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Topological domain walls separating 2+1 dimensional topologically ordered phases can be under-
stood in terms of Witt equivalences between the UMTCs describing anyons in the bulk topological
orders. However, this picture does not provide a framework for decomposing stacks of multiple
domain walls into superselection sectors — i.e., into fundamental domain wall types that cannot be
mixed by any local operators. Such a decomposition can be understood using an alternate frame-
work in the case that the topological order is anomaly-free, in the sense that it can be realized
by a commuting projector lattice model. By placing these Witt equivalences in the context of a
3-category of potentially anomalous (2+1)D topological orders, we develop a framework for com-
puting the decomposition of parallel topological domain walls into indecomposable superselection
sectors, extending the previous understanding to topological orders with non-trivial anomaly. We
characterize the superselection sectors in terms of domain wall particle mobility, which we formalize
in terms of tunnelling operators. The mathematical model for the 3-category of topological orders
is the 3-category of fusion categories enriched over a fixed unitary modular tensor category.

I. INTRODUCTION

The study of defects in topologically ordered
phases of matter has many important physical
applications, from engineering non-abelian anyons
for quantum information applications [LSDS10,
ORvO10, CAS13, BQ14, Che12] to classification of
phases [TK10, ET19, ABP+20]. In 2+1 dimensions,
an important class of defects are topological domain
walls separating two topologically ordered regions
[KS11, Lev13, KK12, FSV13, LWKW20].

The classification of such domain walls is well
understood from several different perspectives. A
topological domain wall separating topological or-
ders described by the unitary modular tensor cate-
gories (UMTCs) C and D is defined by a Witt equiv-
alence between C and D, which describes the point
defects that can be localized to the domain wall in a
manner that is consistent with the fusion and braid-
ing rules of the anyons that can be brought to the
wall from either of the adjacent bulk regions [KK12].
Choosing such a Witt equivalence is equivalent to
specifying a Lagrangian algebra in C ⊠ D,1 i.e. a
gapped boundary between C ⊠ D and the vacuum
[Lev13, Kon14b]. Another useful perspective is to
study particle mobility across domain walls. This
has been explored extensively for invertible domain
walls M [BK05, CAS13, LBRS12, Che12, BQ14,
BJQ13, AF16, BBCW19, BQ12, YW12], in which a
quasiparticle with topological charge a entering the
domain wall exits on the other side with topological

1 D is the UMTC with the reverse braiding of D.

charge ΦM(a), where ΦM is a braided equivalence
between the UMTCs on either side.

However, the characterizations described above
leave unaddressed an important question: what hap-
pens when we “compose” parallel domain walls by
horizontally stacking them? This has been stud-
ied extensively in the case of non-chiral theories
[BBJ19a, BBJ19b, BB20], where it has been shown
that a composite of two parallel indecomposable do-
main walls can decompose as the direct sum of mul-
tiple superselection sectors, which need not be equiv-
alent to one another. In particular, particle mobility
need not be the same in different superselection sec-
tors. In this setting, extensive use is made of the
higher 3-categorical structure of fusion categories,
which classify topological defects according to the
cobordism hypothesis [BD95, Lur09].

In this paper, we develop the tools necessary
to extend the study of composite domain walls to
the chiral setting. We describe tunneling operators,
which bring anyons from one side of a domain wall
to the other, and explain how the structure of the
space of tunneling operators gives a natural descrip-
tion of a general domain wall from the perspective of
anyon mobility. We show how composites of certain
tunneling operators across a composite domain wall
can be used to determine the decomposition of the
composite wall into distinct superselection sectors.
We then describe how to identify the indecompos-
able domain walls in each superselection sector by
computing sets of tunneling operators for the vari-
ous anyon types, and we carry out the computations
in several examples. Parallel results in the context
of conformal field theory have been previously ob-
tained in [FSS11].



While this work contains some results that are
primarily of mathematical interest, which we phrase
in the language of higher category theory, the state-
ments of the main results do not require this technol-
ogy, and are interesting and accessible to physicists
with a background in topological order. In partic-
ular, we separate out some remarks which provide
context for those interested in higher categories of
topological orders but which could be safely skipped
over via the label “Remark (Mathematical).”

In order to study these questions, we adopt
a new mathematical perspective on (2+1)D topo-
logical orders. The standard characterization of a
(2+1)D topological order is by its UMTC of local-
ized excitations, resulting in the correspondence be-
tween defects and mathematical data in Figure 1.

2D bulk UMTC
1D topological domain wall Witt equivalence

FIG. 1. Standard description of topological order in
terms of localized excitations, cf. [KK12, Kon14b]; con-
trast with Figures 2 and 3 below. A Witt equivalence
[DMNO13] C → D is a unitary multifusion category X
with a choice of braided equivalence Z(X ) ∼= C ⊠D; see
§ IID. When we write nD above, we mean the spatial
dimension. We also use this abbreviation in Figures 2
and 3.

A natural attempt to put this characterization
in mathematical terms would be to describe (2+1)D
topological order using the Morita 4-category UBFC
of unitary braided fusion categories.2 In this 4-
category, 0-morphisms are unitary braided fusion
categories, which correspond to bulk topological or-
ders, and 1-morphisms are bimodule multifusion cat-
egories, which correspond to codimension 1 topologi-
cal defects, i.e. domain walls. However, 2-morphisms
are bimodule categories (with compatible actions
of the relevant braided fusion categories on each
side), which do not correspond to codimension 2
topological defects. In particular, the anyons them-
selves do not appear as 2-morphisms. Moreover,
3-morphisms, which are bimodule functors, do not
form a vector space, so linear algebraic data such as
F -symbols do not appear at this categorical level.
(We refer the reader to Remark II.4 for a more de-
tailed discussion of UBFC.)

Consequently, details such as how one can con-
catenate tunneling operators across parallel domain
walls or use local operators to distinguish superse-
lection sectors of the composite of two walls cannot

2 To be more precise, we take the 1-truncation of the 4-
subcategory UMTC of UBFC whose objects are UMTCs and
whose higher morphisms are all invertible.

be explained naturally from this perspective (e.g. via
the graphical calculus of UBFC). In particular, since
the composite of two Witt equivalences is again a
Witt equivalence, the decomposition of a compos-
ite domain wall into superselection sectors is not a
direct sum decomposition of 1-morphisms in UBFC.

These difficulties illustrate the necessity of plac-
ing the tensor categories of excitations listed in Fig-
ure 1 into the context of a 3-category of (2+1)D
topological orders. In the anomaly-free3 setting, this
context is well-understood: a unitary fusion cate-
gory (UFC) X can be used to construct a Levin-Wen
string-net model [LW05] with (2+1)D topological
order, where the localized excitations are given by
EndX−X (X ) ∼= Z(X ) [LW05, KKR10, Kir11]. More-
over, unitary fusion categories form a 3-category
UFC describing all levels of anomaly-free (2+1)D
topological order, as summarized in Figure 2.

2D bulk UFC
1D domain wall bimodule category
0D point defect bimodule functor
local operators4 bimodule natural transformations

FIG. 2. Description of anomaly free topological order
in terms of ingredients for commuting projector model,
cf. [KK12, KZ21]; compare with Figure 3 below.

From this perspective, it is clear how to decom-
pose parallel domain walls into superselection sec-
tors by decomposing the relative tensor product of
bimodule categories into indecomposable summands
[BBJ19a, BBJ19b]. Moreover, since 0D point de-
fects between a domain wall and itself are wall ex-
citations, and 0D point defects between the trivial
domain wall and itself are localized excitations in
the 2D bulk, this perspective naturally produces the
tensor categories of localized excitations in Figure 1
as endomorphisms of 1-morphisms [KK12].

We adapt these techniques to the anoma-
lous setting by introducing a new perspective on

3 Here, the anomaly refers to an obstruction to being re-
alizable with a commuting projector local Hamiltonian,
or equivalently, an obstruction to the low energy effective
topological quantum field theory (TQFT) being fully ex-
tended. We refer the reader to § II A for a further discussion
of the anomaly.

4 In this paper, by a local operator in a topologically or-
dered system, we mean a topological local operator, which
in general is only a quasilocal operator (i.e., can be approx-
imated by local operators) which corresponds to an inter-
twining operator between superselection sectors of the low
energy effective quantum field theory describing the emer-
gent topological order. In the commuting projector lattice
models we will describe, such operators will actually be lo-
cal.
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(2+1)D topological order afforded by enriched fusion
categories. (2+1)D topologically ordered phases
typically carry an anomaly described by an in-
vertible (3+1)D topological quantum field theory
[JF20]. Such anomalies correspond to Witt classes
of UMTCs [BJSS21].

To describe a given topological order, we there-
fore first choose a representative UMTC A of the
Witt class of the anomaly. An A-enriched UFC is
a UFC X equipped with a (fully faithful) unitary
braided tensor functor F : A → Z(X ),5 the Drinfeld
center of X .6 In fact, A-enriched fusion categories
form a linear 3-category denoted UFCA.

As for the string net models previously de-
scribed, from this perspective, the UMTC of bulk
excitations in Figure 1 arises as EndAX−X (X ); i.e. by
taking the enriched center/Müger centralizer ZA(X )
[Müg03c, KZ18b]. More generally, the tensor cat-
egory of excitations localized to a domain wall is
similarly a category of endomorphisms of the corre-
sponding A-enriched bimodule category. We explore
this in detail in Construction II.8 and Example II.9
below. Since the A-enriched center functor is fully
faithful on the 1-truncation of UFCA [KZ18a] (see
also § III B below), we can use both perspectives
on topological order side-by-side, and describe phe-
nomena such as anyon condensation using the usual
language of condensable algebras in a UMTC (see
Appendix B for more details).

