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Abstract

We improve the holographic description of isospin-asymmetric baryonic mat-
ter within the Witten-Sakai-Sugimoto model by accounting for a realistic pion
mass, computing the pion condensate dynamically, and including rho meson
condensation by allowing the gauge field in the bulk to be anisotropic. This
description takes into account the coexistence of baryonic matter with pion
and rho meson condensates. Our main result is the zero-temperature phase
diagram in the plane of baryon and isospin chemical potentials. We find that
the effective pion mass in the baryonic medium increases with baryon den-
sity and that, as a consequence, there is no pion condensation in neutron-star
matter. Our improved description also predicts that baryons are disfavored
at low baryon chemical potentials even for arbitrarily large isospin chemical
potential. Instead, rho meson condensation sets in on top of the pion con-
densate at an isospin chemical potential of about 9.4mπ. We further observe
a highly non-monotonic phase boundary regarding the disappearance of pion
condensation beyond about ten times nuclear saturation density.
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1 Introduction and conclusions

1.1 Context

Phases of Quantum Chromodynamics (QCD) at non-zero, and not asymptotically large,
baryon chemical potential µB are notoriously difficult to understand from first principles.
In contrast, at non-zero isospin chemical potential µI lattice QCD can be employed [1–5].
In this paper we connect – within a single model – the mesonic phases at µI ≫ µB with
nuclear matter at µB ≫ µI and discuss the phases in between, where baryons coexist with
meson condensates.

To this end, we employ the Witten-Sakai-Sugimoto (WSS) model [6–8], which is a
certain realization of the gauge/gravity correspondence [9, 10], based on the holographic
principle. Holographic models have been employed to understand certain aspects of QCD
matter that are non-perturbative in nature, for instance in the context of heavy-ion col-
lisions [11, 12]. More recently, they have also increasingly been employed to understand
dense baryonic matter in the context of neutron stars [13–22]. Ideally, these calculations
would make use of a string dual of QCD. Such a dual, however, is currently unknown,
and thus holographic models can provide results for theories similar, but not identical, to
QCD. The WSS model is a top-down approach originating from type-IIA string theory.
In a certain, albeit inaccessible, limit it is dual to QCD at a large number of colors Nc,
and it has proven useful in the discussion of meson, baryon, and glueball spectra and their
interactions [23–26] as well as certain properties of QCD matter [27,28].

Holographic baryonic matter has been studied in different approximations within the
(top-down) WSS model [29–36], besides other holographic (bottom-up) approaches [37,
38]. Our main motivation is to improve the recently developed holographic description
of isospin-asymmetric baryonic matter [39], which despite its simplicity and shortcomings
was shown to yield realistic neutron stars in agreement with astrophysical data [40, 41].
Following the basic setup of these studies, we will work in the background geometry
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corresponding to the confined phase, use the Yang-Mills approximation to the Dirac-Born-
Infeld action, consider two flavors, and employ the so-called “homogeneous ansatz”, where
the gauge fields in the bulk are assumed to only depend on the holographic coordinate
[30, 32, 34]. This is in contrast to the single-baryon solution of the model, which is a
localized instanton in position space as well as in the holographic direction, and whose
direct generalization to a many-baryon system is an alternative – somewhat more difficult
– description [31–33,35].

Our main novelties are as follows. Firstly, we include a non-zero pion mass. Due to the
geometry of the WSS model, this is more difficult compared to other holographic setups.
We shall therefore follow the effective description brought forward in Refs. [42–44] and
evaluated in the context of the QCD phase structure (without isospin chemical potential)
in Refs. [36, 45]. This improvement allows us to match our holographic results to chiral
perturbation theory, compute the onset of pion condensation in the medium of baryonic
matter, and determine the pion condensate dynamically throughout the phase diagram.
Secondly, when solving the equations of motion in the bulk we use a more general ansatz
for the non-abelian gauge fields compared to Ref. [39], where an isotropic approximation
was employed. The more general approach renders highly isospin-asymmetric baryonic
matter anisotropic, which results in a continuous transition to phases with rho meson
condensation, previously discussed in the WSS model only in the absence of baryons [46].

We use this improved description to address various open questions and make model
predictions for uncharted territory of the QCD phase diagram. In the region of relatively
small isospin asymmetry, µI ≪ µB, we may ask under which conditions a pion condensate
coexists with baryonic matter. The possibility of a p-wave pion condensate in dense nuclear
matter and thus the interior of neutron stars was pointed out long ago [47–51], while an
s-wave condensate is considered less likely due to the repulsive pion-neutron interaction,
although it cannot be ruled out completely [52]. In the opposite limit, where µI ≫ µB,
one may ask whether baryonic states with large isospin number are populated or whether
the entire isospin density is generated by mesons. It was conjectured that there is a
continuity from pion condensation at low µI to Cooper pairs with the same quantum
number as the pions at asymptotically large µI without the appearance of baryons [53].
Recent studies on the lattice have shed some light on the equation of state at non-zero
isospin chemical potential [3, 5], with results including a small baryon chemical potential
obtained via Taylor expansion [4], however without conclusive evidence about the (non-
)appearance of baryons. These results have been used to speculate about the existence
of pion stars [54–56]. Finally, we can extend our results to the region with a sizable µB
(say comparable to values at the center of neutron stars) and µI larger than found in
any known astrophysical environment. Although this region might currently be only of
academic interest, it may help inform our understanding of the phases in the regions which
are accessible experimentally or astrophysically.

1.2 Main result

Our main result is the phase diagram in Fig. 1. We will explain the calculation leading to
this diagram in the main text and give our conclusions here. The WSS model in the form
used here has three parameters, the Kaluza-Klein massMKK, the ’t Hooft coupling λ, and
the pion mass mπ. We fit these parameters to reproduce the low-density phase transitions
of our phase diagram: the µB = 0 onset of pion condensation at the physical pion mass
µI = mπ = 140MeV and the µI = 0 baryon onset at µB = 922.7MeV. Our fit also ensures
that the saturation density of isospin-symmetric nuclear matter and the vacuum mass of
the rho meson are reproduced to a good accuracy. As known from previous studies of the
model, fitting nuclear matter properties in the given approximation creates tension with
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Figure 1: Zero-temperature phase diagram in the plane of baryon and isospin chemical
potentials. The various phases are the vacuum (V), the pion-condensed phase (π), the
phase where pion and rho condensates coexist (πρ), the purely baryonic phase (B) and
the phase where baryonic matter coexists with a pion condensate (πB). In both baryonic
phases a rho meson condensate develops at large µI (in our approximation, the resulting
ρB and πρB phases are not distinguished by a phase transition). The red curves show, for
comparison, the phase structure in the absence of pion condensation. They separate the
vacuum from the B (and Bρ) phase. The blue curve is β-equilibrated, electrically neutral
matter relevant for neutron stars, with the marker at the endpoint indicating the chemical
potentials in the center of the maximum mass star.

some vacuum properties. Here we need to live with a pion decay constant that is about
30% smaller than its physical value.

The main observations are as follows.

• Rho meson condensation with pions switched off. The phase transition lines with
pion condensation artificially turned off (red) show the usual first-order baryon on-
set at µI = 0 from the vacuum to isospin-symmetric nuclear matter (the black and
red lines are on top of each other for the V-B transition). At µB = 0, we have a
second-order transition at µI = 776MeV, which corresponds to the mass of the rho
meson. The resulting phase with rho meson condensation is necessarily anisotropic
because the rho meson is a vector meson. Within our approximation, this phase is
continuously connected to the baryonic phase. The reason is that in our approx-
imation isospin and position space are coupled and thus any non-zero µI creates
an anisotropy in our solution. This anisotropy is small at small µI (purely baryonic
phase) and becomes maximal – in the absence of pion condensation – only at exactly
µB = 0 (pure rho meson phase).

• No baryons at small µB for any µI . At sufficiently small µB, the pion-condensed
phase (π) is superseded by a phase where pion and rho condensates coexist. The
second-order onset of rho meson condensation in the pionic medium is at µI ≃
9.4mπ. This is in agreement with Ref. [46]. This reference worked in the chiral
limit, but nevertheless observed approximately the same critical chemical potential
since the pion mass is negligible in this regime. The second, more fundamental,
difference to this reference is that our calculation shows that the πρ phase is indeed
preferred over a baryonic phase. A priori, it is conceivable that baryons appear
for large µI even though µB is small because they may contribute to the isospin

4



SciPost Physics Submission

density. In fact, this was observed in Ref. [39] within the same model, where the
approximate isotropic solution was extrapolated to large µI . Here, allowing for
anisotropic solutions, we conclude that our previous approximation underestimated
the free energy of the baryonic phase (i.e., made the highly asymmetric baryonic
phase more favorable), and that the model actually predicts a finite band at low µB
that is purely mesonic. Interestingly, this band only exists if pions are taken into
account.

• Nuclear matter delays pion condensation. In our holographic baryonic matter, the
onset of pion condensation occurs at a larger critical chemical potential µI than in
the vacuum. This observation is in qualitative agreement with an earlier holographic
study using a bottom-up approach [37]. (Due to this shift in the onset, there is a
small segment – barely visible in the figure – of a direct transition from the π to the B
phase.) As a consequence, we find that nuclear matter under neutron star conditions
(requiring electroweak equilibrium and electric charge neutrality) does not exhibit
pion condensation, in accordance with the predicted absence of s-wave condensation
from more traditional approaches. This provides another improvement on Ref. [39],
where due to the absence of a pion mass, pion condensation set in immediately
at µI > 0. It validates a posteriori the assumption used in our construction of
neutron stars from holography [40], where pion condensation was omitted. We have
used the construction of this reference to compute the chemical potentials in the
center of the most massive star, which is indicated in the phase diagram1. (This
calculation includes the holographic construction of the crust of the star and thus,
following Ref. [40], uses the surface tension of nuclear matter as an additional input
parameter, which we have set to Σ = 1MeV/fm2.) Moreover, for all µI we consider,
the pion condensate vanishes for sufficiently large µB. This can only be observed in
our improved description with anisotropic baryons and a non-zero pion mass.

• Curious behavior for large µB and µI . The onset of pion condensation in the
baryonic medium eventually turns into a first-order transition. At very large µI and
µB there is a very pronounced non-monotonicity in this B-πB transition. We are
not aware of any other model calculation to compare this result with and there is no
experimental or astrophysical data for this extreme regime. The non-monotonicity
occurs at values of µI around the rho meson mass in the pionic medium and can
thus be related to rho meson admixtures in the B and πB phases, denoted by ρB
and πρB in the phase diagram. We will demonstrate that the non-monotonicity
disappears for large values of the ’t Hooft coupling. In any case, for extremely
large chemical potentials we have to interpret the results with care since our probe
brane approximation breaks down and, moreover, in real-world QCD we expect
deconfinement and chiral transitions, which in our setup are absent.

1.3 Outlook

Our work is a step towards more realistic holographic baryonic matter, in particular clarify-
ing the connection to meson condensation at non-zero isospin chemical potential. Various
improvements and extensions are possible in future work. One may perform an analogous
calculation in the deconfined geometry of the model, which would give rise to a nontrivial
temperature dependence and thus our phase diagram can in principle be generalized by

1Pion stars (with electric neutrality and electroweak equilibrium) are located on the µI axis with
maximal values of µI very close to the pion mass, see Table I of Ref. [55].
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adding temperature as a third axis. This might be of relevance for a more detailed com-
parison with lattice results at µB = 0, and in the astrophysical context it would provide an
equation of state applicable for conditions in neutron star mergers, where zero temperature
is no longer a good approximation. The deconfined geometry also provides a deviation
from chiral perturbation theory already in the purely pionic phase [39], which is a further
motivation to include a non-zero pion mass in this computationally more difficult setting.

