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Abstract

Theory predictions for the LHC require precise numerical phase-space integration and
generation of unweighted events. We combine machine-learned multi-channel weights
with a normalizing flow for importance sampling, to improve classical methods for nu-
merical integration. We develop an efficient bi-directional setup based on an invertible
network, combining online and buffered training for potentially expensive integrands.
We illustrate our method for the Drell-Yan process with an additional narrow resonance.
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1 Introduction

The comparison of data with first-principle predictions defines LHC physics. Event generators
provide and evaluate fundamental theory predictions as the key part of a comprehensive for-
ward simulation chain [1]. Given that event generation is an inherently numerical task, it can
be improved and accelerated by modern machine learning in, essentially; all aspects [2,3]. In
view of the upcoming HL-LHC, such an improvement in speed and precision is crucial to avoid
a situation where theory predictions limit the entire relevant LHC program.

Starting with the integration of matrix elements over phase space, we can use neural
networks to replace expensive loop amplitudes with fast and precise surrogates [4-8]. The
precise knowledge of the amplitude structure can then be used to significantly improve the
phase-space integration for a given process [9]. Generally, it is possible to improve numer-
ical integration through neural networks by directly learning the primitive function [10], or
using modified and enhanced implementations of importance sampling [ 11-16]. Technically,
this promising approach encodes a change of integration variables in a normalizing flow [17]
and then uses online training [ 18] while generating weighted phase space configurations, or
weighted events.

This rough online training is successful because normalizing flows, or invertible networks
(INNs) [19,20], are especially well-suited, stable, and precise in LHC physics applications [21].
This has been shown in many instances, including event generation [22-25], detector sim-
ulations [26-29], unfolding or inverse simulations [20, 30], kinematic reconstruction [31],
Bayesian inference [32,33], or inference using the matrix element method [34]. On the other
hand, for expensive integrands online training is clearly not optimal, because it does not make
use of all previously generated data at subsequent stages of the network training.

For a more efficient training we can use the main structural feature of normalizing flows,
their bijective structure best realized in the fully symmetric INN variant introduced in Ref. [19,
35,36]. It allows us to train the same INN online and on previously generated events in parallel.
Such a buffered training makes optimal use of potentially expensive integrands, but requires
a dedicated loss function and training strategy, as we will explain in detail.

In multi-purpose LHC event generators like MADGRAPH5 AMC@NLO [37] (MG5AMC),
SHERPA [38] or WHIZARD [39] importance sampling is combined with a multi-channel split of
the phase space integration. As it is not guaranteed that an enhanced importance sampling
method provides optimal results when combined with standard multi-channel algorithms, we
complement our flow-based integration with trainable channel weights. Finally, we introduce
a new implementation of rotation layers in the normalizing flow architecture, to aid our ML-
importance sampling for high-dimensional phase spaces.

In this paper, we present MADNIS (Madgraph-ready Neural Networks for Multi-Channel
Importance Sampling), a comprehensive framework for ML-based phase space sampling ready
to be used in a multi-purpose event generator. In Sec. 2, we briefly review the basic con-
cepts of multi-channel integration and importance sampling, before we introduce our new
ML-implementations in Sec. 3. We illustrate the ML-channel weights and their interplay with
our new bi-directional training for neural importance sampling in Sec. 4. In Sec. 5, we show
how our method works for an actual LHC process, the Drell-Yan process with an additional
narrow Z'-resonance. In the Appendix, we provide a detailed description of possible loss func-
tions for our online and buffered training and potential issues with the implementation of this
new training approach.



SciPost Physics

2 Classic multi-channel integration

The main structure of LHC phase space generators and integrators is the combination of im-
portance sampling and multi-channel factorization [40]. The reason is that even advanced
sampling methods are not powerful enough to probe all phase space features with the required
precision, and that we know the leading features from the construction of the helicity ampli-
tudes based on Feynman diagrams. Before we introduce a network-based implementation, we
briefly review the standard methods.

2.1 Multi-channel decomposition

A generic integral of a function f ~ |M|? over the d-dimensional phase space x € # C R? can
be represented by

I[f] =f d%x f(x). (1)
]

The standard multi-channel method [40,41], which is also followed by SHERPA, starts by intro-
ducing several mappings G, : ® — U; = [0,1]¢ denoted as x — y = G;(x), of the phase-space
variables to obtain individual densities

9G;(x)

gi(x) = ’ Ox

with fdxgi(x)=1 for i=1,...,m, 2

where m is the total number of channels. Typically, the mappings G;(x) are initially fixed and
based on prior physics knowledge, like the structure of the underlying Feynman diagrams. In
practice, current event generators like MG5AMC, SHERPA or WHIZARD do not solely rely on
physics-inspired mappings G;(x), but also combine it with an adaptive VEGAS algorithm [42—
46]. Ignoring this for now, the different channels can still be optimized with respect to some
channel weights a; by combining the individual channel densities into a total density

m m
glx)= Z a;gi(x) with Z a;=1 and @;>0, 3)
i i
which also renders g(x) normalized. With this, Eq.(1) becomes
x x
f]—ZJddxa YRS ZJ w O

Where G denotes the inverse transformation to G. The optimization finds the set of global a;
that minimizes the total variance [40,41].

4

x=G;(y)

The single-diagram-enhanced method in MG5AMC [47,48] defines local, phase-space de-
pendent, channel weights a;(x) as

flx)= Zal—(x)f(x) with Z ai(x)=1 and a;(x)=>0. (5)

Inserting this into Eq.(1), we can decompose and parameterize the phase-space integral as

I[f]=ZJ d4x ai(x)f(x)=2f dly a;(x) f(x) o ©)
i Je T JU;

8i(x) x=G(y)
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Once an appropriate decomposition in terms of a;(x) is found, the channel weights are fixed
and not further optimized. The difference between Eq.(4) and Eq.(6) can be understood just
as different channel splittings. If we define the local weights as

'gi(x)
fglx)’

the two approaches coincide. For more details about the differences of both multi-channel
strategies when used in practice, we refer to Ref. [47].

(7)

ai(x)=a

Single diagram enhancement

While for a generic integral, finding suitable weights a;(x) might be unfeasible, MG5AMC
introduces two different sets of a;(x) for phase-space integration. In the first basis [47], we
can parameterize the integral as

M ()2
>IM R

where i indicates individual Feynman diagrams. This choice of @; is motivated by the classical
limit without interference,

2 m
1M Z f ddle(x)PZ%x()')lz ~D, dexwi(xnle. )

In this limit each channel is behaving as a squared diagram, its features are easily identifiable,
and importance sampling is easy to implement. In general, the number of channels m are com-
pletely arbitrary and will often be less than the number of Feynman diagrams M, i.e. m < M.

MMP1I=> J dhx ay(x) M) with  a;(x) = ®)
i L]

An alternative choice of channel weights in MG5AMC [48] replaces the |M;|? by the prod-
uct of all propagator denominators appearing in a given diagram and normalizes them as
needed,

a;(x)= & with  a;(x) = l_[ L . (10)

2.;a;(x) keprop P ()2 —m — im; Ty |2

While this works extremely well for VBF-like or multi-jet processes, this does not seem to be a
good choice for W/Z + jets or tt + jets production [48].

