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We present a fully differential calculation of lepton pair production, taking into account the dominant next-to-
next-to-leading order QED corrections as well as next-to-leading order electroweak, and polarisation effects.
We include all lepton masses, hard photon emission, as well as non-perturbative hadronic corrections. The
corresponding matrix elements are implemented in the Monte Carlo framework McMule. In order to obtain
a numerically stable implementation, we extend next-to-soft stabilisation, a universal technique based on
a next-to-leading-power expansion, to calculations with polarised leptons. As an example, we show results
tailored to the Belle II detector with the current setup as well as a potential future configuration that includes
polarised beams.

1 Introduction
Thanks to its high luminosity, Belle II is expected to produce about 45 billion ττ events over its lifetime [1],
roughly fifty times more than Belle I [2] and a hundred times more than at BaBar [3]. This increase in
statistics will allow for precision measurements of very rare Standard Model (SM) decays such as τ → νν̄``′`′

or τ → νν̄`γ as well as put bounds on charged-lepton-flavour-violating decays such as τ → ``′`′. For the SM
decays, even differential measurements in terms of Michel parameters will be possible. In this case, spin-
spin correlations between the two taus of ee → ττ can be exploited [4]. Further, it was recently proposed
to measure the anomalous magnetic moment of the tau to 10−6 by exploiting transverse and longitudinal
asymmetries [5].
Hence, the production cross section for ee → ττ needs to be known as precisely as possible. For the

centre-of-mass (CMS) energy used at Belle II (
√
s ≈ 10.5 GeV), QED effects still dominate even though

electroweak (EW) effects start to become relevant. With EW effects, we mean all contributions due to
EW interactions but without contributions due to pure QED. The Monte Carlo code KKMC [6–8] combines
a parton shower with fixed-order EW corrections at next-to-leading order (NLO). It has been very useful
for many experimental studies [1]. The EW effects were further studied with the SANC program, accounting
for the polarisation of the incoming leptons [9].
However, the improvements expected from Belle II warrant a renewed theoretical effort. Currently no

NNLO-QED calculation for ee→ `` (with ` 6= e) exists as the necessary two-loop integrals are not currently
known with full mass dependence. However, a recent theoretical interest in e-µ scattering [10] was inspired
by the MUonE experiment [11–13]. As part of this effort, the necessary integrals were computed in the
limit of vanishing electron mass me → 0 [14, 15]. This was very recently used to assemble to the full
two-loop matrix element (squared) for ee → `` with me = 0 [16] which is an important part of the full
NNLO. Assuming me is small compared to all other scales of the process, this matrix element can be used
to obtain the full matrix element up to terms suppressed by O(m2/Q2). This massification procedure was
first developed in [17–19] and later extended [20] to the case of a second, heavy mass.
However, the smallness of the electron mass means, that for a first estimate of the NNLO correction,

it is sufficient to just consider the electronic corrections, i.e. those due to the electron, and ignoring the
more complicated mixed contributions. This can be done in a gauge-invariant manner by assigning different
charges for each lepton family and only take contributions proportional to Q2

`Q
6
e. This was demonstrated

1



at NLO [21] and then exploited to calculate the dominant NNLO contributions to eµ → eµ [22, 23]. Note
that these Q2

`Q
6
e corrections can be calculated exactly in the electron mass me without approximation as

the virtual corrections are just the heavy-quark form factor [24].
In this paper, we use the McMule framework to extend our previous calculation [22] of eµ→ eµ to cover

the electronic, or initial-state radiation (ISR), corrections to ee → ``. This means that our calculation
includes the full NLO-QED (incl. the Q3

`Q
3
e box contributions) but only the leading, i.e. Q2

`Q
6
e, NNLO-QED

corrections. In particular, we do not include final-state radiation (FSR, Q6
`Q

2
e) and initial-final interference

(IFI, Q3
`Q

5
e, Q4

`Q
4
e, and Q5

`Q
3
e) since these are suppressed.1 We further treat the incoming electrons as

polarised and include NLO-EW effects that are becoming relevant at the energy at which Belle II operates.
Since the CMS energy of Belle II (

√
s ≈ 10.5 GeV) is significantly higher than for MUonE (

√
s ≈ 0.4 GeV),

new numerical problems arise in the real-virtual matrix element, especially in the case of soft emission.
These can be efficiently handled using next-to-soft (NTS) stabilisation [26], i.e. using a next-to-leading
power (NLP) expansion if the emitted photon becomes soft.
This paper is organised as follows: in Section 2, we briefly summarise the calculation as implemented

in the McMule framework. Next, we explain how NTS stabilisation changes when considering polarised
particles in Section 3. Finally, we present some results for tau production cross sections and asymmetries,
both in general and tailored to Belle II in Section 4 before concluding in Section 5.

