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We consider a many-body system of 2D anyons, free quantum particles with general statistics parameter � ∈
]0, 2[. In the magnetic gauge picture they are described as bosons attached to Aharonov-Bohm fluxes of intensity
2��, generating long-range magnetic forces. A dimensional reduction to 1D is obtained by imposing a strongly
anisotropic trapping potential. This freezes the motion in the direction of strong trapping, leading to 1D physics
along the weak direction. The latter is governed to leading order by the Tonks-Girardeau model of impenetrable
bosons, independently of �.
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Quasi-particle excitations of many-body systems confined
to reduced dimensionalities are not in principle constrained by
the symmetry dichotomy which sorts all fundamental parti-
cles into bosons and fermions [28, 40, 54, 69]. In 2D, many-
body quantum wave-functions may be classified by the phase
picked upon exchanging/braiding two particles. It is of the
form ei�� for � ∈ [0, 2[, the standard cases of bosons and
fermions being recovered for � = 0, 1 respectively. Equiv-
alently one may think of these so-called anyons in terms of
standard bosons (or fermions), coupled to infinitely thin mag-
netic flux tubes of strength 2�� (or 2�(� − 1)). This point of
view is referred to as the magnetic gauge picture [20, 22, 23,
33, 35, 42, 57, 70]. In 1D there does not seem to be a unique
agreed-upon model for anyonic exchange statistics. Depend-
ing on how one proceeds to quantization, they have histori-
cally been described [40, 41, 57, 60, 61] as ordinary parti-
cles with either contact interactions (Lieb-Liniger model) or
inverse-square interactions (Calogero-Sutherland model) but
other formalisms exist [3, 21, 26, 53]. In particular, the chi-
ral BF/Kundu model [2, 6, 7, 36] and the anyon-Hubbard
model [8, 29, 66] have attracted attention recently. Our main
purpose here is to ask which one, if any, of the different theo-
retically possible descriptions of 1D anyons, is singled out as
the dimensional reduction of the 2D theory.

The main candidates for real-world implementation of 2D
anyon statistics remain the charge carriers of fractional quan-
tum Hall systems [4, 30, 37, 47] or their counterparts e.g. in
cold atom emulations [13, 14, 19, 67, 71, 72]. See [27, 34, 39,
62] for reviews and [5, 55] for experimental evidence. Said
charge carriers are 2D objects described in the bulk via the
usual, aforementioned, anyon model [37, 47]. Much of frac-
tional quantum Hall physics is however probed via the trans-
port of charge carriers along 1D edge channels, which con-
nects to our main question.

In another direction, the coupling of cold atoms to optical
fields can lead, in the adiabatic limit, to the effective imple-
mentation of density-dependent gauge fields [11, 19, 67]. Key
proposals in this direction have recently been experimentally
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realized [13, 24, 73]. In particular, signatures of the chiral
BF model, connected to 1D Kundu anyons, have been ob-
served [12, 24] by generating a magnetic-like vector potential
proportional to matter density. On the other hand, the mag-
netic gauge picture of 2D anyons corresponds to to a magnetic-
like field proportional to matter density.
Indeed, in this note we explain (full mathematical details

will be provided elsewhere) that the magnetic-gauge picture
Hamitonian for 2D anyons of statistical parameter � ∈]0, 2[
converges, in the limit of a tight confinement along one spa-
tial dimension, to the impenetrable boson model of the Tonks-
Girardeau gas, soluble by Bose-Fermi mapping [25, 51, 52].
Thus, at leading order, the physics does not depend on � and is
given by an extreme case of the Lieb-Liniger [44, 45] model.
The behavior is always essentially fermionic [58].
These results might be interpreted in light of the enhanced

effect of interactions in reduced dimensionalities. However, it
is remarkable that the long-range magnetic interactions of the
original model result in a limiting purely local theory. This
finding is consistent with [31, 63] although our approach dif-
fers and seems more systematic. In particular it clarifies the
vanishing of the long-range magnetic interaction. A particu-
lar, discontinuous, phase is acquired by the 2Dwave-functions,
gauging the interaction away when particles are aligned.