Furthermore, it is known that the symmetry energy of holographic nuclear matter in
the present approach is unphysically large due to the classical treatment of the isospin
spectrum, which is continuous in the large-Nc limit [39]. Recently, a quantization of the
homogeneous ansatz has been proposed [57] and it would be interesting to study the effect
of this improvement on our phase diagram. Our approach also ignores the possibility of
an anisotropic pion condensate, which would be desirable to include for a comparison with
predictions of p-wave condensation in neutron star matter. This could be included in the
holographic setup by a different choice of boundary conditions, as done in Refs. [58, 59]
in the presence of a magnetic field. In the neutron star context it would also be very
interesting to consider kaon condensation [60, 61] instead of or possibly in coexistence
with pion condensation. This would require the generalization to three flavors which,
as a first step, could be done in the mesonic sector only, before including baryons with
strangeness in a second step.

1.4 Structure of the paper

Our paper is organized as follows. We present our holographic setup and discuss its relation
to chiral perturbation theory in Sec. 2. Important ingredients of the setup compared to
earlier work are the chiral rotation discussed in Sec. 2.1 and the mass correction discussed
in Sec. 2.2. In Sec. 3 we introduce our holographic baryonic matter and derive the equations
of motion, the free energy, and the minimization conditions for the various dynamical
parameters. These results are used in Sec. 4 to discuss the different solutions and their
interpretation as distinct physical phases. Sec. 5 is devoted to the numerical evaluation:
We explain the parameter fit in Sec. 5.1, and while the main results have already been
discussed in the introduction, we present a more detailed analysis in Secs. 5.2 – 5.5.

2 Setup and holographic pion condensation

We start by reviewing pion condensation at non-zero isospin chemical potential within
chiral perturbation theory [62, 63], and how it is reproduced from the holographic per-
spective. This will be useful to establish notation, to explain the particular chiral rotation
which we shall apply for convenience, and to introduce the mass term, which will be added
to our holographic action to effectively account for a non-zero pion mass.

2.1 Pion condensation from the chiral Lagrangian

Two-flavor QCD in the massless limit is invariant under the global chiral symmetry group
U(2)L × U(2)R. In the real world, where quarks are massive, this symmetry is only
approximate (and the axial U(1)A ⊂ U(2)L×U(2)R is broken due to the chiral anomaly).
At low energies, where the perturbative description in terms of the fundamental quark and
gluon degrees of freedom becomes inapplicable, chiral symmetry is spontaneously broken
down to its diagonal subgroup, U(2)L × U(2)R → U(2)L+R. The low-energy effective
theory for the associated pseudo-Goldstone bosons is formulated in terms of the pion and
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mass matrices Σ,M ∈ U(2), which transform under the chiral group as

Σ′ = gLΣg
†
R , M ′ = gLMg†R , (1)

where (gL, gR) ∈ U(2)L × U(2)R. To leading order in derivatives and in the pion mass,
the chiral Lagrangian reads [64,65]

L =
f2π
4
Tr[DµΣ

†DµΣ] +
f2πB

2
Tr[MΣ† +ΣM †] , (2)

where fπ is the pion decay constant. The mass matrix contains up and down quark masses,
M = diag(mu,md), while B is proportional to the chiral condensate and can be expressed
in terms of pion mass and quark mass mq ≃ mu ≃ md via m2

π = 2mqB. In the absence of
electromagnetism, the covariant derivative is

DµΣ = ∂µΣ− i
µI
2

[τ3,Σ] δ
µ
0 . (3)

Here and in the following we denote the Pauli matrices by τa (a = 1, 2, 3). The isospin
chemical potential is normalized such that, as we will see shortly, pion condensation occurs
at µI = mπ. The baryon chemical potential comes together with the unit matrix in flavor
space and thus drops out of the covariant derivative, i.e., in this section, where we only
discuss the mesonic sector, the results do not depend on µB. (In the presence of a magnetic
field, the chiral anomaly gives rise to a µB dependence of the chiral Lagrangian [66,67].)

The pion field can be parameterized as

Σ =
1

fπ
(σ1 + iπaτa) , (4)

where the massive mode σ2 = f2π − πaπa is frozen and πa are the three pionic degrees of
freedom. Alternatively, we can parameterize

σ = fπ cosψ cos θ , (5a)

π1 = fπ cosψ sin θ cosα , (5b)

π2 = fπ cosψ sin θ sinα , (5c)

π3 = fπ sinψ . (5d)

Then, in the static, homogeneous limit and subtracting the vacuum contribution, the free
energy density derived from the Lagrangian (2) is

Ω = −
µ2I
2
(π21 + π22)− fπm

2
π(σ − fπ) = −

µ2I
2
f2π sin

2 θ cos2 ψ − f2πm
2
π(cosψ cos θ − 1) . (6)

Upon minimizing Ω with respect to ψ and θ, one finds that the ground state for µI < mπ

is the vacuum θ = ψ = 0, where the chiral field is Σ = 1 and the free energy density is
Ω = 0. On the other hand, when µI > mπ, charged pion condensation becomes favored,
with a vanishing neutral pion condensate ψ = π3 = 0, and

cos θ =
m2

π

µ2I
, Ω = −

f2πµ
2
I

2

(
1− m2

π

µ2I

)2

, nI = − ∂Ω

∂µI
= f2πµI

(
1− m4

π

µ4I

)
, (7)

where nI is the isospin density. For later use we shall denote the pion matrix with vanishing
neutral pion condensate by

Σ0 = cos θ 1 + i sin θ(τ1 cosα+ τ2 sinα) . (8)
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Here, in the purely mesonic scenario, the charged pion condensate is given by Eq. (7),
while it will be determined dynamically in our holographic calculation in the presence
of baryons. In either case, the system is degenerate with respect to the angle α, which
corresponds to the U(1)L+R under which the Lagrangian is invariant even in the presence
of an isospin chemical potential. We could therefore set α to any convenient value at this
point, but we will keep it unspecified for now in order to check explicitly the degeneracy
with respect to α within the full holographic calculation.

For reasons explained in Refs. [39, 46, 58] and that will become clear below, in our
holographic study it will be useful to apply a chiral rotation (1) such that

Σ′
0 = gLΣ0g

†
R = 1 . (9)

We choose
gR = g†L ≡ g , (10)

such that g2 = Σ0, which is satisfied for instance by

g = cos
θ

2
1 +

i sin θ

2 cos θ
2

(τ1 cosα+ τ2 sinα) . (11)

This defines separate left- and right-handed transformations for U(2)L and U(2)R matrices.
Since in either case the matrices can be written as linear combinations of the Pauli matrices
(and the unit matrix), we compute the transformations on τ = (τ1, τ2, τ3) from (11),

τ ′
R/L =


cos θ sin2 α+ cos2 α sinα cosα(1− cos θ) ± sinα sin θ

sinα cosα(1− cos θ) cos θ cos2 α+ sin2 α ∓ cosα sin θ

∓ sinα sin θ ± cosα sin θ cos θ

 τ , (12)

where τ ′a,R/L = gR/Lτag
†
R/L. In the absence of pion condensation, θ = 0, both left- and

right-handed transformations become the identity.
In our holographic model, the isospin chemical potential will be introduced through

boundary conditions for the temporal components of the gauge fields on the left- and
right-handed branes. Therefore, if we want to perform the calculation conveniently in
the frame where Σ′

0 = 1, the pion condensate will enter the boundary conditions via the
transformation (12).

The choice (10) is clearly not unique. In particular, it differs from the one used in
Refs. [39, 46, 58]. These references all worked in the chiral limit, and the transformation

used there was defined by gR = 1 and gL = Σ†
0. In the chiral limit, the pion condensate is

maximal, cos θ = 0, for all µI , as can be seen for instance from Eq. (7) (as we shall see later,
this is true even in the presence of baryons). In this case, this alternative transformation

gives the identity in the right-handed sector and gLτ3g
†
L = −τ3 for all α (with a rotation

in the τ1-τ2 sector that depends on α) in the left-handed sector. Hence, this choice is
particularly simple. However, generalizing this transformation to the case of a non-zero
pion mass leads to asymmetric values in left- and right-handed sectors. This is avoided by
the symmetric choice (10), which will allow us to work with symmetric or antisymmetric
boundary conditions for any value of θ.

2.2 Holographic setup including effective mass term

The WSS model [6–8] is a top-down string-theoretical construction describing the near-
horizon geometry of a non-supersymmetric configuration sourced by Nc D4-branes. The
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flavor sector is included by addingNf D8-D8-brane pairs which we assume to be maximally
separated along a compact circle X4 ∼ X4 + 2πM−1

KK. The flavor branes thus follow
geodesics, hence their embedding does not have to be determined dynamically. In the
so-called confined geometry, the induced metric on the flavor branes takes the form

ds2 =

(
U

R

)3/2 (
dX2

0 + dX2
)
+

(
R

U

)3/2 [ dU2

f(U)
+ U2dΩ2

4

]
, f(U) = 1−

U3
KK

U3
. (13)

Here, U is the coordinate for the radial holographic direction, dΩ2
4 describes the unit 4-

sphere, R is the background curvature radius, which is related to the string length ℓs, the ’t
Hooft coupling and the Kaluza-Klein mass via R3 = λℓ2s/(2MKK), and UKK = 2λMKKℓ

2
s/9

is the location where the X4 direction caps off. Four-dimensional Euclidean space-time
is given by (X0,X), where the temporal component X0 ∼ X0 + T−1 is compact in the
presence of a non-zero temperature T . In this version of the model, large Nc effects render
the flavor physics temperature independent, so that T will appear only as an overall factor
in the free energy.

The action on the flavor branes is composed of the Dirac-Born-Infeld (DBI) and Chern-
Simons (CS) contributions, together with our effective mass term,

S = SDBI + SCS + Sm . (14)

We now discuss each of these terms separately.

2.2.1 Yang-Mills and Chern-Simons contributions

The DBI action is

SDBI = 2T8V4

∫
d4X

∫ ∞

UKK

dUe−ϕ STr
√
det(g + 2πα′F) , (15)

where T8 = 1/
[
(2π)8ℓ9s

]
is the D8-brane tension, V4 = 8π2/3 is the volume of the 4-sphere,

eϕ = gs(U/R)
3/4 is the dilaton with the string coupling gs = λ/(2πNcMKKℓs), and α

′ = ℓ2s.
The prefactor 2 accounts for the two halves of the connected flavor branes. The metric g is
given by Eq. (13), and the field strength F can be expressed in terms of the world-volume
gauge field A as

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν ] , (16)

with µ, ν ∈ {0, 1, 2, 3, U}. We work with Nf = 2, and, following the convention of Ref. [39],
introduce the dimensionless coordinates

u =
U

R(MKKR)2
, x0 = λ0MKKX0 , xi =MKKXi , (17)

where i = 1, 2, 3, and where we have abbreviated

λ0 ≡
λ

4π
. (18)

In these dimensionless units,

uKK =
4

9
. (19)

The corresponding dimensionless gauge fields, decomposed into U(1) and SU(2) parts, are
introduced via

AU =
Âu +Aa

uτa
R(MKKR)2

,
A0

λ0MKK
= Â0 +Aa

0τa ,
Ai

MKK
= Âi +Aa

i τa . (20)

9
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Accordingly, we introduce abelian and non-abelian components of the dimensionless field
strengths

Fµν = F̂µν + F a
µντa , (21)

with
F̂µν = ∂µÂν − ∂νÂµ , F a

µν = ∂µA
a
ν − ∂νA

a
µ − 2ϵabcA

b
µA

c
ν . (22)

Moreover, we shall from now on assume all fields to be independent of Euclidean space-
time, i.e., they only depend on the holographic coordinate u. Then, the space-time in-
tegration becomes trivial and simply yields a prefactor V/T , where V is the 3-volume of
our system. We work with the Yang-Mills (YM) approximation to the DBI action, keep-
ing only terms of second order in the field strength. In this approximation, there is no
ambiguity in calculating the action, the symmetrized trace in Eq. (15) is identical to an
ordinary trace. The result is

SDBI ≃ SYM =
N
2

V

T

∫ ∞

uKK

du

[
u5/2

√
f

(
Tr[F 2

0u] +
Tr[F 2

iu]

λ20

)

+
1

u1/2
√
f

(
Tr[F 2

0i] +
Tr[F 2

ij ]

2λ20

)]
, (23)

where we have abbreviated

N =
NcM

4
KKλ

3
0

6π2
. (24)

The CS action can be written in terms of abelian and non-abelian components as [23,58]

SCS = −i N
2λ20

V

T

∫ ∞

uKK

du

{
3

2
Âµ

(
F a
νρF

a
σλ +

1

3
F̂νρF̂σλ

)

+2∂µ

[
Âν

(
F a
ρσA

a
λ +

1

4
ϵabcA

a
ρA

b
σA

c
λ

)]}
ϵµνρσλ . (25)

In all situations we consider in this paper, the non-zero field strengths are the abelian
and non-abelian temporal components Â0(u), A

a
0(u) (needed to account for the chemical

potentials) and the non-abelian spatial components Aa
i (u) (accounting for baryonic matter

and rho meson condensation). In particular, we will always work in a gauge where Âu =
Aa

u = 0, in which case the pion field is encoded in the boundary conditions for Aa
0(u) [7].

