice and boundaries with no
concave angles, as in Fig. 3. The following calculations
can be generalized to arbitrary situations with the techni-
cal tools developed in Sec. II C 1. With these constraints,
RK states for B are orthogonal, and hence the reduced
density matrix reads

ρA1∪A2
=
∑
i,j,k,`

(pijkpij`)
1/2|ψikA1

〉〈ψi`A1
| ⊗ |ψjkA2

〉〈ψj`A2
| .

(26)
We now compute the logarithmic negativity using the

replica definition (20). To proceed, the partial transpo-
sition of ρA1∪A2 with respect to A1 reads

ρT1

A1∪A2
=
∑
i,j,k,`

(pijkpij`)
1/2|ψi`A1

〉〈ψikA1
| ⊗ |ψjkA2

〉〈ψj`A2
| .

(27)
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Since there are no concave angles in the boundary be-
tween A1 and A2, their respective RK states are orthog-
onal, and we find

Tr(ρT1

A1∪A2
)2n =

∑
i,j,k,`

pnijkp
n
ij` (28)

for integer values of n. The limit n→ 1/2 yields

E(A1 : A2) = log
∑
i,j,k,`

p
1/2
ijk p

1/2
ij` . (29)

The sums over k and ` can be performed separately, and
we recast this result in the form

E(A1 : A2) = log
∑
i,j

h2
ij (30a)

with

hij =
∑
k

(
ZikA1
ZjkA2
ZijB

Z

)1/2

. (30b)

Our calculations can straightforwardly be adapted to dif-
ferent geometries such as two imbricate squares.

As an important consistency check, the logarithmic
negativity (30) must reduce to the known result for the
Rényi entropy of index n = 1/2 [180] in the case where
A1 and A2 are complementary subsystems. For B = ∅,
the RK state (24) takes the form

|ψ〉 =
∑
k

(ZkA1
ZkA2

Z

)1/2
|ψkA1
〉 ⊗ |ψkA2

〉 . (31)

Computing the logarithmic negativity in a similar man-
ner as in the previous paragraphs, we find

E(A1 : A2) = 2 log
∑
k

(ZkA1
ZkA2

Z

)1/2
= S1/2(A1) ,

(32)

in agreement with [180].
For local RK states, we expect the logarithmic nega-

tivity for adjacent regions to satisfy an area law, pro-
portional to the area of the boundary shared by the
two subsystems, as is observed for, e.g., two-dimensional
topological systems [188, 189, 194] and free boson mod-
els [201, 202]. Indeed, for bipartite states with B empty,
the logarithmic negativity equals the 1/2–Rényi entropy,
so if the Rényi entropies satisfy an area law—as, e.g., for
dimer RK states on square and hexagonal lattices [180]—
then the logarithmic negativity does too. Since the area
law term is insensitive to the geometry, we further ex-
pect it to hold for logarithmic negativity of more general
tripartitions with B nonempty, the corresponding coeffi-
cient being also that of the 1/2–Rényi entropy.

For dimer RK states on the square lattice, one can
be more quantitative. Let us consider the case where

the three regions A1, A2 and B are rectangles of sizes
LX×L, with X = A1, A2, B, and A1, A2 share a common
boundary of length L. The partition function ZX of the
dimer model on a LX × L rectangle scales as [203]

ZX ∼ eaLXL−bXLX−bL+···, (33)

where a, b, bX > 0, and the ellipsis indicate sublead-
ing terms in the large-L,LX limit. Assuming that the
fixed dimer configurations on the boundaries only affect
the subleading coefficients b, bX , but not the bulk coeffi-
cient a, we expect the probabilities pijk in (25) to scale
as log pijk ∼ αL + . . . , with α > 0 (see [180] for exact
calculations for Rényi entropies). This in turn implies
that the logarithmic negativity in (30) satisfies an area
law, E(A1 : A2) ∝ L.

III. RESONATING VALENCE-BOND STATES

In the context of lattice spin models, a valence bond is
a spin singlet, and an RVB state is a quantum superpo-
sition of such valence bonds coverings, usually involving
nearby spins. Schematically, a singlet can be represented
as a dimer connecting two spins. Similarly to dimer RK
states, RVB states with positive weights are thus con-
structed from an underlying classical dimer model, but
the degrees of freedom are now spin-S located on the ver-
tices of the graph. The corresponding states are denoted
SU(N ) RVB state, with N = 2S + 1 [159, 204, 205]. In
the limit N → ∞, the valence-bond states become ex-
actly orthogonal dimer states [159]. The results of this
section are thus generalizations of those obtained in the
previous one for RK states. In the following, we begin
with SU(2) RVB states and study their separability and
logarithmic negativity as a function of the distance d be-
tween the subsystems. We discuss the case SU(N ) in
Sec. III G.

A. Definition for SU(2)

We work with the simplest RVB states, namely equal-
weight superposition of spin-1/2 singlets, on arbitrary
graphs. In our framework, singlets can be located on any
edge of the graph. As such, nearest-neighbor and next
to nearest-neighbor RVB states, for example, correspond
to different underlying graphs. Since our results hold for
arbitrary graphs, they encompass a wide variety of RVB
states.

Given a spin-1/2 singlet configuration γ of a given
graph, the corresponding state |γ〉 is the product of sin-
glets states between sites that are connected by a singlet,

|γ〉 =
⊗

(x,y)∈γ

|Sx,y〉 , (34)

where the notation (x, y) ∈ γ indicates that the sites x
and y are connected by a singlet in the configuration γ,
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and |Sx,y〉 is the spin-1/2 singlet state

|Sx,y〉 =
1√
2

(
|↑x↓y〉 − |↓x↑y〉

)
. (35)

The states corresponding to different configurations γ
and γ′ are not orthogonal, and the value of the overlap
〈γ|γ′〉 can be read from the underlying singlet config-
urations. On the graph, one draws both configurations.
The resulting image, denoted transition graph, consists of
closed loops of singlets. We illustrate this in Fig. 4. The
smallest loops have length two, when two singlets over-
lap. Denoting the number of closed loops by n`(γ, γ

′) and
the number of sites on the graph by N , we have [206]

〈γ|γ′〉 = 2n`(γ,γ′)−N/2. (36)

For γ = γ′, this overlap is one since all the singlets per-
fectly overlap and the number of loops is exactly N/2.