2 Overview of the calculation
We consider the scattering process

e+(p1)e−(p2)→ Z/γ → τ+(p3)τ−(p4)
{
γ(p5)γ(p6)

}
, (1)

taking into account the full NLO-EW corrections (all terms Q2
τQ

4
e, Q3

τQ
3
e, Q4

τQ
2
e) and the electronic NNLO-

QED corrections (Q2
τQ

6
e) but drop all remaining NNLO-QED terms, i.e. FSR (Q6

τQ
2
e) and IFI (Q3

τQ
5
e,

Q4
τQ

4
e, and Q5

τQ
3
e) as discussed before. Since we are well below the Z peak, we can expand the NLO-EW

corrections by considering the masses of the EW bosons (M2
Z , M

2
W , and M2

H) much larger than all other
scales of the process (m2

e, m2
τ , s = (p1 +p2)2, and t = (p1−p3)2). We then expand in the ratio of the heavy

scale to the light scale, taking the first two terms, i.e. O
(
{s, t,m2

e,m
2
τ}
/
{M2

Z ,M
2
W ,M

2
H}
)
. For simplicity,

we write this as an expansion in 1/MZ . This procedure corresponds to how one expands in an effective field
theory in 1/Λ while taking into account all effects up to and including dimension six. However, we retain
full dependence on the electron and tau masses throughout the calculation.
Considering only the electronic, i.e. Q2

τQ
6
e, contributions at NNLO means that we have exactly calculated

the main source of logarithms in the electron mass, i.e. those terms containing α2 log2(m2
e/Q

2) (where
Q2 � m2

e is some other scale). Since we perform this calculation with full me dependence we do include
also power-suppressed terms that are ∝ Q2

τQ
6
e. However, since such terms are also contained in the mixed

IFI corrections, we have not included all logarithms and power-suppressed terms involving me. Similar
logarithms in the tau mass do appear and those ∝ Q6

τQ
2
e (FSR) could be trivially calculated. However,

since m2
e � m2

τ ∼ Q2 these logarithms are not expected to be overly large.
Diagrams were generated with FeynArts [27] and QGraf [28] and calculated using Package-X [29]. Ultra-

violet (UV) and infrared (IR) divergences are regularised in d = 4− 2ε dimensions and the renormalisation
is performed in the on-shell scheme up to NNLO. For the EW corrections, this means that we would like
to use e, MW , MZ , MH , and m` as input parameters [30, 31]. However, it is beneficial to use GF instead

1While this paper was under review, the full NNLO corrections for eµ → eµ were calculated [25] by using the two-loop
matrix element with me = 0 [16] with massification. This calculation does indeed show that, at least for certain observables,
the hierarchy of the different contributions holds with the Q6

`Q
2
e remaining dominant. Extending [25] to ee → `` is planned

for a future paper.
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of MW as it has much higher precision

α =
e2

4π
=

1

137.035999084
,

GF = 1.1663787× 10−11 MeV−2 ,

MZ = 91 187.6 MeV ,

MH = 125 000 MeV ,

me = 0.510998950 MeV ,

mτ = 1 776.86 MeV .

(2)

The way McMule is structured, we actually use MZ and s2W = 0.226202 as variables. However, MW , and
thus sW , are obtained from GF through

M2
W s

2
W = M2

W

(
1− M2

W

M2
Z

)
=

α√
2GF

(
1 + ∆r

)
, (3)

where the one-loop expression of ∆r was taken from [31] but without including leading higher-order contri-
butions. Since MW , and thus sW , are treated as measurable input parameters, we have not expanded ∆r
in 1/MZ .
The calculation is split into fermionic contributions that are due to fermionic vacuum polarisation (VP)

effects (Section 2.1) and bosonic ones (Section 2.2).
Once properly renormalised, all matrix elements were implemented in version v0.4.0 of the publicly

available parton-level integrator McMule [22, 32,33]

https://mule-tools.gitlab.io

It performs the phase-space integration using the FKS` subtraction scheme [34], an all-orders QED extension
of the FKS scheme [35,36]. This allows us to calculate any IR-safe observable in a fully differential way.
Our calculation is performed with longitudinally polarised electrons (see for example [37, 38]). We intro-

duce a polarisation vector ni along the beam direction for each particle that takes the form

ni =
(
0, 0, 0, Pi

)
pi =

(
mi, 0, 0, 0

) (4)

in the particle’s rest frame. Of course ni ·pi = 0 in any frame. |Pi| ≤ 1 is the degree of polarisation that can
be chosen as required by the beam parameters. To implement this, we modify the completeness relation of
the spinors to

u(pi)ū(pi) = (/pi +mi)(1 + /niγ5) . (5)