We denote
Â0(u) ≡ iA(u) , Aa

0(u) ≡ iKa(u) , (26)

where the factor i is due to the Euclidean signature of space-time, and where the simpli-
fied notation of the temporal gauge fields is introduced to avoid cluttering of indices, in
particular in Sec. 3. Then, the YM and CS contributions to the action become

SYM + SCS = NfN
V

T

∫ ∞

uKK

duL , (27)

with the dimensionless Lagrangian

L =
u5/2

√
f

2

(
−A′2 −K ′

aK
′
a +

Aa
i
′Aa

i
′

λ20

)
+

2

u1/2
√
f

[
−KaKaA

b
iA

b
i +KaKbA

a
iA

b
i

+
Aa

iA
a
iA

b
jA

b
j −Aa

iA
a
jA

b
iA

b
j

2λ20

]
+
A

λ20
ϵijkϵabc(A

a
iA

b
jA

c
k)

′ , (28)

10
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where the last term comes from the CS contribution (only the first term in Eq. (25) con-
tributes), and where prime denotes derivative with respect to u. The resulting equations
of motion are

(u5/2
√
fA′)′ = − 1

λ20
ϵijkϵabc(A

a
iA

b
jA

c
k)

′ , (29a)

(u5/2
√
fK ′

a)
′ =

4

u1/2
√
f
(KaA

b
iA

b
i −KbA

b
iA

a
i ) , (29b)

(u5/2
√
fAa

i
′)′ =

4λ20
u1/2

√
f

(
−KbKbA

a
i +KaKbA

b
i +

Aa
iA

b
jA

b
j −Aa

jA
b
iA

b
j

λ20

)

−3A′ϵijkϵabcA
b
jA

c
k . (29c)

2.2.2 Mass correction

Finally, we need to specify the effective mass term in the action Sm. The WSS model
differs from other holographic constructions in that the inclusion of the pion mass cannot
be described directly in terms of a separation of the flavor branes from the color branes
in a transverse direction. Here we follow the approach of Refs. [42–44], see also Refs.
[36,45,68–70], where the pion mass is included in an effective way by considering an open
Wilson line stretched between the D8- and D8-branes. Its expectation value is given by the
corresponding worldsheet action, ⟨O⟩ = ce−SWS with a constant c and SWS = SNG + S∂ ,
and one identifies the (medium dependent) chiral condensate with ⟨q̄q⟩ = −ce−SNG . The
Nambu-Goto action takes the form

SNG = 2λ0

∫ ∞

uKK

dux4(u) , (30)

with x4 = MKKX4, in analogy to the spatial coordinates xi (17). Since we work with
maximally separated flavor branes, the embedding function is constant, x4 = π/2, and
thus SNG merely contains a constant (infinite) vacuum contribution. Subtracting this
vacuum contribution, the factor from the Nambu-Goto action is 1. This is in contrast to
the case of non-antipodal separation of the flavor branes, where the embedding is medium-
dependent and the Nambu-Goto factor gives a non-trivial contribution to the equations
of motion [36,45]. The boundary term S∂ is given by

e−S∂ = exp

(
i

∫ ∞

−∞
dZAZ

)
≡ Σ . (31)

Here we have introduced the new radial coordinate via

u3 = u3KK + uKKz
2 , (32)

and the dimensionful version Z is obtained from z in the same way as U is obtained from
u (17). The coordinate z ∈ [−∞,∞] runs from the ultraviolet boundary of the D8-branes
to that of the D8-branes, with z = 0 being at the tip of the connected branes at u = uKK.
We will often switch between the coordinates u and z according to which one is more
convenient for a given calculation or argument, and when we integrate over u ∈ [uKK,∞]
we assume that we are on the z > 0 half of the connected branes. The holonomy (31) can
be identified with the chiral field Σ introduced in the previous subsection in the context
of chiral perturbation theory [7]. Therefore, by choosing c = f2πB, the contribution to the

11
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action from the open Wilson line can be matched to the lowest-order mass term of chiral
perturbation theory, such that

Sm = −V
T

f2πB

2
Tr[MΣ† +M †Σ] , (33)

where we have already assumed our system to be homogeneous. With the chiral field
Σ = Σ0 (8) and using the result for the pion decay constant in terms of the parameters of
the WSS model [7]

f2π =
2NcM

2
KKλ0

27π3
, (34)

the contribution to the action (33) reduces to

Sm = −V
T
NNf

2m̄2
π cos θ

9π
, (35)

where we have introduced the dimensionless pion mass

m̄π ≡ mπ

λ0MKK
. (36)

Since the trace is invariant under chiral transformations, the result (35) is independent
of whether the rotation (12) is performed on Σ0 and M or not. Therefore, the result is
also valid for AZ = 0, for which the chiral field (31) is trivial, but the condensate sits in
the rotated matrix M ′. Within our setup the effective mass term does not contain any
gauge field and thus the equations of motion (29) remain unaltered. However, Sm is not
a mere constant since it contains the charged pion condensate θ with respect to which we
need to minimize the free energy and which enters the gauge fields through the boundary
conditions, as we will discuss below. We also note that the identification with the chiral
field (31) only works if there is no additional contribution to the holonomy from baryons.
We shall comment on this possibility in more detail below Eq. (51).

We can now put together all pieces of our action, Eqs. (27) and (35), to obtain

S = NNf
V

T

[∫ ∞

uKK

duL − 2m̄2
π

9π
(cos θ − 1)

]
, (37)

with the Lagrangian (28). In the vacuum, all gauge fields vanish and thus YM and CS
contributions are zero, while the mass term (35) yields a vacuum contribution for θ = 0,
which we have subtracted in Eq. (37) to normalize the vacuum pressure to zero.

The grand-canonical potential (= free energy density) is obtained from the on-shell
action,

Ω =
T

V
S
∣∣∣
on−shell

, (38)

and we shall later work with the dimensionless version

Ω̄ =
Ω

NNf
=

∫ ∞

uKK

duL − 2m̄2
π

9π
(cos θ − 1) . (39)

2.3 Reproducing chiral perturbation theory in the WSS model

The action set up in the previous subsection will be used for our main results, where we
account for meson condensation and baryonic matter. First, in this subsection, we explain
how the results of lowest-order chiral perturbation theory from Sec. 2.1 are reproduced.
This will be useful to understand the more complicated calculation in Sec. 3.

12
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In the purely mesonic case it is consistent to set all gauge fields to zero except for the
non-abelian temporal components Ka. The CS term does not contribute in this scenario,
and the Lagrangian (28) reduces to

L = −u
5/2

√
f

2
K ′

aK
′
a . (40)

The only non-trivial equation of motion (29b) is

∂u(u
5/2
√
fK ′

a) = 0 . (41)

In terms of the coordinate z (32) this yields the solutions

Ka(z) = Ca +Daarctan
z

uKK
, (42)

with integration constants Ca, Da. According to the usual dictionary of the gauge/gravity
correspondence, the boundary value of the temporal component of the gauge field cor-
responds to the chemical potential of the field theory. The isospin chemical potential
corresponds, in the unrotated basis, to the boundary value of the third component K3.
More precisely, we work with a vector isospin chemical potential, whose value is the same
in the left- and right-handed sectors such that2 K3(z = ±∞) = µ̄I/2. Here and in the
following we work with dimensionless chemical potentials according to the dimensionless
gauge fields of Eq. (20), i.e., we define3

µ̄B =
µB

λ0NcMKK
, µ̄I =

µI
λ0MKK

. (43)

Since we have made the gauge choice AZ = 0, our chiral field (31) is trivial and it appears
we cannot describe pion condensation. This problem can be circumvented by applying
the chiral rotation (9), by which we effectively move the pion condensate from the chiral
field into the boundary conditions for Ka [39, 46, 58]. In the massless case, the rotation
applied in Refs. [39, 46, 58] simply flips the sign of the boundary condition for K3 on the
left-handed boundary, and one can easily solve the system with K1(z) = K2(z) = 0. Since
we work with a non-zero pion mass, it is more convenient to apply the rotation (12), as
already explained below that equation. This yields the boundary conditions

K1(z → ±∞) = ∓ µ̄I
2

sin θ sinα , (44a)

K2(z → ±∞) = ± µ̄I
2

sin θ cosα , (44b)

K3(z → ±∞) =
µ̄I
2

cos θ . (44c)

We see that in general all three gauge field components become nonzero. With these

2This convention for µI matches the one of Sec. 2.1, where the onset of pion condensation is at µI = mπ,
but it differs from our previous holographic study [39] by a factor 2.

3The factor Nc in the baryon chemical potential is included because the boundary value of the gauge
field corresponds to the quark chemical potential, whose dimensionless version, following the notation of
Ref. [40], we denote by µ̄B . This ensures that µB as used in all our physical results is the actual baryon
chemical potential, which differs by a factor Nc from the quark chemical potential.

13
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boundary conditions the solutions (42) become

K1(z) = − µ̄I
π

sin θ sinα arctan
z

uKK
, (45a)

K2(z) =
µ̄I
π

sin θ cosα arctan
z

uKK
, (45b)

K3(z) =
µ̄I
2

cos θ . (45c)

Inserting these solutions into the free energy (38), one finds that the free energy density is
identical to the one from chiral perturbation theory, Eq. (6) with ψ = 0. The dimensionless
free energy (39) becomes

Ω̄ = −
3u

3/2
KKµ̄

2
I sin

2 θ

8π
− 2m̄2

π

9π
(cos θ − 1) . (46)

After minimizing with respect to θ, the equivalent of Eq. (7) for pion condensate, free en-
ergy density, and isospin density in terms of the dimensionless quantities of the holographic
calculation is

cos θ =
m̄2

π

µ̄2I
, Ω̄ = −

µ̄2I
9π

(
1− m̄2

π

µ̄2I

)2

, n̄I = − ∂Ω̄

∂µ̄I
=

2µ̄I
9π

(
1− m̄4

π

µ̄4I

)
, (47)

where we have used Eq. (19). The dimensionless isospin density n̄I – and, for completeness
and later use, baryon density n̄B – are related to their dimensionful counterparts nI , nB
by

nB,I =
Nfλ

2
0M

3
KK

6π2
n̄B,I . (48)

3 Adding baryons

In this section we introduce baryonic degrees of freedom and explain the setup used for
our main results. Baryons in the WSS model are understood as instantonic configurations
of the worldvolume gauge fields, such that baryon and instanton numbers are identified.
Near the tip of the flavor branes at z = 0 a (static) single baryon is well approximated by
the classical Belavin-Polyakov-Schwartz-Tyupkin (BPST) configuration [71], where spatial
directions are locked to the internal SU(2) directions, Ai ∝ τi. One can then quantize the
collective coordinates [72] in order to identify baryonic states with different spin, isospin,
and excitation numbers. This procedure was used to compute static properties of the
holographic baryonic states [23].