2.2 Monte-Carlo error

To efficiently calculate an integral, we rely on a smart choice for the variable transformation
y = G(x) introduced in Eq.(4),

I[f]=J ddxf(x>=f gty 1)
® U g(x)

which can be any combination of analytic remappings [41], a VEGAS-like numerical remap-
ping [42-46,49], or a normalizing flow [ 13-16]. To construct an optimal variable transforma-
tion we need a figure of merit for the phase space integration. While the integral is unchanged
under the above reparametrization, the variance o of the new integrand is given by

o [t]- (D).

dG(x)
x

, (11)

with glx) = ’

x=G(y)



SciPost Physics

and becomes minimal for a perfect mapping with g(x) = f(x)/I[f ]. In practice, we evaluate
the Monte Carlo estimate of our integral with discrete sampled points,

[t S (S 130
I[f] L xg(x)g(x) <g(x)>x~g(x) NZg(x)

(13)

x=G(y;)

In this case the error of the Monte Carlo estimate is itself estimated through the variance
defined in Eq.(12) [41],

) 0'2 1 f(x)2> _ 'M ’
ANEN N—1[<g(X) x~g(x) <g(X)>x~g(x) ' e

Note the correction factor N/(IN — 1) to obtain the unbiased result.

Next, we split the integral into independent channels, as defined in Eq.(6). The Monte
Carlo estimate of the integral is given by the sum of the individual estimates

RTINS
1~ Z<al(X)gi(x)>x~gi(X) ’ a4

i

where the individual channels are evaluated using N; points and ), N; = N. The error on the
total integral is given by the uncorrelated combination of the channel-wise errors,

2

N, 2f(x)2> N ]
'_1[< RPTe x~g,(x) <al(X)gi(X)>x~gi(x) ' oo

As known from stratified sampling [49], the optimal number of points per channel, defined by
the minimized combined error is a function of the standard deviations o;

with O'l-2

g
Ni =N .
2Ok
In practice, the o; are calculated during training, and the numbers of points N; used for the
numerical integration are subsequently updated.

(17)

3 MADNIS

While the state-of-the-art event generators work sufficiently well for simple processes, they
require significant computing time for complex LHC processes. Consequently, there have been
attempts [11-15] to replace VEGAS [42, 43, 46] with a neural network equivalent. We add
several new components to improve the precision of the network-based integrator and sampler.

3.1 Neural multi-channel weights

First, MADNIS replaces the local multi-channel weights from Sec.(2.1) with trainable channel-
weight networks (CWnets),

a;(x) = a;(x[0). (18)
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In analogy to classification networks, we encode the normalization of Eq.(5) into the network
architecture. Two possible methods are

exp a;(x|60) a;(x|0)
> expa;(x|6) 2. 0(x]0)

Note that the second normalization also allows for negative channel weights for a generic and
unconstrained network output a;(x|6). While this is mathematically allowed and satisfies the
requirements in Eq. (2), these channel weights lose their interpretation as probabilities. Our
tests, however, indicate that the first version, corresponding to a softmax activation, is more
stable during training.We can improve the training by using physics knowledge. For instance,
we can learn a correction to a prior weight a; given by MG5AMC,

a;(x|8)= €[0,1] or a;(x|8) = eER. (19)

a;(x|0) =loga;(x)+6; - A;(x|0). (20)
This specific form gives the normalized weight
ai(x)-exp[6; - Ay(x|0)]

_i 0) =

with Za:‘(x) =1. 21D

In addition, we can provide the neural network with derived quantities such as invariant
masses alongside the event representation x.

3.2 Neural importance sampling
Second, MADNIS augments the physics-inspired phase space mappings with an INN [19]
y=Gi(x) > Gi(xlg) and x=G;(yly). (22)

This replaces the classic importance sampling density g;(x) with a network-based variable
transformation g;(x|¢) in Egs.(6) and (15)

9G;(x|p)
Jdx

=3 f aly a;(0) L with gi(x|so)=’ L@
i U;

8i(xX1) =5,y

where we assume the latent distribution in y to be uniform. The INN-encoded phase space
mapping is trained to provide a surrogate density

gi(x|p) ~ fi(x) = a;(x)f (x), (24)

The INN variant of a normalizing flow, illustrated in Fig. 1, ensures that the training and the
evaluation of the network are symmetric and equally fast in both directions. We will make use
of this structural advantage in our training setup.

To clearly separate the discussion of the neural importance sampling from the channel
weights defined in Eq.(18), a;(x|6), we denote its network weights as ¢. In principle, the
bijective mapping G;(x|¢) can be any combination of a fixed physics-inspired mapping and a
normalizing flow.

Normalizing flows are already used to improve numerical integration over phase space [ 14]
or the Feynman parameters in loop integrations [16]. The standard i-flow algorithm [13,15]
for importance sampling is

1. Draw samples from the latent space y ~ uniform;
2. Transform them into phase-space points x = G(y|¢), without gradient calculation;

6
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Evaluate the integrand or target distribution f (x);

Pass the network in the other direction, y = G(x|), to evaluate the density g(x|y);
Compute divergence-based loss between f(x) and g(x|¢);

Compute gradients of the loss and optimize the network.

ok W

We illustrate the algorithm in Fig. 2. The additional pass in step 4 is important to evaluate
g(x|¢) as a proper function of x and obtain the correct gradients for training, as explained
in the Appendix. Note that the two passes in step 2 and 4 are inverse to each other. We refer
to this approach as online training, because the training data x is continuously generated and
immediately used once for training. It implies that a potentially expensive integrand f (x) has
to be evaluated for every event used to train the network, which makes it inefficient. One way
to alleviate this problem is to buffer already generated samples and use them for a limited
number of training passes [18].

3.3 Buffered training

An alternative training method for the phase-space mapping would be traditional sample-
based training, where the same samples can be used every epoch. Pure sample-based training
only requires one pass through the INN, but it is not a sensible choice for neural importance
sampling, because all training data needs to be available from the beginning. Instead, we
iterate between online training, where samples are generated and directly used for training,
and buffered training on previously generated events. Because memory constraints inhibit
storing all generated phase-space points, we only save a fraction of events in a buffer which is
replaced during the next online training phase.

Before looking into the training algorithm in detail, we need to define a common loss
function for online and the buffered training, so the combination converges towards a common
minimum. The buffered loss has to account for the fact that training happens after sampling,
so the network weights will change in between. The sampling probability g;(x|¢) is different
from the density g;(x|¢) at the time of training, even though the two might be related as

p—¢ R
gi(x[p) — qi(x|¥) . (25)
Consequently, the buffered form of a KL-loss has to be modified according to

gi(xly)
q;(x|$)’

L— L x (26)

which is a generalization of the weighted log-likelihood loss in Ref. [22]. This means we have
to buffer x, f;(x), and the sampling density g;(x|¢) to be able to evaluate the loss. More
details about the corresponding losses can be found in the Appendix.