Instead of putting these bulk excitations front
and center, however, our perspective should be
viewed as describing topological orders in terms of
the data which can be used to write down a (3+1)D
commuting projector lattice model in which the de-
sired topological order appears on the boundary.
The role of the bulk is to trivialize the anomaly rel-
ative to A, thereby enabling such a commuting pro-
jector realization. In § II B, we show by explicit con-
struction how an A-enriched fusion category (X , F )
is exactly the necessary data to write down a com-
muting projector boundary of the Walker-Wang
model [WW12] with bulk A. This is parallel to
how an honest fusion category is the necessary data
to construct a Levin-Wen string net model [LW05];
in fact, string-net models occur as the special case
A = Hilb.7

5 Such pairs (X , F ) were called module tensor categories for
A in [HPT16], and the later articles [MP19, MPP18, KZ20,
KZ21, JMPP19] motivate the name A-enriched fusion cat-
egory.

6 The Drinfeld center Z(X ) of a UFC X is constructed
by looking at objects equipped with half-braidings. See
[Müg03b] or [LLB21, §4] for an introductory discussion of
such UMTCs.

7 In this paper, Hilb refers to the symmetric monoidal cate-

In this setting, we get the categorical description
of topological order in Figure 3. In this framework,

2D bulk A-enriched fusion category
1D domain wall A-enriched bimodule category
0D point defect A-centered bimodule functor
local operators bimodule natural transformations

FIG. 3. Description of topological order in terms of
ingredients for commuting projector model afforded by
A-enriched fusion categories.

(2+1)D topological orders form a linear 3-category,
where local operators at the top level can be used to
describe tunneling operators, the decomposition of
composite domain walls, and the spaces of ground
states when a domain wall is placed along the equa-
tor of a sphere.

Applying our anyon mobility perspective on do-
main walls, we discuss at some length a particularly
interesting class of composite domain walls, obtained
by beginning with a C bulk region and condensing a
condensate A ∈ C in the complement of a strip.8 In
other words, by composing two condensation bound-
aries between a C bulk and the ClocA bulk obtained
when A is condensed, we obtain a domain wall be-
tween two ClocA bulk regions. We will see that the
superselection sectors of the composite domain wall
are related to the topological ground state degen-
eracy within the strip of C bulk, when appropriate
boundary conditions are imposed.

In particular, when the condensing anyons form
a copy of the regular representation CG of G for a
finite group G, then in the absence of excitations
in the strip, different topological ground state sec-
tors are associated with invertible boundaries car-
rying out different symmetry actions on the anyons
in question. In this case, the boundaries represent
G-crossed braided defects, the tunneling operators
describe the corresponding braiding operation in the
G-crossed braided category, and anyon condensation
is associated with de-equivariantization of the cate-
gorical symmetry G. We emphasize that this choice
of condensate is very special: for more general con-
densates, the superselection sectors of the composite
boundary need not be invertible, meaning that some
anyons cannot cross between the two ClocA regions.

gory of finite dimensional Hilbert spaces.
8 Anyon condensation involves a choice of condensate A,
which is identified with the vacuum where A is condensed.
Anyons in A are then precisely those which can become
condensed at the domain wall, or equivalently, those which
can pass across the domain wall to become the vacuum.
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A. Outline

The structure of our paper is as follows. In § II,
we begin by explaining the description of (2+1)D
topological orders and (1+1)D domain walls between
them in terms of enriched fusion categories, includ-
ing the passage back and forth between enriched fu-
sion categories and the usual description in terms
of categories of localized excitations. In § III, we
review the description of domain walls in terms of
condensable algebras, including a detailed descrip-
tions of how an arbitrary indecomposable domain
wall factorizes as the composite of parallel invert-
ible and condensation domain walls, as well as the
mathematical operations involved in composing do-
main walls. We then build a description of how the
composition of two parallel indecomposable domain
walls splits into superselection sectors under the ac-
tion of local operators. In § IV, we introduce sets of
tunneling operators, and explain how indecompos-
able domain walls can be characterized by their tun-
neling operators. We then investigate the relation-
ship between tunneling operators and composition of
parallel domain walls, revealing how tunneling oper-

ators for a composite domain wall split up across
the superselection sectors, allowing one to identify
the resulting domain wall in each sector. Finally, in
§ V, we work out the decompositions of several com-
posite domain walls into superselection sectors, in-
cluding non-Abelian examples and an example with
nontrivial anomaly.

We include several appendices which contain
well understood mathematical background material.
Appendix A explains the basics of fusion categories
and UMTCs, and Appendix B gives a review of con-
densable algebras. Appendix C 1 discusses D(G) :=
Z(Hilb(G)) in detail, and § C3 does the explicit ex-
ample of the dihedral group G = D2n.

B. Glossary

We end this introduction with a brief dictionary
summarizing the correspondence between mathe-
matical terminology and notation and the physical
concepts related to topological order. The descrip-
tions here are abbreviated, and this table should be
interpreted as an expansion of [KK12, Table 1]. Note
that the operations � and � are all usually denoted
by ⊠ in the literature.
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II. ENRICHED UFCS AND DOMAIN
WALLS BETWEEN (2+1)D

TOPOLOGICALLY ORDERED PHASES

In this section, we extend the 3-categorical
description of anomaly-free topological order from
[KK12] to the anomalous setting using enriched
UFCs. That is, we replace the 3-category UFC of
unitary fusion categories with the 3-category UFCA

of UFCs enriched over a fixed UMTC A representing
the anomaly; in the case A ∼= Hilb, we recover UFC.
We also explain how taking the enriched center can

be used to translate between the enriched setting
and the description of bulk topological orders and
domain walls via UMTCs and Witt-equivalences. In
this way, our description contains all the information
present in the UMTC/Witt-equivalence picture, but
we show that it also contains additional structure
which sheds light on domain wall composition.

In § II A and IIC, we explain enriched UFCs
in further detail, as well as how modular categories
describe topological order from the viewpoint of en-
riched UFCs. In § II B, we show how an enriched
UFC gives rise to a lattice model for a chiral (2+1)D
topological order on the boundary of a Walker-Wang
model, including a concrete example. In § IID,
we introduce enriched bimodules between enriched
UFCs as the data which determine a (1+1)D do-
main wall. We also describe how to go back and
forth between enriched UFCs and enriched bimod-
ules and the UMTCs and Witt equivalences which
describe bulk and wall excitations.
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Details of boundary for Walker-Wang model Algebraic structure

(3+1)D bulk invertible TQFT anomaly UMTC A
edge labels of bulk simple objects in A
(2+1)D boundary theory A-enriched UFC X , which is an object in the 3-category

UFCA ⊂ UmFCA := UBFC(A → Hilb)
edge labels of boundary simple objects in X
anyonic boundary excitations enriched center/Müger centralizer ZA(X ) = A′ ⊂ Z(X )
change of representative of anomaly composition with Witt-equivalence BWA in UBFC by

BWA �A − : UmFCA → UmFCB

(1+1)D topological domain wall A-centered X − Y bimodule M
edge labels of domain wall simple objects in M
excitations on domain wall objects in the category EndA

X−Y(M) of
A-centered X − Y bimodule functors

condensate condensable algebra A ∈ ZA(X )
anyons in condensed region simple objects in ZA(X )locA

excitations at boundary of condensed region simple objects in ZA(X )A
edge labels for condensed region simple objects in XA

classification of topological domain walls Lagrangian algebras L(A,B,Φ) ∈ ZA(X )⊠ ZA(Y)
fusion of domain walls relative Deligne product XM �Y NZ
summands of composite domain wall minimal projections in ZA(Y)(B1 → B2) where

XMY ↔ L(A,B1,Φ) ∈ ZA(X )⊠ ZA(Y) and

YNZ ↔ L(B2, C,Ψ) ∈ ZA(Y)⊠ ZA(Z)
point defect A-centered X − Y bimodule functor F : M → N
local operator X − Y bimodule natural transformation

fusion channel to transport anyon c
through domain wall to become d

tunneling operator in HomUFCA

(
M

c
−→ M

d

)

FIG. 4. Glossary for details of boundary for Walker-Wang models and algebraic higher categorical structure from
UFCA, expanding on [KK12, Fig. 1]

A. Topological orders and enriched fusion
categories

In [KK12], the authors explain how each level of
morphism in UFC labels an aspect of anomaly-free
(2+1)D topological order, a correspondence which
is summarized in Figure 2, and more extensively
in [KK12, Table 1]. A unitary fusion category X
is the input for the well-known Levin-Wen string
net model [LW05], which is a commuting projector
model of Z(X ) topological order. The 1-morphisms
in UFC(X → Y) are unitary X − Y bimodule cat-
egories XMY , which determine commuting projec-
tor models for (1+1)D topological domain walls be-
tween the Levin-Wen models determined by X and
Y. (This is in contrast to the Witt equivalence bi-
module categories mentioned previously, which are
bimodules between the two UMTCs representing the
topological orders.)

In general, (2+1)D topologically ordered phases
carry an anomaly [KT17]. This can be seen in
the fact that the underlying mapping class group
representations of surfaces appearing in the associ-
ated topological quantum field theory are projective,
rather than honest. The anomaly is characterized
by an invertible (3+1)D topological quantum field

theory (TQFT) such that the original (2+1)D the-
ory can be realized as a topological boundary [JF20,
§ III.B]. A concrete realization of this is the Walker-
Wang construction [WW12], which takes as input a
UMTC; the corresponding model has an invertible
bulk, and can be cut off to realize the topological
order associated with the corresponding UMTC on
its boundary [vKBS13].