For many-baryon systems the instantonic picture becomes complicated and it is useful
to resort to a simpler approximation. Here we follow Refs. [30,32] and consider a spatially
homogeneous distribution of baryonic matter. This can be thought of as highly overlapping
instantons and thus we expect this approximation to be accurate at sufficiently large
baryon densities. Although it captures part of the relevant physics, the classical treatment
of isospin-asymmetric matter we shall employ here induces some unrealistic (large-Nc)
artifacts. Most notably, it leads to a symmetry energy much larger than in the real
world [39]. It was recently proposed to re-introduce the collective coordinate quantization
at the level of the homogeneous ansatz to (partially) remedy this deficiency [57]. Here
we do not attempt to combine this quantization with our improved ansatz but emphasize
that this is a promising idea for future studies.
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3.1 Improved ansatz for isospin-asymmetric baryonic matter

Our ansatz for the spatial components of the non-abelian gauge fields is (no summation
over i)

Aa
i (u) = −λ0

2
hi(u)δ

a
i , (49)

where the functions hi(u) have to be determined dynamically.
This ansatz deserves a few comments. We first observe that, in general, it is not

consistent to omit all off-diagonal gauge fields a ̸= i. This can be seen from Eq. (29c): if
off-diagonal gauge fields are set to zero on the right-hand side of this equation, its second
term survives and gives a contribution of the form KaKihi (no summation over i). If this
contribution is non-zero, the corresponding Aa

i must be non-trivial (and, in turn, more
non-zero terms on the right-hand side are generated). Obviously, if all spatial gauge field
components vanish, including the functions hi, there is no inconsistency. This is what we
did in the previous section.

There are two more situations in which the off-diagonal components can be switched
off consistently, while keeping the diagonal components non-vanishing.

(i) isotropic limit: for µI = 0 all functions Ki(u) vanish and a consistent solution exists
for h1 = h2 = h3. This approximation was extrapolated to non-zero µI (where it is
no longer a solution to the equations of motion) in Ref. [39].

(ii) chiral limit: in the limit of vanishing pion mass the pion condensate is always maxi-
mal, sin θ = 1, and thus the global rotation employed in Refs. [39,46,58] only affects
the τ3 component and the isospin chemical potential does not generate non-zero
boundary conditions for K1 and K2. Therefore, these two components can be set to
zero such that KaKihi = 0 for all a ̸= i even in the presence of non-zero functions
hi(u).

Here, we are interested in the entire µB-µI phase diagram, including a physical pion
mass and anisotropic solutions. Therefore, strictly speaking, we need to account for off-
diagonal gauge components as well, which leads to a very complicated system of equations.
It seems we are in trouble. Our solution to this problem is to work with the ansatz (49) as
an approximation. The idea is that this ansatz captures the two limits (i) and (ii) correctly
in the regimes where they are valid, while it provides an interpolation for the region in
between. We will make this more explicit in Sec. 5.2 with the help of the numerical
solutions, showing that the in-between region is in fact very rigidly constrained by the two
limits. The benefit is that we can work with a more manageable system of equations for
which no further approximation is needed; in particular, all remaining variables, including
the infrared boundary values for the functions hi, can be determined fully dynamically.

With the ansatz (49), the Lagrangian (28) can be written as

L =
u5/2

2
√
f
(g1 − fA′2 − fK ′

aK
′
a + g2 − g3)−

3λ0
4
A(h1h2h3)

′ , (50)

where, generalizing the notation of Ref. [39] to three different functions hi(u), we have
abbreviated

g1 ≡ f

4
(h′21 + h′22 + h′23 ) , (51a)

g2 ≡ λ20
4u3

(h21h
2
2 + h21h

2
3 + h22h

2
3) , (51b)

g3 ≡ λ20
u3
[
K2

1 (h
2
2 + h23) +K2

2 (h
2
1 + h23) +K2

3 (h
2
1 + h22)

]
. (51c)
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The action is still given by Eq. (37) with no further contributions from baryons. In par-
ticular, the effective mass term is the same as in the purely mesonic case. The reason is
that in our homogeneous ansatz we have AZ = 0, and thus there is no baryonic contribu-
tion to the boundary term (31). This is different in the instantonic picture. In this case,
even for a single instanton, the boundary term gives a contribution, which is a correction
to the baryon mass from non-zero bare quark masses [69]. Generalizing this calculation
to a non-interacting instanton gas would give a correction to our action proportional to
mπnB. However, our homogeneous ansatz does not know about the mass of single baryons
and thus this contribution is absent. This is also plausible from a physical point of view
since we expect this mass correction to be small for large chemical potentials (the mπnB
contribution to the free energy being small compared to terms of order µBnB), and this
regime is exactly the one where our homogeneous ansatz is valid.

For a given configuration, the baryon number density is computed from the topological
instanton number,

nB =
λ30M

3
KK

8π2

∫ ∞

−∞
dz ∂z(h1h2h3) . (52)

Therefore, nB is only non-zero if the product h1h2h3 is discontinuous somewhere in the
bulk. We assume the discontinuity to sit at z = 0 and denote the values of the functions
hi(z) at this point by

h±ic ≡ hi(z → 0±) . (53)

It is conceivable that an instanton system splits into two or more layers in the z direction
as the density is increased [31,33,34,36,73], which would correspond to our discontinuity
in h1h2h3 moving up in z with its location determined dynamically (and possibly more
than one discontinuity appearing). For simplicity we will ignore this possibility in the
following.

Our choice for the rotation (10) allows us to work only with functions which are either
symmetric or antisymmetric under z → −z, hence we can write

h−ic = eih
+
ic , (54)

where ei ∈ {−1, 1}. With the definition of the dimensionless baryon density (48), we thus
obtain from Eq. (52)

n̄B = −3λ0
4
h1ch2ch3c , (55)

where we have already used e1e2e3 = −1 as a requirement for a non-zero baryon density,
and have denoted hic ≡ h+ic for notational convenience.

As for a single instanton, we require the spatial components of the gauge field to vanish
in the ultraviolet,

hi(z → ±∞) = 0 . (56)

The ultraviolet boundary condition of the temporal component of the abelian gauge field
is given by the baryon chemical potential,

A(z → ±∞) = µ̄B , (57)

while for the non-abelian temporal components Ka(z) we require Eq. (44).
Due to the symmetry of our system we do not expect baryonic matter to be asymmetric

in the τ1,2 directions. Hence, we may set

h1(u) = h2(u) ≡ h(u) . (58)

(And, consequently, we denote hc ≡ h1c = h2c.) A non-zero baryon density is now only
achieved for e3 = −1 and thus in this case h3(z) is anti-symmetric in z and discontinuous
while h(z) can be either symmetric (and thus continuous) or anti-symmetric.
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3.2 Equations of motion, free energy and minimization conditions

Within this ansatz, the equation of motion for the abelian gauge field (29a) reduces to

(u5/2
√
fA′)′ =

3λ0
4

(h2h3)
′ , (59)

which is easily integrated to give

A′(u) =
n̄BQ(u)

u5/2
√
f(u)

, Q(u) ≡ 1− h2(u)h3(u)

h2ch3c
. (60)

For the temporal components of the non-abelian gauge potentials we find from Eq. (29b)

(u5/2
√
fK ′

1)
′ =

λ20K1(h
2 + h23)

u1/2
√
f

, (61a)

(u5/2
√
fK ′

2)
′ =

λ20K2(h
2 + h23)

u1/2
√
f

, (61b)

(u5/2
√
fK ′

3)
′ =

2λ20K3h
2

u1/2
√
f
. (61c)

Finally, the equations of motion for the spatial components of the gauge fields (29c) become

(u5/2
√
fh′)′ − 3λ0hh3n̄BQ

u5/2
√
f

=
λ20h

u1/2
√
f

(
h2 + h23 − 2K2

1 − 2K2
2 − 4K2

3

)
, (62a)

(u5/2
√
fh′3)

′ − 3λ0h
2n̄BQ

u5/2
√
f

=
λ20h3

u1/2
√
f

(
2h2 − 4K2

1 − 4K2
2

)
, (62b)

where we have already inserted the solution for A (60).
Equations (61) and (62) can obviously not be integrated as easily as Eq. (59) and will

have to be solved numerically. Simultaneously, we will need to determine the charged
pion condensate θ and the boundary values hc, h3c by minimizing the free energy. To
this end, we take the derivative of the free energy with respect to a generic variable x ∈
{θ, hc, h3c, µ̄B, µ̄I , α}, with all other variables in this set kept fixed. Here we have included
the chemical potentials in order to derive an expression for the isospin density n̄I and to
confirm the usual thermodynamic relation between the free energy and the baryon number
density n̄B. We have also included the angle α to verify as a consistency check that the free
energy does not depend on this angle. From Eq. (39) and L = L(A,Ka, h, h3;A

′,K ′
a, h

′, h′3)
we compute

∂Ω̄

∂x
=

1

2

∫ ∞

−∞
dz

[
−∂z

(
u5/2

√
fA′∂A

∂x

)
+ ∂z

(
u5/2

√
fh′ − 3λ0Ahh3

2

∂h

∂x

)

−∂z
(
u5/2

√
fK ′

i

∂Ki

∂x

)
+ ∂z

(
u5/2

√
fh′3 − 3λ0Ah

2

4

∂h3
∂x

)]
+

2m̄2
π sin θ

9π

∂θ

∂x
,(63)

where we have used the equations of motion. The various terms on the right-hand side can
receive contributions from the ultraviolet boundary but also from the infrared discontinu-
ities at z = 0 (u = uKK). The gauge potentials A(z), Ka(z) are taken to be continuous
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and smooth across z = 0. The boundary condition (57) dictates that A(z) is even in z,
and its behavior near u = uKK is

A(u) = Ac +O(u− uKK) , (64)

with Ac to be determined dynamically. Due to the boundary conditions (44), K1(z) and
K2(z) are odd, while K3(z) is even, and their infrared behavior is

K1(u) = K1(1)

√
u− uKK + . . . =

K1(1)√
3uKK

z + . . . , (65a)

K2(u) = K2(1)

√
u− uKK + . . . =

K2(1)√
3uKK

z + . . . , (65b)

K3(u) = K3c +O(u− uKK) , (65c)

with the slopesK1(1) andK2(1) and the boundary value K3c to be determined dynamically.
As discussed above, the functions h and h3 can (and for n̄B ̸= 0 at least h3 must) have a
discontinuity at z = 0. Their infrared behavior is

h(u) = hc + h(1)
√
u− uKK + . . . = hc +

h(1)√
3uKK

z + . . . , (66a)

h3(u) = h3c + h3(1)
√
u− uKK + . . . = h3c +

h3(1)√
3uKK

z + . . . . (66b)

Here, hc, h3c, h(1), h3(1) are all a priori unknown.
We can now go back to Eq. (63) to compute