In Fig. 3, we illustrate the workflow of the buffered based training:

( ) R ( h
Phase space G(x|p) Unit hypercube
Channel
Mapping
x~gxlg) Gl y ~ uniform
\ J N~ - J

Figure 1: Structure of the INN channel mappings. The latent space y ~ uniform is mapped
onto the phase space x ~ g;(x|¢) for each channel i.
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=[ Target fi(x) )—

S Gix|p) O
. i 4---:--&'"5{ Density gi(x|@p) |
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X Mapping '
< — Sampley (1) e Backpropagation
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—

Figure 2: Workflow of the online training of the INN. The discontinuous line from (1) to (2)
indicates that it only allows forward sampling but no gradient backpropagation.

=[ Target f(x) l— e
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f
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Figure 3: Workflow of the buffered training of the INN.

Start with a buffered phase space point x with f(x), and q;(x|p);
Pass it through the INN and compute the density g;(x|¢);
Compute the weighted loss from g;(x|¢) and f;(x), using q;(x|¢);
4. Compute gradients and optimize the network.

W

This training can be combined with the online training introduced in Sec. 3.2, and the balance
of the two training strategies can be adjusted depending on how computationally expensive
the integrand evaluation is.

Training time statistics

To illustrate the trade-off between training time and weight updates, we consider a training
taking the time T, split into buffered (T, = T-(1—rg)) and online (Tg = Trg) training. Let
tpuer and tg be the time for a weight update in the buffered training and online training (ex-
cluding the integrand evaluation), respectively. Note that tg requires an additional sampling
without gradient updates, as explained in the Appendix. We find that t g /ty,,¢ ~ 1.33.

If t¢ is the time it takes to evaluate the integrand, the time for a weight update in online
training will be tg + t;, compared to ty, for the buffered training. The number of weight
updates is divided between the training modes,

T(1—rg) Tr
@ + @

n=npygt+ng = 27

thuft te+tr’

As a baseline we can look at the number of weight updates ny,, = T /(tg +t;) for pure online
training, giving a increase factor in weight updates of

1 \tg*t 1 n 1
n :(1_—)@—f+— with  Rg=—2¢=_—, (28)
Mpase R@ Chuff R@ ¥e) c)
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Figure 4: Hypothetical change in weight updates (left panel) and training time (right panel) as
a function of the reduction in training statistics R for integrands with different computational
costs.

in terms of the reduction factor in training statistics Rg which coincides with the inverse of the
relative training time rg. The left panel of Fig. 4 shows the increase factor in weight updates
for integrands with different computational cost t¢; tg and ty, are extracted from a test run
on a CPU. In a similar fashion, we can also fix the number of weight updates n and instead
compare the reduction factor in training time T /Ty, depending on Rg, which is shown in
the right panel of Fig. 4.

Variance-weighted training

Stratified sampling [49] minimize the variances discussed in Sec. 2.2, but it can also improve
the network training. We use the variance from Eq.(17) to sample more events in poor chan-
nels and weight them accordingly in the loss function. This forces the network to focus on im-
proving these channels, which should ultimately lead to a better convergence of the network.
Such a variance-weighted training can be easily combined with both, online and buffered
training. To stabilize the training when using variance-weighted channel sampling, we fix a
small fraction of events to be uniformly distributed across all channels. This guarantees that
no channel is empty during training, which would otherwise lead to an error. This is in con-
trast to integration and pure sampling, where the algorithm is encouraged to ignore channels
with vanishing contributions.

3.4 Trainable rotations

The INN employed in our study is based on a bipartite architecture [35,36] and requires per-
mutations in the order of the coordinates between the coupling blocks to learn all correlations.
The simplest implementation is an exchange of the bipartite sets [35,36]. It ensures that cor-
relations between the variables can be learned stacking a few coupling blocks. Shuffling the
elements of the two sets with each other is more efficient, but comes with a small probability
that some elements are never modified. Another solution is a deterministic set of permutations
based on a logarithmic decomposition of the integral dimension [13]. It ensures that every
pair of elements appears in different bipartite sets at least once. This relates the number of
required coupling layers to the dimensionality of the integrand, and is particularly efficient for
integrals of dimension d = 2.

For an integration over R? we can generalize these permutations to rotations described
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by SO(d). Introduced in the context of image generation, a randomly initialized but fixed
S0O(d) matrix (soft permutation [20]) allows for mixing of color channel information [20,50].
A trainable implementation [50] first adjusts all d? parameters and then projects the trained
matrix back onto SO(d). This implementation as a independent d x d matrix with a subsequent
projection is not efficient.

Generalized Euler angles

We construct a trainable soft permutation that only optimizes the relevant degrees of free-
dom. The elements of SO(d) are described by a d(d — 1)/2-dimensional Lie algebra and can
be parametrized by D = d(d — 1)/2 real parameters, interpreted as angles. The common
parametrization of rotations in R® are the Euler angles [51]. They can be generalized to
RY [52]. To efficiently construct our rotation matrix R, we start with an orthonormal basis @;,
connected to the standard basis €; by

Eik = ZEiRik — Ei = ZRkiEii . (29)

To properly construct the corresponding rotation matrix we proceed iteratively:

1. Define one direction with the unit-vector d,4 in terms of d — 1 angles ﬁgd);

2. Construct an orthonormal basis {_Bl(d)}, which contains d, as last basis vector;
d-1 2(d—1

9 b1y

3. Fix next direction d,_; in terms of d — 2 angles and construct new basis {b;

4. Tterate until the basis {d;} determines R.

For the three steps of this algorithms we provide the details below.

1. Definition of unit-vector d; We start by defining the unit-vector d; in terms of d — 1
angles ﬁfd) or d-dimensional spherical coordinates,

dg = sinﬁgd)é’1+
cos ﬁgd) sinﬁgd)€2+

cosﬂgd) ... cos"ii‘((id_)2 sm’t’?(d) 1Ea1t (30)
d smﬁ(d) L

cosﬁgd) .. cosﬁgd) cosﬁ(d) = Z ﬂ(d) l_[cosﬁ‘(d) with sinﬁgd) =1.
i=1

While cos ﬁl(cd) are assumed to be positive, cos ﬁ((id_)l can have either sign.

2. Orthonormal basis bgd) To construct an orthonormal basis which contains d; as one of
its basis vectors, we can define the new basis

k—1 -1 .

- a -

5@ =[] [eos o % (k=1,..,d—1) and BP=d,. @D
i1 59"

10
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Figure 5: Exemplary rotation of the standard 3-dimensional basis €; into another orthonormal
basis d; parametrized by three Euler angles ;. The different colors of the new basis d; indicate
there iterative construction.