The RVB state reads

|Ψ〉 =
1√
Z

∑
γ∈Ω

|γ〉 =
1√
Z

∑
γ∈Ω

⊗
(x,y)∈γ

|Sx,y〉 , (37)

where Ω denotes the set of all allowed singlet configu-
rations on the graph, and Z is a constant that ensures
〈Ψ|Ψ〉 = 1. From the overlap (36), it reads

Z =
∑

γ,γ′∈Ω

2n`(γ,γ′)−N/2 . (38)

B. Tripartition and disconnected subsystems

Let us consider a tripartition A1∪B∪A2 of the graph.
Each subsystem consists in a set of NA1

, NB and NA2

vertices, respectively. By definition, a boundary site be-
longing to a subsystem is connected through an edge to
at least one site from a different subsystem. Similarly,
boundary edges are edges of the graph that connect sites
from different subsystems. Importantly, we assume that
A1 and A2 are disconnected, namely there are no bound-
ary edges that connect sites in A1 to A2. The distance
d between A1 and A2 is defined as the minimal num-
ber of edges needed to connect two boundary sites in B,
pertaining to different boundaries. We illustrate such a
tripartition in Fig. 5 for the square lattice.

Our goal is to express the RVB state (37) in terms
of RVB states for each subsystem. We denote by Ωkbd,
k = 1, 2, the set of allowed singlet configurations on
boundary edges that connect sites in Ak to B. Singlet
states defined on boundary edges are called boundary sin-
glets. Given two boundary configurations e1, e2 in Ω1

bd
and Ω2

bd, respectively, we define Ωe1,e2 as the set of all
singlet configurations on the whole graph, from which we
removed all the edges connected to occupied boundary
sites in e1, e2. We give an example of a singlet configu-
ration in Fig. 5.

γ γ′ ⟨γ|γ′⟩

FIG. 4. Two configurations, γ and γ′, and the corresponding
transition graph on the 4× 4 square lattice. In this example,
the number of sites is 16, the number of closed loops is 2, and
therefore 〈γ|γ′〉 = 2−6.

We can recast the RVB state (37) as

|Ψ〉 =
1√
Z

∑
e1∈Ω1

bd

∑
e2∈Ω2

bd

∑
γ∈Ωe1,e2

|e1〉 ⊗ |γ〉 ⊗ |e2〉 , (39)

where |ek〉, k = 1, 2, is the product of boundary singlet
in the boundary configuration ek,

|ek〉 =
⊗

(ik,jk)∈ek

|Sik,jk〉 . (40)

By convention, the sites ik belong to Ak, whereas jk la-
bel sites in B. By abuse of notation, we will sometimes
write ik ∈ ek to denote the sites in Ak that are occu-
pied by a boundary singlet in ek, and jk ∈ ek to denote
the corresponding sites in B. We further introduce ΩekAk

,
k = 1, 2, as the set of singlet configurations on the sys-
tem Ak from which we removed the edges connected to
an occupied site in the boundary configuration ek. We
also introduce Ωe1,e2B , which is the equivalent quantity for

A1 B A2

d

e1

e2

FIG. 5. Top: Example of a tripartition for the RVB state on
a 3 × 12 square lattice. Here, NA1 = NA2 = NB = 12 and
d = 3. Bottom: A singlet configuration on the same lattice
as in the top panel. The boundary singlets in e1 and e2 are
highlighted.
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system B, and it depends on both boundary configura-
tions e1, e2. With these notations, we have∑
γ∈Ωe1,e2

|γ〉 =
∑

γA1
∈Ω

e1
A1

∑
γB∈Ω

e1,e2

B

∑
γA2
∈Ω

e2
A2

|γA1〉⊗|γB〉⊗|γA2〉 ,

(41)
where |γX〉, X = A1, B,A2, are defined as in (34).
Finally, we introduce

|Ψek
Ak
〉 ≡ 1√

ZekAk

∑
γAk
∈Ω

ek
Ak

|γAk
〉 ,

|Ψe1,e2
B 〉 ≡ 1√

Ze1,e2B

∑
γB∈Ω

e1,e2
B

|γB〉 ,
(42)

where

ZekAk
=

∑
γAk

,γ′
Ak
∈Ω

ek
Ak

2n`(γAk
,γ′

Ak
)−NAk

/2 ,

Ze1,e2B =
∑

γB ,γ′
B∈Ω

e1,e2
B

2n`(γB ,γ
′
B)−NB/2 ,

(43)

and rewrite (39) as

|Ψ〉 =
∑

e1∈Ω1
bd

∑
e2∈Ω2

bd

(Ze1A1
Ze2A2
Ze1,e2B

Z

)1/2

× |Ψe1
A1
〉 ⊗ |e1〉 ⊗ |Ψe1,e2

B 〉 ⊗ |e2〉 ⊗ |Ψe2
A2
〉 .

(44)

C. Reduced density matrix

As the degrees of freedom reside on the vertices of the
graph, we compute the reduced density matrix as

ρA1∪A2
=

∑
σj=↑,↓
j∈B

〈σ1 · · ·σNB
|Ψ〉〈Ψ|σ1 · · ·σNB

〉 , (45)

where the sum is over all the spin configurations in B.
From (44), we find

ρA1∪A2
=

∑
e1,e′1∈Ω1

bd

∑
e2,e′2∈Ω2

bd

(Ze1A1
Ze2A2
Ze1,e2B

Z

)1/2

×

(
Ze

′
1

A1
Ze

′
2

A2
Ze

′
1,e

′
2

B

Z

)1/2

|Ψe1
A1
〉〈Ψe′1

A1
| ⊗ |Ψe2

A2
〉〈Ψe′2

A2
|

×
∑

σj=↑,↓
j∈B

〈σ1 · · ·σNB
|
(
|e1〉 ⊗ |Ψe1,e2

B 〉 ⊗ |e2〉
)

×
(
〈e′2| ⊗ 〈Ψ

e′1,e
′
2

B | ⊗ 〈e′1|
)
|σ1 · · ·σNB

〉.(46)

We recall that the state |e1〉, for instance, is a product of
singlets that involve boundary sites in B and in A1. In
the sum over the spin values σj =↑, ↓ for boundary sites
in B occupied by a boundary singlet in the configurations

{e1, e2, e
′
1, e
′
2}, the corresponding spins in A1 or A2 are

thus fixed to be of opposite value.