Alternatively, it may be simpler to calculate the matrix element for fully polarised initial states, i.e. with
Pi ≡ si = ±1

Ms1s2 =
∣∣A ∣∣2

P1=s1,P2=s2
. (6)

This is for example done in OpenLoops [39, 40] which we will be using in Section 2.2. However, for most
phenomenological applications we are interested in partial polarisation. For the (parity conserving) QED
part, we can recover the general result as

M =
1 + P1P2

2
M±± +

1− P1P2

2
M±∓ , (7)

where −1 ≤ Pi ≤ +1 can be arbitrary.

2.1 Fermionic corrections
Up to NNLO, all fermionic corrections to our process are due to closed fermion bubbles. They can be split
into leptonic contributions (electrons, muons, and taus) and non-perturbative hadronic effects (HVP).

3

https://mule-tools.gitlab.io


At one-loop, these can be written in terms of the photonic and Z currents for the flavour f = e, τ

j(f,γ)µ = e v̄(p,mf )γµu(p′,mf ) , (8a)

j(f,Z)
µ = e v̄(p,mf )γµ

(
g−PL + g+PR

)
u(p′,mf ) , (8b)

with the momenta properly chosen. The (Z`¯̀)-couplings are flavour-universal

g− = −
1
2 − s2W
sW cW

and g+ =
sW
cW

. (9)

The (renormalised) one-loop amplitude for the fermionic vacuum polarisation can be divided into three
parts

A(1)
vp,f = Σrenorm.

γγ,f
+ Σrenorm.

γZ,f
+ Σrenorm.

γZ,f

+ Σrenorm.
ZZ,f

+O
( 1

M4
Z

)

= A(1)
γγ,vp,f +A(1)

γZ,vp,f +A(1)
ZZ,vp,f +O

( 1

M4
Z

)
=

1

s2
j(e,γ)µ j(τ,γ)µ Σrenorm.

γγ,f (s) +
1

s
(
s−M2

Z

)(j(e,Z)
µ j(τ,γ)µ + j(e,γ)µ j(τ,Z)

µ

)
Σrenorm.
γZ,f (s)

+
1

(s−M2
Z)2

j(e,Z)
µ j(τ,Z)

µ Σrenorm.
ZZ,f (s) +O

( 1

M4
Z

)
,

(10)

where the transversal fermionic self-energies Σrenorm.
ij,f are renormalised in the on-shell scheme with the

conditions [31]

Σrenorm.
γγ (0) = 0 , Re

[
Σrenorm.
ZZ (M2

Z)
]

= 0 , Σrenorm.
γZ (0) = 0 , Re

[
Σrenorm.
γZ (M2

Z)
]

= 0 . (11)

Fermionic contributions due to other particles in the EW sector (such as the Higgs) are suppressed by at
least O(1/M4

Z) and hence already dropped. Corrections due to boson loops are included in Section 2.2.
For the ZZ term, we extract the part that is O(1/M2

Z) by defining a constant C

A(1)
ZZ,vp,f =

1

M2
Z

j(e,Z)
µ j(τ,Z)

µ C +O
( 1

M4
Z

)
(12)

that arises from the renormalisation of MZ . Hence, it is determined through the fermionic part of the
(unrenormalised) self-energy ΣZZ,f (Q2) at Q2 = M2

Z where it can be calculated perturbatively as it has no
kinematic dependence

C =
α

6π

∑
f

(If3 )2 − 2s2W I
f
3Qf + 2s4WQ

2
f

c2W s
2
W

. (13)

From the renormalisation conditions (11) we also find the explicit expressions for the renormalised self-
energies [41]