This definition fulfills the orthogonality and normalization condition [52], T)Ed) . Bl((d) = Ojx-
The rotation into this basis is given by

v
b =>"2AY  with AD= I 1. (32)
i III
In the regions we have
I AE?) = cosﬁ(d) for i=1..d—-1
(d) i
sin¥;
II (d) — @ l_[cosﬂ(d) for i=1..d
cos;
(d ) (@ i
sind;”’ sin ¥,
I Agi) = l(d) (d) l_[cosﬁ(d) for i>k
cost; ’ cos
v AP =0 for i<k<d. (33)
For ﬂgd) == ﬁgd_)l = 0 this gives A(d) 6(d) so the transformation is continuously con-

nected to the identity and detA@) = 1.

3. Subsequent basis vectors b( ) Next, we consider d;_; in {b(d) ey B((id_)l}. As in Eq.(30)

we define this vector in terms of a new set of d — 2 angles ﬁgd and construct an orthonor-

mal basis bgd_l) which contains d4_;. Similarly, we can proceed for the remaining vectors

dg_s,-..,d9. A general step [ in this iterative basis transformation leads from a basis

BB and BV =4y, B0V = ay (34)
to the basis
O 50 and B0=ay..., 50 =a,, 35)
where we have defined d; by
l @ i
- sin¥;
= b —& ]_[cosﬁ(” with sin®=1. (36)
Py cos ¥,

11
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The corresponding transformation into this basis is defined by

70 _ N7+ M)
b => b VB (37)
i

where BY is the matrix
A0 0

and where AQ is defined following Eq.(32)—(33) with angles ﬁl@.

4. Tteration At the end of the procedure, we have an orthonormal basis defined by d(d—1)/2
angles which yields the desired d-dimensional rotation matrix

R=pBWpgd-1)  pRpE) (39)

as introduced in Eq. (29). An illustration of this procedure in 3 dimensions is shown in Fig. 5:
First the new basis vector ds is defined by rotations with angles #; and ¥#,. Using Eq.(31)
we can construct the new basis 51,3;,63. Afterwards, we define the vector @, in this basis
by a rotation with angle 9] which also fixes the last basis vector B’l’ = d; and determines the
procedure. We implement these angles 15‘% as trainable parameters.

4 Toy examples

To check and benchmark the various ideas presented in Sec. 3 we first consider two parametric
toy models, a 1-dimensional camel back, and a 2-dimensional crossed ring. The camel back
allows us to illustrate how to train channel weights to optimize a simple bi-modal integration.
The crossed ring we use to illustrate how learnable local channel weights can be combined
with an INN-importance sampling successfully. A discussion of the trainable rotations and the
mixed online and buffered training will only become relevant for the LHC example in Sec. 5.

4.1 One-dimensional camel back

Our first toy example just illustrates how the neural integrator learns channel weights for pre-
defined channels. We define a normalized 1-dimensional camel back or Gaussian mixture,

a1 (X—M1)2] 1—a [ (x—,uz)z]
x) = exp| — + exp| ———=
fou(x) V2no; p|: 20‘% V2mo, P 20%

with U =2 o1=0.5 Us =5 0,=0.1 a; =0.35. (40)

If we want to describe each of the hardly overlapping Gaussians by an integration channel
we need reasonable mappings which should not be identical to the Gaussian integrand. We
choose a Cauchy or Breit-Wigner mapping [53]

x =G;(y)=u; + V20, tan[rr (y — 1)}

2
gi(x)= l ﬁoi

S 41
7 (x— ) + 207 @D

12
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—— Camel(x) —— Camel(x)
2F — &i(x) 1 2f — &lx)
g2(x) g2(x)
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Normalized
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Figure 6: Learned weights for the camel back function for ten different trainings. We train
NN-weights starting from a near-optimal (left) or flat (right) prior. The prior weights are
illustrated as dotted lines.

With these definitions the widths of the Gaussian and the Breit-Wigner functions are roughly
the same. The multi-channel form of Eq.(6) using a known mapping is

e} 2 [’}
I[fGM]=f dx fem(x) = f dx a;(x[0) fam(x)

—00 i=1
2 1
=2, f dy a(xloyfe) (42)
i=1J0 gi(x) x=G;(y)

As mentioned above, the camel back toy model only serves as an illustration that a simple
regression network can learn the channel weights a;(x|0), as described in Sec. 3.1. We provide
the hyperparameters for this simple network to the left in Tab. 1. The only noteworthy setting
is that the loss function of the network is defined as the variance of the integral given in
Eq.(16). The amount of training data is comparably large, to give the network a chance to
learn the channel weights with enough precision and to allow for a test of the stability using
an ensemble of networks.

To the right in Tab. 1 we compare the error on the integral just using uniform, constant
weights a;, the (nearly) optimal choice a;(x) = g;(x)/>.; g:(x), and local channel weights
a;(x|0) optimizing the actual variance. We see that the optimal and the trained weights pro-
vide the same results, significantly improving over the naive choice.

In Fig. 6 we show the target function from Eq.(40), the two pre-defined channels g;(x),
and, in the lower panel, the learned channel weights a;(x|0) and their prior or starting points.
For the left and right panels network training starts from the near optimal a;(x) o< g;(x) or
a flat prior a;(x) = const. While the first version converges on the same network weights
for ten different trainings, the harder task leads to a small variation in the training outcome.
Nevertheless, the two learned channel weights are essentially identical, with the exception of
slight deviations in the exponentially suppressed tails of the two Gaussians. From Tab. 1 we
know that these deviations do not have any impact on the evaluation of the integral.

Camel back with cut

For the camel-back function in Eq.(40) our well-suited choice of channels g;(x) in Eq.(41)
guarantees that the learned channel weights converge to a reasonable and stable solution. An
obvious question is what happens with the trained weights a;(x|60) if the channels g;(x) are
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Figure 7: Learned weights for the cut camel back function for ten different trainings. We

train NN-weights starting from a near-optimal (left) or flat (right) prior. The prior weights are
illustrated as dotted lines.

not perfect. To investigate the effect of a non-perfect shape of the channels on the integration
we consider a camel back with a cut in the left Gaussian of Eq.(40),

X = U +0;

) (43)
X<‘U1+O'1

fom(x) — {fGM(X)
0

where u; + 0, = 2.5. In Tab. 1 we see that for all methods the integration becomes slightly
harder and less numerically reliable. The level of improvement for the network weights re-
mains the same as for the perfect camel back, confirming the power of our NN-channel weights.
Finally, in Fig. 7 we also see that the modification of the integrand does not affect a properly ini-
tialized training, but leads to a slightly larger spread when we train the network from scratch.
Such a behavior is expected for any complication of the network task.