For σ = ↑, ↓, we define σ̄ = ↓, ↑, and we introduce the
notations

|σe1〉 =
⊗
j∈e1

|σj〉B ,

|σ̄e1〉 =
⊗
j∈e1

|σ̄j〉A1 ,
(47)

for a given spin configuration {σj}, j ∈ e1 of occupied
boundary sites in B, and similarly for e2. We stress that
the product in the first line of (47) is over the sites in B
that are occupied by a boundary singlet in the configu-
ration e1, whereas the product on the second line is over
the corresponding sites in A1, as highlighted by the no-
tation in the right-hand side of (47). After some algebra,
we arrive at

ρA1∪A2 =
∑

e1,e′1∈Ω1
bd

∑
e2,e′2∈Ω2

bd

∑
σj=↑,↓

j∈{e1,e′1,e2,e
′
2}

2−
1
2 |{e1,e2,e

′
1,e

′
2}|

×
(Ze1A1

Ze2A2
Ze1,e2B

Z

)1/2(Ze′1A1
Ze

′
2

A2
Ze

′
1,e

′
2

B

Z

)1/2

× 〈Ψe′1,e
′
2

B ⊗ σe′
1
⊗ σe′

2
|Ψe1,e2
B ⊗ σe1 ⊗ σe2〉

×
(
|Ψe1
A1
⊗σ̄e1〉〈Ψ

e′1
A1
⊗σ̄e′

1
|
)
⊗
(
|Ψe2
A2
⊗σ̄e2〉〈Ψ

e′2
A2
⊗σ̄e′

2
|
)
,

(48)

where |{e1, e2, e
′
1, e
′
2}| is the number of boundary singlets

in the combined configurations {e1, e2, e
′
1, e
′
2}, and factor

of 1/2 originates from the singlet normalization.

For simplicity, we write the reduced density matrix as

ρA1∪A2 =∑
e1,e′1∈Ω1

bd

∑
e2,e′2∈Ω2

bd

∑
σj=↑,↓

j∈{e1,e′1,e2,e
′
2}

F(e1, e2; e′1, e
′
2;σbd)

×
(
|Ψe1
A1
⊗σ̄e1〉〈Ψ

e′1
A1
⊗σ̄e′

1
|
)
⊗
(
|Ψe2
A2
⊗σ̄e2〉〈Ψ

e′2
A2
⊗σ̄e′

2
|
)
,

(49)

with

F(e1, e2; e′1, e
′
2;σbd) =

2−
1
2 |{e1,e2,e

′
1,e

′
2}|
(Ze1A1

Ze2A2

Z

)1/2(Ze′1A1
Ze

′
2

A2

Z

)1/2

×
(
Ze1,e2B Ze

′
1,e

′
2

B

)1/2〈Ψe′1,e
′
2

B ⊗σe′
1
⊗σe′

2
|Ψe1,e2
B ⊗σe1⊗σe2〉 ,

(50)

where σbd ≡ {σj}, j ∈ {e1, e2, e
′
1, e
′
2} is the spin config-

uration of occupied boundary sites in B.
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D. Overlap

Let us introduce the notation

G(e1, e2; e′1, e
′
2;σbd) ≡(

Ze1,e2B Ze
′
1,e

′
2

B

)1/2〈Ψe′1,e
′
2

B ⊗σe′
1
⊗σe′

2
|Ψe1,e2
B ⊗σe1⊗σe2〉 ,

(51)

and describe how to compute this normalized over-
lap graphically, in a similar fashion as for the overlap
in (36). In the following, we use the lighter notation
G(e1, e2; e′1, e

′
2) ≡ G(e1, e2; e′1, e

′
2;σbd), but one should

keep in mind that G(e1, e2; e′1, e
′
2) does not only depend

on the boundary singlet configurations, but also on the
corresponding boundary spin configuration σbd. We will
use the same notation for F(e1, e2; e′1, e

′
2).

The overlap in G(e1, e2; e′1, e
′
2) involves a double sum

over configurations γB and γ′B , see (42). First, we isolate
one term in the double sum, and focus on the overlap
〈γ′B ⊗ σe′

1
⊗ σe′

2
|γB ⊗ σe1 ⊗ σe2〉. One draws the fixed

boundary spins σbd, and the singlets of the configura-
tions γB and γ′B on the same graph. In the resulting
transition graph, fixed spins are connected by strings of
singlets, and in the rest of the domain there are closed
singlet loops. It is convenient to draw the spins and sin-
glets of the bra 〈γ′B ⊗σe′

1
⊗σe′

2
| in red, and those of the

ket |γB ⊗ σe1 ⊗ σe2〉 in blue.
Because singlets have zero magnetisation, we have the

following rules: (i) two fixed boundary spins of the same
color can be connected by a string of singlets only if they
are opposite, whereas (ii) two fixed boundary spins with
different colors can only be connected if they are equal. If
those rules are not satisfied, the bra and ket involved have
different magnetisation, and hence the resulting overlap
is zero. We illustrate this graphical construction in Fig. 6.

To compute the overlap from the transition graph,
we generalize (36) to account for the presence of singlet
strings. A string of nD singlets connecting two fixed spins
has weight 2−nD/2, irrespective of the colors or orienta-
tion of the fixed boundary spins, provided that the con-
nectivity rules from the previous paragraph are satisfied.

