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Abstract. We explain that the supersymmetric CPn´1 sigma model is directly re-

lated to the level-zero chiral Gross-Neveu (cGN) model. In particular, beta functions of

the two theories should coincide. This is consistent with the one-loop-exactness of the

CPn´1 beta function and a conjectured all-loop beta function of cGN models. We per-

form an explicit four-loop calculation on the cGN side and discuss the renormalization

scheme dependence that arises.
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In our recent work [Byk22b; Byk22c; ABW22; Byk21; Byk22a] we proposed an

exact and explicit equivalence between a wide class of integrable sigma models and

generalized chiral Gross-Neveu (cGN) models1. The principal feature of these sigma

models is that the target space is a complex homogeneous space2. As the simplest and

rather representative example one can consider the CPn´1 sigma model (first formu-

lated in [CJ79; DLDV78; D’A79]).

On the Gross-Neveu side, one considers models with both bosonic and fermionic

fields, which is the crucial difference from the traditional purely fermionic Gross-Neveu

model [GN74; Wit78]. Another difference from the traditional setup is that the cGN-

models in question typically involve auxiliary gauge fields, and part of the gauge sym-

metry is ‘chiral’. As we explained in earlier work [Byk22b; Byk21], a crucial condition

is the cancellation of chiral anomalies, which makes it necessary to add fermionic fields

to the purely bosonic ‘core’. There are, however, many inequivalent ways in which the

fermionic degrees of freedom could be added (for example, minimally, supersymmetri-

cally, etc.) [Byk22c].

The fate of the gauge fields in models with vanishing chiral anomalies is rather

amusing. It turns out that an admissible (and in many ways best) gauge is in simply

setting the gauge fields to zero [Byk22a]. As a result, one arrives at the ungauged

version of the cGN-model. In the present paper we will investigate the β-function of

such ungauged model corresponding to the SUSY CPn´1 sigma model. On the one

hand, it is well-known that the β-function of the CPn´1 sigma model is one-loop exact

– a result that goes back to [MPS84]. On the other hand, an all-loop β-function of

generalized cGN models was conjectured in [GLM01] (based on earlier results [Kut89]).

1Chiral Gross-Neveu models are sometimes referred to as non-Abelian Thirring models.
2Deformations of models with homogeneous target spaces are also possible and lead to trigonometric

and elliptic counterparts of these integrable models. In [Byk22b; Byk21] we studied the RG-flows of
such deformed models. However, in the present paper we restrict to the homogeneous (rational) case.
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In our special case it is one-loop-exact as well, coinciding the one-loop result of the

CPn´1 sigma model. However, at four loops a discrepancy from the conjectured all-loop

result has been claimed in [LW03], whose meaning has not been fully elucidated in the

past years. As we shall explain below, it can be attributed to a choice of renormalization

scheme. Our cGN-based setup, as compared to the abstract setup in [GLM01; LW03],

makes the calculation of the β-function more direct. Since the cGN model is a theory

with quartic interactions, one is effectively led to the analysis of divergences that arise

in the four-point function. In particular, for generic values of external momenta the

four-point function is IR-finite, and the only divergences are in the UV3.

In the present paper we perform the calculation of the β-function up to four loops.

At two and three loops we find no corrections to the β-function. At four loops we

observe that, in a generic scheme, explicit dependence on regularization appears. We

show that the regularization-dependent terms cancel out, if one uses a version of the

so-called ‘MOM’-scheme [CG79], when the coupling constant is defined as the value of

the four-point function for certain (fixed) momenta. In our version one sets two of the

four momenta to zero, which is the minimal configuration that ensures IR-finiteness

and is still technically simple (for asymmetric versions of MOM-scheme cf. [BL81;

CR00]). Although the regularization-dependent terms disappear, in this scheme there is

a correction to the β-function at four loops, proportional to ζp3q. Interestingly, this type

of transcendentality is common for SUSY Kähler sigma models at four loops [GVZ86a;

GVZ86b; JJM89], so that the appearance of ζp3q seems natural. However, in the case

of the CPn´1-model this correction should vanish if one uses a renormalization scheme

that preserves N “ p2, 2q SUSY, leading to the one-loop-exact β-function. Although

this seems like a paradox at first sight, the discrepancy may again be attributed to

a choice of renormalization scheme. The situation is well-known from the theory of

the NSVZ4 β-function in 4D SUSY theories, where an all-loop β-function may only be

computed in certain special schemes (cf. [KS13; SS22; KS14b; KS14a] and references

therein). Below we shall discuss the pros and cons of various schemes.

The structure of the paper is as follows. In section 1 we briefly explain the equiva-

lence between the SUSY CPn´1 sigma model and the gauged chiral Gross-Neveu model.

3One cannot set all external momenta to zero, though, since this is a special point where IR
divergences arise.

4‘NSVZ’ refers to the proposal of Novikov-Shifman-Vainshtein-Zakharov for an exact β-function in
N “ 1 SUSY theories in 4D [Shi12].
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We also explain that the gauge fields may be completely eliminated by a choice of gauge,

which is a peculiar feature of such models. In section 2 we state the conjectured all-

loop β-function [GLM01] for generalized cGN models, viewed as perturbations of CFTs

(with affine algebra symmetry) by current-current interactions. Next we recall the his-

tory of β-function calculations in sigma models in section 3, as well as the arguments

for its one-loop-exactness in the case of SUSY sigma models with Kähler homogeneous

target spaces. We then explain in section 4 that, in the special case of level-zero cGN

models, the four-point function, which determines the β-function, is given solely by

crossed-ladder diagrams. Finally, in section 5 we present explicit calculations at three

and four loops, commenting on the difference between renormalization schemes.

1. The SUSY CPn´1 model as a cGN model

We start by recalling the construction of [Byk22c], where the well-known SUSY CPn´1

sigma model is formulated in a novel way – as a gauged cGN model, with both bosonic

and fermionic field content. The fact that supersymmetrization of the CPn´1 model

involves coupling it to a fermionic cGN model has been known since the early days of

these theories [D’A79], so the novelty here is the realization that the bosonic core is a

cGN model in itself, and, moreover, the bosonic and fermionic parts are nontrivially

intertwined in a single generalized cGN model. First, we introduce the following fields:

• Bosonic n-component vectors: a column-vector U and a row-vector V

• Fermionic (Grassmann) n-component vectors: a column-vector C and a row-

vector B

• The above fields are grouped into doublets:

U :“

˜

U

C

¸

, V :“
´

V B
¯

(1.1)

The worldsheet is assumed to be5 C » R2, with complex coordinate z “ x` i y. In

5Generalizations to Riemann surfaces are possible [Byk22a] but will not be discussed here.
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terms of the fields introduced above we write down the following Lagrangian:

LCP “ 2
´

V ¨DU ` U ¨DV
¯

`
κ

2π
TrpJJq , (1.2)

where the covariant derivative is defined as follows:

D “ B

Bsz
` iAsuper , Asuper “

˜

A 0

W A

¸

(1.3)

The corresponding gauge group is a triangular subgroup of SLp1|1q, isomorphic to

C˚˙Cf , where Cf is a Grassmann one-dimensional vector space. In particular, in (1.3)

A is a bosonic gauge field, and W a fermionic one. The variable J in the interaction

term in (1.2) is the so-called ‘moment map’, or more simply a current, defined as

follows:
1

2π
J :“ U b V ´ C bB P gln , (1.4)

whereas J is its Hermitian conjugate. Finally, κ is the coupling constant in the La-

grangian (1.2). To conclude with the notations, in quantum theory the Boltzmann

weight in the path integrals is defined to be e´S with the action S “
ş

d2zLCP, where

d2z :“ dx^ dy “ i
2
dz ^ dz.

The Lagrangian (1.2) is an example of a chiral Gross-Neveu model. The first two

terms are first-order kinetic terms, whereas the interaction is a quartic coupling, just

like in the cGN model. An explicit rewriting of (1.2) as a cGN Lagrangian is possible,

if one introduces the Dirac doublets Ψ “

˜

U

V

¸

(a bosonic one) and Θ “

˜

C

B

¸

(a

fermionic one). The main difference is that in the original cGN model the fields are

fermionic, whereas here we have both bosonic and fermionic fields.