1. MODELS AND MAIN RESULT

Consider a (multi-valued) wave function Ψ ∶
(

ℝ2
)N

→ ℂ
with anyonic exchange behavior, i.e.
Ψ(x1, ..., xj , ..., xk, ..., xN ) = ei��Ψ(x1, ..., xk, ..., xj , ..., xN )(1)

with � ∈ ]0, 1] (by periodicity and complex conjugation, con-
sidering this range is sufficient). It is convenient to perform a
singular gauge transformation

Ψ(x1, ..., xN ) =
∏

j<k
ei��jkΦ(x1, ..., xN ) with �jk = arg

xj − xk
|xj − xk|

with Φ a bosonic wave function, symmetric under particle ex-
change. We have denoted arg( . ) the angle of a planar vector
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with the horizontal axis. Applying this transformation, one
finds

⟨

Ψ|
(

−i∇xj

)2
|Ψ

⟩

=
⟨

Φ|D2xj |Φ
⟩

where the momentum operator for particle j has changed as
− i∇xj ⇝ Dxj ∶= −i∇xj + �A

(

xj
) (2)

with, denoting (x, y)⟂ = (−y, x) ∈ ℝ2,

A
(

xj
)

∶=
∑

k≠j

(

xj − xk
)⟂

|xj − xk|2
. (3)

In this picture we have traded the non-trivial exchange symme-
try of wave-functions for a density-dependent magnetic field.
Particle j sees all the others as carrying an Aharonov-Bohm
flux, leading to the magnetic field

B(xj) = curlxjA
(

xj
)

= 2��
∑

k≠j
�xj=xk

We adopt this point of view throughout the note, using (the
Friedrichs extension [1, 15, 16, 48–50] of)

H2D
" ∶=

N
∑

j=1

(

D2xj + V"(xj)
)

(4)

acting on bosonic wave-functions as our starting point, where

V"(x) = V"(x, y) = x2 +
y2

"2
(5)

is a convenient way of enforcing 1D behavior along the hori-
zontal axis in the limit " → 0. This is arguably a crude de-
scription (but, perhaps, also an instructive toy model) if one
has a fractional quantum Hall edge in mind. There is however
no difficulty in imposing such a potential on emerging anyons
in cold atoms systems. The choice of a harmonic trapping is
only out of convenience. Our results remain true with different
choices, but the harmonic trapping has the virtue of leading to
exactly soluble limit models.

We denote
�2Dk = min

Vk⊂L2
(

ℝ2N
)

dimVk=k

max
Ψ∈Vk,‖Ψ‖L2=1

⟨

Ψ|H2D
" |Ψ

⟩ (6)

the eigenvalues of (4), defined by standard Courrant-Fisher
min-max formulae. Let Ψk be associated eigenfunctions, i.e.

H2D
" Ψk = �2Dk Ψk.

There can be degeneracies, in which case we count eigenvalues
with their multiplicities.

For small " > 0 one expects the motion in the two spatial
directions to decouple (which is true only to some extent in

this particular case, see below). The motion in the y direction
will be frozen in the ground state of the harmonic oscillator

HHO
" ∶= −)2y +

y2

"2
. (7)

It turns out that the motion in the x direction reduces to the
free Hamiltonian

H1D ∶=
N
∑

j=1
−)2xj + xj

2 (8)

but acting on the domain (of the Friedrichs extension)
1D ∶=

{

 ∈ H2(ℝN ),  (xj = xk) ≡ 0 for all j ≠ k
}

.
(9)

This restriction is equivalent to the addition of a delta pair-
potential of infinite strength to (8). It is well-known that this
impenetrable boson model can be mapped to a free fermionic
one [25, 51, 52]. In turn, this leads to an exact solution in the
particular case above. However, our approach does not rely
on this exact solution, and we could in fact have added extra
interactions to our model. For simplicity, we do not consider
this explicitly.
Let e" and u" be respectively the lowest eigenvalue and

eigenfunction of (7). Let (�1Dk )k∈ℕ be the eigenvalues of (8),
with associated eigenfunctions  k, k = 1, 2…. In the model
above, �1Dk is a sum of eigenvalues of the harmonic oscillator
−)x + x2 and

 k = ck
∏

i<j
sgn(xi − xj)deti,j (vi(xj))

where vi are the associated one-particle eigenfunctions and ckis a normalization constant.
We state our main finding as a theorem.

Theorem 1 (Dimensional reduction for anyons).
For all k ∈ ℕ, in the limit "→ 0,

�2Dk = Ne" + �1Dk + o(1). (10)
Moreover, one can choose the 2D and 1D eigenbases (Ψk)k
and ( k)k in such a way that

∫ℝ2N

|

|

|

|

|

|

Ψk −  k(x1,… , xN )
N
∏

j=1
u"(yj)

|

|

|

|

|

|

2

→
"→0

0 (11)

Although it seems from (11) that a standard decoupling be-
tween the two space directions takes place, the actual ansätze
for the eigenfunctions Ψk leading to the correct energy are
more subtle. Essentially they are of the form

 k(x1,… , xN )
N
∏

j=1
u"(yj)