4.2 Two-dimensional crossed ring

To show how the trained channel weights from Sec. 3.1 and the neural importance sampling
from Sec. 3.3 work in combination, we choose a moderately challenging 2-dimensional toy

Parameter | Value Function a;(x) |Rel. Error [%]
Loss function variance Camel back Uniform 2.553+0.017
Learning rate 0.001 Optimal 0.769 £ 0.006
LR schedule inverse time decay NN (flat prior) [0.770 £ 0.005
Decay rate 0.01 NN (opt. prior) |0.767 £ 0.006
Ea;cc};lssme ;(2)8 Cut camel back Uniform 3.412+£0.048
Bgtches o Eooch | 100 Optimal 1.031 +0.006
Number% ] la}lf)ers 3 NN (flat prior) |1.032 +0.017
. pri . +0.
Hidden nodes 16 NN (opt. prior) |1.030 = 0.009
Activation function |leaky ReLU Based on 10* events

Table 1: Left: hyperparameters of the multi-channel weight network for the 1-dimensional
camel back. Right: relative errors of the camel back integrals using the trained channel weights
(means and standard deviations from ten runs).
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model. It combines a closed Gaussian ring and a diagonal Gaussian line

Submission

1
fno—parking(x) = E [fring(x) + fline(x)]
v )? — U)?
fine(x) = Ny exp[ : ] [ A ]
205
2
(‘/ xl + xz - ro)
fring(x) =Ny exp | — D)
20,
with T'O:]. 0'0:005 ,u1=0 0'1:3 MZZO 0'220.05, (44)

where Ny and N; are chosen such that f;,(x) and fj,. are both normalized to unity and

X19= (x1 F Xz)/ﬁ-

Channel-mappings

To see how much additional analytic mappings help, we construct two channels for the line and
the ring contributing to our integral. We start with the mapping for the Gaussian line which
first aligns the line with the x;-axis by performing a first change of variables x — y = G;(x)
as

_Y2Et)
mam

As for the camel back, Eq.(41), we approximate the Gaussian peak through a Breit-Wigner
distribution using the variable transformation y — 2z = G,(¥),

9Gy(x)

ax |- 1. (45)

with g1(x) = ’

2

_ 1 . 1 Vi
Y12 =M12Fri2tan [TC (21,2 - 5)} with  g(y) = ) l_[

- . (46)
j=1 YJZ' + (yj _.Uvj)2

Parameter | Value Fig. Analytic Mappings|Rel. Error [%]
Loss function variance 8 flat 1.17+0.13
Learning rate 0.0005 (0.001) 8 flat, flat 0.71£0.15
LR schedule inverse time decay 8 flat, flat, flat 0.50+0.15
Decay rate 0.02 9 ring, flat 0.30+0.11
Batch size 1024 ring, line 0.14+£0.06
Epochs 100 ring, line, flat 0.29+0.14
Batches per Epoch  |500 4

Coupling blocks affine Based on 107 events
Permutations soft

Blocks 6

Subnet hidden nodes|32 (16)

Subnet layers 312

CWnet layers 2

CWnet hidden nodes |16

Activation function |leaky ReLU

Table 2: Left: hyperparameters of the INN and the channel weight network (CWnet) for the
crossed ring. The numbers in parentheses indicate that a different setting was used for a ring
mapping. Right: Relative integration errors for different numbers of channels and variations of
analytic mappings. We show the means and standard deviations for ten independent trainings.
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The combined channel density is then gj,.(x) = 1 x g45(G;(x)). The Gaussian ring requires a
mapping x — (r, 0) = G3(x) into polar coordinates

x;=rcosf and Xy =rsind . 47)

Its Jacobian is g5(x) = r. Again, we approximate the radial peak by a Breit-Wigner through
the variable transformation (r,0) — z = G4(r, 0),

r=ro+votan[m(wyz; —Cy)]
1 1 Yo
21 womyg+(r—ro)?’

0=2mz, with  gu(r)= (48)

where 7€, = arctan(ry/v,) and wy = (1+2Cy)/2 ensures r > 0 and thus gy, (x) = 1 g4(G5(x)).
We either augment or replace these mappings with a neural channel mapping G;(x|¢). To
challenge our INN when paired with the above mappings we pick wide channel widths,

Yoi,2=V40001 - (49)

Results

As a first check of our combined training of the channel weight and channel mapping net-
works, we use the network setup given in Tab. 2 with one, two or three channels with flat
analytic mappings. Because expressive spline-based coupling blocks can learn topologically

2 channels 1 channel

3 channels

combined channel 1 channel 2 channel 3

Figure 8: Combined and channel-wise (the latter not weighted by channel weights) distribu-
tions learned by a one-, two- and three-channel integrator with flat mappings and a mode-
specific prior. Note that the splitting in the three-channel case is not unique and learned
differently by the network for each run.
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Figure 9: Distribution learned by a 2-channel integrator with a ring mapping and a flat map-
ping and flat prior. Upper: individual channels, not weighted by channel weights; Lower:
combined distribution and channel weight of the ring channel.

challenging distributions without a need for multiple channels, we use simple affine coupling
blocks. Ideally, our network should automatically define channels removing any topological
problems for each individual channel. While this sometimes converges to a reasonable result
starting from a flat prior, we found that a mode-specific weight prior led to much more stable
results. In detail, we used a prior that encourages one or two channels to focus on the ring and
the other to focus on the line. Still, there is a large variation between the results of different
trainings. Some examples for the total and channel-wise distributions for different numbers of
channels are shown in Fig. 8. The relative uncertainties for different numbers of channels are
given in Tab. 2. The performance improves significantly after adding more channels. How-
ever, these results are highly sensitive to the choice of the hyperparameters. This suggests that
an unsupervised approach to channel partitioning, while theoretically possible, might not be
optimal in practice.

Next, we can start with the analytic mapping of the ring and combine it with a flat mapping.
Because the ring mapping greatly simplifies the training, we can reduce the number of INN
parameters. Results for this combination of learned channels and channel weights is shown in
Fig. 9. In the upper panels, we see that the flat channel learns the line without any connection
to the pre-defined ring. The integration uncertainties are given in Tab. 2. They show that we
can define overflow channels to extract features that are not captured by pre-defined mappings.
The combined distribution in the lower panel closely matches the truth. The channel weights
exhibit a clean cut between the two channels with a weight close to 0.5 in the two points where
the ring and the line cross. In addition, we show the relative uncertainties for a two-channel
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integrator with a ring and line mapping and a three-channel integrator with a ring, line and
flat mapping in Tab. 2. It can be seen that using a line mapping instead of a flat mapping
further improves the performance. Adding an additional flat mapping as an overflow channel
is not beneficial since two channels are already sufficient to map out all the features and it just
increases the complexity of the training. In all three cases, the relative uncertainties improve
compared to the trainings with flat mappings only.