As mentioned above, the gauge group in question is C˚ ˙ Cf . One can show that

an admissible (partial) gauge is UU “ 1, CU “ 0. The latter (fermionic) condition

fully fixes the Cf part of the gauge symmetry, whereas the former reduces C˚ down to

Up1q – the gauge symmetry typical of the standard formulation of the CPn´1 sigma

model. Upon imposing this gauge, one eliminates the fields V, V from (1.2), which can

be easily done, since these fields enter quadratically and effectively without derivatives.

The resulting Lagrangian corresponds to the standard form of the SUSY CPn´1 model.
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All these steps were discussed in detail in [Byk22c], but to match with standard

notations and to familiarize the reader with our formalism let us show how to proceed

to the geometric form of the sigma model in the purely bosonic case. To this end, we

set B “ C “ 0 and ‘integrate out’ V, sV from the Lagrangian (1.2). As a result, we get

the action

S “
1

2πκ

ż

d2z
4|DU |2

UU
“
 

choosing the gauge UU “ 1
(

“ (1.5)

“
1

2πκ

ż

d2zDαUDα sU `
i

2πκ

ż

dU ^ dsU ,

where Bα “
´

B

Bx
, B
By

¯

. The above action corresponds to the standard CPn´1-model with

a topological term (cf. [MPS84]). In particular, the factors of 2π in (1.2) and (1.4) lead

to the conventional factor of 1
2π

in front of the sigma model action in geometric form.

1.1. Eliminating the gauge field by choice of gauge As we just discussed,

U ¨ U “ 1, C ¨ U “ 0 is an admissible partial gauge for the SUSY model. The virtue of

the cGN formulation (1.2) is that there is a different gauge, which fully fixes the gauge

symmetry and is more convenient in many ways.

To formulate this gauge, and for future use, we introduce an auxiliary field B and

perform a quadratic transformation on the system (1.2):

L “ 2
´

V ¨DU ` U ¨DV
¯

`
1

2π

´

Tr
`

BB
˘

` i κ
1
2 Tr

`

JB
˘

` i κ
1
2 Tr

`

JB
˘

¯

(1.6)

The quadratic (Hubbard-Stratonovich) transformation trick is standard for cGN mod-

els and has been used in β-function calculations in [Des88; Bon`90].

Next we decompose B “ B0 ¨ 1n ` BK, where B0 “
1
n
TrpBq and BK is the sln

(traceless) part of B. The gauge is then

A “ 1

2
κ

1
2 B0 , W “ 0 . (1.7)

As a result, the gauge field is completely eliminated [Byk22a], and one is effectively
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left with the simple part BK P sln in the interaction terms6.

Let us explain why the choice (1.7) is possible. Gauge transformations of sAsuper

in (1.3) are the standard ones:

i sAsuper ÞÑ g´1
`

i sAsuper

˘

g ` g´1
Bg , g “

˜

eζ 0

χ eζ

¸

(1.8)

In components, this reads

i sA ÞÑ i sA` Bζ (1.9)

iĎW ÞÑ iĎW ` e´ζ
`

Bχ´ Bζ ¨ χ
˘

. (1.10)

The gauge fixing is achieved in two steps. First, one performs a gauge transforma-

tion with χ “ 0, choosing ζ so that the gauge-transformed field sA satisfies (1.7), i.e.

ip sA´ 1
2
κ

1
2ĎB0q ` Bζ “ 0. The solution is given by the Cauchy-Green formula

ζpz, zq “ ´
i

π

ż

d2w
sApw,wq ´ 1

2
κ

1
2ĎB0pw,wq

z ´ w
. (1.11)

Here one assumes that the decay conditions on the fields at infinity are such that the

integral makes sense. One then performs a second gauge transformation with ζ “ 0,

choosing χ in such a way that iĎW ` Bχ “ 0, which again relies on the same Cauchy-

Green formula. As a result, the gauge (1.7) is imposed.

1.2. The ungauged cGN model In the gauge (1.7) the model (1.2) simplifies as

follows:

LCP “ 2
´

V ¨ BU ` U ¨ BV
¯

`
κ

2π
TrpJKĎJKq , (1.12)

where JK is the traceless part of J . This is obtained from (1.6) upon integrating out

B, assuming B P sln. From now on we simply write J in place of JK, keeping in mind

that we are considering sln in place of gln as the relevant symmetry algebra.

6One could as well choose the gauge A “ 0, as in [Byk22a]. In that case the interaction term would

split as κ
1
2 Trp sJBq “ κ

1
2 Trp sJBKq ` κ

1
2 Trp sJqB0. The coupling constant in front of the first (traceless)

term undergoes renormalization, as described below, whereas the one in front of the trace part is not
renormalized (cf. [Byk22b]). It is to avoid dealing with these two different terms that we have chosen
the gauge (1.7).
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The kinetic terms in (1.12) represent what is known as a βγ-system [Wit07; Nek05].

For κ “ 0 this is a CFT with a left/right Kac-Moody symmetry. Moreover, in the

absence of interactions, the corresponding symmetry group is {GLpn|n,Cq with the

natural transformations

U ÞÑ hpzq U , V ÞÑ Vhpzq´1 , hpzq P GLpn|n,Cq . (1.13)

The interaction term breaks this huge symmetry. From the point of view of the free

system the variable J featuring in the interaction term is nothing but the Kac-Moody

current of {SLpn,Cq ⊂ {GLpn|n,Cq, where the diagonal embedding is assumed. For

κ “ 0, the current is holomorphic, BJ “ 0, whereas for non-zero κ this condition is

replaced by BJ “ κ

2
rJ, Js. The latter equation implies that the current Jdz ` sJdz is

both conserved and flat, signalling potential integrability of the model.

In other words, our system may be seen as a concrete realization of a more general

setup, where one considers a Lagrangian of the form

L “ LCFT `
κ

2π
TrpJ sJq , (1.14)

which is a current-current perturbation of a conformal field theory with a Kac-Moody

symmetry (in our case the CFT being a free system). Such systems have been studied

in the past, in particular in [FOZ93; MQS08] in relation to sigma models.

2. The conjectured β-function

Given the system (1.12), or more generally (1.14), a natural task is in the computation

of the β-function of κ. In the purely fermionic case of the traditional cGN model this

question was addressed long ago7: the one-loop result in [GN74], where asymptotic

freedom of the model was established, the two-loop result in [Des88; Bon`90] and even

a three-loop result in [BG99].

A natural generalization is in considering the system (1.14) with more general field

7In the case of the non-chiral GN model there are more results: we refer to [LR91; Gra91] for the
three-loop case and to [GLS16] for the most recent (four-loop) results (see references therein for earlier
work).
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content. A scheme for the computation of the β-function of such cGN-models was

proposed as early as in [Kut89]. It was argued that the only ingredient necessary for

developing the perturbation theory is the OPE of the chiral currents, which takes the

well-known form

JapzqJ bpwq “
k δab

pz ´ wq2
`
i fabc J cpwq

z ´ w
` . . . , (2.1)

where Ja “ TrpJτaq are the components of the current, and k is the level. Here τa are

the unit-normalized Hermitian generators of the corresponding (simple) Lie algebra

(Trpτaτbq “ δab), and fabc are its structure constants defined by rτa, τbs “ i fabc τc. In

our applications the Lie algebra is sln, and the current is the traceless part JK of (1.4),

as already discussed.

The abstract theory defined by (1.14) and (2.1) has two parameters: κ and k. The

approach of [Kut89] relied on a perturbation theory in 1
k
, with λ :“ κk fixed (the latter

could be viewed as a ‘t Hooft coupling of sorts), and the calculation was carried out

to leading order. In [GLM01] the authors pushed the method further and conjectured

an all-loop β-function, valid for all values of κ and k. Moreover, their result applies

to very general systems of the type (1.14), even in the case of several couplings (i.e.

multiple current-current deformations). For the case of a single coupling κ as in (1.14),

assuming the current algebra (2.1), their result reads:

βκ “ ´
C2 κ2

`

1` 1
2
k κ

˘2 , (2.2)

where C2 is the value of the quadratic Casimir of the symmetry algebra, defined by
1
2
fabcfabd “ C2δcd (C2 “ n in the case of sln).