Let Γ = {γB , e1, e2,σbd} encode all the information
about the configuration γB , the boundary singlets and
boundary spins configurations. To proceed, we need to
introduce four additional notations: (a) the total number
of strings is ns(Γ,Γ

′), (b) the total number of singlets in
the strings is nD(Γ,Γ′), and (c) the number of closed
singlet loops is n`(Γ,Γ

′). Moreover, (d) the number of
sites that are not in a string of singlets is

ÑB(Γ,Γ′) = NB −
(
nD(Γ,Γ′) + ns(Γ,Γ

′)
)
. (52)

With these conventions, the overlap is

〈γ′B ⊗ σe′
1
⊗ σe′

2
|γB ⊗ σe1 ⊗ σe2〉 =

2−nD(Γ,Γ′)/22n`(Γ,Γ′)−ÑB(Γ,Γ′)/2 , (53)

xγ1
Bbσe1

1
bσe1

2
|

Ò
Ò

Ò Ó

|γBbσe1 bσe2y

Ò

Ò
ÒÓ

Ò
Ò

Ò Ó
Ò

Ò
ÒÓ

xγ1
Bbσe1

1
bσe1

2
|γBbσe1 bσe2y

FIG. 6. Illustration of the graphic method to compute the
overlap 〈γ′B ⊗σe′

1
⊗σe′

2
|γB ⊗σe1 ⊗σe2〉 on a 4× 5 domain.

The fixed boundary spins are illustrated by arrows.

where the first factor arises from the singlet strings con-
tributions, and the second comes from the closed singlet
loops contributions, as in (36). Simplifying this expres-
sion, the result for the total overlap G(e1, e2; e′1, e

′
2) is

G(e1, e2; e′1, e
′
2) =∑

γB∈Ω
e1,e2
B

∑
γ′
B∈Ω

e′1,e′2
B

2n`(Γ,Γ′)−(NB−ns(Γ,Γ′))/2. (54)

E. Separability for disconnected subsystems

In this section, we show that the reduced density ma-
trix (49) is separable, up to exponentially small terms
in the distance d between A1 and A2. Our argument is
twofold. First, we show that the reduced density matrix
satisfies ρT1

A1∪A2
= ρA1∪A2

up to exponentially small terms
in d. Second, we argue that the symmetric part of the
reduced density matrix can be written in the separable
form of (1).

1. Symmetry under partial transpose

In what follows, we show

F(e1, e2; e′1, e
′
2) = F(e′1, e2; e1, e

′
2) +O(2−d/2) , (55)

implying that ρA1∪A2 in (49) is symmetric under partial
transposition, up to exponentially small terms in d.

Crucially, we note that G(e1, e2; e′1, e
′
2) (and thus

F(e1, e2; e′1, e
′
2)) vanishes, unless

m(e1) +m(e2) = m(e′1) +m(e′2) , (56)

where m(e) ≡
∑
j∈e σj is the total magnetisation of the

fixed boundary spins in B occupied by boundary singlets
in the configuration e. This holds because |Ψe1,e2

B 〉 and

|Ψe′1,e
′
2

B 〉 are states with zero magnetisation and the over-
lap (51) is zero, unless the magnetisation in the bra and
the ket are equal. This is exactly condition (56).
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The case m(e1) 6= m(e′1). Boundary configurations
such that G(e1, e2; e′1, e

′
2) 6= 0 but G(e′1, e2; e1, e

′
2) = 0,

can break the invariance under the exchange e1 ↔ e′1.
This happens if (56) holds, but

m(e′1) +m(e2) 6= m(e1) +m(e′2) , (57)

namely if m(e1) 6= m(e′1). In that case, with the rules for
the connectivity of fixed spins described in Sec. III D, one
can show that each transition graph that appears in the
normalized overlap G(e1, e2; e′1, e

′
2) contains at least one

string of singlets that stretches across B and connects
boundary sites adjacent to A1 and A2.

We recall that, by definition, the minimal distance be-
tween two boundary points in B pertaining to differ-
ent boundaries is d, and hence nD(Γ,Γ′) > d. More-
over, the total number of strings satisfies ns(Γ,Γ

′) =
|{e1, e2, e

′
1, e
′
2}|/2 and is thus fixed by the boundary-

singlet configurations, but does not depend on the mag-
netisation. Hence, the number of closed singlet loops in
each transition graph is bounded form above,

n`(Γ,Γ
′) 6

NB − (d+ ns(Γ,Γ
′))

2
. (58)

The bound is saturated if there is only one string of sin-
glets, of minimal length d, and that all other singlets
perfectly overlap, hence maximizing the number of loops.
As a consequence of (58), each term in the sum in (54)
is of order 2−d/2 or smaller. However, this bound is not
enough to conclude that (55) holds for m(e1) 6= m(e′1),
because there is an exponential number of terms in the
sum in (54) which could add up to cancel the individual
exponential suppression of each term. We thus develop
our arguments to show that F(e1, e2; e′1, e

′
2) in (50) is

negligible for m(e1) 6= m(e′1).
First, we note that(Ze1A1

Ze2A2
Ze1,e2B

Z

)
6 1 , (59)

and hence

F(e1, e2; e′1, e
′
2) 6

G(e1, e2; e′1, e
′
2)

(Ze1,e2B Ze
′
1,e

′
2

B )1/2
. (60)

The numerator G(e1, e2; e′1, e
′
2) is a sum over γB ∈ Ωe1,e2B

and γ′B ∈ Ω
e′1,e

′
2

B . For each choice of γB , γ
′
B , the tran-

sition graph has at least one string of length d or
larger. The total weight of the strings thus satisfies
ws(γB , γ

′
B) = O(2−d/2), and the weight of the rest of

the transition graph from which the strings are excluded
is wr(γB , γ

′
B) 6 1. We thus have

G(e1,e2; e′1, e
′
2)

=
∑

γB∈Ω
e1,e2
B

∑
γ′
B∈Ω

e′1,e′2
B

ws(γB , γ
′
B)wr(γB , γ

′
B)

= O(2−d/2)

 ∑
γB∈Ω

e1,e2
B

∑
γ′
B∈Ω

e′1,e′2
B

wr(γB , γ
′
B)

 .

(61)

Gpe1, e2; e1
1, e

1
2q

Ò Òe1
1 e2

wr

wr

Ze1,e2
B

wr

Ze1
1,e

1
2

B

FIG. 7. Each transition graph in G(e1, e2; e′1, e
′
2) has at least

one string of length d or larger, and the rest of the configu-
ration has weight wr. For each such transition graph, there

is a transition graph in Ze1,e2
B and Ze′1,e

′
2

B where the string
is replaced by overlapping singlets with weight one, and the
whole configuration has weight wr.