5 Drell-Yan plus Z’ at the LHC

After showing how to improve the integration of one- and two-dimensional toy examples, we
now use MADNIS for an actual LHC process. To keep things simple, while still challenging
all components of our framework, we consider the Drell-Yan process with an additional Z’-
resonance,

pp— 71,2527 —efe, (50)
assuming
My, = 400.0 GeV I, =0.5 GeV, (5D

for 13 TeV center-of-mass energy. We use the leading-order NNPDF4.0 PDF set [54] with a
fixed factorization scale uy = My, and a,(M;) = 0.118. In the four-flavor scheme we neglect
b quarks in the initial state. The Z-parameters are M; = 91.19 GeV and [;; = 2.44 GeV. We
define the fiducial phase space by requiring only

Mete > 15 GeV. (52)

Implementation details

To maintain full control, we implement the MADNIS components directly in TENSORFLOW, in-
cluding the matrix element and the phase-space mappings. The calculation of a hadronic scat-
tering cross section requires many ingredients which need to combined efficiently to achieve
precise numerical results. In detail, we implement

1. the full squared spin-color averaged/summed LO amplitude

1
(MP) = 2 DL 1M+ Mg+ My (53)
C spins
u e u e
v/Z 7!
u e+ u e+

Figure 10: Example LO Feynman diagrams contributing to the Z’-extended Drell-Yan process
pp — ete™ for one partonic channel.
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with N, = 3. As the amplitude is implemented in TENSORFLOW, we can evaluate it in a
vectorized form on a CPU and GPU and have access to its gradient, an option we do not
use in this study, but plan to use in the future.

2. the hadronic cross section as a convolution of the partonic cross section with the PDFs,

1
UPPZZJO dxydxy fo(x1)fp(x2) 6qp(x1x,5). (54)
a,b

We use LHAPDF6 [55] and implement our own PYTHON interface to efficiently evaluate
large event batches.

3. a multi-channel integration, where we define suitable mappings associated with the dif-
ferent Feynman diagrams.

The hadronic phase space is expressed in terms of {x;, x,,cos 0, ¢ }. The sampling requires a
mapping from the unit hypercube U = [0, 1]* to the two-particle phase space. We implement
this mapping sequentially as

G1: {J’l,J’z:J’S:J’4}_’{SJJ’Z;J’S,J’4}
GZ : {5,y2,y3,y4} - {x1’x2: Cos 9: ¢} > (55)

where the first step takes into account the propagator structure, so the substitution y; — s
maps out the two mass peaks or the photon propagator. For a resonance with mass M and
width T, the standard mapping is again the Breit-Wigner mapping of Eq.(41) [53,56]

s(yl) =M?+ Mrtanl:wmin + (wmax_ wmin).yl]
1 MT
Wmax — @min (5 _M2)2 + M?212 .

81(s) = (56)

where the limits s = s, . ..Spa = 4E2._ translate into

beam
2 2
Smin,max M

MT (57)

Wmin max = arctan

For the massless photon we instead use the mapping
_ _.11/(1-»)
s(y1) = [J’lSIlna;: +(1 —}’1)5;11:]
-y

1
s (Shat ~Smin)

g1(s)= (58)

The hyperparameter v # 1 can be tuned, but we stick to the naive assumption v = 2. In the
second step, we map to {x;, xy,cos8, ¢} using

S Y2 S 1=y,
Xl = XZ =
smax Smax

cosf =2y;—1 ¢ =2ny,—m with g, =—

Smax
_ 59
4mlog(xqx,) (59)

We test our numerical setup by computing the fiducial cross section and comparing the
result to the standard MG5AMC prediction of o = (4349.7 &+ 0.32) pb to a relative deviation
of 107.
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Figure 11: Left: mean and spread (5% to 95% percentile) of 25 evaluations of the variance
for three priors of the network weights a. Right: integration error as a function of I}, for two
and three channels, with and without trained channel weights. We give means and standard
deviations for ten runs, or the individual results in case of large variation. For very narrow
peaks, the two-channel integrator misses the Z’ peak entirely.

Choice of mappings and priors

While for the simple parametric toy models affine [35,36] coupling blocks were sufficient when
combined with a multi-channel strategy, the rich phase-space structure in the Z’-extended
Drell-Yan process benefits from rational-quadratic spline blocks [57]. Another advantage of
spline blocks is that they are naturally defined on a compact domain which makes them espe-
cially well-suited for mappings between unit-hypercubes. The other network parameters for
this process are given in Tab. 3.

For the toy models we have seen that the choice of mappings and priors is key to a precise
integration. This is especially true once we need to cover two narrow peaks in Mg+.-. We
confirm this using our network trained with a flat prior, the SHERPA-like prior in Eq.(7), and
the MG5AMC-like prior in Eq.(8). After every second epoch, we extract the variance of the
integrand from 25 batches of generated samples. The mean and spread of these variances
are shown in the left panel of Fig. 11. For both non-flat priors, the variance is stable and
converges in the course of the training. In contrast, the flat prior leads to a much larger and
unstable variance. Compared to the physics-informed priors the convergence is extremely
slow. We follow the standard setup of LHC event generators and include the available physics
information through the MG5AMC-like prior of Eq.(8).

Parameter Value | Parameter Value
Loss function variance Coupling blocks rational-quadratic splines
Learning rate 0.001 Permutations exchange
LR schedule inverse time decay | Blocks 6
Decay rate 0.01 Subnet hidden nodes 16
Batch size 10000 Subnet layers 2
Epochs 60 CWnet layers 2
Batches per epoch 50 CWnet hidden nodes 16
Activation function leaky ReLU

Table 3: Hyperparameters of the INN and the channel weight network (CWnet) for the inte-
gration of the Drell-Yan + Z’ cross section.
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Figure 12: Learned pp and M.+, distributions for the Z’-extended Drell-Yan process. In the
lower panels we show the learned channel weights.

Second, a powerful physics-informed mapping becomes increasingly important for inte-
grands with narrower features. To this end, we vary the Z’-width over several orders of mag-
nitude around the central value given in Eq.(51),

I, =T, x{1072,1072,107%,10°,10%,10?%} , (60)

while keeping the Z -width constant. In the right panel of Fig. 11, we first compare a two-
channel integrator with mappings tailored for the Z and photon diagrams with a three-channel
integrator with an additional mapping for the Z’. For the three-channel setup, we either fix the
channel weights to the MG5AMC prior or train them from this prior. For all three scenarios we
give the relative error of the phase-space integral. While the error remains small for the three-
channel integrator, even for very narrow decay widths, the integration rapidly degrades for two
channels only. For the two narrowest Z'-peaks we see a large spread in the variance combined
with an overconfident error estimate, indicating that the sampling misses the peak altogether.
For the three-channel setup the trainable channel weights lead to a small improvement over the
fixed channel weights, mostly for large I',. This reflects the fact that for negligible interferences
the MG5AMC choice of channel weights is essentially optimal.

In Fig. 12, we look at the phase-space coverage for the distinctive p and Mg+~ distribu-
tions. We show the learned local channel weights for a three-channel integrator starting from
the MG5AMC prior. In agreement with the above result the channel weight network mostly
learns small corrections to the prior. Each channel dominates an M.+~ region and the com-
bined distributions are in good agreement with the truth. This means each channel focuses on
a single task, as defined by the initialization, rather than learning the full distribution.