To apply the above formula to our system (1.12) what remains is to compute the

level k. Taking into account the expression (1.4) for the Kac-Moody current and the

elementary correlators xUipzqVjpwqy “ xBipzqCjpwqy “
δij
z´w

, one easily finds

xJijpzqJi1j1pwqyκ“0 “ 0 , (2.3)

as the contributions of bosons and fermions cancel exactly. In other words, the level
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vanishes, implying a one-loop-exact β-function:

k “ 0 so that βκ “ ´n κ
2 (2.4)

On the one hand, this is expected from the standpoint of the CPn´1 sigma model,

since it is known that for Hermitian symmetric target spaces8 (and even more generally

for Kähler homogeneous spaces admitting a GLSM description, as we explain below)

the β-function is one-loop exact in the SUSY case. This was found in [MPS84] based

on NSVZ-type (instanton-related) arguments. In these terms the one-loop-exactness of

the β-function is a 2D analogue of the analogous phenomenon in N “ 2 theories in 4D.

For completeness, we should mention that, in the past years, an even more complete

parallel with 4D NSVZ results has been found for models with p0, 2q SUSY [CS12;

Che`14; CS19], see [Shi18] for a review. We expect that our cGN formalism could be

extended to models with p0, 2q SUSY, so that those models would be amenable to a

similar analysis9.

On the other hand, in an attempt to check the conjectured result (2.2) for finite

values of k the authors of [LW03] considered the extreme case of k “ 0. This value was

chosen since 1) it is polar to k “ 8 and 2) simplifies the calculations as there is only one

non-zero term in the OPE (2.1). As we have just seen, however, there are very concrete

systems (SUSY sigma models) that realize this abstract setup. The claim of [LW03]

was that an explicit calculation in a hard (coordinate space) cutoff scheme leads to a

correction βp4q
?
“ ´ π

160
p6 ` π2qn2κ5 to the exact formula at four loops. The status of

this result has not been clarified to present day (cf. [BL21]). One should note that it is

not in contradiction with the conjectured form (2.4), since the β-function depends on

the renormalization prescription (scheme). Indeed, upon a change of variables κ “ κppκq

the RG equation 9κ “ βpκq is transformed into 9
pκ “ pβppκq, where

pβppκq “

ˆ

Bκ

Bpκ

˙´1

βpκppκqq (2.5)

Consider now a β-function whose only contributions are at one, four and possibly

8At least of classical groups
9Cf. [BS23] for the analysis of an N “ 2 quantum-mechanical sigma model, which may be thought

of as the dimensional reduction of a p0, 2q model.
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higher loops (the setup relevant for our application): βpκq “ βp1qκ2 ` βp4qκ5 ` . . ., and

a corresponding change of variables κ “ pκ ` cpκ4
` . . .. The transformed β-function is

then
pβppκq “ βp1qpκ2

` pβp4q ´ 2cβp1qqpκ5
` . . . (2.6)

Thus, picking c “ βp4q

2βp1q
, one can cancel the unwanted contribution at four loops.

The above ambiguities are well-known in the context of the NSVZ β-function

in 4D theories [JJN96; JJN97], making the latter notoriously hard to prove explicitly:

cf. [KS13; SS22] for the abelian case, as well as [KS14b; KS14a] for an explicit com-

parison of different regularization and renormalization prescriptions. The conjectured

β-function (2.2) should be seen as a 2D analogue, albeit applicable in a wider context,

beyond the scope of SUSY models. One should therefore expect similar difficulties

related to scheme dependence.

Below we present an explicit four-loop computation of the β-function using a

method that allows (partially) keeping track of the regularization dependence. We

find that the dependence on regularization may be cancelled by a choice of renormal-

ization scheme, as in (2.6). Besides, choosing appropriately the value of c, one can

cancel the four-loop contribution to the β-function altogether (this is essentially the

line of thinking pioneered in [JJN96; JJN97] in the context of the NSVZ β-function).

Finding a natural regularization/renormalization scheme that would lead to the exact

β-function remains a challenge for the future.

3. History of sigma model calculations

Prior to our calculation, let us review the argument that the β-function of the CPn´1

model is one-loop-exact, recalling some key results. Calculation of β-functions for sigma

models has a long history, dating back to the one-loop result of [EH71; Hon72] and the

two-loop result of [Fri80]. The four-loop result for purely bosonic sigma models can be

found in [JJM89] (for more references see [Ket09]). Since we are mostly interested in

the SUSY setup, here the two-loop result was obtained in [AGFM81] and the four-loop

result in [GVZ86a; GVZ86b], all of them using the ĎMS scheme. The latter reads:

β
p4q

ij
„ ζp3q ¨ BisBj ∆K, ∆K “ RκλµνR

σλτνR κ µ
σ τ ´RκλµνR

µνστR κλ
στ (3.1)
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The notation ∆K means that this could be viewed as a correction to the Kähler

potential, since, as we recall, models with p2, 2q SUSY correspond to Kähler target

spaces. The corresponding result for purely bosonic models is more complicated and

involves, apart from ζp3q, additional rational coefficients (such as a ` b ζp3q, where a

and b are rational). Moreover, it was observed in [JJM89] that the terms proportional

to ζp3q exactly coincide with the SUSY result. The five-loop contribution to the β-

function was calculated in [GKZ87], where it was shown that it can be cancelled by a

redefinition of the metric (i.e., a change of scheme).

As mentioned earlier, there is also the result that for Hermitian symmetric target

spaces the β-function is one-loop exact. This was originally proposed in [MPS84], but

there are at least two other ways to arrive at this conclusion and even to generalize it,

which we now recall.

First, a direct superspace analysis of the admissible counterterms in [HPS86] has

shown that, at higher loops (with the exception of the one-loop case), the β-function

is always of the form β
plq

ij
„ Bi

sBj ∆Kplq (l ě 2 is the number of loops), where ∆Kplq is

a globally defined function on the manifold. Speaking more formally, the correction is

cohomologically trivial. The function ∆Kplq is a scalar built out of the Riemann tensor

and its covariant derivates, as in the four-loop example (3.1). If we now restrict to a

homogeneous (not even necessarily symmetric) target space with an invariant metric,

the corresponding ∆Kplq-functions would have to be invariant as well and, as such, they

can only be constants. Thus, all higher-loop corrections to the β-functions of sigma

model with Kähler homogeneous target spaces vanish, if one uses a renormalization

scheme that manifestly preserves N “ p2, 2q SUSY.

3.1. GLSM-based arguments Another take on this result may be obtained by

noting that Kähler homogeneous spaces admit gauged linear sigma model (GLSM)

formulations. The method, introduced in [D’A`83] (and used many times thereafter,

for example in [Wit93; MP95; NS09]), consists in integrating out chiral matter fields

and constructing an effective action for the gauge superfield. Recall the superfield form

of the SUSY action:

S “

ż

d2z

ż

d4θ

˜

n
ÿ

j“1

ĎΦje
´V Φj `

ξ

2π
V

¸

`
θ

2π

ż

d2z Fzz , (3.2)

12



where V is the gauge superfield, ξ the FI term and θ the topological θ-angle. The

parameter ξ is proportional to the squared radius of the target space and is related to

our parameter κ as ξ “ 1
κ

(compare (1.5) with the Lagrangian (3.4) below).

One way to see that (3.2) really leads to the CPn´1 sigma model is to exclude the

gauge field V using its e.o.m.:

V “ log

˜

2π

ξ

n
ÿ

j“1

ĎΦjΦj

¸

. (3.3)

Substituting back into the action, one gets ξ
2π
V (up to a constant), which is the Kähler

potential of CPn´1. The form (3.2) is useful, though, as the ‘matter’ fields Φj enter

quadratically and therefore may be easily integrated out. To start with, one may

rewrite (3.2) in components [D’A`83]:

L “

n
ÿ

j“1

ĎUj p´pB ´ iAqµpB ´ iAq
µ
` sσσ ´DqUj `

`

n
ÿ

j“1

Ďψj

ˆ

γµpB ´ iAqµ `
1

2
p1` iγ5qsσ `

1

2
p1´ iγ5qσ

˙

ψj ´ (3.4)

´

n
ÿ

j“1

ĎFjFj ` sχ

˜

n
ÿ

j“1

ĎUjψj

¸

`

˜

n
ÿ

j“1

UjĎψj

¸

χ`
1

2π
pξ D ` θFzzq .