From a physical perspective, it may seem odd
that we are claiming that a (3+1)D theory with
boundary is describing a (2+1)D universality class.
However, this can be understood conjecturally via
[SCD+22, § 4]. The idea is that (3+1)D Walker-
Wang models built from UMTCs can conjecturally
be disentangled to a trivial phase by a quantum cel-
lular automata (QCA). In this sense, we can con-
sider the (3+1)D phase to be trivial, and a topo-
logical boundary of a (UMTC) Walker-Wang model
is in the same universality class of a purely (2+1)D
theory.

Ansatz II.1. The topological order of a (2+1)D
topologically ordered system with anomaly described
by the UMTC A is described by an A-enriched UFC
(X , F ). The low energy excitations of this system
are described by the enriched center ZA(X ).
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Here, an A-enriched unitary (multi)fusion cat-
egory consists of a pair (X , F ), where X is a uni-
tary (multi)fusion category and F : A → Z(X ) is
a braided unitary tensor functor that takes anyon
types (or more generally, objects) in A to anyon
types (objects) in the Drinfeld center of X . In
what follows, we will frequently suppress F . The
enriched center of (X , F ) is the Müger centralizer
ZA(X ) := F (A)′ ⊂ Z(X ) [Müg03c, KZ18b]. That
is, ZA(X ) are those anyons in the usual Drinfeld
center Z(X ) that braid trivially with (are central-
ized by) the image of A.

Since A is nondegenerate and F is fully faithful,
the Drinfeld center Z(X ) can be factored: Z(X ) ∼=
A ⊠ ZA(X ) [Müg03c]. Physically, this means that
Z(X ) describes two decoupled (2+1)D layers, one
with A topological order and one with ZA(X ) topo-
logical order. By attaching an invertible (3+1)D

X Z
A

ZA(X )

X

A A
A

ZA(X )

FIG. 5. Since Z(X ) ∼= ZA(X ) ⊠ A, attaching an A-
Walker-Wang bulk to X trivializes the A-layer of topo-
logical order, leaving only ZA(X ).

topological order to the A-layer, we can trivialize its
(2+1)D topological order, leaving only the ZA(X )
topological order of interest (Fig. 5).

As we will see in § IID, the UMTC ZA(X ) of lo-
cal excitations completely determines (up to Morita
equivalence) the A-enriched fusion category X , so
one can equivalently use the UMTC ZA(X ) to spec-
ify the topological order. However, Remark III.13
will show that considering A-enriched fusion cate-
gories (and bimodules between them) helps in de-
veloping a more complete understanding of defects
between regions with (2+1)D topological order.

Example II.2. In the case of trivial anomaly, i.e.
A = Hilb, the enriched center is the ordinary Drin-
feld center, and the above discussion agrees with
the Levin-Wen description of localized excitations
in string-net models [LW05].

Example II.3. In the usual UMTC description
of topological order, the UMTC C describing the
(2+1)D topological order can be viewed as self-
enriched, since Z(C) ∼= C ⊠ C. In this case, the
UMTC representing the anomaly is A = C, since

ZC(C) = C. We will see in the next section that
the Walker-Wang model arises from this perspective
[WW12, vKBS13].

Remark (Mathematical) II.4. A subset of the
authors had long been troubled by the following ‘off-
by-one’ inconsistency. It is expected (mostly from
the sorts of pictures drawn in physical arguments)
that (2+1)D topological orders together with topo-
logical domain walls and point defects should form
a 3-category, possibly with some kind of symmet-
ric monoidal product corresponding to stacking of
phases.

However, it is generally agreed that UMTCs
are the correct object to describe (2+1)D topolog-
ical orders. These are naturally objects of the 4-
category UBFC of unitary braided fusion categories
[Hau17, JFS17, BJS21] [JMPP19, §2.3], whose 1-
morphisms are bimodule multifusion categories, 2-
morphisms are compatible bimodule categories, 3-
morphisms are compatible bimodule functors, and
4-morphisms are natural transformations. In addi-
tion, equivalence between objects in this 4-category
is Witt equivalence by [JMPP19, Thm. 2.18], which
is clearly the wrong equivalence relation for topolog-
ical orders.

These inconsistencies are fixed by using enriched
fusion categories to describe topological orders. In-
deed, A-enriched fusion categories form a 3-category
UFCA which arises as the 3-subcategory of the Hom
3-category9 UBFC(A → Hilb) whose objects are A-
enriched UFCs (as opposed to A-enriched unitary
multifusion categories (UmFCs)), where the UMTC
A representing the anomaly is fixed.

UFCA ⊂ UmFCA = UBFC(A → Hilb).

The 3-category UFCA, however, is not symmetric
monoidal, as anomalies multiply. That is, given
topological orders (X , F ) : A → Hilb and (Y, G) :
B → Hilb, stacking (which is the natural tensor
product in this category) gives us a topological order
(X ⊠ Y, F ⊠G) : A⊠ B → Hilb.

Note that UBFC includes into the Morita 4-
category of fusion 2-categories via C 7→ Mod(C), and
objects in this latter 4-category describe fully ex-
tended (3+1)D commuting projector lattice models
of topological order [DR18]. The dimensional reduc-
tion appears because a (2+1)D topologically ordered
phase occurs on the boundary of a (3+1)D invertible

9 In this manuscript, if C is an n-category, then C(x → y)
denotes the (n−1)-category of morphisms from x to y. For
example, if H and K are finite dimensional Hilbert spaces,
then Hilb(H → K) is the linear 0-category, i.e. vector space,
of linear operators from H to K.
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TQFT. While the natural pictures for these mod-
els are (3+1)D, since there are no bulk excitations
in the Walker-Wang models associated to UMTCs
[vKBS13], and we do not allow defects that extend
into the bulk, we can just draw (2+1)D pictures of
the boundary, which corresponds to looking at the 3-
category UFCA and forgetting its origin as the hom-
category UBFC(A → Hilb).

B. Walker-Wang type model for an enriched
fusion category

To understand how the A-enriched fusion cat-
egory (X , F ) realizes a given topological order, it
is enlightening to examine the commuting projec-
tor models realizing our construction in more de-
tail. Morally, our construction can be viewed as
follows. Any Drinfeld center can be realized by
a (2+1)D string net model, which is constructed
from a UFC [LW05, KK12, LLB21] The string net
model associated to X (thought of as an ordinary fu-
sion category) is a commuting projector model with
anyons described by the UMTC Z(X ) ∼= ZA(X )⊠A.
To trivialize the A layer, we attach this string net
to the Walker-Wang model associated to A (see
Fig. 5). This generalizes the topological boundary
conditions for the Walker-Wang models considered
in [WW12, vKBS13], by gluing a suitable (2+1)D
string net to the boundary; the resulting surface the-
ory has the topological order ZA(X ).

To make this construction explicit, we must
specify how the bulk and boundary layers are at-
tached. Here we describe in detail the simplest
subset of these models, for which the fusion rules
of X and A are multiplicity free, and that the
composite A → Z(X ) → X is fully faithful.
This latter assumption means we can identify the
anyons a, b, c, . . . in A with simple objects in X ,
so that Irr(X ) can be written as a disjoint union
{a, b, c, . . . } ⨿ {x, y, z, . . . } where x, y, z, . . . are the
remaining simples in X not coming from A. More-
over, given two anyons a, b ∈ Irr(A), the Ω tensor
to describe the half-braiding for F (a) with the im-
age of b ∈ X is given by the R-matrix in A. From
these simplifications, the R-matrix for the A-bulk
and the Ω-tensor for the X -boundary string net, to-
gether with the choice of which subset of anyons in
Z(X ) to identify withA, is sufficient to fully describe
the Hamiltonian. For the general case, we can add
degrees of freedom to vertices as in [Kon14a], and
the description of half-braidings requires more in-
dices for the Ω tensors as in [LLB21, (42,43)].

We begin with the usual brick-layer lattice for
the Walker-Wang model, where red edges carry
CIrr(A) spins labelled by anyons a, b, c, . . . in A and

black edges carry CIrr(X ) spins labelled by simple
objects {a, b, c, . . . , } ⨿ {x, y, z, . . . } of X .

(1)

The Hamiltonian in the red A-bulk is identical
to the Walker-Wang Hamiltonian. There are ver-
tex terms projecting to the subspace of admissible
triples at that vertex, and the plaquette term uses
the braiding of A to resolve the crossing.

a ⇝
α
α†

β

β†

Here, we resolve the crossing by the formula〈
ab

∣∣∣∣∣ =∑
y

R
ba

c

√
dc
dadb

〈
c
a

a

b

b

∣∣∣∣∣ (2)

We then use the F -symbols to resolve the diagram
on the right hand side back to the original lattice,
to obtain the matrix elements of the Hamiltonian.