∂Ω̄

∂x
= −n̄B

∂µ̄B
∂x

+
1

2

∂µ̄I
∂x

(κ1 sin θ sinα− κ2 sin θ cosα− κ3 cos θ) +
2m̄2

π sin θ

9π

∂θ

∂x

+
µ̄I
2

∂θ

∂x
(κ1 cos θ sinα− κ2 cos θ cosα+ κ3 sin θ) +

µ̄I sin θ

2

∂α

∂x
(κ1 cosα+ κ2 sinα)

+
1

4

∂hc
∂x

(
−
√
3u2KKh(1) + 6λ0Achch3c

)
+

1

8

∂h3c
∂x

(
−
√
3u2KKh3(1) + 6λ0Ach

2
c

)
. (67)

This result is derived independent of whether h is continuous or not, but does assume its
derivative to be discontinuous. In other words, h(z) is odd and discontinuous or even and
continuous but with a cusp. We have abbreviated

κi ≡ (u5/2
√
fK ′

i)u=∞ , (68)

which, using the equations of motion (61) and the expansions (65), can be expressed as

κ1 =

√
3u2KK

2
K1(1) + λ20

∫ ∞

uKK

du
K1(h

2 + h23)

u1/2
√
f

, (69a)

κ2 =

√
3u2KK

2
K2(1) + λ20

∫ ∞

uKK

du
K2(h

2 + h23)

u1/2
√
f

, (69b)

κ3 = 2λ20

∫ ∞

uKK

du
K3h

2

u1/2
√
f
. (69c)
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From Eq. (67) we can easily read off the derivatives with respect to all possible values of
x. Let us start with x = α, in which case we expect the derivative to vanish. We see that
it vanishes trivially in the absence of a charged pion condensate, θ = 0. If θ is non-zero,
we use the following observation to show that the derivative is still zero. With partial
integration and using the equation of motion for K1 (61a) we have∫ ∞

uKK

duu5/2
√
fK ′

1K
′
2 = κ1

µ̄I
2

sin θ cosα− λ20

∫ ∞

uKK

du
K1K2(h

2 + h23)

u1/2
√
f

, (70)

and, on the other hand, by exchanging the roles of K1 and K2 in the partial integration
we get the alternative expression for the same integral∫ ∞

uKK

duu5/2
√
fK ′

1K
′
2 = −κ2

µ̄I
2

sin θ sinα− λ20

∫ ∞

uKK

du
K1K2(h

2 + h23)

u1/2
√
f

. (71)

Subtracting Eq. (71) from Eq. (70) gives κ1 cosα+ κ2 sinα = 0, and thus the free energy
does indeed not depend on α.

Next, we turn to the thermodynamic relations for baryon and isospin densities by
choosing x ∈ {µ̄B, µ̄I}. For x = µ̄B we obtain

n̄B = − ∂Ω̄

∂µ̄B
, (72)

which is a consistency check since it is the thermodynamic relation we expect (but gives
no further information). For x = µ̄I , we obtain an expression for the isospin density,

n̄I = − ∂Ω̄

∂µ̄I
=

1

2

[
− (κ1 sinα− κ2 cosα) sin θ + κ3 cos θ

]
, (73)

which we shall employ below in our explicit calculation.
It remains to write down the conditions obtained from minimizing the free energy with

respect to the parameters θ, hc, h3c. Setting x = θ and requiring the derivative of Ω̄ with
respect to θ to vanish, we read off of Eq. (67)

0 =
1

2

[
(κ1 sinα− κ2 cosα) cos θ + κ3 sin θ

]
+

2m̄2
π

9πµ̄I
sin θ . (74)

From the stationarity of the free energy with respect to x ∈ {hc, h3c} we obtain two
conditions which, assuming hc, h3c ̸= 0, can be written as

Ac =
u2KKh(1)

2
√
3λ0hch3c

, (75a)

hch(1) = h3ch3(1) . (75b)

The three conditions (74), (75a), (75b) supplement the equations of motion (61), (62) and
have to be solved simultaneously with them. We will explain our numerical procedure to
do so at the beginning of Sec. 5.

Finally, we use the results just derived to write µ̄B and Ω̄ in a convenient form for the
numerical evaluation. From Eqs. (60) and (75a) we have

µ̄B = Ac +

∫ ∞

uKK

duA′(u) =
u2KKh(1)

2
√
3λ0hch3c

+

∫ ∞

uKK

du
n̄BQ

u5/2
√
f
. (76)
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h1,2(z) h3(z) K1,2(z) K3(z) θ nB nI

V 0 0 0 const 0 0 0

π 0 0 × const × 0 ×
πρ 0 × × const × 0 ×
ρ × 0 0 const 0 0 ×
B × × 0 × 0 × ×
πB × × × × × × ×

Table 1: Summary of the phases discussed in Sec. 4 in terms of the spatial and temporal
non-abelian gauge components h1,2, h3 and K1,2, K3, as well as charged pion condensate θ,
baryon density nB and isospin density nI . A “×” means the corresponding quantity is non-
zero (and non-constant in z in the case of the gauge components). The pion condensate is
non-zero if and only if K1,2 are non-zero. The baryon number nB is non-zero if and only
if h1,2 and h3 are nontrivial. Isospin number nI sits in the asymptotic behaviors of K1,2

and K3. If K3 = const only K1,2 contribute to nI . Rho meson condensation is encoded
in the functions h and h3 and is included without symmetry distinction in the baryonic
phases. All phases listed here appear in the phase diagram, except for the ρ phase, which
only appears if pion condensation is ignored. A second πρ phase where h3 = 0 and h ̸= 0
does exist as a solution but turns out to be irrelevant for the phase structure and is not
discussed in the text.

For the free energy, we employ partial integration and the equations of motion to first
compute ∫ ∞

uKK

du
u5/2

2
√
f
(fK ′

aK
′
a + g3) =

µ̄I n̄I
2

3λ0
4

∫ ∞

uKK

duA(h2h3)
′ = µ̄Bn̄B −

∫ ∞

uKK

du
(n̄BQ)2

u5/2
√
f
.

(77)

Inserting this into Eq. (39) with the Lagrangian (50) we get

Ω̄ =

∫ ∞

uKK

du
u5/2

2
√
f

[
g1 + g2 +

(n̄BQ)2

u5

]
− µ̄Bn̄B − µ̄I n̄I

2
− 2m̄2

π

9π
(cos θ − 1) . (78)

This free energy is structurally identical to the one derived in Ref. [39], except for the
additional mass term.

4 Different phases

There are various different configurations that solve our equations of motion, corresponding
to different thermodynamic phases. These are summarized in Table 1. In the following
we define these phases and discuss their physical content.

4.1 Vacuum (V) and pion-condensed phase (π)

In the vacuum, baryon and isospin densities vanish. The pion condensate is zero, θ = 0,
and all relevant functions are constants,

h(u) = h3(u) = K1(u) = K2(u) = 0 , A(u) = µ̄B , K3(u) =
µ̄I
2
. (79)
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The free energy has been normalized such that it vanishes in this case, Ω̄ = 0.
The pion-condensed phase was already discussed in Sec. 2.3. It is recovered as a

solution of our more general setup for

h(u) = h3(u) = 0 , A(u) = µ̄B , (80)

while the functions Ka(u) are given by Eq. (45). The pion condensate, free energy, and
isospin density are given in Eq. (47). In the chiral limit, mπ = 0, this phase reduces
to the pion-condensed configuration considered in Ref. [39]. In the given setup (confined
geometry and maximally separated flavor branes) the holographic π phase is identical to
what is obtained from lowest-order chiral perturbation theory.

4.2 Coexisting pion and rho meson condensates (πρ) and rho meson
phase (ρ)

Our motivation to introduce non-zero spatial components of the non-abelian gauge fields
h and h3 was to describe baryonic matter. We now demonstrate that due to the difference
in h and h3 our approach also enables us to include the physics of rho mesons, thus
connecting our work with the analysis performed originally in Ref. [46].

Consider a configuration where h(u) = 0, but h3(u) is non-zero. On account of Eq. (55)
this configuration has zero baryon number. Assuming a non-zero pion condensate, we
simplify the calculation of the gauge potentials Ka(u) by defining

K̃1(u) = − 2K1(u)

µ̄I sin θ sinα
, K̃2(u) =

2K2(u)

µ̄I sin θ cosα
, K̃3(u) =

2K3(u)

µ̄I cos θ
. (81)

The advantage of these new fields is that their boundary values are constant, irrespec-
tive of the (unknown) value of the pion condensate, K̃1(∞) = K̃2(∞) = K̃3(∞) = 1,
which simplifies the numerical evaluation. The equations of motion (61a), (61b) and the
boundary conditions (44a), (44b) are then the same for K̃1 and K̃2, and we can simply set

K̃1(u) = K̃2(u) ≡ K̃(u) , (82)

which corresponds to K1(u) cosα + K2(u) sinα = 0. Since h = 0, Eq. (61c) yields the
same K3(u) as in the π phase, which implies

K̃3(u) = 1 , (83)

and it remains to solve (numerically) the system

(u5/2
√
fK̃ ′)′ =

λ20K̃h
2
3

u1/2
√
f
, (84a)

(u5/2
√
fh′3)

′ = −
µ̄2I sin

2 θλ20K̃
2h3

u1/2
√
f

(84b)

for K̃ and h3. Due to h(u) = 0 we have hc = h(1) = 0. Hence, from Eq. (67) we see that
stationarity with respect to hc is automatically fulfilled, while stationarity with respect to
h3c yields

h3(1) = 0 , (85)

i.e., the slope of the function h3(z) vanishes at z = 0.
The isospin density is computed from Eq. (73) with the help of Eqs. (69) and (81),

and can be written as
n̄I = µ̄IX sin2 θ , (86)
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with the abbreviation

X ≡
√
3u2KK

8
K̃(1) +

λ20
4

∫ ∞

uKK

du
K̃h23
u1/2

√
f
. (87)

This quantity also appears in the stationarity condition with respect to θ (74), which
becomes

cos θ =
m̄2

π

µ̄2I

2

9πX
. (88)

In the π phase, the isospin density receives a contribution only from the first term in X.
Now, in the presence of h3, there is a second contribution. Also, the difference in the
spatial components A3 ∼ h3 ̸= 0 and A1,2 ∼ h = 0 renders the system anisotropic. We
interpret this phase as rho meson condensation on top of the pion condensate and refer
to it as the πρ phase. Indeed, Eqs. (84) are identical to Eqs. (4.21) in Ref. [46], where
the rho meson condensate was sitting in the τ1,2 sector, as expected from a charged rho
meson condensate in the usual frame. Here, due to our rotation (12) a τ3 component of
the charged rho meson is generated, which is accounted for by h3. We can further confirm
the equivalence to the results of Ref. [46] by discussing the continuous connection to the
π phase. It is obvious from Eqs. (84a) and (88) that in the h3 → 0 limit K̃ and the pion
condensate reduce to their solution in the pure π-phase,

K̃(z) =
2

π
arctan

z

uKK
, cos θ =

m̄2
π

µ̄2I
. (89)

Now, if we are in the πρ phase, h3 is non-zero and approaches zero as we approach the
transition point to the π phase. To find this point we employ Eq. (84b). We consider
h̃3 = h3/h3c in order to work with a non-zero function with fixed boundary value h̃3(z =
0) = 1. We also have h̃′3(z = 0) = 0 due to Eq. (85), which holds for arbitrarily small
values of h3c. Also defining z̃ = z/uKK and using Eq. (89), we can write Eq. (84b) close
to the transition point – but within the πρ phase – as

h̃′′3 +
2z̃

1 + z̃2
h̃′3 = − 16Λh̃3 arctan

2 z̃

9π2uKK(1 + z̃2)4/3
, (90)

where prime is now the derivative with respect to z̃, and where

Λ ≡ λ20µ̄
2
I

(
1− m̄4

π

µ̄4I

)
. (91)