This Lagrangian deserves some comments. First, pUj, ψj, Fjq belong to the chiral mul-

tiplets, whereas pAµ, σ, σ, χ, χ,Dq belong to the vector multiplet. χ and ψ are fermions,

and all other fields are bosonic. We have not included a dynamical term for the gauge

field, which means that the vector multiplet is auxiliary and all of its components enter

as auxiliary fields. For example, D acts as a Lagrange multiplier for the constraint
n
ř

j“1

ĎUjUj “
ξ

2π
. Imposing this constraint and integrating out σ, σ would lead to the

quartic coupling
`

sψ 1`iγ5
2
ψ
˘

ˆ
`

sψ 1´iγ5
2
ψ
˘

of the fermionic cGN model.

We return to the β-function. A major point is that the FI term in (3.4), together

with the θ-term, may be rewritten as [Wit93]

LFI “
1

2π
pξ D ` θFzzq “ Re

ˆ

1

2π

ż

d2θ tΣ

˙

, (3.5)
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where t “ ξ ´ i θ is the ‘complexified FI parameter’ and Σ a twisted chiral superfield

encoding the gauge field strength Fzz and the scalar fields σ and D. In the above

formula, t
2π

Σ is the tree-level value of the twisted superpotential ĂW pΣq. Allowing a

general twisted superpotential leads, in components, to the following Lagrangian:

Re

ˆ
ż

d2θĂW pΣq

˙

“ Re

˜

pD ` iFzzq
BĂW pσq

Bσ

¸

` fermions (3.6)

In particular, the coupling of D to σ has the form D ¨
´

BĂW pσq
Bσ

` c.c.
¯

, i.e. it involves

a sum of holomorphic and anti-holomorphic functions. The effective twisted superpo-

tential may be extracted from this coupling.

D

Figure 1: Diagram contributing to the

renormalization of ξ. The blue line denotes

the ‘matter’ fields U, sU .

In doing a background field calcula-

tion of ĂW with constant background val-

ues of D and σ, at one loop the only graph

that contributes is shown in Fig. 1. The

corresponding contribution to the effec-

tive action is (Λ ąą |σ| is the cutoff)

S
p1´loopq
eff “ D ¨

ˆ

n

p2πq2

ż

d2p

p2 ` |σ|2

˙

“

“
n

4π
D log

ˆ

Λ2

|σ|2

˙

, (3.7)

which is a sum of holomorphic and anti-

holomorphic function, as required. The twisted superpotential, at one loop, is thus

ĂW pΣq “
1

2π

ˆ

t` n log

ˆ

Σ

Λ

˙˙

¨ Σ (3.8)

To get rid of the cutoff, we renormalize the coupling constant ξ (θ remains unchanged):

ξ “ ξR ` n ¨ log

ˆ

Λ

µ

˙

(3.9)

The shift (3.9) corresponds to the one-loop β-function. As for higher loops, these

would necessarily involve propagators of the gauge field and its superpartners, since

matter fields enter purely quadratically. A typical two-loop diagram is shown in Fig. 2.
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Here one runs into trouble, as the Lagrangian (3.4) involves no quadratic piece for

the gauge field and, hence, the propagators are undefined. To cure this situation,

one solution is to embed the CPn´1-model in a linear sigma model by adding a term
1
e2

ş

d4θΣsΣ to the Lagrangian, which leads to the standard kinetic term 1
e2
F 2
zz for the

gauge field. In two dimensions, the coupling e has dimension of mass, meaning that

a diagram with gauge field propagators would be suppressed by powers of mass. For

example, the diagram in Fig. 2 is proportional to e2

|σ|2
, which is clearly not a sum of

holomorphic and anti-holomorphic function.

D

Figure 2: Diagram with gauge field

insertion, proportional to e2

|σ|2
.

Thus, supersymmetry requires that, once all

relevant diagrams are included, any contributions

to the effective twisted superpotential involving

powers of e should vanish. As a result, the twisted

superpotential is independent of e, one-loop exact

and given by (3.8). Consequently, the renormal-

ization of ξ is one-loop-exact as well.

To summarize, from the modern perspective

the one-loop exactness of the β-function follows

from the existence of the GLSM formulation, since

in this case all couplings are encoded in the FI terms that receive radiative corrections

at one loop only.

4. The β-function from crossed ladder diagrams

Having reviewed the standard methods for studying sigma model β-functions, we pass

to our alternative formulation (1.12) in terms of a cGN model. In fact, we will be mostly

using its equivalent version (1.6) with an auxiliary field B. To study the β-function of

this model we impose the gauge (1.7) and rewrite (1.6) as follows:

L “ 2
`

V DU `BDC ` UDV ` CDB
˘

`
1

2π
Tr

`

BB
˘

, (4.1)
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1
2 τa
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2πz

δij 1
2πz

δij 1
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i
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j
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xUV y
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xsU sV y

x sB sCy

xB sBy

Figure 3: Feynman rules of the model (4.1). We have expanded B “
ř

Baτa, where Ba
are complex numbers, and the generators τa P sln are Hermitian and unit-normalized:
Trpτaτbq “ δab.

where we now assume B P sln. Here we used the explicit form (1.4) of the current, and

defined a new ‘covariant derivative’ as

DU “ BU `
i

2
κ

1
2BU . (4.2)

In Fig. 3 we list the Feynman rules of this theory.

The auxiliary field B, sB entering the covariant derivatives is only formally a ‘gauge

field’, since the term Tr
`

BB
˘

in the above Lagrangian clearly violates gauge invariance.

We should also emphasize that the introduction of this field is merely a technical tool for

the simplification of combinatorics in Feynman diagrams corresponding to the Green’s

functions of the fundamental fields U, V,B,C. If one additionally wants to allow the

B, sB fields in the external lines, one would have to work in a two-coupling formalism

of [LR91]10, adding an independent bare quartic coupling to (4.1).

In order to compute renormalization of the coupling constant κ we will consider the

four-point function

1

16
G i j i1 j1

4 pp1, ¨ ¨ ¨ , p4q :“

ż 4
ź

j“1

d2wj e
i ppj ,wjq xU i

pw1qV
j
pw2qsU

i1
pw3qsV

j1
pw4qy (4.3)

10The paper [LR91] deals with the non-chiral GN model. The field σ used therein to split the
quartic vertex is an SUpnq singlet and is akin to the field σ of (3.4). This type of splitting is used in
the large-n analysis, both in the chiral and non-chiral case [GN74; Wit78].
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“ ` ` ¨ ¨ ¨

p1 “ p p2 “ ´p

p3 “ 0 p4 “ 0

z

sz

Figure 4: The correlation function G4pp1, ¨ ¨ ¨ , p4q.

with external lines taken in momentum representation, and the scalar product is defined

as11 pp, wq :“ pw ` sp sw. As shown in Fig. 4, to leading order we get the (connected)

contribution

´p2πq κ
ÿ

a

pτaq
ij
pτaq

i1j1
ˆ

1

sp1 ¨ sp2 ¨ p3 ¨ p4

ˆ δp2q

˜

4
ÿ

j“1

pj

¸

(4.4)

For brevity we will strip off the indices and amputate the overall momentum-dependent

factor, denoting the resulting contribution to the 4-point function by pG4pp1, ¨ ¨ ¨ , p4q.

At tree level one has

´
1

2π
pGtree

4 “ κ
ÿ

a

τa b τa (4.5)

As the next step, we will simplify the kinematics by setting p3 “ p4 “ 0, which

implies p2 “ ´p1 :“ p. Despite the fact that the four-point function G4pp1, ¨ ¨ ¨ , p4q is

singular in this limit due to the poles of the external legs, as in (4.4), the amputated

function pG4pp,´p, 0, 0q :“ pG4ppq is regular. As we shall see, the non-zero momentum

p ‰ 0 serves as a natural infrared regulator (this special kinematics has been taken

advantage of, in a similar context, as early as in [VV97]).