Σrenorm.
γγ (s) = Σγγ(s)− Σγγ(0) = Σγγ(s) ,

Σrenorm.
γZ (s) = ΣγZ(s)− ΣγZ(0)− s

M2
Z

(
Re
[
ΣγZ(M2

Z)
]
− ΣγZ(0)

)
,

(14)

where we have used that the photon remains massless (Σγγ(0) = 0). By defining the fermionic VP function
Π̂ij [41, 42]

Σij,f (Q2) ≡ Σij,f (0) +Q2 Π̂ij(Q
2) , (15)
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the γγ and γZ amplitudes can be written as

A(1)
γγ,vp,f +A(1)

γZ,vp,f

=
1

s
j(e,γ)µ j(τ,γ)µ Π̂γγ(s) +

1(
s−M2

Z

)(j(e,Z)
µ j(τ,γ)µ + j(e,γ)µ j(τ,Z)

µ

)(
Π̂γZ(s)− Re

[
Π̂γZ(M2

Z)
])
.

(16)

Using the definitions of alphaQED [42]

Π̂γZ(Q2) =
1

sW cW

(
Π̂3γ(Q2)− s2W Π̂γγ(Q2)

)
, (17)

where the 3 refers to the third component of the isospin current and γ to the QED current, we arrive at
the final expression

A(1)
vp,f =

1

s
j(e,γ)µ j(τ,γ)µ Π̂γγ(s)

− 1

M2
Z

(
j(e,Z)
µ j(τ,γ)µ + j(e,γ)µ j(τ,Z)

µ

)( 1

sW cW
Π̂3γ(s)− sW

cW
Π̂γγ(s)

)

+
1

M2
Z

(
j(e,Z)
µ j(τ,γ)µ + j(e,γ)µ j(τ,Z)

µ

)( 1

sW cW
Re
[
Π̂3γ(M2

Z)− s2W Π̂γγ(M2
Z)
])

+
1

M2
Z

j(e,Z)
µ j(τ,Z)

µ C +O
( 1

M4
Z

)
.

(18)

Here, all non-perturbative Π̂ij (including Π̂ij(M
2
Z)) are taken from alphaQED and can be obtained more or

less directly from R ratio data. However, Π̂3γ is sensitive to fermions flavour in a different way than Π̂γγ ,
necessitating a flavour recombination. The simplest strategy for this is assuming that SU(3)f is an exact
symmetry which results in Π̂3γ = 1

2 Π̂γγ . alphaQEDc19 uses a more complicated strategy based on vector
meson dominance (VMD) [42]. The perturbative, leptonic contributions to Π̂ij are included in the usual
way by calculating the corresponding one-loop diagrams.
Beyond NLO, we have to account for QED-VP insertions into loop diagrams. This is done using the

hyperspherical method [43, 44] that was used for µ-e scattering [45] and implemented in McMule for
µ-e, `-p, and Møller scattering [22, 46]. There are further two types of leptonic self-energy corrections
at two loop in QED: the product of two one-loop self-energy bubbles (“bubble chain”) and the genuine
two-loop self-energy that can be obtained from [47]. Since these are fully perturbative, their inclusion is
straightforward.

2.2 Bosonic corrections
At NLO, the bosonic corrections are given by two separately divergent types of contributions: real (R) and
virtual (V).
The virtual corrections include box contributions (Q3

τQ
3
e) involving box diagrams two photons (NLO-

QED), one Z and one photon, two Z bosons, and two W bosons (all NLO-EW). The latter two still
contribute atO(M−2Z ) even though a naive power counting would indicate that they only appear atO(M−4Z ).
Boxes involving Higgs bosons or Goldstone modes are indeed further suppressed and do not contribute at
this level. Of course, we also include all triangle diagrams. Further, the bosonic corrections also include
self-energy corrections arising from purely bosonic loops such as W corrections to the photon propagator.
At NNLO-QED, we have three separately divergent types of contributions: virtual-virtual (VV), real-

virtual (RV), and real-real (RR).
For the electronic corrections, the VV can be obtained from the heavy-quark form factor [24] which is

written in terms of harmonic polylogarithms (HPLs) [48]. This allows for trivial analytic continuation into
the time-like region we are interested in.
We use OpenLoops [39, 40] in its standard mode for the RV corrections. While OpenLoops is extremely

stable, its standard mode may not be sufficient for soft or collinear emission, especially in the case of small
fermion masses. To address this issue, we use NTS stabilisation [26]. The basic idea of this method is to
switch to an expanded matrix element if the (rescaled) photon energy ξ = 2Eγ/

√
s drops below a certain
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cut-off. This cut-off is usually varied between 10−5 and 10−2 to ensure that the final result does not depend
on its value.
Below the cut-off, we use a matrix element that is expanded for small photon energies up to NLP. To do

this, we use an extension of the LBK theorem [49, 50] to one loop [51, 52] that we will discuss in the next
section.