The Hamiltonian on the black boundary has ver-
tex and plaquette terms similar to the Levin-Wen
string net model for X , with two important changes.
The vertices which have a red edge where the A-
bulk meets the X boundary must have CIrr(A) spins
on the red edge and CIrr(X ) on the black edges. By
assumption, we can identify Irr(A) as a subset of
Irr(X ), so we use the usual Levin-Wen vertex term
for X at these vertices. The plaquette term for the
X -boundary uses the half-braiding for the A-anyons
with X afforded by the (fully faithful) central action
F : A → Z(X ).

x ⇝
α
α†

β

β†

By our simplifying assumption, the anyons in A
stay simple when we forget them down to X , and
so the Ω-tensor (3) giving the 6j-description of the
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half-braiding as in [LLB21, (42,43)]10 can be sub-
stantially simplified. We resolve the crossing of the
blue x-string from X with the red a-string from
A ⊂ Z(X ) by〈

xa
∣∣∣∣∣ =∑

y

Ω
a,x

y

√
dy
dxda

〈
y
x

x

a

a

∣∣∣∣∣ (3)

To see the boundary excitations are indeed
ZA(X ), we consider the category of excitations
Z(X ) in the boundary string net model. Pairs of
such excitations are created by quasiparticle string
operators, as described in [LLB21]. In order for the
corresponding anyon to represent a point-like, de-
confined excitation at the surface of our 3D model,
we must be able to change the path of the anyon
string operator arbitrarily away from its endpoints
without creating additional excitations. Thus we
must be able to move this path past the red links
extending from the boundary to the bulk. This is
exactly the condition that the anyon is centralized
by F (A), i.e., the excitations are given by ZA(X ).

Remark II.5. In this section, our conventions for
the S, T matrices follow [BBCW19, (35) and (37)],
which do not agree with those in [LLB21,
(58) and (62)]. The S-matrix in a UMTC A is given
by

Sa,b :=
1

DA
· a b

where DA is the square root of the global dimension
of A, and the T -matrix T = diag(θa)a∈Irr(A) where

θa :=
1

da
· aa

aa
.

1. Chiral example: SU(2)4

To illustrate this construction in more detail, we
show how to realize SU(2)4 at the boundary of a
Walker-Wang model with SU(3)1-bulk. We reverse
engineer this model by starting with SU(2)4 and

10 We choose here a different convention for indices for our Ω-
tensors than in [LLB21], as our assumptions of multiplicity
free and the composite A → Z(X ) → X being fully faithful
let us use fewer indices. In particular, our index convention
here is chosen to be as close as possible to the convention for
the R-matrix. The two conventions are related by Ωa,x

y =
Ωx,aay

a from [LLB21, (42)] where a ∈ Irr(A) and x, y ∈
Irr(X ).

considering the domain wall (see § IID below) com-
ing from the conformal inclusion SU(2)4 ⊂ SU(3)1,
which can be obtained by condensing the Z2 boson
in SU(2)4 to obtain SU(3)1.

SU(2)4 SU(3)1

T Y3,−

The UMTC SU(2)4 can be defined as the sem-
simple part of Rep(Uq(su2)) at q = exp(2πi/12)
[AP95, BK01, Saw06], [KO02, § 6], or as the
semisimple quotient by negligibles of the Temperley-
Lieb-Jones category T LJ (s) with s = exp(πi/12).
This latter skein-theoretic description has loop pa-
rameter

= −s2 − s−2 = −
√
3

and braiding

:= s + s−1 (4)

[FK93], [KL94, § 9], [Wan10, §1.2], [EMM, §2]. Since
the loop parameter for the strand is negative, the
pivotal structure11 on this braided fusion category
is given by φn := (−1)n on the anyons {fn}, which
endows SU(2)4 with the structure of a MTC. Under
the dagger structure given by the conjugate linear
extension of

( )
†
:= − , (5)

SU(2)4 is a UMTC.12

The fusion and modular data of SU(2)4 is as
follows:

• anyons: {f0 = 1, f1, f2, f3, f4 = g}

11 A pivotal structure on a fusion category is a trivialization of
the double-dual functor, which consists of a scalar for each
simple satisfying a coherence condition [EGNO15, § 4.7].

12 It was determined in [FK93] when T LJ (s) is unitary.
As stated in [Wan10, § 1.4], T LJ (s) is unitary when

s = ±ie±
2πi
24 . These 4 choices of s give the 4 unitary braid-

ings on the unitary Temperley-Lieb-Jones category which
arises from subfactor theory [Jon83] with dagger structure( )†

:= .

We also have that T LJ (s) is unitary whenever s = ±e±
2πi
24

with the dagger structure (5); these 4 choices of s give the
4 unitary braidings on the underlying UFC of SU(2)4.
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• fusion rules:

⊗ f1 f2 f3 g
f1 1 + f2 f1 + f3 f2 + f4 f3
f2 f1 + f3 1 + f2 + g f1 + f3 f2
f3 f2 + f4 f1 + f3 1 + f2 f1
g f3 f2 f1 1

• quantum dimensions: d1 = dg = 1, df1 =

df3 =
√
3, and df2 = 2

• associator/F-symbols: see [KL94, § 9.12] or
[AS10, Appendix E]

• braiding/R-symbols:

c

a b

= Rabc

c

a b

where

Rabc = (−1)
a+b+c

2 s
c(c+2)−a(a+2)−b(b+2)

2

• S-matrix:13
1

2
√
3


1
√
3 2

√
3 1√

3
√
3 0 −

√
3 −
√
3

2 0 −2 0 2√
3 −
√
3 0

√
3 −

√
3

1 −
√
3 2 −

√
3 1


• twists:14 1, eπi/4, e2πi/3, e−3πi/4, 1

It is helpful to use shorthand notation for the bo-
son f4 =: g and the condensable algebra 1 + g =:
A. We refer the reader to Appendix B for back-
ground on condensable algebras and anyon conden-
sation. The category of right A-modules in SU(2)4,
which describes excitations on the domain wall be-
tween SU(2)4 and SU(3)1 (see Example III.2), is
a Z/3 Tambara-Yamagami unitary fusion category
T Y3,−,15 and can be described as follows [TY98],
[LLB21, § VII E]:

13 The S-matrix above was computed with the formula Si,j =

[(i+1)(j+1)]s where [n]s = s2n−s−2n

s2−s−2 for s = exp(πi/12).

This formula is obtained from [Wan10, p. 15] by including
the pivotal structures φi = (−1)i for fi and φj = (−1)j for
fj .

14 The twists above were computed with the formula θn =
sn(n+2) with s = exp(πi/12), which agrees with the for-
mula from [KO02, §6], and can be proven by induction using
the balance axiom and (4). Our formula differs from [KL94,
§ 9.7] by including the pivotal structure φn = (−1)n for fn;
see [HPT16, (32) from Appendix A.2].

15 There are four Z/3 Tambara-Yamagami UFCs correspond-
ing to a choice of bicharacter ⟨a, b⟩ = ζ±ab and a choice of
sign ± corresponding to the Frobenius-Schur indicator of σ.
For SU(2)4, this sign must be −1, and the two UFCs cor-
responding to the ± bicharacters give monoidally opposite
UFCs. Their centers differ by reversing the braiding; the
UFC with ζab bicharacter has center SU(2)4⊠SU(3)1, and

the UFC with ζ−ab bicharacter has center SU(2)4⊠SU(3)1
as desired.

• simple objects: {0, 1, 2, σ}

• fusion rules: Z/3 for {0, 1, 2} and σ2 = 0+1+2

• quantum dimensions: d0 = d1 = d2 = 1 and
dσ =

√
3

• associator/F-symbols: determined by the
bicharacter ⟨a, b⟩ := ζ−ab where ζ :=
exp(2πi/3) and a choice of sign:

F aσbσσσ = Fσaσbσσ = ζ−ab

Fσσσσab =
−1√
3
ζab.

Since the generator f1 of SU(2)4 is pseudo-real, so
is the non-invertible object σ ∈ T Y3,−, which is
reflected in the F-symbol Fσσσσab above. (Observe
σ = f1 + f3 in the category of right A-modules.)

The category of local right A-modules in SU(2)4,
corresponding to those wall excitation types which
braid trivially with the condensate and thus remain
deconfined, is SU(3)1. This category is described
by the following data, where again ζ = exp(2πi/3)
[RSW09, 5.3.3]:

• anyons: {0, 1, 2}

• fusion rules: Z/3

• quantum dimensions: d0 = d1 = d2 = 1

• associator/F-symbols: trivial

• braiding/R-symbols:

R1,2
0 = R2,1

0 = ζ−1

R1,1
2 = R2,2

1 = ζ
(6)

• S-matrix:
1√
3

1 1 1
1 ζ ζ2

1 ζ2 ζ


• twists: 1, ζ, ζ

By [DMNO13, Cor. 3.30],

Z(T Y3,−) ∼= SU(2)4 ⊠ SU(3)1, (7)

so setting A := SU(3)1 and X := T Y3,−, we have
ZA(X ) = SU(2)4. In the lattice model for this ex-
ample, in (1), every red edge has C3 spins labelled by
Z/3 = {0, 1, 2}, and every black edge has C4 spins
corresponding to Irr(X ) = {0, 1, 2, σ}. Vertices at
the surface impose the fusion rules of T Y3,−, with
the labels 0, 1, 2 in the bulk being treated as equiv-
alent to labels 0, 1, 2 in the boundary under fusion.
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As A has only Abelian anyons, d0 = d1 = d2 =
1, resolving the crossing (2) is as easy as y = x+ z:〈

ab

∣∣∣∣∣ = R
b,a

(a+b)

〈
a+b

a

a

b

b

∣∣∣∣∣
where R is the reverse R-matrix of (6). Resolving
(3) to describe the boundary plaquette terms is also
easier since for any bulk edge label a, da = 1, and
dx = dy as xa = y = ax. In particular, Ωa,xy =
Ra,xy whenever x, y ∈ {0, 1, 2}, so the only extra data
needed are the 1× 1 unitary matrices Ωσ,σa :〈

σa
∣∣∣∣∣ = Ω

a,σ

σ

〈
σ
σ

σ

a

a

∣∣∣∣∣ .
These Ω-symbols are given by

Ω0,σ
σ = 1, Ω1,σ

σ = ζ, Ω2,σ
σ = ζ.