A curious observation is that the diagrams that contribute to the four-point func-

tion (4.3) of bosonic fields involve exclusively the (crossed) ladders of the bosonic fields

themselves. This is not only true at tree level (Fig. 4) but at all higher loops as well

(cf. Figs. 6 and 7 below). Fermions could appear in loops with gauge fields emanating

at the nodes, however one would as well have diagrams with bosonic fields propagating

in these same loops, and the two contributions would cancel exactly (see Fig. 5). This

is the specific situation corresponding to level k “ 0, which makes it different from the

purely bosonic or purely fermionic Gross-Neveu models, where, on top of the ladder

11We use the same symbol for a 2-vector and for its holomorphic component. Whenever a scalar
product of 2-vectors is implied, round brackets are included.
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` “ 0

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

Figure 5: Cancellation of matter loop diagrams in the k “ 0 model.

diagrams, one would additionally have those non-vanishing loop insertions.

The same argument implies that the two-point function xUpw1qV pw2qy receives no

quantum corrections, and therefore no renormalization of the field is required.

4.1. One loop A one-loop calculation is a good starting point to illustrate our

technique. Although we have taken the external lines in momentum space, perturbation

theory will be constructed using coordinate space Feynman rules, as shown in Fig. 3.

At one loop there are two diagrams, shown in Fig. 6. Let us first take a look at the

left one, whose contribution is

Fig. 6 left “ κ
2 τaτb b τaτb

ż

d2z12 e
i pp,z12q ˆ

1

|z12|
2
. (4.6)

Including the second diagram in Fig. 6, for the total prefactor we get

1

Ďz12

τaτb b

ˆ

1

z12

τaτb `
1

z21

τbτa

˙

“
1

|z12|
2
τaτb b rτa, τbs “ ´

C2

|z12|
2
τa b τa , (4.7)

where C2 is defined by 1
2
fabcfabd “ C2δcd, i.e. it is the value of the Casimir operator in

adjoint representation. The one-loop contribution to the four-point function is thus

´
1

2π
pG1-loop

4 ppq “ C2
κ2

2π

ż

d2z12
1

|z12|
2
ˆ ei pp,z12q :“ κ

2 Appq (4.8)

Notice that the presence of the exponential factor makes the integral IR-convergent

(i.e. for |z12| Ñ 8) if p ‰ 0, which is the reason we have kept the dependence on p. On

the other hand, the integral is divergent in the UV. The divergence can be regularized in

a variety of ways, all of which involve the introduction of a cutoff momentum scale Λ.

For example, one can insert a factor if pΛ|z12|q
ε in the integrand, where ε ą 0 is a
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z2 z1

Figure 6: Diagrams contributing at one loop.

small positive number, or set a hard cutoff |z12| ą
1
Λ

. At higher loops we require

that the regularization is multiplicative in the zi i`1-variables. The one-loop β-function

is independent of this regularization, as the following argument suggests. Instead of

considering the actual integral (4.8), we calculate its derivative w.r.t. momentum,

pBAppq
Bp

. The potential divergence is logarithmic, therefore proportional to log
´

p2

Λ2

¯

,

and the derivative allows finding the coefficient of this divergence while dealing with a

convergent integral. We find:

p
BAppq

Bp
“ C2

ż

d2z12

2π

i p

Ďz12

ˆ ei pp,z12q “ ´
1

2
C2 , (4.9)

so that, whatever the regularization might be, in the limit Λ Ñ 8 one has

Appq “ ´
1

2
C2 log

ˆ

p2

Λ2

˙

` const. (4.10)

As we shall see, the constant amounts to a finite renormalization of the coupling. One

should also bear in mind that C2 “ n in the case of sln, so that effectively Appq „ n.

4.2. Two loops The two-loop calculation can as well be performed directly and is

rather instructive. Here we have 3! “ 6 diagrams, shown in Fig. 7. The corresponding

value of the integrand is

κ3

2π
ei pp,z13q ˆ τaτbτc

1

Ďz12Ďz23

b

ˆ

τaτbτc
1

z12z23

` τaτcτb
1

z13z32
` τbτaτc

1

z21z13

` (4.11)

`τcτaτb
1

z31z12

` τbτcτa
1

z23z31
` τcτbτa

1

z32z21

˙
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Figure 7: Diagrams contributing at two loops.

In the two terms in boxes we use the identity 1
z13z23

“ 1
z12

´

1
z23
´ 1

z13

¯

. Regrouping the

terms, we may rewrite this as

κ3

2π
ei pp,z13q ˆ τaτbτc

1

Ďz12Ďz23

b

ˆ

1

z12z23

rτa, rτb, τcss ´
1

z12z13

rτb, rτa, τcss

˙

(4.12)

In the second term one has τaτbτc b rτb, rτa, τcss “ ´C2 tτa, τbu b rτa, τbs “ 0. Simpli-

fying the first term, we get

κ3

2π

ei pp,z13q

|z12|
2|z23|

2
τaτbτc b rτa, rτb, τcs “

κ3

2π
pC2q

2 ei pp,z13q

|z12|
2|z23|

2
τa b τa . (4.13)

What remains is to perform the integrals over z12 and z23. One point to notice is

that the exponent ei pp,z12q of the one-loop expression (4.8) is now replaced by ei pp,z13q.

Just as in the one-loop case, it provides an effective infrared cutoff. As for a UV

regularization, we will assume it is the same as in the one-loop case, but again we will

not specify it. The result of the integration is

´
1

2π
pG2-loop

4 ppq “ κ
3
pAppqq2 . (4.14)

5. Further loops

The crucial fact about (4.14) is that it is the square of the one-loop result (4.8) (up

to an overall factor of κ), as was first observed a long time ago in [Des88]. In that

same paper it was contemplated that the divergences of crossed-ladder diagrams, at
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any order, could be powers of the one-loop divergence, and their sum would therefore

result in a geometric series. This is equivalent to the β-function being one-loop exact.

Indeed, the solution of the one-loop RG equation

dκ

d log µ
“ ´C2κ

2 (5.1)

is a geometric series:

κpµq “
κ0

1` C2κ0 log
´

µ
µ0

¯ . (5.2)

Below we shall find that, although at three loops the structure of the geometric series

persists, at four loops one inevitably runs into an ambiguity corresponding to the

choice of regularization/renormalization scheme. This does not invalidate the claim

about the all-loop β-function, but rather shifts the goal towards finding the ‘canonical’

renormalization prescription in the realm of cGN models.

By extrapolation from Figs. 6-7 it is clear what the contributions to the four point

function at higher loops are (at least for the given simplified kinematics). At k ´ 1

loops there are k vertices on each line, and the diagrams correspond to the k! possible

contractions of the vertices on the upper line with the vertices on the lower line. The

corresponding contribution to the integrand is

Ik´1 :“
κk

p2πqk´2

eipp,z1kq

Ďz12Ďz23 ¨ ¨ ¨Ęzk´1k

ÿ

a1,...,ak

ÿ

p PSk

τa1 ¨ ¨ ¨ τak b τapp1q ¨ ¨ ¨ τappkq

zpp1qpp2qzpp2qpp3q ¨ ¨ ¨ zppk´1qppkq

(5.3)

The product of Ďzij factors at the front is a universal term arising from the contractions

in the upper line of the diagram, which is a generalization of the expressions at the

front of (4.7) and (4.11). The inner sum is over the k! permutations: note that one

permutes the generators τa and simultaneously the points zi in the lower line.

It turns out that one can rewrite the sum in (5.3) as

Ik´1 “
κk

p2πqk´2

eipp,z1kq

Ďz12Ďz23 ¨ ¨ ¨Ęzk´1k

Φk´1pz12, ¨ ¨ ¨ , zk´1kq ˆ
ÿ

a

τa b τa (5.4)
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In other words, the tensor structure factorizes explicitly. In order not to dwelve in

the technical details, we relegate the proof to Appendix A. As a result, we are only

interested in the prefactor Φk´1 defined in (5.4). From (4.7) and (4.13) we easily extract

the one- and two-loop values:

Φ1pz12q “ ´C2
1

z12

, Φ2pz12, z23q “ pC2q
2 1

z12z23

. (5.5)

In general, Φk is obtained from the sum in (5.3). Calculating it gets more tedious with

each loop, and starting from three loops we use Mathematica to accomplish this task.