For the given boundary conditions, Eq. (90) gives a tower of eigenvalues Λ ≃ 1.90176,
6.48327, 13.8360, 23.9705, . . .. For fixed model parameters λ, m̄π, these values translate
into a critical chemical potential for the onset of a particular vector meson mode within
the background of the pion condensate. We will only consider isospin chemical potentials
large enough for the first, Λ1 = 1.90176, but not for any higher mode to appear. In any
case, at chemical potentials which allow for more than one vector meson to condense one
would have to take into account the possibility of the coexistence of several condensates,
while Eq. (91) only indicates the critical point for condensation of a single mode in the
pionic background. Therefore, the relevant chemical potential is

ρ onset in pion condensate: µ̄I =

√
Λ1 +

√
Λ2
1 + 4λ40m̄

4
π

2λ20
≃

√
Λ1

λ0
, (92)

where the approximation holds for m2
π ≪ ΛM2

KK/2. Since in our physical results we will
choose MKK to be of the order of 1GeV, this is a good approximation.
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The critical chemical potential (92) can be interpreted as the value of the effective
rho meson mass (at that particular µ̄I) in the pionic medium. It is therefore useful for
comparison to also derive the vacuum mass of the rho meson within our setup. To this
end, we switch off the pion condensate, θ = 0, which allows us to set K1(u) = K2(u) = 0
due to the boundary conditions (44). Now, since in the absence of a pion condensate the
rotation (12) is trivial, the rho meson condensate does sit in the τ1,2 sector. Therefore, we
set h3 = 0 and work with a non-zero h. The only non-trivial equations of motion are then
Eqs. (61c) and (62a), which have to be solved numerically for K3 and h. For our present
purpose, we are again interested in the onset of rho meson condensation, this time in the
vacuum, where h = 0. To this end, we can simply set h = 0 on the right-hand side of Eq.
(61c) and find K̃3(u) = 1. For Eq. (62a) we define h̃ = h/hc to work with a non-zero and
constant boundary value h̃(z = 0) = 1 to write this equation as

h̃′′ +
2z̃

1 + z̃2
h̃′ = − 4Λ(0)h̃

9uKK(1 + z̃2)4/3
, (93)

with Λ(0) ≡ λ20µ̄
2
I . Once again, we compute the eigenvalues numerically, Λ(0) ≃ 0.669314,

2.87432, 6.59117, 11.7967, . . .. Equation (93) is identical to Eq. (4.4) in the original work by
Sakai and Sugimoto [7], which describes vector and axial vector mesons in the WSS model

(our boundary conditions select the vector mesons). The lowest mode, Λ
(0)
1 = 0.669314,

corresponds to the ρ meson, and the corresponding critical chemical potential can be
interpreted as the vacuum mass of the rho meson,

m̄2
ρ =

Λ
(0)
1

λ20
, mρ = λ0MKKm̄ρ , (94)

where we have introduced the same notation for the dimensionless and dimensionful ver-
sions of the ρ mass as for the pion mass. We can thus express the critical chemical
potential for the onset of rho meson condensation in the pionic background (92) in terms
of the vacuum mass,

µ̄I =

[√
Λ1

Λ
(0)
1

+O
(
m4

π

m4
ρ

)]
m̄ρ ≃ 1.68 m̄ρ . (95)

Hence, the model predicts that the pionic medium increases the rho meson mass. The
numerical factor is in agreement with Ref. [46], where the chiral limit was considered.

4.3 Baryonic matter (B)

Next, we consider the baryonic phase without pion condensate. We expect this phase to
be relevant for baryon chemical potentials much larger than the isospin chemical potential.
Since sin θ = 0 in this case, we can set K1(u) = K2(u) = 0. On the other hand, h and h3
must both be non-vanishing to generate baryon number. Hence, in the B phase we need
to solve the following equations of motion,

∂u(u
5/2
√
fK̃ ′

3) =
2λ20K̃3h

2

u1/2
√
f
, (96a)

∂u(u
5/2
√
fh′)− 3λ0hh3n̄BQ

u5/2
√
f

=
λ20h

u1/2
√
f

(
h2 + h23 − µ̄2IK̃

2
3

)
, (96b)

∂u(u
5/2
√
fh′3)−

3λ0h
2n̄BQ

u5/2
√
f

=
2λ20h3h

2

u1/2
√
f
. (96c)
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The isospin density (73) assumes the form

n̄I =
µ̄I
2
λ20

∫ ∞

uKK

du K̃3h
2

u1/2
√
f
. (97)

Upon setting h = h3 one recovers the B phase of Ref. [39]. Here, any non-zero µI produces
deformed baryons with h ̸= h3, and the B phase can be continuously connected to the ρ
phase discussed in the previous subsection. In the ρ phase, since h3 = 0 and h ̸= 0, we
have h3(1) = 0 while hc ̸= 0. These conditions, inserted into the stationarity condition
for h3c from Eq. (67), yield Ac = 0. With n̄B = 0 and Eq. (76), this implies µ̄B = 0.
Therefore, the B phase can connect continuously to the pure ρ phase only for vanishing
baryon chemical potential,

baryon onset in ρ: µ̄B = 0 . (98)

The B phase can also connect continuously to the vacuum. Letting both h and h3 go
to zero in Eqs. (96), the right-hand sides of Eqs. (96a) and (96c), as well as the terms
proportional to n̄B and the contribution h2 + h23 in Eq. (96b) are of higher order and can
be neglected. One arrives at Eq. (93), which gives the critical isospin chemical potential
µ̄I = m̄ρ. Since h and h3 go to zero, both stationarity conditions for hc and h3c from
Eq. (67) are trivially fulfilled and thus there is no condition for Ac. As a consequence,
this second-order onset does not depend on µ̄B and is a vertical line in the µB-µI phase
diagram. In fact, as the full numerical calculation shows, this onset occurs in a metastable
regime and is only realized in the phase diagram if pion condensation is omitted.

4.4 Baryonic matter coexisting with a pion condensate (πB)

This is the most complicated case since all functions are non-trivial and we have non-
vanishing pion condensate, baryon density, and isospin density. We employ the redefined
gauge potentials (81) and may set K̃1(u) = K̃2(u) ≡ K̃(u) to solve the equations of motion
(61) and (62), which now read

(u5/2
√
fK̃ ′)′ =

λ20K̃(h2 + h23)

u1/2
√
f

, (99a)

(u5/2
√
fK̃ ′

3)
′ =

2λ20K̃3h
2

u1/2
√
f
, (99b)

(u5/2
√
fh′)′ − 3λ0hh3n̄BQ

u5/2
√
f

=
λ20h

u1/2
√
f

[
h2 + h23 − µ̄2I

(
K̃2

2
sin2 θ + K̃2

3 cos
2 θ

)]
,(99c)

(u5/2
√
fh′3)

′ − 3λ0h
2n̄BQ

u5/2
√
f

=
λ20h3

u1/2
√
f

(
2h2 − µ̄2IK̃

2 sin2 θ
)
. (99d)

Obviously, by the redefinition (81) the pion condensate appears in the equations of motion
themselves rather than in the boundary conditions. The isospin density (73) can be written
as

n̄I = µ̄I

(
X sin2 θ +

λ20
2

∫ ∞

uKK

du K̃3h
2

u1/2
√
f

)
, (100)

with

X ≡
√
3u2KK

8
K̃(1) +

λ20
4

∫ ∞

uKK

du

u1/2
√
f

[
K̃(h2 + h23)− 2K̃3h

2
]
. (101)

24



SciPost Physics Submission

Expressed in terms of X, the stationarity condition of the free energy with respect to the
pion condensate (74) becomes the same as in the πρ phase,

cos θ =
m̄2

π

µ̄2I

2

9πX
. (102)

Just like in the πρ phase, the pion condensate of the π phase (and chiral perturbation
theory), cos θ = m̄2

π/µ̄
2
I , is corrected by a medium dependent term. Here, this term

includes the effect of baryons and of rho meson condensation. We see from Eq. (102) that
in the chiral limit, m̄π = 0, the pion condensate is maximal, irrespective of the medium
(we have checked numerically that X remains finite in the chiral limit). In the presence of
a pion mass, Eq. (102) yields an expression for the critical isospin chemical potential for
the onset of a pion condensate within baryonic matter. Namely, upon setting cos θ = 1,
thus assuming a second-order onset,

pion onset in B: µ̄2I = m̄2
π

2

9πX
. (103)

We shall indeed find that there is a region in the phase diagram where this second-order
onset is realized. The specific value for the critical isospin chemical potential at a given
baryon chemical potential – and thus the medium-dependent pion mass – has to be com-
puted numerically.

As the B phase connects continuously to the ρ phase, the πB phase connects contin-
uously to the πρ phase. To describe this transition, we need to take the limit h(u) → 0.
We can set h = 0 in Eqs. (99a), (99b), (99d), and these equations form a closed system for
the functions K̃, K̃3, and h3, which are exactly the equations of the πρ phase discussed in
Sec. 4.2. The onset of baryons is obtained with the help of Eq. (99c). We replace h = hch̃
and take the limit hc → 0 to obtain

(u5/2
√
fh̃′)′ =

λ20h̃

u1/2
√
f

[
h23 − µ̄2I

(
K̃2

2
sin2 θ + cos2 θ

)]
, (104)

where we have used K̃3 = 1. Inserting the (numerical) solutions for K̃ and h3 from the πρ
phase, this can be solved for h̃(u) with boundary condition h̃(z = 0) = 1 [and h̃(∞) = 0].
Now, the baryon chemical potential from Eq. (76) becomes, setting n̄B = 0,

baryon onset in πρ: µ̄B =
u2KK

2
√
3λ0

h̃(1)

h3c
. (105)

This is the critical chemical potential for a second-order onset of baryons within the πρ
phase, where h3c is computed within the πρ phase and h̃(1) is determined from solving
Eq. (104). In contrast to the baryon onset in the ρ phase, see Eq. (98), the onset in the
presence of a pion condensate (105) occurs at a non-zero (and µ̄I dependent) µ̄B.

4.5 Neutron star matter

We may use our setup to address the question whether pion condensation takes place
in neutron stars. To this end, we add a (non-interacting) lepton gas of electrons and
muons, impose electric charge neutrality and equilibrium with respect to the electroweak
interaction. Following Refs. [39,40], this can be done in the B phase by assigning electric
charges 0 and +1 to the two isospin components, i.e., by interpreting baryon and isospin
densities to be composed of neutron and proton densities, although neutron and proton
states are not explicitly present in our calculation. When meson condensates are added,
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it is no longer obvious in our setup how to assign the electric charges because baryonic
and mesonic contributions arise from the same gauge fields in the bulk. However, it will
turn out not to be necessary to include pions – let alone rho mesons – here: in contrast to
Refs. [39,40] we have included a non-zero pion mass and thus we can check whether (and
will confirm that) neutron star conditions are fulfilled in the B phase in a region where
there is no stable solution of the πB phase.

Due to the different convention for the isospin chemical potential compared to Refs. [39,
40] it is useful for clarity to briefly recapitulate the conditions of electroweak equilibrium
and neutrality. We define (dimensionless) neutron and proton chemical potentials by

µ̄n = µ̄B +
µ̄I
2
, µ̄p = µ̄B − µ̄I

2
, (106)

and (dimensionless) neutron and proton densities by

n̄n =
n̄B
2

+ n̄I , n̄p =
n̄B
2

− n̄I . (107)

Electroweak equilibrium with respect to the processes p+e→ n+νe, n→ p+e+ ν̄e reads

µe = Ncλ0MKK(µ̄n − µ̄p) = Ncλ0MKKµ̄I , (108)

where µe is the (dimensionful) electron chemical potential and we have neglected the
neutrino chemical potential. We also assume equilibrium with respect to purely leptonic
processes converting an electron into a muon, such that electron and muon chemical po-
tentials are identical, µe = µµ. Due to electric charge neutrality, the proton density must
be the same as the lepton density, which we can write as

n̄B
2

− n̄I =
3π2

λ20M
3
KK

[ne(µe) + nµ(µe)] , (109)

where the (dimensionful) lepton densities are

nℓ(µℓ) = Θ(µℓ −mℓ)
(µ2ℓ −m2

ℓ )
3/2

3π2
, (110)

with ℓ = e, µ, electron mass me ≃ 511 keV, and muon mass mµ ≃ 106MeV. Condition
(109) has to be solved simultaneously with the relevant equations of the B phase in Sec.
4.3.