2. The Drinfeld center of T Y3,−

The centers of the Tambara-Yamagami UFCs
were first computed in [Izu01, § 3]. For complete-
ness, we list here the 15 simple objects in Z(T Y3,−)
and the data of the Ω-tensor using the conventions
of [LLB21];16 the Ω-tensor is determined by the Ω-
tensor by [LLB21, (48b) and (48c)]. Here, we use
the original notation of [LLB21] (see Footnote 10)
as some of the objects in the center are direct sums
of simples in T Y3,−.

• invertibles αg,j for each element g ∈ Z/3 and
j = 0, 1, for a total of 6 abelian anyons. The
underlying object of αg,j is g ∈ T Y3,−, so
dim(αg,j) = 1.

α = α0,j : Ω
1,001
α = Ω2,002

α = 1

Ωσ,00σα = (−1)j

α = α1,j : Ω
1,112
α = ζ−1

Ω2,110
α = ζ

Ωσ,11σα = (−1)jζ−1

16 The Ω-tensor for the Z/3 Tambara-Yamagami UFCs with
bicharacter ζab were computed by Chien-Hung Lin. The
case with +1 Frobenius-Schur indicator appears in [LLB21],
and the case with −1 Frobenius-Schur indicator is com-
mented out in the arXiv source of [LLB21]. Taking com-
plex conjugate gives the Ω tensors for the other two Z/3
Tambara-Yamagami UFCs (see Footnote 15). Indeed, the
complex conjugate UFC is equivalent to the opposite UFC
by taking dagger, and the opposite is equivalent to the
monoidal opposite by taking duals. We present here the
Ω-tensor for the bicharacter ζ−ab and sign −1 by taking
the complex conjugate of this commented out data with
Chien-Hung Lin’s permission.

α = α2,j : Ω
1,220
α = ζ

Ω2,221
α = ζ−1

Ωσ,22σα = (−1)jζ−1

• 1 simple γg,h for each distinct pair of elements
g, h ∈ Z/3 whose underlying object is g ⊕ h
in T Y3,−, so dim(γg,h) = 2. The Ω-tensors
are determined up to three U(1) gauge phases
ϕ1, ϕ2, ϕ3:

γ = γ0,1: Ω
1,001
γ = ζ−1

Ω2,002
γ = ζ

Ωσ,00σγ = Ωσ,11σγ = 0

Ω1,112
γ = Ω2,110

γ = 1

Ωσ,01σγ = eiϕ1

Ωσ,10σγ = e−iϕ1

γ = γ0,2: Ω
1,001
γ = ζ

Ω2,002
γ = ζ−1

Ω3,00σ
γ = Ω3,22σ

γ = 0

Ω1,220
γ = Ω2,221

γ = 1

Ωσ,02σγ = eiϕ2

Ωσ,20σγ = e−iϕ2

γ = γ1,2: Ω
1,112
γ = Ω2,221

γ = ζ

Ω2,110
γ = Ω1,220

γ = ζ−1

Ωσ,11σγ = Ωσ,22σγ = 0

Ωσ,12σγ = ζ−1eiϕ3

Ωσ,21σγ = e−iϕ3

• 2 simples δg,j for each g ∈ Z/3 and j = 0, 1
whose underlying object is σ ∈ T Y3,−, so
dim(δg,j) = 1.

δ = δ0,j : Ω
1,σσσ
δ = Ω2,σσσ

δ = ζ

Ωσ,σσ0δ = (−1)je−πi/4
Ωσ,σσ1δ = Ωσ,σσ2δ = −(−1)je−11πi/12

δ = δ1,j : Ω
1,σσσ
δ = 1

Ω2,σσσ
δ = ζ−1

Ωσ,σσ0δ = Ωσ,σσ2δ = −(−1)je−7πi/12

Ωσ,σσ1δ = (−1)je−11πi/12

δ = δ2,j : Ω
1,σσσ
δ = ζ−1

Ω2,σσσ
δ = 1

Ωσ,σσ0δ = Ωσ,σσ1δ = −(−1)je−7πi/12

Ωσ,σσ2δ = (−1)je−11πi/12

The S, T -matrices for Z(T Y3,−) (see Remark
II.5) are given by [Izu01, Thm. 3.6]. First, for
each g ∈ Z/3, we let ωg be a square root of
(−1)g · i · exp(−g2πi/3). We choose

ω0 = eπi/4, ω1 = ω2 = e7πi/12.

The twists are given by:
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• T (αg,j) = ⟨g, g⟩ = ζ−g
2

which is 1 if g = 0 and
ζ−1 otherwise.

• T (γg,h) = ⟨g, h⟩ = ζ−gh which is 1 if g = 0 and
ζ if g = 1 and h = 2.

• T (δg,j) = (−1)jωg, giving the following twists:

eπi/4, e5πi/4, e7πi/12, e19iπ/12, e7πi/12, e19πi/12.

We give a table of the twists of all anyons in
Z(T Y3,−) in (8) below. The block S-matrix is given
by:

αk,j γk,ℓ δk,j

αg,i
1

6
⟨g, k⟩

2 1

3
⟨g, k + ℓ⟩ (−1)i

2
√
3
⟨g, k⟩

γg,h
1

3
⟨g + h, k⟩ 1

3
⟨g, ℓ⟩⟨h, k⟩+ ⟨g, k⟩⟨h, ℓ⟩ 0

δg,i
(−1)j

2
√
3
⟨k, g⟩ 0

(−1)i+jωgωk
6

∑
ℓ

⟨ℓ− (g + k), ℓ⟩

Ordering the anyons of Z(T Y3,−) as follows (the ϕ such that the twist θ = eϕπi is matched for convenience)

α0,0 = 1 α1,0 α2,0 δ0,0 δ2,1 δ1,1 γ1,2 γ0,2 γ0,1 δ0,1 δ2,0 δ1,0 α0,1 α1,1 α2,1

ϕ 0
−2
3

−2
3

1

4

19

12

19

12

2

3
0 0

5

4

7

12

7

12
0
−2
3

−2
3

(8)

we see that the S, T -matrices of Z(T Y3,−) = Z(X ) are exactly the tensor product of the S, T -matrices of

SU(2)4 ∼= ZA(X ) and SU(3)1 = A respectively. Here, the anyons in violet and red generate the copy of

SU(3)1 in Z(T Y3,−), and the anyons in violet and blue generate the copy of SU(2)4.

C. Change of enrichment and 1-composition in
UBFC

Comparing the model described above to the
original construction of [WW12], it is evident that
the choice of bulk is not unique. This reflects the fact
that, by the cobordism hypothesis [BD95, Lur09],
anomalies are characterized by a Witt class of
UMTCs [BJSS21]. Here, the Witt class of a UMTC
A is all UMTCs B such that A⊠B is braided equiv-
alent to the Drinfeld center [DMNO13] Z(W) of a
UFC W; when W has such a braided tensor equiva-
lence A ⊠ B → Z(W), we call it a Witt equivalence
from A to B.17 In the previous section, for example,
we saw that T Y3,− is a Witt equivalence between
SU(3)1 and SU(2)4.

Physically, this means that Witt equivalent

17 Note that here, the bimodule tensor category W is not de-
scribing the excitations on a (1+1)D domain wall between
(2+1)D bulks, but the data of a commuting projector model
of a (2+1)D domain wall between (3+1)D bulks. One can,
however, interpret this as a mapping from edge labels in A
and B to anyons in the string-net model associated to W.

UMTC’s determine invertible bulks which can re-
alize the same set of boundary topological orders,
and also that Witt equivalent UMTCs can appear
as surface topological orders of the same invertible
bulk. In the previous subsection, for example, the
standard boundary conditions of [WW12] lead to
SU(3)1 surface topological order, and we could have
obtained the same SU(2)4 surface topological or-
der from a bulk theory A = SU(2)4. This suggests
that these two Walker-Wang models should, in some
sense, be equivalent, since they can realize the same
set of topological orders at their boundaries. Indeed,
it is widely believed that two Walker-Wang models
are related by a finite depth quantum circuit if, and
only if, they are Witt equivalent [SCD+22]. This
leads to the conjecture in [SCD+22, § 4] that the
group of QCA modulo finite depth quantum circuits
is isomorphic to the Witt group of UMTCs.

Explicitly, we can change the choice of which
bulk theory describes the anomaly by composing
with an appropriate invertible 1-morphism B → A in
the 4-category UBFC, giving an invertible 3-functor
UmFCA → UmFCB. This composition should be
viewed as stacking a Witt-equivalence W in the 3D
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bulk on top of the 2D boundary:

X

A

W

B

The X -labelled boundary hosts the topological or-
der ZA(X ). The surface labeled by W represents a
bulk defect implementing the Witt equivalence be-
tween A and B. If we collapse the A-bulk region to
the boundary, we can think of the parallel X and
W sheets as a single (2+1)D topological boundary
from the B-bulk to vacuum, which supports the same
UBFC of localized excitations as the original bound-
ary labelled by X . This boundary will be equiva-
lent to the boundary determined by the B-enriched
multifusion category W �A X , which we will define
below.