Henceforth we will restrict to the case of sln, setting C2 “ n. We note that, at k loops,

Φk is a polynomial in n of degree k. Evaluating the sum for several values of n allows

determining the coefficients of this polynomial (which are functions of zii`1).

5.1. Three loops At three loops the result is:

Φ3pz12, z23, z34q “ ´
n3

z12z23z34

`
2n

z13z14z24

(5.6)

Here z13 “ z12 ` z23, z24 “ z23 ` z34 and z14 “ z12 ` z23 ` z34. Clearly, the integral

of the first term gives a cube of the one-loop result (4.8), which is the next expected

term of the geometric series. One then needs to prove that the integral of the second

term does not contribute to the β-function or, in other words, that it is finite. We will

exploit the same tool as before, namely we differentiate the integral

I3ppq “
1

p2πq3

ż

d2z12 d
2z23 d

2z34
1

z12z23z34z13z14z24

eipp,z14q , (5.7)

w.r.t. momentum, pBI3ppq
p

. Choosing pz12, z34, z14q as a new set of variables and rescaling

z12, z34 by z14, we find that the integral i p
p2πq2

ş

d2z14
eipp,z14q

z14
“ ´ 1

4π
factors out. As a

result,

p
BI3ppq

Bp
“ ´

1

8π2

ż

d2z12 d
2z34

z12z34p1´ z12 ´ z34qp1´ z34qp1´ z12q
(5.8)

A direct calculation shows that the integral is zero (see Appendix B), so that BI3ppq
Bp

“ 0.

This means that I3ppq is a constant, and there is no divergent term. This constant is,

in general, regularization-dependent (as discussed above, various cutoffs on the zi i`1

variables can be chosen).
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Figure 8: The two diagrams contributing to the residue in zj´1j. The green box
redistributes all other lines except the two at the front.

In any case, the integral of the second term in (5.6) is finite and, hence, it does not

contribute to the β-function. As a result, at three loops one has

´
1

2π
G3-loop

4 “ κ
4
“

pAppqq3 ´ 2na
‰

, (5.9)

where a “ I3ppq is the regularization-dependent value of (5.7). In particular, the 3-loop

divergence is again a power of the 1-loop result (4.8).

5.2. Isolating sub-divergences In passing to higher loops, an important step is

the subtraction of subdivergences. Since so far we only encountered a divergence at

one loop, let us discuss how it can be subtracted. A useful observation is that, at any

loop order, the residues of Φ may be expressed through lower orders of perturbation

theory:

res
zj´1j

Φkpz12, ¨ ¨ ¨ , zkk`1q “ ´C2 ¨ Φk´1pz12, ¨ ¨ ¨ ,zzj´1j, ¨ ¨ ¨ , zkk`1q , (5.10)

where we normalize Φ0 “ 1 and res
zj´1j

means we are taking the residue at zj´1j “ 0.

To prove the statement, one should understand what diagrams lead to factors of
1

zj´1j
in Φk. Such diagrams are exactly the ones, where the two gauge lines emanating

from nodes j ´ 1 and j in the top line run to adjacent nodes s ´ 1 and s in the lower

line, for any s “ 2, ¨ ¨ ¨ , k` 1. This is shown in Fig. 8. For each s there are exactly two

such diagrams. Taking the residue means we drop the factor 1
zj´1j

and set zj´1 “ zj

in the rest of the diagram, which is tantamount to contracting the lines between the
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zj´1- and zj-vertices. As for the color factor, for fixed s one has

ÿ

a,b

τa1 ¨ ¨ ¨ τaj´2
τaτbτaj`1

¨ ¨ ¨ τak b τapp1q ¨ ¨ ¨ τapps´2q
pτaτb ´ τbτaqτapps`1q

¨ ¨ ¨ τappkq “

“ ´C2

ÿ

a

τa1 ¨ ¨ ¨ τaj´2
τaτaj`1

¨ ¨ ¨ τak b τapp1q ¨ ¨ ¨ τapps´2q
τaτapps`1q

¨ ¨ ¨ τappkq , (5.11)

where the Casimir C2 appears due to the contraction of the structure constants
1
2

ř

a,b fabcfabd “ C2δcd, as before. Additionally, one has to multiply (5.11) by z-

dependent factors, as in (5.3), and then sum over s, as well as over the permutations

of the k´ 2 points 1, ¨ ¨ ¨ , j´2, j`1, ¨ ¨ ¨ k. These two sums may be combined in a single

sum over the permutations of k ´ 1 points 1, ¨ ¨ ¨ , j ´ 2, rj ´ 1, js, j ` 1, ¨ ¨ ¨ k, where

rj ´ 1, js is the ‘merged point’. In other words, the color structure of the residue is

exactly the same as one would have upon contracting the zj´1- and zj-vertices into a

single vertex, up to an overall constant ´C2. Effectively this is the same calculation as

in the one-loop example (4.7).

To see how (5.10) works, one can apply it at the one-, two- and three-loop level,

using (5.5) and (5.6).

5.3. Four loops At the three-loop level, formula (5.6), all poles are contained in the

first term: we may write Φ3 “ ´
n3

z12z23z34
`xΦ3 pz12, z23, z34q, where xΦ3 is the three-loop

result after subtraction, i.e. without poles in either of the variables z12, z23, or z34.

We can now determine the structure of the poles at the four-loop level, using (5.10):

Φ4 “
n4

z12z23z34z45

´

ˆ

n

z12

xΦ3 pz23, z34, z45q `
n

z23

xΦ3 pz12, z34, z45q` (5.12)

n

z34

xΦ3 pz12, z23, z45q `
n

z45

xΦ3 pz12, z23, z34q

˙

`xΦ4 pz12, z23, z34, z45q ,

where again xΦ4 is what remains after one-loop subdivergences have been subtracted.

This remnant is characterized by the fact that its residues at zi i`1 “ 0 vanish. Taking

the residue of Φ4, say, w.r.t. z45, one gets ´n ¨ Φ3pz12, z23, z34q, as required by (5.10).

The subtraction (5.12) can be easily understood if one recalls the expression for the
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four-point function to this order:

´
1

2π
pG4ppq “ κ` κ

2Appq ` κ
3
pAppqq2 ` κ

4
“

pAppqq3 ´ 2na
‰

` (5.13)

` κ
5
“

pAppqq4 ´ 4 ¨ 2na ¨ Appq ` I4ppq
‰

` . . .

The three terms in the last bracket correspond to the three terms in (5.12). In partic-

ular, I4ppq is the four-loop analogue of the remainder integral (5.7):

I4ppq “
1

p2πq4

ż

d2z12 d
2z23 d

2z34 d
2z45

eipp,z15q

z12z23z34z45

¨xΦ4 pz12, z23, z34, z45q (5.14)

In (5.13) κ is the bare coupling constant. The geometric series in κ can be resummed

as follows:

´
1

2π
pG4ppq “ κppq ´ κppq4 2na` κppq5 I4ppq ` . . . , (5.15)

where κppq “
κ

1´ κAppq
(5.16)

One sees that the terms in (5.12) containing poles have been effectively interpreted in

terms of lower orders of perturbation theory. Recalling the expression (4.10) for Appq,

we introduce the renormalized coupling rκ:

1

rκ
“

1

κ
` C2 log

´µ

Λ

¯

´ const. (5.17)

Subtraction of the constant may be interpreted as a finite redefinition of the coupling.