Second, we turn to the investigation of the denom-
inator in the right-hand side of (60). Similarly to

G(e1, e2; e′1, e
′
2), the partition functions Ze1,e2B and Ze

′
1,e

′
2

B
are also sums over transition graphs, see (43). For each
transition graph in G(e1, e2; e′1, e

′
2), there is one transi-

tion graph in Ze1,e2B where the strings are replaced by
overlapping singlets with weight one and the rest of the
configuration is identical, with weight wr(γB , γ

′
B). The

same argument holds for Ze
′
1,e

′
2

B . We illustrate this in
Fig. 7. Moreover, both partition functions contain more
terms than those described here. Hence, we have

(Ze1,e2B Ze
′
1,e

′
2

B )1/2 >
∑

γB∈Ω
e1,e2
B

∑
γ′
B∈Ω

e′1,e′2
B

wr(γB , γ
′
B) .

(62)
Finally, combining equations (60), (61) and (62) we con-
clude that F(e1, e2; e′1, e

′
2) = O(2−d/2) and hence (55)

holds for m(e1) 6= m(e′1).

The case m(e1) = m(e′1). To show separability up
to exponentially small corrections, it remains to show
that (55) holds when

m(e1) +m(e2) = m(e′1) +m(e′2) , (63)

and

m(e′1) +m(e2) = m(e1) +m(e′2) , (64)

that is if m(e1) = m(e′1). In that case, both
G(e1, e2; e′1, e

′
2) and G(e′1, e2; e1, e

′
2) are non-vanishing.

Again, our arguments use the fact that G(e1, e2; e′1, e
′
2)
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is a sum over transition graphs. In the sum, there are
two distinct types of transition graphs: (I) those without
strings that connect different boundaries, and (II) those
with at least one string that stretches across B to connect
different boundaries.

For graphs of type I, there are nonetheless singlet
strings, but they only connect boundary sites pertain-
ing to the same boundary. For each such graph in
G(e1, e2; e′1, e

′
2), there is a graph with the exact same

weight in G(e′1, e2; e1, e
′
2) where each string attached to

the boundary between A1 and B is drawn in opposite
colors. We illustrate this in the top panel of Fig. 8. If it
were not for type-II graphs, we would thus have a perfect
equality between G(e1, e2; e′1, e

′
2) and G(e′1, e2; e1, e

′
2).

For graphs of type II, the above pictorial argument
does not work. Since we consider partial transposition
with respect to A1, we draw the boundary spins along A1

in a different color in G(e1, e2; e′1, e
′
2) and G(e′1, e2; e1, e

′
2),

whereas those at the boundary with A2 are identical in
both overlaps. Hence, if a string connects boundary spins
from different boundaries in G(e1, e2; e′1, e

′
2), the configu-

ration where a spin along the boundary of A1 is drawn in
opposite color is forbidden and has weight zero. We illus-
trate this in the bottom panel of Fig. 8. Those transition
graphs thus break the symmetry e1 ↔ e′1. However, each
such transition graph has at least one string of length
greater than d, with weight ws = O(2−d/2). Using sim-
ilar arguments as for the case m(e1) 6= m(e′1), we can
argue that the correction due to type-II graphs is expo-
nentially small in d. We thus conclude that (55) holds
for m(e1) = m(e′1), and in general.

2. Separable form of the reduced density matrix

In the previous section, we have established that the
reduced density matrix ρA1∪A2

takes the form

ρA1∪A2
= ρs

A1∪A2
+ ρ̃A1∪A2

, (65)

where ρs
A1∪A2

is the symmetric part of the matrix sat-

isfying (ρs
A1∪A2

)T1 = ρs
A1∪A2

. The second term ρ̃A1∪A2

breaks the invariance under partial transposition, but its
matrix elements are of order 2−d/2. Now, we prove the
stronger statement that ρs

A1∪A2
is separable as in (1).

We start with

ρs
A1∪A2

=∑
e1,e′1∈Ω1

bd

∑
e2,e′2∈Ω2

bd

∑
σj=↑,↓

j∈{e1,e′1,e2,e
′
2}

F s(e1, e2; e′1, e
′
2)

×
(
|Ψe1
A1
⊗σ̄e1〉〈Ψ

e′1
A1
⊗σ̄e′

1
|
)
⊗
(
|Ψe2
A2
⊗σ̄e2〉〈Ψ

e′2
A2
⊗σ̄e′

2
|
)
,

(66)

where F s(e1, e2; e′1, e
′
2) only contains terms and transition

graphs that are invariant under e1 ↔ e′1 (and e2 ↔ e′2).

e1
1

e1

Gpe1, e2; e1
1, e

1
2q

Ò

Ò

e1
1

e1

Gpe1
1, e2; e1, e

1
2q

Ò

Ò

Gpe1, e2; e1
1, e

1
2q

ÒÒe1 e1
2

ÒÒe1
1 e2

Gpe1
1, e2; e1, e

1
2q

Ò Òe1
1 e2ˆ
e1 e1

2ˆÒ Ò

FIG. 8. Top panels: For each transition graphs in
G(e1, e2; e′1, e

′
2) where no singlet strings connect both bound-

aries, there is a transition graph in G(e′1, e2; e1, e
′
2) with the

same weight, where the singlet strings pertaining to the
boundary between A1 and B have opposite colors. Bottom
panels: For each transition graphs in G(e1, e2; e′1, e

′
2) where at

least one singlet string connects both boundaries, there is no
counterpart in G(e′1, e2; e1, e

′
2) because of coloring arguments.

However, these configurations are exponentially suppressed,
as discussed in the previous paragraphs.