In order to understand this stacking operation,
let us discuss the bulk defect labelled by W in more
detail. In the Walker-Wang model, such a defect is
obtained by inserting a layer of the string net con-
structed from the fusion categoryW. To attach this
layer to the Walker-Wang bulk, we adopt the same
strategy as in § II B, using the functor A → Z(W)
to attach the A Walker-Wang bulk from below. If
W is a Witt equivalence (i.e., if F is a braided
equivalence), then this defect will be invertible by
[JMPP19, Thm. 2.18]. Invertibility means that there
is another boundary, namely Wmp,18 which can be
stacked with W to give the trivial boundary. This
implies that in the absence of further defects, an
invertible boundary cannot be detected using oper-
ators localized near the 2D defect; in particular, the
defect plane does not have any topological order or
anyons.

We now describe how to stack defects corre-
sponding to Witt equivalences. As noted above,
stacking with the invertible boundary W corre-
sponds to composing with the 1-morphism W in
UBFC. Mathematically, this stacking operation is
given by the relative Deligne product �A.

Warning II.6. The operation �A is generally writ-
ten ⊠A, since it is related to the (non-relative)
Deligne product ⊠. However, in this paper, several
operations which have different mathematical defini-
tions and/or physical meanings, but are all conven-
tionally denoted by ⊠A, will appear. We therefore

18 Given a (multi)fusion category X , Xmp is the (multi)fusion
category obtained from X by reversing the monoidal prod-
uct.

introduce this unconventional notation as a disam-
biguation.

Definition II.7. Given a UMTC A ∈ UBFC, we
define the canonical Lagrangian algebra

KA :=
⊕

a∈Irr(A)

a⊠ a ∈ A⊠A. (9)

Here, the term Lagrangian algebra refers to the fact
that the category (A⊠A)locKA

of local modules is just
Hilbfd – in other words, condensing the anyons inKA
leads to a trivial topological order. See Appendix
B for details. Note that, since the Deligne tensor
product is symmetric, A ⊠ A ∼= A ⊠ A, and this
canonical equivalence takes KA to KA. As such, we
denote both algebras by KA.

Given an A−B bimodule fusion category U and
a B−C bimodule fusion category V where A,B, C ∈
UBFC are UMTCs, following [JMPP19, §2.3] based
on [BJS21], we define the 1-composite

U �B V := (U ⊠ V)KB . (10)

In other words, U �B V is given by the category
of KB-modules in U ⊠ V (see Appendix B). Here,
KB ∈ B ⊠ B ⊂ Z(U ⊠ V) is given by the analog of
(9) for B. The composite defect U �B V is an A−C
bimodule multifusion19 category, describing a Witt
equivalence between A and C. See § IID below for
a definition of bimodule multifusion category (which
appears with a different physical interpretation!).

This composition has a concrete realization in
terms of Walker-Wang models. Consider a stack
of three initially decoupled Walker-Wang layers,
with bulks constructed from three Witt equivalent
UMTC’s A,B, and C ∈ UBFC respectively. We first
attach a string-net associated with the fusion cate-
gory U to the bottom of the A layer, as described
in Sec. II B. Using an reflected procedure, we then
attach a V string net to the top of the C layer.
In the case that U ,V are Witt equivalences to B
from A, C respectively, we now have a Walker-Wang
model with a A bulk and surface B topological order
at the boundary on the bottom, and a Walker-Wang
model with a C bulk and surface B topological or-
der at the boundary on the top. Finally, we must
connect the U and V string nets in such a way that

19 Given a connected separable algebra A in a fusion category
X which lifts to a commutative (and thus condensable) al-
gebra in Z(X ), XA is again a fusion category [EGNO15].
However, the image of KB in U⊠V is usually not connected.
Precisely, KB will only be sent to a connected algebra in
U ⊠ V when no anyon in the B bulk can condense on both
domain walls.
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their topological order is trivialized, by taking mod-
ules over KB as in (10). Physically, there are two
ways to view this process. On the one hand, we can
bring together the (2+1)D B boundary of the bot-
tom half of our system and the B boundary from the
top half, and annihilate the resulting topological or-
der by condensing the anyons in KB. On the other
hand, we can also leave these boundaries spatially
separated, and insert a slab of the Walker-Wang bulk
ground state with edges labeled by objects in B to
connect the U and V defects. Both of these are valid
physical interpretations of the mathematical process
of taking modules overKB. The A−C bimodule ten-
sor category U �B V describes the remaining surface
topological order near the B-slab.

U

A

B surface excitations

B surface excitations

V

A

C

U�BV

FIG. 6. Taking KB-modules in U ⊠ V glues the
Witt-equivalences AUB and BVC to obtain the Witt-
equivalence A(U �B V)C.

In the case that U and V are Witt equivalences,
this trivializes both surface topological orders, con-
fining all the surface anyons, as seen by the fact that
U �B V is again a Witt equivalence between A and
C. Indeed, by [DMNO13, Thm. 3.20],

Z(U �B V) ∼= Z((U ⊠ V)KB)

∼= Z(U ⊠ V)locKB

∼= (A⊠ B ⊠ B ⊠ C)locKB

∼= A⊠ C.

Mathematically, the point is that Witt equivalences
are invertible 1-morphisms in UBFC, and the compo-
sition of two invertible morphisms will be invertible.

This also gives a simple picture of the case we
are interested in: composing a (2+1)D topological
order, which we describe as a boundary between the
Walker-Wang model associated to the UMTC A and
the vacuum, with a Witt equivalence defect between
the Walker-Wang models associated to the UTMCs
A and B. We begin with a bulk A region, with sur-
face topological order described by an A-enriched
fusion category X . We introduce an invertible 1-
morphism W ∈ UBFC(B → A), corresponding to a
Witt-equivalence B ≃ A, into the bulk, and push

this defect to the boundary. The composite bound-
ary is described by the B-enriched multifusion cate-
gory W �A X . Just as in the case of composing two
Witt equivalences, we have

B ⊠ ZB(W �A X ) ∼= Z(W �A X )
∼= (Z(W)⊠ Z(X ))locKA

∼= (B ⊠A⊠A⊠ ZA(X ))locKA

∼= B ⊠ ZA(X ),

so ZB(W �A X ) ∼= ZA(X ). In other words, the
stacking operation depicted above indeed results in
a model with a different, Witt equivalent bulk the-
ory B, but the same boundary topological order. Ev-
idently, both bulk enrichments are equally valid from
the point of view of the boundary theory.

D. Topological domain walls and enriched
bimodule categories

We begin by sketching the mathematical data
and physical implications of a topological domain
wall separating two regions with (2+1)D topological
order, with anyons in the bulks described by the
UMTCs C and D respectively. Such domain walls
have been studied in [KS11, Lev13, KK12, FSV13,
LWKW20].

One way to describe a domain wall is to charac-
terize the point-like excitations localized on the wall.
These correspond to simple objects of a UmFC W,
similar to how anyons correspond to simple objects
in a UMTC. The categoryW is equipped with addi-
tional structure, describing how wall excitations in-
teract with bulk excitations. Mathematically, these
take the form of two monoidal functors F : C → W
and G : D → W, dictating which wall excitation
is obtained from fusing an anyon from the C and
D bulk regions, respectively, onto the domain wall.
These functors lift to give braided monoidal func-
tors F,G : C,D → Z(W), because when fusing a
bulk excitation c with a wall excitation w, we can
bring c to the wall on either side of w, relating the
two products F (c)w and wF (c) by a half-braiding on
F (c). This half-braiding is exactly the data needed
to construct the Drinfeld center Z(W) [FSV13, § 3].
Particles from C are transparent to particles from
D inside Z(W), because they approach the domain
wall from opposite sides, meaning that the two ac-
tion functors assemble into a single braided tensor
functor C ⊠ D → Z(W). The resulting mathemat-
ical structure is a unitary multifusion category W
equipped with actions of C and D that are central,
in the sense that the images of anyons in C and D
can braid past wall excitations inW. Equipped with
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these actions, W is called a C −D bimodule multifu-
sion category [HPT16], and written CWD. In other
words, the data that describes point-like defects on
W, together with exchange processes consistent with
the bulk braiding, is a bimodule UmFC.

In the case that the domain wall hosts a single
superselection sector of topologically trivial states,
W will be a UFC; this is often assumed in the lit-
erature. However, as we will see, two parallel do-
main walls, viewed as a single domain wall between
the outer bulk regions, can decompose into multi-
ple superselection sectors, even if each individual do-
main wall was indecomposable. Consequently, there
are wall excitations in each superselection sector of
ground states, as well as point defects between differ-
ent sectors of the domain wall. The resulting struc-
ture is an indecomposable UmFC category, with one
simple summand of the tensor unit associated to
each superselection sector.

In fact, not all bimodule UmFCs arise as the cat-
egories of wall excitations on a topological domain
wall. The bimodule UmFCs W that appear as cat-
egories of wall excitations are precisely those that
induce Witt equivalences on the UMTCs C and D
of anyons [Kon14b, § 5][FSV13, § 4], meaning that
the braided tensor functor C ⊠D → Z(W) is a uni-
tary braided equivalence. Thus, an alternative but
equivalent description of topological domain walls
is to specify a Witt equivalence between C and D
[DMNO13].