5 Numerical evaluation

In this section we evaluate the phases introduced in the previous section. Except for the
π phase, whose analytical solutions were already discussed in Sec. 2.3, this has to be done
numerically. We start by explaining our numerical procedure. For concreteness, we do so
for the most complicated case, the πB phase, the other configurations are treated similarly
and more easily. The main difference to Ref. [39] in the practical calculation is, besides the
larger number of functions, the determination of the pion condensate. As in Ref. [39], the
most straightforward calculation is to consider fixed µ̄I and n̄B and compute µ̄B and n̄I
after solving the differential equations. The difference in these quantities is that µ̄I and n̄B
appear in the boundary conditions while µ̄B and n̄I are given by the non-trivial expressions
(76) and (100), which require the solution of the equations of motion. When we need to
work at fixed µ̄B and/or n̄I – for example to determine the preferred phase at a fixed point
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in the µ̄B-µ̄I phase diagram – we need to add Eq. (76) and/or Eq. (100) to the equations
of motion. Here, we explain the simpler case where µ̄I and n̄B are fixed. In addition to
fixing these thermodynamic quantities, we also need to fix the model parameters m̄π and
λ (for the solution in terms of our dimensionless quantities, the third model parameter
MKK does not have to be fixed). The specific choice of the model parameters is discussed
in Sec. 5.1.

We deal with the stationarity equation for the pion condensate by defining the auxiliary
function

ξ(u) ≡
∫ u

uKK

dv

v1/2
√
f

[
K̃(h2 + h23)− 2K̃3h

2
]
. (111)

By definition, this function obeys the first-order differential equation

ξ′(u) =
K̃(h2 + h23)− 2K̃3h

2

u1/2
√
f

, (112)

with boundary condition ξ(uKK) = 0. The pion condensate (102) can then be written
purely in terms of boundary values/derivatives because

X =

√
3u2KK

8
K̃(1) +

λ20
4
ξ(∞) . (113)

We need to solve a system of 5 coupled differential equations – the equations of motion (99)
and Eq. (112) – for the 5 functions K̃, K̃3, h, h3, ξ. We found it numerically advantageous
to work in the z variable on one half of the connected flavor branes. More precisely, we
use z̃ = z/uKK with z̃ ∈ [0,∞]. The calculation can be set up as an initial value problem
with initial conditions at z̃ = 0 (prime denoting derivative with respect to z̃)

K̃(0) = 0 , K̃ ′(0) = p1 , K̃3(0) = p2 , K̃ ′
3(0) = 0 , ξ(0) = 0

h(0) = p3 , h′(0) = p4 , h3(0) = − 4n̄B
3λ0p23

, h′3(0) = − 3λ0
4n̄B

p33p4 , (114)

where we have introduced the variables p1, p2, p3, p4, and where we have expressed the
initial conditions of h3 in terms of n̄B, h(0), and h′(0) with the help of Eqs. (55) and
(75b). Also, to make all unknowns explicit, we denote the boundary value ξ(∞) by p5. We
formulate the initial value problem in Mathematica with the help of ParametricNDSolve
for the parameters µ̄I , n̄B, p1, p2, p3, p4, p5 and perform the actual calculation via FindRoot,
solving the set of 5 equations

K̃(∞) = 1 , K̃3(∞) = 1 , h(∞) = 0 , h3(∞) = 0 , p5 = ξ(∞) , (115)

for the 5 variables p1, p2, p3, p4, p5. This determines the solutions K̃, K̃3, h, h3, ξ, which
can then straightforwardly be used to compute cos θ, µ̄B, n̄I , and the free energy density
Ω̄ (78).

This procedure can be employed for the thermodynamic properties of the various
phases but also for the phase diagram in the µ̄B-µ̄I plane. To this end, the phase with
lowest free energy has to be determined for each pair (µ̄B, µ̄I). It is very tedious to
compute the free energy for all possible phases in a sufficiently fine grid in the µ̄B-µ̄I
plane. Therefore, we set up specific calculations for the first-order phase transition curves,
which simultaneously solves for the two phases that coexist on such a line supplemented by
the condition that their free energies be the same. The relevant second-order transitions
can also be computed directly along the lines already discussed in the previous section for
the specific phases. The resulting phase diagram – the main result of our paper – is shown
in Fig. 1 and discussed in Sec. 1. It includes the curve in the µB-µI plane for neutron star
matter, where we have added the constraints of Sec. 4.5. For this phase diagram we have
matched our parameters to QCD properties as we discuss now.
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Figure 2: Left panel: Kaluza-Klein massMKK and dimensionless pion mass m̄π as functions
of λ given by the matching conditions (116). Right panel: Vacuum mass of the rho meson
mρ, pion decay constant fπ, and saturation density of isospin-symmetric nuclear matter
n0 as functions of λ resulting from MKK of the left panel. The horizontal dashed lines are
the corresponding physical values. The vertical dashed line in both panels marks λ = 7.8,
the value chosen for our main results, which reproduces the correct mρ and n0, but leads
to a deviation from the physical value of fπ.

5.1 Parameter fit

The parameters of our model are the Kaluza-Klein scale MKK, the ’t Hooft coupling λ
and the pion mass, say in its dimensionless form m̄π. Since our main result is the phase
diagram in the µB-µI plane, it makes sense to anchor our results to the locations of the
phase transitions on the two axes that are known from QCD. On the µB axis, there is a
first-order onset of isospin-symmetric nuclear matter at a critical quark chemical potential
µ0 ≃ 308MeV. On the µI axis, there is a second-order onset of pion condensation at
µI = mπ. We already know that this is reproduced in our model, and thus matching
this transition amounts to reproducing the physical pion mass mπ ≃ 140MeV. Hence we
require

λ0MKKµ̄B = µ0 , λ0MKKm̄π = mπ , (116)

where µ̄B is the chemical potential at the baryon onset, which needs to be calculated
numerically. Other basic quantities that our model should ideally reproduce are the sat-
uration density of nuclear matter, i.e., the baryon density at µ0, which is known to be
n0 ≃ 0.15 fm−3, the pion decay constant fπ ≃ 92.4MeV, and the vacuum mass of the
rho meson mρ ≃ 776MeV. Obviously, with our 3 parameters we cannot fit these 5 values
exactly. We proceed with the following observation. The dimensionless chemical potential
µ̄B in Eq. (116) assumes different values for different values of λ, but does not depend on
MKK [it also does not depend on m̄π since there are no terms of the form mπnB in our
effective action, see discussion below Eqs. (51)] . As a consequence, Eq. (116) fixes MKK

and m̄π as functions of λ, shown in the left panel of Fig. 2. With these functions at hand,
we can compute n0 (numerically), fπ [from Eq. (34)], and mρ [from Eq. (94)] as functions
of λ, see right panel of Fig. 2.

We see that in this approach we have to live with an unphysical pion decay constant, no
matter which λ we choose. This tension between fitting vacuum properties and properties
of nuclear matter simultaneously in the WSS model is known [36, 40]. We also see that,
interestingly, by an appropriate choice of λ we can fit twomore quantities to good accuracy,
namely n0 and mρ. This motivates our physical parameter choice for the phase diagram
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Figure 3: Comparison of our calculation within the diagonal ansatz (black curves, same
as in Fig. 1) with the isotropic approximation (blue curves) and the chiral limit mπ = 0
(red curves). The black baryon onset curves (transitions from V, π, πρ to B and πB) are
completely covered by one (or both) of these limits.

in Fig. 1 and for the results in the following subsections:

MKK = 949MeV , m̄π = 0.24 , λ = 7.8 . (117)

The (unphysical) value of the pion decay constant for this choice is fπ = 63.6MeV.

5.2 Validity of the diagonal approximation

We have pointed out that our diagonal ansatz (49) is not a consistent solution of the full
equations of motion, see text below this ansatz. Having set up our numerical evaluation,
we are now in the position to test the validity of our approximation. To this end, we
consider the phase diagram in the µB-µI plane and employ the two limits mentioned
below Eq. (49).

Firstly, we re-compute the phase transition lines at small µI in the isotropic approx-
imation, which we know is a consistent solution to the equations of motion at µI = 0.
More precisely, we assume that the only non-zero spatial gauge components in the La-
grangian (28) are the diagonal components h ≡ h1 = h2 = h3 and derive the equations
of motion under this constraint, i.e., for the single function h and the usual temporal
components of the gauge fields. (This reproduces the approach of Ref. [39], but with a
non-zero pion mass and thus a dynamical pion condensate.) Of course, this approach does
not yield a fully consistent solution for µI > 0 either. The idea is rather to identify the
regions in the phase diagram where our baryonic matter is approximately isotropic: in the
regions where the isotropic approximation is in good agreement with our diagonal, but
anisotropic, approach, we can expect that the full anisotropic approach does not differ
much from the solution we have found. In Fig. 3 we show the isotropic approximation
(blue curves) in comparison with our phase transition lines from Fig. 1 (black curves). We
see that in the lower left corner of the phase diagram the two sets of lines are basically
indistinguishable (the pion onset from the vacuum is irrelevant for this comparison since
it does not involve any spatial components of the gauge fields). Expected deviations occur
in the pion onset within baryonic matter as µB is increased and in the baryon onset within
the pion-condensate phase as µI is increased.

The second limit we show in Fig. 3 is the chiral limit mπ = 0. In this limit, the
full equations of motion are fulfilled without any off-diagonal components for arbitrary
anisotropy in the diagonal components. This is best seen by employing the rotation of
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Refs. [39, 46, 58], i.e., gR = 1, gL = Σ†
0, instead of the rotation (12), which is more

conveniently employed in the physical case. As explained below Eq. (12), the rotation

gR = 1, gL = Σ†
0 does not generate τ1 and τ2 components if applied to the isospin chemical

potential in the τ3 component. Therefore, two of the non-abelian temporal gauge fields
can be set to zero, which is sufficient to also keep the off-diagonal spatial components
switched off. Since we expect the chiral limit to be a good approximation for µI ≫ mπ,
we have re-computed the phase transition lines in that regime setting mπ = 0 (red curves).
For low baryon chemical potentials, we see that the curves are indistinguishable from our
mπ > 0 results. One can check from the analytical expression for the critical chemical
potential of the π-πρ transition (92) that the pion mass gives a correction smaller than
0.01% to the location of this transition Perhaps more surprisingly, the chiral limit also
approximates the π-πB transition very well, essentially all the way down to the pion mass
(where the red curve is covered by the blue curve), despite the pion condensate being far
from maximal as µI → mπ. However, inclusion of the pion mass does result in a stronger
deviation from the chiral limit in the πB-B transition. (The red curve for this transition
is expected to diverge for µI → 0, as in this regime baryonic matter becomes isotropic,
and the πB phase is always preferred [39].)

Taking the results of the two limits together, the main conclusion from Fig. 3 is as
follows. The agreement of our diagonal, anisotropic, non-zero mπ approximation with
the red and blue curves gives us confidence that our approximation works well in sizable
regions of the phase diagram at small and large µI and even for all µI if µB is not too
large. Our ansatz provides an interpolation between these two limits which is strictly
speaking uncontrolled since we have dropped the off-diagonal components of the gauge
fields. However, Fig. 3 suggests that – given the isotropic and chiral limits – there is not
much room left for any additional structure other than what our ansatz yields. Therefore,
the qualitative shape of our phase diagram seems to be a robust prediction.