3 LBK theorem for polarised particles
Following [51,52], we will extend the LBK theorem to polarised cross sections at one loop. We use ξ as the
expansion parameter and write the photon momentum as pγ = ξk.
To better understand what happens at one loop, let us first review the changes in the case of polarised

particles in the proof at tree-level where similar results have been obtained before [53, 54]. By splitting
A(0)
n+1 into contributions from internal and external legs

A(0)
n+1 =

∑
i

( pγ

Γext

pi )
+ Γint

pγ

, (19)

and using gauge invariance, the NTS contribution can be written as [49–52]

A(0)
n+1 =

∑
i

Qi

(1

ξ

ε · pi
k · pi

Γext({p})− Γext({p})/k/ε
2k · pi

−
[
ε ·DiΓ

ext({p})
])
u(pi) +O(ξ1) , (20)

with the LBK operator

Dµ
i =

pµi
k · pi

k · ∂
∂pi
− ∂

∂pi,µ
. (21)

When squaring A(0)
n+1, we have to consider the interference between the leading-power (LP, O(ξ−1) at

amplitude-level) and NLP (O(ξ0) at amplitude-level) terms. To do this in the unpolarised case, we would
use the identity

u(pi)ū(pi)/ε/k + /k/εu(pi)ū(pi)

2k · pi
=
ε · pi
k · pi

/k − /ε = ε ·Di

(
u(pi)ū(pi)

)
(22)

since u(pi)ū(pi) = /pi +mi. In the polarised case, we have to use (5) and (22) gets modified accordingly

u(pi)ū(pi)/ε/k + /k/εu(pi)ū(pi)

2k · pi
=

[
ε ·Di −

εµkν − ενkµ
k · pi

ni,ν
∂

∂ni,µ

](
u(pi)ū(pi)

)
. (23)

Hence, the matrix element is finally obtained after summing over the polarisation of the photon

M(0)
n+1({p}, k) =

∑
ij

QiQj

(
− 1

ξ2
pi · pj

(k · pi)(k · pj)
+

1

ξ

pj ·Di

k · pj
+

1

ξ

pj,µkν − pj,νkµ
(k · pi)(k · pj)

ni,ν
∂

∂ni,µ

)
M(0)

n ({p})

+O(ξ0) .

(24)

Thus, the calculation of the NTS term at tree-level remains straightforward as we just need to also calculate
the derivatives w.r.t. the polarisation vector.
To extend this discussion to the one-loop level, we use the method of regions [55]. It was shown in [51],

that the amplitude of the soft contribution is

A(1),soft
n+1 = −

∑
i 6=j

Q2
iQj(iA(0)

n )
( pi · ε
k · pi

− pj · ε
k · pj

)
S(pi, pj , k) +O(ξ1) . (25)
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The function S(pi, pj , k) ∼ k can be calculated universally and is presented in [51]. The hard contribution
is closely related to the LBK theorem (24) with one important subtlety related to the following external leg
corrections [52]

A(1)
ext,i = pi

pγ

Γext + pi

pγ

Γext + pi

pγ

δm Γext . (26)

The vertex correction to the soft photon emission spoils the basic assumption of the LBK theorem that
diagrams with internal emission do not contain any 1/pγ poles. Further, the self-energy correction is
technically an external correction and could be expanded using the normal LBK theorem. Hence, these
contributions do not reduce to the non-radiative amplitude. Instead, one can show that (26) results in an
extra contribution of the form

A(1)
ext,i = Q3

iΓ
extε ·H u(pi) (27)

Hµ =
1

m i
γµ − pµi

mi(k · pi)
/k − 1

k · pi
γµ/k . (28)

When interfering this contribution with the LP term of (20) we find

M(1)
ext,i =

1

ξ

∑
j

Qj
ε∗ · pj
k · pj

Γextε ·H u(pi)ū(pi)Γ
ext,† + h.c. . (29)

In the unpolarised case, this contribution vanishes after some Dirac algebra. However, if ni 6= 0, it does not
and instead results in