Buffered training

Even though the integrand for our modified Drell-Yan process is computationally cheap, we can
still use it as a test case for our new buffered training. Specifically, we first train the network
online for one epoch and save all samples generated during that epoch. Then, we train the
network for ky.¢ epochs on the saved samples, shuffling them every time. After that, we
discard the saved samples. We find that this training schedule works well for our application,
but it can be easily adapted for other application. For example, we can save samples from
more than one online training epoch.
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Figure 13: Relative integration error (from 10° events), relative deviation from the mean
R = 1 result, and weight distributions for different reduction factors Rg in training statistics
for the Z’-extended Drell-Yan process. The points/lines and error bars/bands show means and
standard deviations over ten runs.

To benchmark the buffered training, we continue to train the network for 60 epochs, but
replace some of the online training epochs with training on samples following the above sched-
ule. The training cycle is then repeated 60/(ky e + 1) times, and the relative reduction in the
training statistics defined in Eq.(28) is

R@ = kbuff +1 with kbuff =0,1,2,3,4. (61)

For each value of k4 we run our integrator ten times. The relative integration error, the
relative deviation from the mean Ry = 1 result, and the weight distributions for the three
different channels are shown in Fig. 13. Even for a reduction of the training statistics by a
factor five the performance of the integrator — in terms of the relative error and the weight
distribution — matches the pure online training. Even in this simple case, where the evaluation
time for the integrand is negligible, the training time can be reduced by around 20% because
of the lower number of INN evaluations.

As a side remark, we have tested how different choices for the permutation layer affect
the integration. While the trainable soft permutations perform much better than the fixed soft
permutations, soft permutations perform slightly worse than simple exchange permutations
for this low-dimensional problem. The reason for this is that the features the flow has to learn
are almost perfectly aligned with the axis of the chosen parametrization without any rotation,
and that spline blocks require us to nest the soft permutations between logit and sigmoid
functions, which leads to potentially slower convergence.
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Figure 14: Learned M,. .- distributions for the Z’-extended Drell-Yan process. The upper panel
is the same as in Fig. 12, the middle panel shows the learned channel weights, and the lower
panel shows the ratio of the combined distribution to pure online training for reduction fac-
tors Rg in training statistics, see Eq.(61). The lines in the lower two panels are obtained by
averaging over ten independent trainings. The error envelopes are only shown for Rg = 1.

6 Outlook

We introduced the new, comprehensive MADNIS approach to importance sampling and multi-
channel integration. The bijective variable transformations behind importance sampling sug-
gest using normalizing flows, in our case an INN which is equally fast in both directions. For
LHC event generators, this ML-integrator needs to be embedded in a common framework with
multi-channel integration. We have shown how to efficiently combine normalizing flows with
a multi-channel strategy by defining local and trainable multi-channel weights. Finally, we de-
veloped trainable rotations as a general permutation layer between the INN coupling blocks.
They will become beneficial for high-dimensional phase spaces.

For simple parametric examples, we have seen that it is possible to learn optimal channel
weights, including a combination with normalizing flows. Moreover, we have shown that it
is possible to define single or multiple overflow channels and leave it to the networks to split
the complicated topological structure into easy-to-learn substructures. More realistically, we
have shown that our framework works for the Z’-extended Drell-Yan process, which includes
many challenges of a generic LHC process while still having a low-dimensional phase space. In
particulay, it requires a combination of the normalizing flow with a physics-informed mapping
to achieve a precise integration at low computational cost.

A bottleneck for current LHC predictions is increasingly expensive evaluations of the matrix
element. To alleviate this problem, we combine expensive online training with buffered sample
training. In Fig. 14, we illustrate the performance of the MADNIS methodology, including an
effective reduction in training statistics by using buffered training in addition to the standard
online training. For our LHC example, our new training scheme can reduce the number of
calls to the matrix element by a factor of five without losing precision in the integration.
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A Buffered losses and training

Splitting the integral of Eq.(1) using the trained weights defined in Eq.(18) we first define
normalized channel-wise probability distributions as

1f1= "> 1,(6) =Zf d¥x a,(x16) f (x)
i i ¢

a;(x]6) f(x)

= pix|0)= o)

(62)

where the channel-wise integrals change during training. The goal is to approximate these
probability distributions with a network function in terms of the weights ¢,

pi(x]|0) ~ g;(x|¢) . (63)

The implicit dependence of g;(x|y) on O enters through this training objective. To quantify
the agreement between the two functions we can use a range of divergences D, all summed
over the channels,

L= a;Dilp;gl, (64)

with arbitrary weights a;. For a combined training of the channel weights (6) and the impor-
tance sampling () we have to be careful when updating the losses based on these divergences.

2 .
Neyman g, divergence
The first divergence we can use to define our loss is the Neyman- xf, divergence

D, :J diy [pi(x]0) — g;(x|©)]
d

N> gi(XW’)
. 2 65
:fddxfm—zf ddxpi(x|e)+f dix g,(x]) . (65)
q, gi(x|p) ® ®
> >

To minimize D we need its gradient with respect to ¢ and 0.

i(x 0)>
- —f atx U1 g g g, (xl)
$

22,0

1
gi(x|p)

V¢loggi(XI<p)>

V,D,2 ;= ddxpi(XIO)ZV
o L, i gi(xly)

_ <_ Pi(x|9)2
qi(x|p)gi(x|e)

(x16) oy o
VgD, ; = ZJ d?x PAxT. Vopi(x|0) = ZJ dix Poxl’ Vo logp;(x|6)
N ) gl(x|(P) ) gl(x|(P)
i(x16)
=2<pA— Vg logp;(x|6)

Note that we evaluate the integrals by sampling from a proposal function x ~ q;(x|¢), which
can be either a totally independent function that is easy to sample from and the depen-
dence of ¢ drops out, i.e. g;(x|¢) = q;(x), or it is directly linked to the importance weight
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q;(x|¢) = g;i(x|p) possibly depending on different network weights ¢ # ¢ which is relevant
for the buffered training as described in Sec. 3.3. The loss functions are then given by

n pi(x[0)
L= <— log (x|i)

q;(x|@)gi(x|p) x~qi(x]$)

) (x]6)?
ﬁw;elghts _ 2Zai <[)1(AX# logpi(x|9)> >
23 i qi(x|$)gi(xlv) x~g;(x]$)

(67)

where the red expressions have to be evaluated without gradient calculation. Note that p;(x|60)
indirectly also depends on ¢ as the samples are drawn from x ~ q;(x|¢). However, we do not
need a gradient calculation for p;.