5.3 Anisotropy in the baryonic phases

We have just seen with the help of the phase transition lines that the baryonic phases (B
and πB) are isotropic to a good approximation for small µI . Due to rho meson condensa-
tion the anisotropy will become more significant for large µI . In Fig. 4, we show the extent
of the anisotropy quantitatively. To this end, we have plotted the ratio r(z) = h3(z)/h(z)
for the B and πB phases at various points (µB, µI), which, to facilitate the interpretation,
we have marked in the phase diagram reproduced above the plots. For two of the points,
there is no solution for the πB configuration (no blue solid lines in the middle and right
panels), while solutions for both configurations exist at all other selected points, although,
of course, at least one of the two phases is only metastable for a given point. The first
general observation is that the numerical value of this ratio differs significantly between
the infrared and ultraviolet regimes, z → 0 and z → ∞. For the following interpretation
we may either focus on the infrared or on the ultraviolet, the main conclusions are the
same.

For both B and πB phases, we see that the anisotropy is relatively small for the smallest
isospin chemical potential used here, as expected from the comparison with the isotropic
approximation in the previous subsection. Note that this “small” µI is already larger than
the maximal µI found in neutron stars (constructed from our model). As expected, the
anisotropy tends to get larger as µI is increased at fixed µB or as µB is decreased at fixed
µI . The purely baryonic phase, i.e., the B phase, has values of r(z) which are smaller
than 1 everywhere. The reason is that this phase “wants” to turn into the ρ phase, where
h3 = 0 and the rho meson condensate sits in the first two components in flavor space, i.e.,
in h. In contrast, in the extreme anisotropic limit the πB phase “wants” to turn into the
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Figure 4: Ratio of the spatial components of the non-abelian gauge fields r(z) = h3(z)/h(z)
for the πB phase (solid lines) and the B phase (dashed lines) for different values of µI and in
each panel µB = 2.21 (black), 1.06 (red), 0.18 (blue)GeV. All points (µI , µB) are indicated
in the phase diagram, which is reproduced from Fig. 1. Note the difference in vertical
scales in the three panels; the anisotropy [deviation of r(z) from 1] increases strongly from
left to right, interpreted as a larger admixture of a rho meson condensate.

πρ phase, where h = 0 and the ρ meson condensate sits in h3. [For the location of this
transition see Eq. (105).] Hence we expect r(z) > 1, which is indeed the case except for a
small region close to the B-πB transition (see black solid line in the left panel).

It might be tempting to translate these results into phase transition lines marking
the onset of rho meson condensation within each of the baryonic phases. However, the
results show that these transitions are not very sharp (at least for the physical value of
the ’t Hooft coupling chosen here). Perhaps one can argue that in the B phase the jump
from the black to the red curves is much smaller than that of the red to the blue curve
in both middle and right panels, and thus this transition is, roughly speaking, horizontal
in the phase diagram. In the πB phase a similar argument (not immediately obvious
from the curves shown here) suggests a more vertical transition. In any case, since in our
approximation rho meson condensation in baryonic matter does not break any additional
symmetries, there is no rigorous criterion for the transition and we do not attempt to add
any phase transition lines to the phase diagram. We have, instead, included labels ρB and
πρB in Fig. 1 to indicate the approximate locations of these baryonic phases with a rho
meson admixture.

5.4 Thermodynamic properties

We discuss the physical properties of the various phases by plotting the densities nB, nI
and the pion condensate sin θ in Figs. 5 and 6. These figures are best understood as
vertical and horizontal cuts through the phase diagram in Fig. 1, with the cuts chosen
such that all features of the phase diagram can be understood and interpreted with the
help of Figs. 5 and 6. We collect the main observations in the following list.

• Thermodynamic consistency. Following the stable phases for increasing µI (µB),
the corresponding density nI (nB) is either constant or increases, as it should. This
includes first-order phase transitions, where the densities increase discontinuously.
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Figure 5: Upper panels: baryon and isospin densities in units of saturation density n0 as
a function of the baryon chemical potential for three different isospin chemical potentials.
In each panel, all phases that are favored in at least one domain of the panel are shown.
When they are favored, the corresponding curve is solid; unstable and metastable phases
are shown as dashed curves. Different phases are distinguished by color, as given in the
legend in the upper left panel. Discontinuities due to first-order phase transitions are
marked with vertical (black) lines. Lower panels: Pion condensate for the same isospin
chemical potentials as in the upper panels. In regions where the B phase is favored, the
pion condensate is zero.

• Onset of baryons. At vanishing isospin chemical potential, the onset of baryons is at
the physical value µB ≃ 923MeV due to our parameter fit [recall that the chemical
potential in Eq. (116) refers to the quark chemical potential, while the physical
chemical potential µB used in all plots is the baryon chemical potential]. The upper
row in Fig. 5 shows that the onset chemical potential decreases with increasing µI
and eventually the onset becomes second order. We also find that, for sufficiently
small µB and any µI , the baryonic phases are either metastable (B, blue curves) or
do not even exist as a solution of the equations of motion (πB, black curves).

• Pion condensate. One of the novelties of our approach is the dynamical calculation
of the pion condensate in the medium of holographic baryons. As discussed, in
the π phase our results merely reproduce chiral perturbation theory, but all other
phases with pion condensate (including the transition from the π phase to them)
are a prediction of our holographic approach. The behavior is shown in the lower
panels of Figs. 5 and 6. In Fig. 5 we observe that the pion condensate vanishes for
sufficiently large baryon chemical potentials. In the lower left panel of Fig. 6 the
inset shows the onset of rho meson condensation from the π phase. Interestingly, the
pion condensate is larger compared to the (then metastable) pure pion-condensed
phase. We also see in both Figs. 5 and 6 that the pion condensate is (either zero
or) essentially maximal, sin θ ≃ 1, for µI ≳ 1GeV. This confirms the observation of
Fig. 3 that the massless limit is a good approximation in this regime.

• Rho meson condensation. We have interpreted a large anisotropy in our gauge
fields as a sign of rho meson condensation in baryonic matter. We can confirm
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Figure 6: Same as Fig. 5, but as functions of the isospin chemical potential for three
different values of the baryon chemical potential.

this interpretation now with the thermodynamic behavior. Let us first consider
the baryon and isospin number densities in the B phase in the upper middle panel
of Fig. 5 (blue curves). For small µB, this phase is metastable, nevertheless the
behavior of nB is instructive. We see that it is very small until it starts to increase
rapidly at about µB ∼ 300MeV. This suggests that for small µB it is mainly rho
mesons that account for isospin number and that there is a rather sharp crossover to
baryonic matter. For the πB phase, let us consider the densities in the upper middle
panel of Fig. 6 (black curves). At large µI we find an interesting maximum of the
baryon density. The system decides to remove baryons while the isospin density
keeps increasing without qualitative change. Since the pion condensate is essentially
maximal throughout this regime, the only possible interpretation is that a rho meson
condensate now provides a large fraction of the isospin density. This corresponds to
a large anisotropy of the gauge fields, cf. Fig. 4.

• Disappearance and re-appearance of the pion condensate. A surprising result in the
phase diagram in Fig. 1 is the non-monotonic behavior of the first-order πB-B phase
transition line. As a consequence, there is a region where, upon increasing µI at
fixed µB, the pion condensate disappears, before re-appearing at even larger µI .
This scenario is shown in the right panels of Fig. 6. A possible interpretation is that
the system switches off the pion condensate because rho mesons become the more
efficient way to generate isospin number. And, as we know at least from the case
without baryons, the rho meson mass is larger in the presence of a pion condensate.
Hence the rho meson condensate is less costly without the pions. This interpretation
is supported by the observation that once rho mesons contribute significantly to the
isospin density in the πB phase (judging from the decrease in nB), this phase is again
favored, i.e., the pion condensate re-appears. While Fig. 3 suggests that the non-
monotonicity is not an artifact of our diagonal ansatz, we should keep in mind that
we always work in the probe brane approximation, which becomes questionable if the
gauge fields on the flavor branes are large. In particular, we have only considered the
confined geometry and therefore our setup does not show a deconfinement or chiral
phase transition, which is expected in QCD at very large chemical potentials. Also,
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Figure 7: Phase diagram for three different values of the ’t Hooft coupling and m̄π chosen
such that the ratio mπ/mρ is the same in each case and equal to its physical value. The
left panel is identical to the physical phase diagram in Fig. 1, up to the dimensionless
scales chosen here for all three panels, µB/MKK = Ncλ0µ̄B, µI/MKK = λ0µ̄I . The two
dots on the π-B transition line in the right panel indicate a small πB pocket, narrower
than the thickness of the line.

we find that the non-monotonicity disappears if the coupling strength is increased,
as we demonstrate next.

5.5 Phase diagram at different coupling strengths

While our main physical result is the phase diagram with the specific parameter choice
(117), it is instructive to study the dependence of our results under variation of the coupling
strength λ. In particular, we may ask what the structure of the phase diagram is for large
λ. This is the limit in which our classical gravity approximation is valid, while small
values of λ (and Nc) rely, strictly speaking, on uncontrolled extrapolations. We have not
found a direct way to compute the λ → ∞ version of our phase diagram, but we have
re-calculated the phase transition lines for the two additional values λ = 100 and λ = 500.
By showing the results in units ofMKK, this requires no specific choice of the Kaluza-Klein
scale. However, the dimensionless pion mass parameter m̄π cannot be scaled out of the
equations and we need to decide how to readjust it upon variation of λ. From Eq. (94) we
know that the rho meson mass mρ scales with λ

0, while the pion mass mπ scales with λ for
fixed m̄π, see Eq. (36). Hence, if we kept m̄π fixed, the rho meson would become lighter
relative to the pion as we increase λ (and actually lighter than the pion for sufficiently
large λ). For a sensible comparison, we therefore adjust m̄π such that the ratio mπ/mρ

keeps its physical value. This results in m̄π ≃ 0.019, 0.0037 for λ = 100, 500. The phase
diagrams thus computed are shown in Fig. 7.

As a consequence of keeping the meson mass ratio fixed and choosing the isospin
chemical potential in units of the Kaluza-Klein scale as the horizontal axis, the V → π
and π→ πρ transitions at small baryon chemical potential occur at the same critical points
in all three cases. The baryon onset at vanishing isospin chemical potential scales with
the baryon mass (minus the binding energy of symmetric nuclear matter at saturation,
which is different for each λ). Since the baryon mass scales with λ [74], the critical baryon
chemical potential for the V → B transition thus increases from the left to the right panel.

The first main observation is that the phase transition lines that separate the purely
mesonic phases from the phases containing baryons becomes more and more horizontal
as the coupling strength is increased. In other words, the properties of the baryons seem
to become essentially independent of the isospin chemical potential. This observation is
in accordance with the properties of a single baryon at large λ. In this case, the BPST
solution is, to leading order, unaffected by isospin (and baryon) chemical potentials, which
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simply introduce non-trivial – sub-leading – temporal components of the gauge fields, see
appendix A of Ref. [39]. We also see that the curious non-monotonicity of the B-πB
transition disappears gradually for large λ. As a consequence, in the strongly coupled limit
pion condensation in baryonic matter is restricted to a region of extremely large isospin
chemical potentials. This is an interesting observation also for neutron star applications:
if this tendency is of general value, the absence of a pion condensate in dense nuclear
matter – which we observe even for the physical, less strongly coupled parameter set –
may be interpreted as a strong-coupling effect.
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