Domain walls between anomaly-free topological
orders have been thoroughly studied from the per-
spective of boundaries between Levin-Wen models
in [KK12]. There, it was shown that a topological
boundary between the string-net models associated
to the fusion categories X and Y comes from the
data of an indecomposable X−Y bimodule category,
i.e. a finitely semisimple categoryM equipped with
a tensor functor X ⊠ Ymp → End(M). It was also
shown that point-like excitations localized on such a
boundary form a fusion category, namely the cate-
gory EndX−Y(M) where objects are endofunctors of
M (i.e. of functors fromM to itself) which commute
with the X and Y actions (which is extra data on
such functors), and morphisms are natural transfor-
mations. Specifically, this means that pointlike exci-
tations on the domain wall correspond to functors in
End(M). However, these functors must satisfy cer-
tain conditions to ensure that they can be coupled
consistently to the bulk. The X and Y actions are
part of the data describing this coupling; the con-
dition of being in EndX−Y(M) ⊆ End(M) allows
an excitation to be exchanged with other domain
wall excitations in a manner consistent with the bulk
braiding. The tensor product on EndX−Y(M), dic-
tating the fusion rules of excitations on the bound-

ary, is just functor composition.
A special case of the construction of [KK12]

recovers the fact that localized excitations in the
X bulk region are described by the UMTC Z(X ),
since EndX−X (X ) ∼= Z(X ) (where the X − X bi-
module structure on X is just ⊗ in X ). Here, X
is the identity X − X bimodule, which describes
the trivial domain wall, i.e. no domain wall, in the
(2+1)D string-net bulk determined by X . Since
EndX−Y(M) is canonically a Witt equivalence be-
tween EndX−X (X ) and EndY−Y(Y), and as we have
seen EndX−X (X ) ∼= Z(X ) and EndY−Y(Y) ∼= Z(Y),
it follows that EndX−Y(M) is a Witt equivalence
Z(X ) → Z(Y). As argued in [Kon14b, § 5][FSV13,
§ 4], a domain wall between (2+1)D topological or-
ders is topological precisely when the category of
wall excitations is a Witt equivalence.

We will now show that the picture in the A-
enriched case is analogous. Topological domain walls
between (2+1)D TOs X ,Y ∈ UFCA correspond to
A-enriched bimodule categories, i.e. an X − Y bi-
module categoryM such that the two actions

A → Z(X )→ X → End(M)

A → Z(Y) = Z(Ymp)→ Ymp → End(M)

agree on the underlying fusion category of A (which
is the data of a particular natural isomorphism);
see [BJS21] or [JMPP19, §2.3] for the precise defini-
tion.20 Concretely, given the data of an A-enriched
bimodule category, it is straightforward to combine
the lattice model in § II B and the lattice model for
a domain wall in [KK12] to produce a lattice model
for the (1+1)D boundary separating the topologi-
cal orders ZA(X ) and ZA(Y) on the surface of the
3D bulk constructed from A; this shows that the
resulting domain wall is topological. In the result-
ing lattice model, the first two arrows above collec-
tively indicate how an edge label a ∈ Irr(A) in the
Walker-Wang bulk can be identified with an edge la-
bel xa ∈ Irr(X ) of the string net constructed from
X . The last arrow tells us that a point defect arises
when a string labeled by xa ∈ Irr(X ) terminates
on the domain wall M. The condition that the A-
actions onM agree simply ensures that the associa-
tion between bulk and boundary string labels is con-
sistent on both sides of the domain wall, such that
the resulting defect resides entirely in the (2+1)D
X -boundary, and does not extend into the (3+1)D
A-bulk.

To understand why this data describes topolog-
ical domain walls, recall that Z(X ) ∼= ZA(X ) ⊠ A,

20 When a (multi)fusion category Y is A-enriched, then Ymp

is A-enriched and ZA(Y) ∼= ZA(Ymp).
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and the string-net model associated to X describes a
system with decoupled layers of ZA(X ) and A topo-
logical order (see Fig. 5). As discussed in [KK12],
a topological domain wall between string net mod-
els for X and Y is described by an X − Y bimodule
M. By Lemma II.12 below, the condition that M
is A-enriched is equivalent to requiring that for any
anyon a ∈ Irr(A), a and a will annihilate when fused
on the domain wall, even when they are brought in
from opposite sides. In other words, the domain wall
factors as a domain wall connecting the ZA(X ) and
ZA(Y) layers and a domain wall connecting the two
A-layers, and the boundary in theA-layer is the triv-
ial A − A domain wall, i.e. no domain wall. Thus,
the choice of an A-enriched X − Y bimodule M is
just the choice of a domain wall between ZA(X ) and
ZA(Y) topological orders.

To turn the domain wall between Z(X ) and
Z(Y) described above into a domain wall between
ZA(X ) and ZA(Y), we simply attach the A-Walker
Wang bulk to the A-layer on both sides of the do-
main wall, using the prescription of § II B. Since
the domain wall is trivial in this layer, this can be
done without adding any bulk codimension 1 defects.
Moreover, any domain wall that is extended into the
bulk via a Witt equivalence can be folded into the
surface; from our discussion in § II C, it follows that
such domain walls are topologically equivalent to the
ones that we describe here.

We have just explained that topological domain
walls admit two equivalent characterizations. The
first involves a Witt equivalence (which may be mul-
tifusion) between the two bulk topological orders,
describing point-like defects localized to the domain
wall, and the second involves fixing an A-enriched
bimodule between the A-enriched multifusion cate-
gories which determine commuting projector mod-
els for the bulk topological orders, which is the data
required to construct a commuting projector Hamil-
tonian for the domain wall.

By identifying domain walls between ZA(X )
and ZA(Y) with a subset of domain walls between
Z(X ) and Z(Y), we obtain both of these pictures
from our construction. We have already described
how the data of anA-enriched bimodule category de-
termines a topological domain wall between (2+1)D
bulk topological orders with anomaly described by
A, and a corresponding commuting projector Hamil-
tonian. Moreover, we can use the methods of [KK12]
to show that point-like defects on the domain wall
are described by the UmFC EndAX−Y(M).

In the remainder of this section, we explore the
mathematical relationship between these two de-
scriptions. Specifically, we give two fundamental
constructions which relate the Witt equivalence de-
scribing wall excitations to the enriched bimodule

categories that define our lattice model. Specifically,
Construction II.8 turns the data of an A-enriched bi-
module category into the Witt equivalence of wall-
excitations. Construction II.11 shows that one can
also go the other way: given the desired category
of wall excitations, by including the action functors
which describe bringing bulk excitations to the do-
main wall, one can produce the data necessary for
defining a commuting projector lattice model of a
(1+1)D domain wall that hosts those wall excita-
tions and actions. Taken together, these construc-
tions show that the perspective of understanding
(2+1)D topological order in terms of enriched fu-
sion categories subsumes the perspective of looking
solely at UMTCs, because all possible UMTCs of
bulk excitations and Witt equivalences of wall ex-
citations arise from enriched fusion categories and
enriched bimodules.

In the unenriched case, i.e. string-net models,
Witt equivalences W between Z(X ) and Z(Y) cor-

respond to Lagrangian algebras in Z(X ) ⊠ Z(Y) ∼=
Z(X ⊠Ymp) (as we recall in § IIIA below), which in
turn correspond to indecomposable X ⊠ Ymp mod-
ule categories [DKR15, Def. 3.3] (see Remark II.10
below). Construction II.11 generalizes this to the en-
riched setting, taking in a Witt equivalence between
enriched centers and producing an indecomposable
enriched bimodule category which would be mapped
to that Witt equivalence under Construction II.8.

Construction II.8. Just as we take the enriched
centers ZA(X ) and ZA(Y) to obtain excitations in
the (2+1)D bulk regions, wall excitations on the do-
main wall whose commuting projector model is ob-
tained from the A-enriched X−Y bimodule category
M are described by the multifusion category

EndAX−Y(M) := EndUBFC(M) = EndX�AYmp(M)

where X �A Ymp = (X ⊠ Ymp)KA
by (10). Since

Z(EndX−Y(M)) ∼= Z(X ⊠ Ymp) ∼= Z(X )⊠ Z(Y)
∼= ZA(X )⊠A⊠A⊠ ZA(Y),

by [DMNO13, Thm. 3.20], we have

Z(EndAX−Y(M)) ∼= Z(X �A Ymp)

= Z((X ⊠ Ymp)KA)

∼= Z(X ⊠ Ymp)locKA

∼= ZA(X )⊠ ZA(Y).

Thus the bimodule tensor category EndAX−Y(M),
which is the category of excitations on the (1+1)D
domain wall whose commuting projector model is
described by M, is indeed a Witt equivalence be-
tween the enriched centers ZA(X ) and ZA(Y), ver-
ifying that the domain wall is topological [FSV13,
§ 4].
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Example II.9. For the trivial A-enriched
X − X bimodule XXX , manifestly we have
EndAX−X (X ) = ZA(X ), as forgetting the enrich-

ment, EndX−X (X ) = Z(X ) ∼= ZA(X ) ⊠ A. We
provide further discussion in § III B below.

Remark II.10. Before presenting Construction
II.11, we recall the correspondence between in-
decomposable X -module categories M, describing
gapped boundaries from Z(X ) to the vacuum,
and Lagrangian algebras in Z(X ) from [DKR15,
Def. 3.3]. Given an X -module category, observe
that EndX (M) is a fusion category Morita equiva-
lent to X , and thus Z(EndX (M)) ∼= Z(X ). This
means there is a Lagrangian algebra A ∈ Z(X )
such that EndX (M) ∼= Z(X )A. Indeed, A =⊕

m∈Irr(M) End(m) ∈ X , which lifts to a Lagrangian

algebra in Z(X ).
Conversely, given a Lagrangian algebra A ∈

Z(X ), the forgetful image of A in X is a direct sum
of Morita equivalent indecomposable algebra objects
A =

⊕
Ai. Then M = ModX (Ai) is an indecom-

posable X -module category, and choosing a different
Aj gives an equivalentM by Morita equivalence of
Ai and Aj .