It is natural to subtract it together with the logarithm to ensure that there is no

contribution to the β-function at three loops (one can think of this as a ‘modified

minimal subtraction’). The running coupling κppq is thus

κppq “
rκ

1` rκC2 log
´

|p|
µ

¯ (5.18)

We will apply to the integral I4ppq the technique used in the three-loop case, i.e.,
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we differentiate it w.r.t. the momentum. The result of an explicit calculation is12:

p
BI4ppq

Bp
“ n2

„

´2a`
6p i

p2πq4

ż

d2z12d
2z23d

2z34d
2z45

Ďz12Ďz23Ďz34Ďz45

ˆ

1

z13z24z25

`
1

z13z14z25

˙

eipp,z15q


,

(5.19)

where a is again the regularization-dependent (but finite and momentum-independent)

value of the integral (5.7). In Appendix B we show that the remaining integral is 1
p

times a constant that can be computed explicitly. The result is:

p
BI4ppq

Bp
“ ´2n2

„

a`
9ζp3q

8



. (5.20)

Thus, the four-loop contribution to the β-function in a ‘minimal subtraction scheme’

may be written as

βprκq “ ´nrκ2
´ 4n2

„

a`
9ζp3q

8



rκ
5
` . . . (5.21)

If one allows redefinitions of the coupling constant, as in (2.6), one may tune the

parameter c in such a way as to set the four-loop correction to zero. One might wonder,

though, whether the ζp3q-piece in (5.21) has an invariant meaning. It turns out that it

is related to the value of the β-function in the so-called momentum subtraction scheme.

5.4. Momentum subtraction (MOM) vs. ĚMS-scheme One could, of course,

simply use the freedom in the (finite) redefinition of the coupling constant to cancel the

ambiguous parameter a in (5.21) (equal to the value of the integral I3ppq in a chosen

regularization). This can be done at a more conceptual level, by defining the coupling

constant as the value of the four-point function at a given value of momentum:

´
1

2π
pG4

ˇ

ˇ

p2“µ2
” κR . (5.22)

12Technically the expression for I4ppq obtained from the definitions (5.4), (5.12), (5.14) involves
more terms, but many of them may be shown to be equal by permuting the variables z12, . . . , z45 in
the integrals.
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This is a variation of the so-called momentum subtraction (MOM) scheme [CG79;

BL81; CR00]. By definition, the β-function of κR is

pβpκRq :“ ´
1

2π

B pG4ppq

B log |p|

ˇ

ˇ

p2“µ2
“ ´

1

2π
2p ¨

B pG4ppq

Bp

ˇ

ˇ

p2“µ2
(5.23)

Using expression (5.15) for pG4, we find

pβpκRq “

«

2p

˜

´
1

2π

B pG4ppq

Bκppq

¸

Bκppq

Bp
` 2p ¨ κppq5

BI4ppq

Bp
` . . .

ff

p2“µ2

“ (5.24)

“
`

1´ 8na κpµq3 ` . . .
˘

¨
`

´nκpµq2
˘

` κpµq5
`

´4n2
˘

„

a`
9ζp3q

8



` ¨ ¨ ¨ ,

where in passing to the second line we inserted the values of various derivatives

from (5.15), (5.16) and (5.20). Taking into account that (to the relevant order)

κR “ κpµq ´ κpµq4 2na ` . . ., we may express the β-function in the MOM-scheme

in terms of κR:

pβpκRq “ ´n κ
2
R ´

9

2
n2ζp3q κ

5
R ` . . . (5.25)

The fact that the regularization-dependent constant a drops out is compatible with

the ‘regularization-independent’ property of the MOM-scheme known in the litera-

ture [CG79; KS14a].

It follows from (5.25) that the scheme defined by (5.22) violates the one-loop-

exactness of the β-function. In 4D SUSY theories it has also been observed that the

NSVZ relation is violated in the MOM scheme [KS14b]. Here the relevant counterpart

is SUSY electrodynamics with Nf flavors of electrons, since the CPn´1 model is as

well an abelian theory with Nf “ n matter fields. It was found that the β-function of

SQED features a ζp3q-term in the MOM scheme, which disappears in other schemes

such as ĎMS. One simple reason why the MOM scheme is not optimal is that it depends

on the configuration of momenta in the definition of the coupling constant (5.22). The

configuration we have chosen is technically simple, but it does not seem to be in any

sense ‘natural’. One would prefer to set the external momenta equal to zero, however

in that case one encounters an IR divergence, as already discussed.

One might then be tempted to switch to the ĎMS scheme, where, according to (3.1),
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the corresponding contribution to the β-function should vanish (on the sigma model

side). Here a technical problem arises, since in d “ 2 ´ ε dimensions the Gross-

Neveu model is not multiplicatively renormalizable [Bon`90; VDK95; VV97] due to

the emergence of the so-called evanescent operators in perturbation theory (these are

operators of the type
`

ψrrγα, γβs ¨ ¨ ¨ sψ
˘2

that may be defined formally and are non-zero

for d ‰ 2). Interestingly the onset of the effects related to such operators, which make

the calculation of the β-function substantially more complicated, is exactly at four

loops, cf. [Gra08]. Even if the technical difficulties related to evanescent operators are

overcome, one should bear in mind that the ĎMS scheme itself has crucial drawbacks.

For example, it breaks SUSY at a sufficiently high loop order [AV83]. In models with

N “ 1 SUSY in 4D, this scheme breaks the NSVZ relation at three loops [JJN96;

JJN97], which is the first order where scheme dependence appears. In the case of

extended SUSY (N “ 2 in 4D, or N “ p2, 2q in 2D, as in our case) the mismatch

might be postponed to higher loops. To summarize, there seems to be no reason to

expect that the ĎMS scheme should lead to a complete proof of the exact β-function (in

theories with or without SUSY).

In four-dimensional theories a renormalization scheme applicable at any loop order

has been found (cf. [KS13; SS22; KS14b; KS14a] and references therein) – this is

the so-called higher covariant derivative method [Sla71; Sla72], supplemented by a

minimal subtraction of logarithms. A direct transfer of these ideas to the Gross-

Neveu setup would not work, since higher derivatives would break chiral invariance,

which is the cornerstone of our construction. Nevertheless certain modifications of

the method are admissible: for example, one could place higher derivatives on the

Hubbard-Stratonovich field B in (1.6), which is uncharged w.r.t. chiral symmetry (this

was used in [Des88]). It is thus plausible that regularization via higher derivatives

could be eventually adapted to our sigma model/Gross-Neveu setup.

6. Conclusion and outlook

In the present paper we studied quantum aspects of chiral Gross-Neveu models, most

importantly their higher-loop β-function. These theories are especially interesting due

to the recently discovered exact equivalence to certain sigma models, such as the well-
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known CPn´1 model13. This equivalence holds at the quantum level and implies, in

particular, that the β-functions of the theories should coincide. The all-loop β-functions

for very general classes of cGN models (including their deformations etc.) have been

proposed in [GLM01], using ideas from the early work [Kut89]. If these match with

sigma model calculations, they would provide the β-functions of a broad class of sigma

models, including potentially their trigonometric and elliptic deformations14.

One stumbling point along this promising path is a four-loop discrepancy between

a direct calculation and the proposed β-functions in a special case (‘level-zero’, k “ 0),

reported in [LW03]. As we explained above, this discrepancy might be attributed to

a choice of renormalization scheme. In fact, the similar story of the NSVZ β-function

(cf. [Shi12]) suggests that finding an explicit scheme where the β-function is of the

conjectured form might be a complicated task. Amusingly, the equivalence between

cGN models and sigma models mentioned earlier provides an important hint. It turns

out that, via this equivalence, one way of explicitly realizing the special ‘level-zero’ case

of [LW03] is by considering the SUSY CPn´1 sigma model. As opposed to the case of

more general models, the β-function of this model is well studied and is known to be

one-loop exact, if one uses a manifestly supersymmetric renormalization prescription.

This is consistent with the general proposal of [GLM01] in this special case.

On the other hand, there are several reasons why one would not want to rely on

explicit supersymmetry. First of all, the cGN formulation is not manifestly supersym-

metric, and constructing a SUSY-compatible regularization seems a complicated task.

Besides, the exact β-functions proposed in [GLM01] should be applicable in a much

wider context (in particular, to non-SUSY models), and one would like to eventually

verify the conjectures in those cases as well. Having this in mind, in the present paper

we have carried out an explicit calculation of the β-function in the k “ 0 (level-zero)

cGN model in a version of momentum-subtraction (MOM) scheme. In this scheme the

coupling constant is defined as the value of the four-point function for special value

of momenta. We have shown that, although at the three-loop level the β-function is

zero, at four loops it acquires a correction proportional to n2ζp3q, which, again, could

be eliminated by a coupling constant redefinition. One can draw a parallel with N “ 1

13Generalizations to Grassmannians and other target spaces may be considered in a similar fashion.
14One could think of the ‘sausage model’ [FOZ93] as a prominent example. In this special case

there is also a ‘geometric’ conjecture for its all-loop β-function in [HLT19].
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SQED in 4D, where an analogous MOM scheme leads to a ζp3q contribution to the

β-function at three loops (incompatible with the NSVZ expression) [KS14b].