In particular, every term in the sum satisfies m(e1) =
m(e′1) and m(e2) = m(e′2). We recast (66) as

ρs
A1∪A2

=∑
e1,e′1∈Ω1

bd

∑
e2,e′2∈Ω2

bd

∑
σj=↑,↓

j∈{e1,e′1,e2,e
′
2}

F s(e1, e2; e′1, e
′
2)

×Ze1,e
′
1

A1
Ze2,e

′
2

A2

(
ρ
e1,e

′
1

A1
⊗ ρe2,e

′
2

A2

)
, (67a)

with

ρ
ek,e

′
k

Ak
=

1

2Zek,e
′
k

Ak

(
|Ψek
Ak
⊗ σ̄ek〉〈Ψ

e′k
Ak
⊗ σ̄e′

k
|

+ |Ψe′k
Ak
⊗ σ̄e′

k
〉〈Ψek

Ak
⊗ σ̄ek |

)
(67b)

and

Z
ek,e

′
k

Ak
= 〈Ψe′k

Ak
⊗ σ̄e′

k
|Ψek
Ak
⊗ σ̄ek〉 . (67c)

The normalization Z
ek,e

′
k

Ak
, k = 1, 2, is non-zero since

m(ek) = m(e′k), such that the magnetization of both

terms in the overlap is equal. The density matrices ρ
ek,e

′
k

Ak

are thus well-defined Hermitian operators with unit trace.
The operator ρs

A1∪A2
in (67a) is thus separable.
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F. Logarithmic negativity

Here we investigate the logarithmic negativity of dis-
joint subsystems in SU(2) RVB states on arbitrary
graphs. We consider the quantity

T2n ≡
Tr(ρT1

A1∪A2
)2n − Tr(ρA1∪A2

)2n

Tr(ρA1∪A2)2n

=
Tr
[
(ρT1

A1∪A2
)2n − (ρA1∪A2)2n

]
Tr(ρA1∪A2

)2n

(68)

for integer n. Importantly, in the limit n→ 1/2, we have

T1 = Tr|ρT1

A1∪A2
| − 1. Using the result of the previous

section, the numerator is a sum of terms each of order
2−d/2 at most. The denominator prevents the sum in the
numerator to cancel the exponential suppression of the
individual terms, and we find

T2n = O(2−d/2) , (69)

irrespective of n. Taking the limit n→ 1/2, we obtain

Tr|ρT1

A1∪A2
| = 1 + T1 = 1 +O(2−d/2) , (70)

or, equivalently,

E(A1 : A2) = O(2−d/2) , (71)

where we used the replica formula (20). We conclude that
the logarithmic negativity is exponentially suppressed
with the distance d between the subsystems, irrespective
of the underlying graph. It is possible to derive a formula
similar to (30) for RVB states in the case of adjacent in-
tervals, but we leave this issue to future investigations.

Let us now discuss the physical implications of (71).
We consider two regions A1, A2 of characteristic length L
separated by a distance d. For continuum theories, such
as a massive scalar or conformal field theories (CFTs),
the logarithmic negativity is a scaling function of ratios
constructed from the characteristic length scales of the
system. For gapped theories with a finite correlation
length ξ, one expects the logarithmic negativity to vanish
exponentially for d/ξ � 1, whereas for CFTs it is a scal-
ing function of the ratio d/L and decays for large values
thereof [196, 197]. Expression (71) implies that for RVB
states the logarithmic negativity vanishes exactly in the
scaling limit d, L→∞ with fixed ratio d/L, even for ar-
bitrarily small values of d/L. Moreover, our results hold
irrespective of the underlying graph. For critical RVB
states defined on bipartite graphs, while the correlation
functions of certain observables exhibit a power-law de-
cay, entanglement between disjoint regions is nonetheless
suppressed exponentially fast in d. This is in stark con-
trast with the CFT behavior. The case of gapped RVB
states is also surprising, since the exponential decay of
the logarithmic negativity is independent on the correla-
tion length, and is faster than for generic gapped theories.
The scaling behavior of the logarithmic negativity (71)
is thus highly nongeneric.

There is a substantial difference between the logarith-
mic negativity and mutual information of disconnected
subsystems in RVB states, similarly as for RK states (see
Sec. II E 2). The mutual information serves as an upper
bound for correlation functions [207], and therefore it de-
cays as a power-law for critical RVB states. For gapped
RVB states, the decay of the mutual information depends
on the ratio d/ξ. In both cases, the mutual information
is much larger than the logarithmic negativity.

G. Generalization to SU(N ) RVB states

We discuss the generalization of our results for SU(2)
RVB states to SU(N ), where spins have N = 2S + 1
components. The idea of SU(N ) RVB states originates
from [204], where the authors investigate SU(N ) Heisen-
berg models using Monte Carlo algorithms. We consider
a spin-S generalization of the SU(2) singlet state between
sites x and y, defined as

|Sx,y〉 =
1√

2S + 1

∑
m∈{−S,−S+1,...,S}

(−1)m−S |m〉x ⊗ |−m〉y ,

(72)
where |m〉 is an eigenvector of the magnetization operator
Sz, with eigenvalue m. For N = 2 (i.e. S = 1/2), we
recover the SU(2) spin singlet of (35), whereas for N > 2,
the operator Sz can be constructed from the generators of
the SU(N ) algebra, see [204]. Similarly to the SU(2) case,
the SU(N ) RVB state is an equal-weight superposition of
states corresponding to singlet configurations on a graph.
Given a singlet configuration γ, the associated state is

|γ〉 =
⊗

(x,y)∈γ

|Sx,y〉 , (73)

exactly as for SU(2). The difference is that the overlap
between states corresponding to different singlet config-
urations is now [204, 205]

〈γ|γ′〉 = Nn`(γ,γ′)−N/2, (74)

similarly as (36). In the limit N → ∞, singlet configu-
rations become orthogonal, as for dimer RK states. In-
deed, SU(N ) RVB states interpolate between SU(2) RVB
states and dimer states [159].

The calculations of Secs. III C through III F can be
generalized to the SU(N ) case. The reduced density
matrix has the form of (49), except that the boundary
spins take value in σ ∈ {−S,−S + 1, . . . , S}, instead
of σ ∈ {↑, ↓}. The overlaps that appear in the matrix
elements of ρA1∪A2

can still be interpreted in terms of
transition graphs with singlet loops and strings that con-
nect fixed boundary spins. Since singlet states have zero
magnetization, the connectivity rules for singlet strings
based on the color of boundary spins still holds, but sin-
glet strings of length nD now have weight N−nD/2. The
reduced density matrix is thus separable, up to terms of
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order N−d/2, and the logarithmic negativity satisfies

E(A1 : A2) = O(N−d/2) . (75)

In the limit N → ∞, we recover our results for the
dimer states, namely we find that the reduced density
matrix is exactly separable and the logarithmic negativ-
ity vanishes identically for disjoint subsystems.