M(1)
ext,i = −1

ξ

∑
j

Q3
iQj

16π2

1

(k · pi)(k · pj)
[
(2n · pj)kµ − (2n · k)pµj

][ ∂

∂ni,µ
M(0)

n −
pµi
mi
M(0),′

n

]
. (30)

Here, we need a modified version of the tree-level matrix element

M(0),′
n = Γext(/pi +mi)γ

5Γext,† . (31)

We can now write down a version of the LBK theorem that is valid both at one-loop and in the case of
polarised external particles

M(1)
n+1 =

∑
i,j

QiQj

{
− 1

ξ2
pi · pj

(pi · k)(pj · k)
M(1)

n +
1

ξ

pj ·Di[M(1)
n ]

k · pj

+
1

ξ

pµj (k · ni)− kµ(pj · ni)
(pi · k)(pj · k)

[
∂

∂ni,µ
M(1)

n +
Q2
i

8π2

(
∂

∂ni,µ
M(0)

n −
pµi
mi
M(0),′

n

)]}

+
1

ξ

∑
l,i6=j

Q2
iQjQl

[ pi · pl
(pi · k)(pl · k)

− pl · pj
(pl · k)(pj · k)

]
× 2S(pi, pj , k)M(0)

n +O(ξ0) .

(32)

The new term M(0),′
n , while easy to calculate, has severe consequences for the structure of the NTS ap-

proximation. Every other term in (32) is directly related to the reduced process, either at one-loop (M(1)
n )

or tree-level (M(0)
n ). M(0),′

n , on the other hand, is a new structure that spoils the elegance of the LBK
theorem and its extensions.
We have numerically verified that (32) is correct by taking the limit ξ → 0 of the real-virtual matrix

element relevant for this process (as shown in Figure 1) and also for µ→ νν̄eγ.
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Figure 1: Convergence of the soft limit at LP and NLP of the dominant one-loop corrections to e+e− →
`+`−γ. The reference valueMexact is calculated with arbitrary precision in Mathematica.

4 Results
To validate our calculation, we have crossed it to eµ → eµ and compared the NLO-EW with [21] and the
NNLO-QED with [22, 23] at the level of the differential distributions. We found full agreement in both
cases.
In the following, we present some results for e+e− → τ+τ− at

√
s = 10.5830052 GeV both without any

cuts and tailored to Belle II. We stress that these are just examples and that McMule can calculate any
IR-safe observable.
We write the total EW cross section as

σ = σQED + σEW = σ
(0)
QED + σ

(1)
QED + σ

(2)
QED + σEW , (33)

which is divided into the pure QED and the EW part. The former are further split into LO (σ(0)
QED), NLO

(σ(1)
QED), and NNLO (σ(2)

QED) contributions. Note that we do not split σEW ≡ σ
(0)
EW + σ

(1)
EW as they turn out

to be similar in size. As explained in the next section, this is the result of a cancellation within the LO-EW
contributions.
In the interest of Open Science, all raw data, analysis pipelines, and plots can be found at [56]

https://mule-tools.gitlab.io/user-library/dilepton/belle

4.1 Cross section without cuts
We begin by considering the cross section integrated over all of phase space without any cuts. The relevant
K factors are defined as

δK(1) =
σ
(1)
QED

σ
(0)
QED

, δK(2) =
σ
(2)
QED

σ
(0)
QED + σ

(1)
QED

and δKEW =
σEW

σQED
. (34)

8

https://mule-tools.gitlab.io/user-library/dilepton/belle


We further consider the forward-backward asymmetry in the CMS frame which we denote with a ∗

AFB(σ) =

∫ π/2
0

dθ∗τ−
dσ

dθ∗
τ−
−
∫ π
π/2

dθ∗τ−
dσ

dθ∗
τ−∫ π/2

0
dθ∗τ−

dσ
dθ∗

τ−
+
∫ π
π/2

dθ∗τ−
dσ

dθ∗
τ−

. (35)

Following Belle’s convention [57], the angles θτ± are defined w.r.t. the incoming positron.2 At a given
order, AFB is defined to also contain all contributions below it, i.e.