∏

j<k
e−i�S(xj−xk) (12)

where we denote
S(x) = S(x, y) = arctan

(y
x

)

. (13)
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The above trial states have the correct bosonic symmetry be-
cause S(x) = S(−x), but they are not of the form “function
of x times function of y” that is more common in dimensional
reductions. Note that S(x) has a discontinuity along the line
x = 0, so that it is crucial for (12) to be well-defined that
 k(x1,… , xN ) vanishes whenever xj = xk, j ≠ k.
The phase factors e−i�S(xj−xk) modify the energy dramati-

cally, gauging away the original magnetic interaction (see be-
low). For this effect it is crucial to take advantage of the finite,
albeit small, extension of our wave-guide, as shown by the dis-
cussion below.

2. A CASE FOR THE CALOGERO-SUTHERLAND MODEL

Before we sketch the proof of the above, it is instructive to
examine an argument that would rather point in the direction of
the Calogero model with inverse square interactions (which is
also a proposed model for 1D anyons) as effective description.
This will emphasize two things:
∙That quantization and dimensional reduction do not commute
in this particular case. Classical particles with the above mag-
netic interactions would experience Calogero-like interactions
if confined on a line.
∙ The role of the phase factors e−i�S(xj−xk) in the main result.
Indeed, if one chooses a simpler ansatz of the form

 k = �(x1,… , xN )
N
∏

j=1
u"(yj),

the 1D function � indeed experiences a Calogero-type Hamil-
tonian.

The possible connection between 2D anyons and Calogero-
like models have already been pointed out in a similar con-
text [43, 68]. It also arises for lowest Landau level anyons [9,
17, 18, 31, 56, 57, 59] via very different mechanisms.

Consider N classical particles with magnetic interactions
akin to those of (4). We constrain them to move on the line
y = 0, like perls on a necklace. Expanding the square in (4),
the Hamilton function for this system is

H(x1,… , xN ;p1,… ,pN ) =
N
∑

j=1

(

|pj|2 + x2j
)

+ 2�
∑

j≠k
pj ⋅

(xj − xk)⟂

|xj − xk|2

+ �2
∑

j≠k≠l

(xj − xk)⟂

|xj − xk|2
⋅
(xj − xl)⟂

|xj − xl|2

+ �2
∑

j≠k

1
|xj − xk|2

where pj = (pj , 0) and xj = (xj , 0) are momenta and posi-
tions, respectively. The cross-term on the second line is clearly

null. The term on the third line is null as well, as follows from
grouping terms as in [32, Lemma 3.2]

∑

cyclic in 1,2,3
(x1 − x2)⟂

|x1 − x2|2
⋅
(x1 − x3)⟂

|x1 − x3|2
= 1
2(x1, x2, x3)2

with (x1, x2, x3) the circumradius of the triangle with sum-
mits x1, x2, x3. This is the radius of the circle on which the
three points lie, which is infinite for aligned points. Hence the
Hamilton function boils down to

N
∑

j=1

(

p2j + x
2
j

)

+ �2
∑

j≠k

1
(xj − xk)2

which, once quantized, gives a Calogero Hamiltonian, albeit
not with the expected �(� − 1) coefficient [9, 41, 60] in front
of the two-body term for particles of statistics parameter �.
Note that this reduction could in any case not be correct for
all � because the 2D anyon energy is periodic in �, but the
Calogero energy is not [9, 10, 64, 65].

3. ARGUMENT FOR THE MAIN RESULT

We turn to sketching the main insights of the proof of The-
orem 1. Turning them into a rigorous mathematical proof is
somewhat lengthy, and will be done elsewhere.
The crucial observation is that for particles close to the line

y = 0, the vector potential of the Aharonov-Bohm fluxes in (4)
can be gauged away. The vector potential

A0(x) =
x⟂
|x|2

=
(

−y
x

)

1
x2 + y2

for a unit Aharonov-Bohmflux at the origin has a non-zero curl
and thus cannot be written as the gradient of a regular function
globally. But, with S defined as in (13)

∇S(x) = A0(x) −
(

��x=0sgn(y)
0

)

.

Hence, for any continuous function Ψ(x) of finite kinetic en-
ergy vanishing on the line x = 0

∫ℝ2
|

|

|

(

−i∇x + �A0(x)
) (

Ψ(x)e−i�S(x)
)

|

|

|

2
dx = ∫ℝ2

|∇Ψ|2

and this will be our model calculation (here performed in the
relative coordinate of a particle pair).
The main point of our argument is the behavior

S(x) ≃
|y|≪|x|

y
x
.