IV. MULTIPARTITE SEPARABILITY

Thus far, we have focused on the separability of bipar-
tite mixed states constructed from tripartite pure states
by considering their reduced density matrix on two dis-
connected subsystems. In this section, we investigate
multipartite separability of RK and RVB states.

A system A with k parties, A =
⋃k
j=1Aj , in a general

state is k-separable if its reduced density matrix can be
written as

ρ⋃k
j=1 Aj

=
∑

i1,...,ik

pi1...ik

k⊗
j=1

ρ
(ij)
Aj

(76)

where pi1...ik are probabilities that sum to one, and ρ
(ij)
Aj

are Hermitian positive semidefinite operators, as in (1).

A. RK states

We consider RK states defined on an arbitrary lattice
which is divided in k + 1 subregions, A1, . . . , Ak and B.
The Aj ’s are disjoints and share a boundary with B.
The respective boundary configurations are denoted ij .
Using similar conventions as in Sec. II B, we decompose
the state corresponding to a configuration c as

|c〉 = |b〉
k⊗
j=1

|aj , ij〉 , (77)

the locality of the energy functional E(c) yields

E(c) = E(b, i1, . . . , ik) +

k∑
j=1

E(aj , ij) , (78)

and the RK wavefunction (3) reads

|ψ〉 =
∑

i1,...,ik

 k∏
j=1

ZijAj

1/2(Zi1...ikB

Z

)1/2
|ψi1...ikB 〉

k⊗
j=1

|ψijAj
〉 ,

(79)
where the subsystems RK states and partition functions
are defined as in (6).

Using similar techniques an in Sec. II D, we investigate
the k-separability of the RK state (79). For dimer RK

states, the reduced density matrix corresponding to k
disjoint regions reads

ρ⋃k
j=1 Aj

=
∑

i1,...,ik

 k∏
j=1

ZijAj

 Zi1...ikB

Z

k⊗
j=1

ρ
(ij)
Aj

, (80a)

where the density matrices for each subsystem are

ρ
(ij)
Aj

=
1

2

∑
i′j∼ij

√√√√√Zi′jAj

ZijAj

(
|ψijAj
〉〈ψi

′
j

Aj
|+ |ψi

′
j

Aj
〉〈ψijAj

|
)
. (80b)

This state is exactly k-separable, see (76).
For generic RK states, the arguments of Sec. II D 2

carry through to the multipartite situation and we find
that the state is separable in the thermodynamic limit
where the boundary energies are negligible compared to
the bulk energy of system B.

B. RVB states

Let us now consider an SU(2) RVB state on an arbi-
trary graph with k + 1 subregions, A1, . . . , Ak and B.
The graph distance between two subsystems Ai and Aj
is dij > 0, and we define

d
(i)
min ≡ min

j=1,...,k
j 6=i

{dij} ,

dmin ≡ min
i,j=1,...,k

i 6=j

{dij} .
(81)

As in Sec. III B, we denote by ei the boundary singlet
configuration between Ai and B. The reduced den-

sity matrix of subsystem A =
⋃k
j=1Aj takes the form

(49) generalized to k boundaries. The function F (see
Sec. III C) now depends on 2k boundary singlet config-
urations, F ≡ F(e1, . . . , ek; e′1, . . . , e

′
k). Using similar

graphical arguments as in Sec. III E, it can be shown
that terms that break the symmetry ei ↔ e′i in F cor-
respond to transition graphs where at least one string
connects Ai to another subregion Aj . Then proceeding
as in Sec. III E, we find

F(ei; e
′
i) = F(e′i; ei) +O(2−d

(i)
min/2) , (82)

and hence

F = F s +O(2−dmin/2) , (83)

where F s is the part of F which is fully symmetric under
all exchanges ei ↔ e′i. Following Sec. III E 2, we conclude
that the RVB reduced density matrix of k disjoint sub-
systems is k-separable up to terms of order 2−dmin/2. In
particular, we recoved the exact separability in the scal-
ing limit of large system sizes and distances with fixed
ratios. Moreover, our results readily generalize to the
case of SU(N ), where the k-separability is spoiled only
by terms of order N−dmin/2. In the limit N → ∞, we
recover the exact k-separability of the dimer RK states,
similarly as in Sec. III G.
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V. DISCUSSION

We have investigated entanglement and separability of
RK and RVB states. The first part of this work was
devoted to RK states constructed from the Boltzmann
weights of an underlying classical model. We proved the
exact separability of the reduced density matrix of two
disconnected subsystems for dimer RK states on arbi-
trary (tileable) graphs, implying the absence of entangle-
ment between the two subsystems. For more general RK
states with local constraints, we showed that the reduced
density matrix of two disjoint subsystems is exactly sep-
arable on the square lattice when the boundaries do not
have concave angles. For arbitrary graphs or boundaries
with concave angles, we argued that the reduced density
matrix of disjoint systems is separable in the thermody-
namic limit. We also showed that any local RK state has
zero negativity for disjoint subsystems, even if the density
matrix is not exactly separable. Such RK states are thus
bound states whose entanglement cannot be distilled.

For adjacent subsystems, we derived an exact formula
for the logarithmic negativity of RK states in terms of
partition functions of the underlying statistical model.
Finally, we verified that our results reduce to the Rényi
entropy S1/2 for complementary subsystems, and argued
that the logarithmic negativity satisfies an area law.

Similarly to dimer RK states, RVB states are con-
structed from a classical dimer model on an arbitrary
tileable graph, although the degrees of freedom are spins
located on the sites of the graph rather than on the
edges. For spin 1/2, we showed that the reduced den-
sity matrix of disconnected subsystems is separable up
to exponentially small terms of order 2−d/2, where d is
the lattice distance between the two subsystems. Sep-
arability thus holds in the scaling limit, even for ar-
bitrarily small ratio d/L, where L is the characteristic
size of the subsystems. While asymptotic separability
and vanishing logarithmic negativity in the limit of large
separation is a usual feature of local theories, the fact
that they hold in the scaling limit with arbitrarily small
ratio d/L is a novel, surprising feature of RVB states.