AFB

(
σ
(`)
QED

)
≡ AFB

(∑̀
j=0

σ
(j)
QED

)
, AFB

(
σEW

)
≡ AFB

(
σQED + σEW

)
. (36)

The cross sections and asymmetries are shown in Table 1 for the unpolarised case and the cases where
both electrons are polarised parallel (+) or anti-parallel (−) w.r.t. their direction of flight with a degree of
polarisation of 70% in their rest frames. Note that in the QED case, parity invariance implies that there
are only two independent configurations since

σQED(++) = σQED(−−) and σQED(+−) = σQED(−+) . (37)

In the EW case, parity is violated but CP is still conserved. Hence,

σEW(+−) 6= σEW(−+) but σEW(++) = σEW(−−) , (38)

implying three independent configurations.
The angular distributions used for AFB are shown in Figure 2 for the unpolarised case. We note that even

though the NNLO-QED and EW corrections are similar in size at the level of dσ/dθ∗, the latter are much
smaller for the integrated cross section. This is because the NNLO-QED corrections are symmetric while the
EW corrections are largely antisymmetric as can be clearly seen in Figure 2. The dominant asymmetry of
the EW corrections is due to the coupling structure. Calculation at tree-level (unpolarised) withm = M = 0
shows that the leading symmetric contribution ∼ cos2 θ is suppressed by (Vf/Af )2 = (1 − 4s2W )2 ≈ 0.009
compared to the antisymmetric one ∼ cos θ

dσ
(0)
EW

dθ∗τ±
∼
(

cos θ −
V 2
f

2A2
f

cos2 θ + const. +O
(

1

M2
Z

))
. (39)

As a result, the integrated cross section σ(0)
EW is almost eliminated

σ
(0)
EW = (2.489 pb)forward + (−2.542 pb)backward = −0.053 pb (40)

and σEW is dominated by σ(1)
EW

σ
(1)
EW = (0.192 pb)forward + (0.015 pb)backward = 0.207 pb. (41)

The values in (40) and (41) are given for the unpolarised case. If polarisation effects are taken into account
σ
(0)
EW and σ(1)

EW are similar in size. The suppression of the symmetric term compared to the antisymmetric
one in σ(0)

EW is weakened if dimension-six-squared terms3 are taken into account

σ
(0)
EW = −0.053 pb (42)

= (−0.067 pb)dim.-six + (0.015 pb)(dim.-six)2 + (−0.001 pb)dim.-eight +O
(

1

M6
Z

)
.

Thus, we include the LO-EW contribution without expansion in 1/MZ .
2To convert to the more common convention of defining the angle w.r.t. the incoming electron, one would set θ → π − θ

and AFB → −AFB.
3This means the contributions where a dimension-six operator was interfered with itself rather than the pure QED ampli-

tude.
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polarisation (00)
σ
(0)
QED σ

(1)
QED σ

(2)
QED σEW

σ /pb 771.640 139.286 4.158 0.155
δK /% 18.051 0.457 0.017
AFB 0 -0.012 n/a -0.006

polarisation (±±)
σ
(0)
QED σ

(1)
QED σ

(2)
QED σEW(++) σEW(−−)

σ /pb 393.537 72.922 2.537(3) 0.014
δK /% 18.530 0.544 0.003
AFB 0 -0.012 n/a -0.006

polarisation (∓±)
σ
(0)
QED σ

(1)
QED σ

(2)
QED σEW(−+) σEW(+−)

σ /pb 1149.744 205.648 5.782(1) 0.105 0.486
δK /% 17.886 0.427 0.008 0.036
AFB 0 -0.012 n/a -0.006 -0.006

Table 1: Cross sections and asymmetries for e+e− → τ+τ− up to NNLO in QED and NLO in EW for all
polarisation configurations (e+e−). When the electrons are polarised, the degree of polarisation is 70% in
their respective rest frames. Unless otherwise indicated, all digits are significant.

Note that the zero crossing of the EW corrections in Figure 2 does not happen at exactly 90◦ but is
slightly offset due to the small symmetric part in (39).
At LO in QED, AFB is exactly zero as expected, while at NLO in QED, the mixed tauonic-electronic

contribution induces a finite but small asymmetry. This is similar to the NLO-QCD effects resulting in
a non-zero AFB for the hadronic tt production [58]. In principle, this would continue at NNLO in QED.
However, the purely electronic contributions considered here are perfectly symmetric w.r.t. θ∗τ± and therefore
do not contribute to AFB. The EW corrections are almost perfectly antisymmetric but much smaller than
the QED corrections. This means that the full NNLO-QED corrections will be required to give a meaningful
result for AFB.4 However, unless calculation of the QED two-loop matrix elements with full me dependence
becomes available, it will not be possible to do this for the (±±)-polarisation configuration which requires
a helicity flip that cannot be obtained with massification alone.