Indeed if one sets instead
S̃(x) ∶= y

x
one finds

∇S̃(x) =
(

−y∕x2
1∕x

)

≃
|y|≪|x|

A0(x)
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and more precisely
|

|

|

∇S̃ − A0
|

|

|

≤ C
|y|
x2
. (14)

The singularity around x = 0 of the right-hand side would
have to be tamed if we used S̃ instead of S in our trial state.
Hence the latter choice is actually simpler, and we stick to it in
the sequel.

Consider now a trial state Ψ for (4) and write it as
Ψ(x1,… , xN ) = U"

∏

j<k
e−�iS(xj−xk)Φ (15)

U"(x1,… , xN ) =
N
∏

j=1
u"(yj)

with a new, continuous, unknown functionΦ vanishing when-
ever xj = xk, j ≠ k. A direct calculation yields

⟨

Ψ|H2D
" |Ψ

⟩

= Ne" +
N
∑

j ∫ℝ2N
U2" x

2
j |Φ|

2

+
N
∑

j ∫ℝ2N
U2"

|

|

|

∇xjΦ
|

|

|

2 (16)

and we now seek critical points of this functional of Φ. For
energy upper bounds it will clearly be favorable for Φ not to
depend on y1,… , yN and we then recognize the energy func-
tional corresponding to (8).

We then need to prove a lower bound of the correct form
for the energy of a true eigenstate Ψ of the 2D model. We
do not know a priori that the corresponding Φ vanishes when
xj = xk, j ≠ k, but (16) can in this case be replaced by

⟨

Ψ|H2D
" |Ψ

⟩

≥ Ne" +
N
∑

j ∫Λ�
U2" x

2
j |Φ|

2

+
N
∑

j ∫Λ�
U2"

|

|

|

∇xjΦ
|

|

|

2 (17)

where
Λ� =

{

(x1,… , xN ) ∈ ℝ2N , |xj − xk| > �,∀j ≠ k
}

.

Extracting the singular phase is unproblematic on the latter
set, and we can then pass to the limit in the above, " → 0
and � → 0, obtaining an energy lower bound essentially of the
desired form.
The main difficulty is to ensure some form of vanishing

around particle encounters for our limit model to indeed be
set on (9), i.e. that the 1D function obtained by passing to the
limit indeed has finite kinetic energy over the whole space (in-
cluding across diagonals). To this end we use the following
Hardy-like inequality: For any Ψ, with the modified momen-

tum as in (2)
N
∑

j=1

⟨

Ψ|
(

Dxj

)2
|Ψ

⟩

≥

c�,N ∫ℝ2N
∑

j<k

1
|xj − xk|2

|Ψ(x1,… , xN )|2 (18)

where the best possible constant c�,N depends only on � and
N . Such an inequality originates from [32, 38, 48, 49] (see
also [46] for review and generalizations) where it is proved in
particular that

• c�,N ≥ cN−1 with a universal c > 0 if � is an odd-
numerator fraction.

• c�,2 > 0 for any � ≠ 0.
We improve these bounds by proving that there exists a uni-

versal constant c′ > 0 such that
c�,N ≥ c′N−2 for any � ≠ 0,

which leads to our main result by providing the desired vanish-
ing in the whole parameter range. One can understand heuris-
tically why by considering the contribution of the set where
|xj − xk| ≲

√

" and |yl| ≲
√

" for l = 1…N to the right-
hand side of (18). One has |xj − xk|2 ≲ " on this set. If
the limiting 1D function does not vanish for xj ∼ xk, then
|Ψ|2 ∝ U2" ∝ "−N∕2. The total contribution (volume times
typical value of the integrand) would thus be of order "−1∕2,
much larger than the expected energies, of order unity after re-
moval of the contribution ofNe" as in (10). Hence the energybounds force the limiting 1D function to vanish upon particle
encounters

4. CONCLUSIONS

We have studied 2D anyons of statistics parameter � in the
magnetic gauge picture, i.e. seeing them as bosons in a vary-
ing magnetic field proportional to matter density. In a cold
atoms context this corresponds to proposals made e.g. in [67].
We imposed a dimensional reduction by ways of a strongly
anisotropic trap, as in recent cold-atoms experiments probing
density-dependent gauge theories [13, 24, 73].
In the 1D limit we found that a suitable choice of gauge

removes long-rangemagnetic interactions. Their only remnant
is a hard-core condition upon particle encounters, leading to
the Girardeau-Tonks model of 1D bosons for any � ≠ 0. Non-
trivial dependence on � might survive at sub-leading order,
in which case it could be determined by perturbation theory
around Girardeau’s solution of the impenetrable 1D Bose gas.
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