It would be interesting and important to find a natural renormalization scheme

where the corrections at four and higher loops to the level-zero cGN model β-function

vanish. The special case of k “ 0 seems to be the most ‘purified’ one from the calcula-

tional perspective, which is why it especially deserves further study. Once this is done,

one would try to understand, whether, using similar methods, one can obtain all-loop

β-functions for many other sigma models, such as the CPn´1 model with minimally

coupled fermions, Grassmannian models, their trigonometric and elliptic deformations.

If so, they could imply nontrivial physical consequences for the phase structure of these

theories. The interrelation of these exact results with the conjectured integrability of

the models is another question that is worth being studied in detail.
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Appendix A. Tensor structure of the four-point function

Here we prove that the sum (5.3), which defines the four-point function, has the tensor

structure shown in (5.4).

The idea of the proof is in taking residues w.r.t. z1, . . . , zk´1. We write

Ik´1 “
eipp,z1kq

Ďz12Ďz23 ¨ ¨ ¨Ęzk´1k

Qk´1pz12, ¨ ¨ ¨ , zk´1kq , (A.1)

with Qk´1 a meromorphic function. We may decompose this function in z1-poles:

Qk´1 “
k
ř

i“2

1
z1i
Qpiqpz23, ¨ ¨ ¨ , zk´1kq . Then we decompose in z2-poles etc., finally arriv-
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ing at

Qk´1 “

k
ÿ

i1ě2, i2ě3, ¨¨¨ , ik´2ěk´1

1

z1 i1

1

z2 i2

¨ ¨ ¨
1

zk´1 k

ˆQi1,...,ik´2,k , (A.2)

where Qi1,...,ik´2,k encodes the tensor structure and does not depend on zi i`1. Let us

study what this tensor structure is.

When taking the residue of Qk´1 w.r.t. z1i, the only terms in the sum (5.3) that

contribute are the ones with ppjq “ 1, ppj`1q “ i or ppjq “ i, ppj`1q “ 1 for some j

(just like in Fig. 8 before, which corresponds to the special case i “ 2). The sum of

these two terms (which come with opposite signs) produce a commutator rτa1 , τais in

position j in the numerator. Denoting by p1 P Sk´2 permutations of the remaining

variables, i.e. of the set t1, . . . , j´1, j`2, . . . ku onto t2, . . . , i´1, i`1, . . . , ku, we get:

res
z1i

ÿ

p PSk

τapp1q ¨ ¨ ¨ τappkq

zpp1qpp2qzpp2qpp3q ¨ ¨ ¨ zppk´1qppkq

“
ÿ

p“p1, j

τapp1q ¨ ¨ ¨

position j

rτa1 , τais ¨ ¨ ¨ τappkq

zpp1qpp2q ¨ ¨ ¨ zppj´1q izippj`2q ¨ ¨ ¨ zppk´1qppkq

“

“
ÿ

p PSk´1

pτapp1q ¨ ¨ ¨ pτappkq

zpp1qpp2qzpp2qpp3q ¨ ¨ ¨ zppk´2qppk´1q

, (A.3)

where pτaj “ τaj for j ‰ i and pτai “ rτa1 , τais. In other words, we obtain a sum similar

to the original one, albeit with a k Ñ k ´ 1 reduction and a redefinition of τ’s. At the

next step, i.e. upon taking a residue w.r.t. z2i2 , we again obtain a similar sum with

new variables ppτaj “ pτaj for j ‰ i2, and p

pτai2 “ rpτa2 , pτai2 s.

Upon iterating this procedure, we find that Qi1,...,ik´1 is a sum of nested commu-

tators, which, upon expanding these commutators, may be simplified to
ř

a Sa b τa.

By symmetry of the construction, we have Sa “ b τa for constant b. We thus find that

Qk´1 is proportional to
ř

a

τa b τa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�
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Appendix B. Calculation of integrals

In this Appendix we compute the finite integrals encountered in the main text. The

‘master’ integral that we will be exploiting (as well as its complex conjugate) is

ż

d2v

svpv ` aqpv ` bq
“

π

a´ b
log

ˆ

|a|2

|b|2

˙

. (B.1)

Three-loop integral. We start with the integral (5.8) entering at three loops:

p
BI3ppq

Bp
“ ´

1

8π2

ż

d2z12 d
2z34

z12z34p1´ z12 ´ z34qp1´ z34qp1´ z12q
(B.2)

Applying (B.1) to the z34-integral, we get

p
BI3ppq

Bp
“

1

8π

ż

d2z12 log |z12|
2

z12 |1´ z12|
2
. (B.3)

We split this integral in two regions: |z12| ă 1 and |z12| ą 1. Changing variables

z12 Ñ
1
z12

in the second region, we find that the two integrals are equal but have

opposite sign, so that BI3ppq
Bp

“ 0.

First integral in (5.19). We pass over to the four-loop integrals entering (5.19). The

first one is

i1 “
i p

p2πq4

ż

d2z12d
2z23d

2z34d
2z45

Ďz12Ďz23Ďz34Ďz45

1

z13z24z25

eipp,z15q (B.4)

We pass to a new set of variables v1 “ z12, v2 “ z23, v3 “ z34 and v :“ z15. Rescaling

v1, v2, v3 by v, we find that the v-integral factors out:

i1 “
i p

p2πq4

ż

d2v
eipp,vq

sv
¨

ż

d2v1 d
2v2 d

2v3

sv1 sv2 sv3p1´ sv1 ´ sv2 ´ sv3q
¨

1

pv1 ` v2qpv2 ` v3qp1´ v1q
(B.5)

To proceed, we apply (B.1) to the v3-integral:

i1 “ ´
1

16π2

ż

d2v1 d
2v2

sv1 sv2p1´ sv1 ´ sv2q
¨

1

pv1 ` v2qp1´ v1q
log

ˆ

|1´ v1|
2

|v2|
2

˙

(B.6)

Shifting v1 Ñ 1´ v1 and then rescaling v2 Ñ v1v2, we again arrive at a v1-integral that
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can be calculated using (B.1):

i1 “ ´
1

16π

ż

d2v2
plog p|v2|

2qq
2

sv2 |1´ v2|
2

(B.7)

We split this integral in two: |v2| ă 1 and |v2| ą 1. Making in the second one the

change of variables v2 Ñ
1
v2

and simplifying slightly, we arrive at

i1 “ ´
1

8π

ż

|v2|ă1

d2v2
plog p|v2|

2qq
2

1´ |v2|
2

“ ´
ζp3q

4
. (B.8)

Second integral in (5.19). Next we switch to the second integral in (5.19):

i2 “
i p

p2πq4

ż

d2z12d
2z23d

2z34d
2z45

Ďz12Ďz23Ďz34Ďz45

1

z13z14z25

eipp,z15q (B.9)

Using the same variables as before, one can perform the integral over z15 “ v:

i2 “ ´
1

16π3

ż

d2v1 d
2v2 d

2v3

sv1 sv2 sv3p1´ sv1 ´ sv2 ´ sv3q
¨

1

pv1 ` v2qpv1 ` v2 ` v3qp1´ v1q
(B.10)

Using (B.1), we integrate over v3 and shift v2 Ñ v2 ´ v1:

i2 “
1

16π2

ż

d2v1 d
2v2 log |v2|

2

sv1psv2 ´ sv1qp1´ sv2qv2p1´ v1q
(B.11)

We may now again employ (B.1) for integration over v1. The resulting integral is split

into |v2| ă 1 and |v2| ą 1, and in the second piece we switch v2 Ñ
1
v2

. After some

simplifications we get

i2 “ ´
1

8π

ż

|v2|ă1

d2v2

|v2|
2

log
`

|v2|
2
˘

log
`

1´ |v2|
2
˘

“ ´
ζp3q

8
. (B.12)
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