4.2 Predictions for Belle II
Next, we tailor our calculation to Belle II. The detector is asymmetric since the electron beam’s energy is
higher than the positron beam’s

E
(in)
e− = 7 GeV and E

(in)
e+ = 4 GeV . (43)

We approximate the detector’s geometric acceptance by requiring that the tau leptons are produced within
the geometric acceptance [57]

17◦ < θτ± < 150◦ . (44)

The angular distribution of the outgoing taus is shown in Figure 3. The LO distribution vanishes below
≈ 53◦ because of the cut on the other particle. However, once real emission is allowed, the angle can become
much smaller. Once again, the EW corrections are similar in size to the NNLO-QED ones.
The SuperKEKB beams are currently unpolarised which is reflected in our calculation. However, recent

proposals suggest that this could be changed in the future, aiming for 70% polarisation [59]. To study this
case, we consider the ratio between the polarised and unpolarised angular distributions of the τ−, both in
the lab frame with cuts (θτ−) and the CMS frame without (θ∗τ−)

R(∗)(±+) =
dσ(±+)/dθ

(∗)
τ−

dσ(00)/dθ
(∗)
τ−

− σ(±+)

σ(00)
. (45)

4While this paper was under review, the full NNLO corrections were calculated [25] for eµ → eµ, albeit at without
polarisation and lower energies where numerical instabilities are less pronounced.
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Figure 2: The angular distribution of the two taus in the final state for an unpolarised initial state in the
CMS frame. Note that the scale changes from linear to logarithmic at +0.06.
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Figure 3: The angular distribution of the two taus in the lab frame for unpolarised initial states. Note
that, because we only considered the dominant NNLO corrections, the σ(2)

QED curves for θτ+ and θτ− are
identical.
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Note that the first term in (45) is not centred around one but instead around σ(±+)/σ(00). Hence, we
subtract this overall shift to centreR(±+) around zero to make the comparison betweenR(++) andR(−+)
easier.
R∗ and R are shown in Figure 4. Let us first consider the simpler R∗ (Figure 4a). Since the outgoing

taus are not polarised, R∗ = 0 at LO. At and beyond NLO, this is no longer true because hard-collinear
ISR causes a helicity flip in the emitter.5 With (45) normalised as it is, adding all polarisations results
once again in a flat line, meaning that we have recovered the unpolarised result. Boosting to the lab frame
(Figure 4b) stretches the distributions for forward emissions (53◦ . θτ− . 120◦) and squeezes them for
backward (120◦ . θτ− ≤ 150◦). Further, since the cuts (44) mean that hard emission is required for
θτ− . 53◦, the effect is significantly enhanced.

5 Conclusion
We have presented a fully differential calculation of the dominant NNLO-QED and NLO-EW corrections
for di-lepton productions, including fermionic and bosonic corrections. We find that the EW corrections are
of similar size to the NNLO-QED ones for

√
s ≈ 10.5 GeV meaning they are vital for Belle II. To perform

this calculation, we have extended the strategy of next-to-soft stabilisation to polarised observables, which,
combined with OpenLoops, allows for a fast and stable evaluation of the real-virtual matrix element.
All matrix elements were implemented in the parton-level Monte Carlo code McMule which allows the

user to calculate arbitrary IR-safe observables. As a first example, we have calculated differential predictions
for Belle II, both for polarised and unpolarised initial states.
Since this calculation only includes the dominant contribution, a natural next step would be the inclusion

of the full set of NNLO corrections, especially when considering asymmetries such as AFB. The relevant
two-loop matrix elements are known in the unpolarised case for me = 0 [16] but would need to be extended,
in a first step, to the polarised case. Finally, this work will need to be combined with [25] to properly
include the numerically delicate real-virtual corrections. Work to that end is currently in progress.
Should even higher precision be required, resummation is required. Currently, McMule is calculating

strictly at fixed order which means that some important logarithmically-enhanced contributions are not
considered beyond NNLO. These can be resummed to all orders using fragmentation functions (for final
state) or parton distribution functions (for initial state). For a recent review on this topic, see [60] and
references therein. However, this was not done in the present study as any analytic resummation limits
what observables can be calculated. Further, there is an effort within the McMule collaboration to include
a YFS parton shower that is similar to PHOTONS++ [61] and matched to NNLO.
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