For simplicity, we mainly focused on SU(2) RVB states
(i.e. with spin S = 1/2), but our results straightforwardly
generalize to SU(N ). In particular, we argued that sepa-
rability for two disjoint subsystems holds up to exponen-
tially small terms of order N−d/2 and that the logarith-
mic negativity is exponentially suppressed as O(N−d/2)
with the distance d between the subsystems, irrespective
of the underlying lattice. Finally, in the limit N → ∞,
we recover the results of dimer RK states, namely the
reduced density matrix of disjoint subsystems is exactly
separable, and the logarithmic negativity vanishes.

We extended our analysis to the multipartite situa-
tion, considering the separability properties of k discon-
nected subsystems. Similarly as in the bipartite scenario,
we found that the reduced density matrix is exactly k-
separable for the dimer RK states, whereas separability is
spoiled only by subleading terms that vanish in the scal-

ing limit for generic RK states and RVB states. Hence,
for disjoint subsystems, there is neither bipartite nor mul-
tipartite entanglement in these states in the scaling limit,
irrespective of the underlying lattice.

We conclude with an outlook on future directions.
First, RK states are examples of sign-free states since
they are defined as a coherent superposition of ba-
sis states with positive coefficients. Sign-free states
are groundstates of stoquastic local Hamiltonians (see,
e.g., [208, 209]). For one-dimensional systems with zero
correlation length, the measurement-induced entangle-
ment (MIE) [210] of such non-negative states is super-
polynomially small in the distance between two subsys-
tems [211, 212], which was conjectured to hold as well
in higher dimensions. The MIE is the amount of en-
tanglement that can be generated between two subsys-
tems if one measures the rest of the system; it can thus
be regarded as a measure of entanglement between non-
complementary subsystems. Our results suggest that the
logarithmic negativity of RK and RVB states is smaller
than the MIE. It would be worth investigating the re-
lation between these two entanglement measures in the
context of sign-free states. Second, our results for RK
states on graphs are consistent with the literature re-
garding the separability of the reduced density matrix for
continuum RK states, see [185]. It would be interesting
to see whether such a continuum treatment is amenable
in the context of field theories describing spin liquids.
Third, one could generalize our results on the logarith-
mic negativity of adjacent subsystems for RK and RVB
states to arbitrary graphs and partitions, pushing toward
a more quantitative understanding of its behavior.
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“Multipartite information of free fermions on hamming
graphs,” arXiv:2212.09158.

[33] Y. Liu, Y. Kusuki, J. Kudler-Flam, R. Sohal, and
S. Ryu, “Multipartite entanglement in two-dimensional
chiral topological liquids,” arXiv:2301.07130.

[34] F. Carollo and V. Alba, “Entangled multiplets and
unusual spreading of quantum correlations in a
continuously monitored tight-binding chain,” Phys.
Rev. B 106, L220304 (2022), arXiv:2206.07806.

[35] G. Parez and R. Bonsignori, “Analytical results for the
entanglement dynamics of disjoint blocks in the XY
spin chain,” J. Phys. A: Math. Theor. 55, 505005
(2022), arXiv:2210.03637.
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[53] J.-M. Stéphan, H. Ju, P. Fendley, and R. G. Melko,
“Entanglement in gapless resonating-valence-bond
states,” New J. Phys. 15, 015004 (2013),
arXiv:1207.3820.

[54] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna,
“Topology of the resonating valence-bond state:
Solitons and high-Tc superconductivity,” Phys. Rev. B
35, 8865 (1987).

[55] P. W. Kasteleyn, “Dimer Statistics and Phase
Transitions,” J. Math. Phys. 4, 287 (1963).

[56] M. E. Fisher and J. Stephenson, “Statistical Mechanics
of Dimers on a Plane Lattice. II. Dimer Correlations
and Monomers,” Phys. Rev. 132, 1411 (1963).

[57] S. Sachdev, “Kagome- and triangular-lattice
Heisenberg antiferromagnets: Ordering from quantum

fluctuations and quantum-disordered ground states
with unconfined bosonic spinons,” Phys. Rev. B 45,
12377 (1992).

[58] R. Moessner and S. L. Sondhi, “Resonating Valence
Bond Phase in the Triangular Lattice Quantum Dimer
Model,” Phys. Rev. Lett. 86, 1881 (2001),
arXiv:cond-mat/0007378.

[59] G. Misguich, D. Serban, and V. Pasquier, “Quantum
Dimer Model on the Kagome Lattice: Solvable
Dimer-Liquid and Ising Gauge Theory,” Phys. Rev.
Lett. 89, 137202 (2002), arXiv:cond-mat/0204428.

[60] R. Moessner and S. L. Sondhi, “Three-dimensional
resonating-valence-bond liquids and their excitations,”
Phys. Rev. B 68, 184512 (2003),
arXiv:cond-mat/0307592.

[61] P. W. Leung, K. C. Chiu, and K. J. Runge, “Columnar
dimer and plaquette resonating-valence-bond orders in
the quantum dimer model,” Phys. Rev. B 54, 12938
(1996), arXiv:cond-mat/9605179.

[62] R. Moessner, S. L. Sondhi, and P. Chandra, “Phase
diagram of the hexagonal lattice quantum dimer
model,” Phys. Rev. B 64, 144416 (2001),
arXiv:cond-mat/0106288.

[63] N. Shannon, G. Misguich, and K. Penc, “Cyclic
exchange, isolated states, and spinon deconfinement in
an XXZ Heisenberg model on the checkerboard
lattice,” Phys. Rev. B 69, 220403 (2004),
arXiv:cond-mat/0403729.

[64] F. Alet, J. L. Jacobsen, G. Misguich, V. Pasquier,
F. Mila, and M. Troyer, “Interacting Classical Dimers
on the Square Lattice,” Phys. Rev. Lett. 94, 235702
(2005), arXiv:cond-mat/0501241.
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[77] J.-M. Stéphan, G. Misguich, and V. Pasquier, “Phase
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