Variance loss

Alternatively, we can minimize the variance of the normalized functions p;(x|6)/g;(x|y),
:<pi(X|9)2> _<Pi(>€|9)>2
&ilxle) [ gixioy  \8i(XIO)/ ingixlp)

[ B2 ([ gy} <68>
s Silxlp) ® l

-~

=1

This is the same expression as DXIZV in Eq.(65), so the losses are given by Eq.(67). Note that
we can write Eq.(68) into a MC estimate using the sampling x ~ g;(x|®),

=< pi(x]0)? > _<Pi(x|9)>2 (69)
gi(xX10)ai(x19) [ yoqxiey  \GXIB) /ingaigy

Pearson y? divergence

A similar choice is the Pearson- xg divergence,

Dz = f 4 (&ixl0) = pi(x10))?

pi(x|6)
=J dix M—ZJ d?x gi(xI(p)+J- d?x p;(x|6) . 70
& pi(x|0) o ]
=1 =1

To minimize D, 2 ; we need the two gradients

2
VeDyi= Jdd gl% :gi p8ilxle) = fdd gl(( |;p9)) Vv, log gi(x[p)

_ gi(x|p)?
‘2<(pi(x|9)qi(x|¢))V“"l"ggi(x'“")>x~qi(x|@

1 gi(xlp)?
VeD,2. = | dxg;(x|¢)*V = —J dix €22 v, logp;(x|6)

gi(x|p)? ) >
(| e/ 1 (x|0 .
<(pi(x|e)qi(x|¢) Ve logpilx|6) S
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The corresponding losses can be written as
i (xlgp)?
L% =2 a <(&— logg;(x|¢)
XIZ’ Zl: l pi(xle)ql'(X|SD) ' x~q; (x|p)

. . 2
Ewelghts - q <(L¢)A) lo 1(X|9)> P
22 Z pi(x10)q;(x|¢) &P x~q;(x|$)

where, again, the red expressions have to be evaluated without gradient calculation.

(72)

KL-divergence

As a fourth option, we can use the KL-divergence to train the network,

pi(x]6)

Dy =J dx p;(x|6)log
’ P gi(xkp)

(73)
=f ddXPi(XIG)logpi(XIG)—f d?x p;(x|0)log g;(x|¢) .
o] ]

To minimize Dy; ; with respect to ¢ we only need to consider the second term, which is the
Cross entropy,

pi(x]0)
qi(x[¢)

V., D =—f dx pi(x16) V', logqi(x|¢) =—< v, 1oggi(x|ga)> o4
o

x~q;(x|$)

To train the channel weight we evaluate

VoD i =f d%x Vgp;(x|6) logpi(x|9)+f dx p;(x|60) Vg log p;(x|0)
[

o
—J d?x Vgp;(x|0)log g;(x|¢)
o}

— d, . pi(x]6)
_Ld xpl(x'e)(”k’g ¢(xl9)
0

pi(x]0) pi(x|0)
— 1 1 (x|0
<qi(x|¢) (” o8 gi(xw)) Ve logpi(x] )>

(75)

)Ve log p;(x[6)

x~q;(x|$)
The two loss functions are then

- (x]6)
Ly =—D.q <pl —log g;(x|¢)
«“ Zl: “\agilxle) T x~qi(xl$)

weights ) pi(xle) pi(xle) ) >
et =2 <qi(x|¢>) (1108 51 ) st

(76)

x~q;(x|¢)

Comparing the first loss to Eq.(67), we see that the log-likelihood is only weighted with a single
MC weight, so the )(f, loss penalizes large discrepancies stronger, specifically, low values of g;
in regions of high density p;.

Reverse KL-divergence

The mode-seeking behavior of the reverse KL-divergence [58]

gi(xle)
pi(x]0)

Drpii ZJ d%x g;(x|¢)log (77)
®
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can be beneficial in the training of the normalizing flow, as it pushes the flow to assign zero
density where p;(x|6) is zero and focuses on the modes of p;(x|6). Unlike for the forward
KL-divergence, the gradient with respect to ¢ is now more complex,

Vi, Dri,i = f dx V,gi(x|¢)log g;(x|¢) +J dx g;(x|¢)V,log g;(x|¢)
] ]
—f d?x V,g;(x|¢)logp;(x]6)
? (78)

[ 5(xly)
= [ @t a1 (1106 2953 9, tog e

gi(x|¢) gi(x|e)
= (80P 4
<qi(x|¢) (” %8 b (x16)

while the training of the channel weights just requires

)v, loggi(x|<,o)>

x~q;(x|$)

gi(xlp)
q;(x|¥)

Consequently, we can write for the total loss function

1nt gi(xl(P) g~(x| ) >
£ = 2.0 <qi(x|¢>)(”l°gpl( 5 ) raelo)

£ ==Y (S5 S ogp x16))

Vo logpl(x|6)> . (79

Vo Drki,i = —Vo f d?x gi(x|p)logp;(x|6) = —<
3 x~q;(x|$)

x~q;(x|@) (80)

x~q;(x|@)

In contrast to the KL divergence, which is mass-distributing, this loss for the normalizing flow
only includes the logarithm of the MC weight and an additional positive log g;(x|¢) term,
reflecting the mode-seeking behavior. Furthermore, the RKL loss only requires p;(x|6) and
not its derivative V, p;(x|68), when taking the gradients before reparametrization.

Single-pass gradient computation

Finally, when evaluating one of the above-described losses during online training, we need to
be careful. In practice, we want to follow the steps

1. sample points y ~ uniform;

map y — x, = x(y|y) = G(y|p) and evaluate the density g(y|¢) = g(x(p|g0)_1;
evaluate the target function f (x,) ~ p(x,);

calculate a divergence-based loss between p(x,,) and g(x,|¢);

compute gradients of the loss and optimize the network.

uhwN

The training workflow is summarized in Fig. 15 and also shows the backpropagation of the
gradients coming from the loss function. For example, the KL-loss is

p(x,)

Dyi[p(xy), g(x,le)] = f d’y p(x,) log 2 (81)

(o120, <5019

For optimization during training, we require its gradient with respect to the network parame-
ters ¢

Vi Diw[p(xy), 8(x, )], (82)
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Figure 15: Workflow of the single-pass training of the INN.

which would also require us to calculate

dp(x,) _ dp(x,) 9x, (83)
dp x, J¢ '

However, the first term is intractable for common event generators, as the amplitude is not
differentiable. To circumvent this limitation, we define the loss as a proper function of x, such
that we do not require the gradient of p(x). This means, we replace Eq.(81) with

D [p(x), g(x])] = J d¥x p(o) log 2 84)
g(xle)

In this form, we also need the density g(x|¢) as a proper function of x to obtain the correct
gradients. We illustrate this for a two-dimensional toy flow G with one trainable parameter ¢,

forward y = G(x|¢): yi=x1+o Yo = Xg * €XPX;
inverse x =G(y|p):  x1=y1—¢  X3=yy-exp[—y; +¢]. (85)

The corresponding Jacobians are

2G oG
o) = |20 e, and arie) = | ZLID) —eniyi o). o)

While g(x|¢) = g(y|¢)™L, g is still a function of x and § is a function of y. Their gradients
with respect to ¢ will therefore be different,

08l9) o apa  280IR)_ exp[—y1 + ] =exp[—x1(y)], (87)
e ¢

This means that after the inverse pass x = G(y|), which has to be evaluated without gradients

to avoid unwanted gradients for p(x), we perform an additional forward pass y = G(x|p),

see Figs. 2 and 3. This forward pass evaluates the Jacobian g(x|¢) as a proper function of x.

In contrast, the inverse pass would return the Jacobian g(y|¢) as a function of y and yield

wrong gradients.
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