This correspondence is one-to-one between La-
grangian algebras in Z(X ) up to isomorphism and
X -module categories (i.e. gapped boundaries to the
vacuum) up to equivalence. In § IIIA, we will show
how this implies that topological boundaries be-
tween (2+1)D topological orders all arise from anyon
condensation, up to the folding trick.

Construction II.11. Given a Witt-equivalence W
between ZA(X ) and ZA(Y), i.e., a fusion category

W such that Z(W) ∼= ZA(X )⊠ZA(Y), we can pro-
mote it to a canonical A-enriched X − Y bimodule
categoryM which recovers W as EndAX−Y(M).

Indeed, observe that as braided fusion cate-
gories,

Z(W ⊠A) ∼= Z(W)⊠ Z(A)
∼= ZA(X )⊠ ZA(Y)⊠A⊠A
∼= Z(X )⊠ Z(Y) ∼= Z(X ⊠ Ymp).

Let L in ZA(X ) ⊠ ZA(Y) be the Lagrangian alge-
bra corresponding to W, and let KA ∈ A ⊠ A be
the canonical Lagrangian from (9). Then L ⊠ KA
gives a Lagrangian algebra in Z(X ⊠ Ymp), corre-
sponding to a X ⊠ Ymp-module category M under
the correspondence [DKR15, Def. 3.3] (see Remark
II.10). Unfolding, the X − Y bimodule category
M has an A-enrichment by Lemma II.12 below.
Also by construction, EndAX−Y(M) ∼= (ZA(X ) ⊠
ZA(Y))L. Since both EndAX−Y(M) and W corre-
spond to the Lagrangian algebra L, they are equiva-
lent as ZA(X )−ZA(Y) bimodule tensor categories.

Physically, we should think of this construction
as follows. The Lagrangian algebra L⊠KA specifies
a domain wall between X and Y that factors into
a domain wall between ZA(X) and ZA(Y ) in one
layer, and a trivial domain wall in the A layer. This
follows from the fact that L is transparent to anyons
inA, and thatKA is the Lagrangian algebra inA⊠A
corresponding to the trivial domain wall; see Remark
III.5. Lemma II.12 does the mathematical work of
verifying that an A-enriched bimodule is the same
thing as one which is transparent to anyons from
A, and is therefore the correct data to describe the
resulting domain wall.

Lemma II.12. Suppose X ,Y are A-enriched fusion
categories and XMY is an X −Y bimodule category.
Let L be the Lagrangian algebra in

Z(X ⊠ Ymp) ∼= ZA(X )⊠ ZA(Y)⊠A⊠A

corresponding toM. The following are equivalent:

(1) There is a compatible A-enrichment onM

(2) There is an algebra homomorphism KA → L,
where KA is in the copy of A⊠A ⊂ Z(X⊠Ymp).

(3) We can factorize L = L′ ⊠ KA for some La-

grangian algebra L′ ∈ ZA(X )⊠ ZA(Y).

Proof. By definition, A-enrichments on XMY corre-
spond to monoidal natural isomorphisms

A⊠A A

EndX−Y(M)

▷⊠◁

⊗

⇒ ▷

where ▷ ⊠ ◁ : A ⊠ A → EndX−Y(M) is the free
module functor for L ∩ A⊠A, and ⊗ : A⊠A → A
is the free module functor for KA.

21 Since KA is
Lagrangian, such a factorization will exist if and only
if KA is isomorphic as an algebra to L ∩ A⊠A.

Clearly (3) implies (2). To show that (2) im-
plies L = L′ ⊠ KA for some Lagrangian algebra

L′ ∈ ZA(X ) ⊠ ZA(Y), we simply observe that L is

21 For an algebra A in C, the free module functor C → CA
is given by c 7→ cAA, where the module structure on cAA

comes from the multiplication AA → A. By [BN11], any
surjective (dominant) tensor functor between fusion cat-
egories S → T is equivalent to the free module functor
associated with some commutative algebra A ∈ Z(S), in-
cluding the functors ▷ ⊠ ◁ and ⊗ considered here in the
lemma. The interpretation of the free module functor in
the context of anyon condensation is reviewed in detail in
Example III.2.
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a condensable algebra with 1⊠KA as a subalgebra,
and therefore, possible choices of L are in bijection
with Lagrangian algebras in

(Z(X )⊠ Z(Y))locKA
∼= ZA(X )⊠ ZA(Y).

Local KA modules are all of the form c ⊠ KA for
c ∈ ZA(X )⊠ZA(Y), so the Lagrangian algebra L′ ∈
ZA(X ) ⊠ ZA(Y) corresponds to the algebra L′ ⊠
KA ⊇ 1⊠KA, as claimed.

In the preceding constructions, we saw that
an A-enriched bimodule category XMY between
A-enriched fusion categories X ,Y ∈ UFCA deter-
mines a Witt equivalence EndAX−Y(M) : ZA(X ) →
ZA(Y), and that all Witt equivalences between en-
riched centers arise in this way. By Example II.3,
any UMTC A arises as an enriched center, so all
Witt equivalences between UMTCs can be obtained
from Construction II.8. In other words, the perspec-
tive of Remark II.4 that (2+1)D topological orders
should be described by enriched fusion categories,
with domain walls described by enriched bimodule
categories, is in harmony with the expectations that
bulk excitations are described by UMTCs, wall exci-
tations are described by Witt equivalences between
them, and that categories of excitations completely
determine the topological order of the bulks and do-
main walls.

We remark that from the usual viewpoint, if a
topological order is described by a UMTC C, then
the topological domain walls from C to itself are de-
scribed by the fusion 2-category Mod(C). Indeed,
given such a domain wall M, we take the semi-
simple category of so-called twist defects, i.e. point
defects between the trivial domain wall and M.
Bringing in excitations from the bulk makes this
into a C − C bimodule category, but moving excita-
tions around the bottom of a twist defect allows us
to equip this category with a C-enriched structure.
The fusion 2-category of C-enriched C − C bimod-
ules is equivalent to Mod(C) [DN20]. By [JF20] this
yields an equivalence between the fusion 2-category
of topological domain walls from C to itself and
Mod(C).

On the other hand, using UFCA as a 3-category
of topological orders leads us to expect that topo-
logical domain walls from ZA(X ) topological order

to itself are described by UFCA(X → X ), which is

the fusion 2-category BimA(X ). To demonstrate the
consistency of our framework with the usual point
of view, we have the following mathematical result.

Proposition II.13. There is an equivalence of fu-
sion 2-categories BimA(X ) ∼= Mod(ZA(X )).

Proof. Observe that BimA(X ) = EndUBFC(AXHilb).

Now consider Xmp as a ZA(X )−AWitt-equivalence,

i.e., invertible 1-morphism in UBFC. Composing
these two 1-morphisms, we get Xmp �A X as a 1-

morphsim in UBFC(ZA(X )→ Hilb). Since Xmp �A
X is Morita equivalent to ZA(X ) via the A-enriched
bimodule X , we see

EndUBFC(ZA(X )
ZA(X )Hilb) ∼= EndUBFC(AXHilb).

The left hand side is exactly Mod(ZA(X )) by
[DN20]. A graphical representation of this map in a
2D projection of the 4D graphical calculus of UBFC22

is as follows:

BimA(X ) ∋

X

X

MA 7→
X

X

ZA(X )

ZA(X )

MXmp A

ZA(X )

∈ Mod(ZA(X )).

III. DECOMPOSING COMPOSITE
DOMAIN WALLS

Having outlined our perspective on topological
boundaries between (2+1)D topological orders, we
now turn to the question of central interest: namely,
what can happen when we compose two or more
domain walls by stacking them? This question is
mathematically important, since any domain wall
can be obtained by such a composition. More-
over, in the context of generalized symmetries (see
[McG23, CDIS22] for reviews), there has recently
been considerable interest in the fusion rules of
non-invertible symmetry defects (see, for example,
[KLW+20, CCH+22, FMT22, BBSNT23, BBFP22]
and references therein), which are closely related to
the composition of topological domain walls studied
here. The mathematical structure underpinning our
analysis of composition also has connections to dual-
ity transformations of 1-dimensional lattice models,
which have also recently enjoyed renewed interest
[EF23, LDV22, LVDCSV22].

In § IIIA, we review how domain walls are re-
lated to condensable and Lagrangian algebras in
UMTCs, as well as how this relation can be used
to describe any domain wall as a composition of ele-
mentary domain wall types. In § III B, we introduce
the mathematical operations corresponding to com-
posing domain walls, i.e. treating parallel domain
walls as a single domain wall. Finally, in § III C,
we explain the mathematics of decomposing paral-
lel domain walls into irreducible summands, includ-

22 Hom 2-categories in UBFC are 2-categories themselves, and
have a well-defined 2D graphical calculus.
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ing the calculation of the GSD which occurs given a
composite of domain walls.

A. Elementary topological domain walls

To set the stage for the remainder of this work,
we now review the results of [DNO13], who describe
how every (indecomposable) topological domain wall
can be viewed as a composite of several elementary
domain walls (see Fig. 8). There are two classes
of elementary domain walls: invertible domain walls
(Example III.1), which implement a braided tensor
equivalence between the UMTCs of excitations on
each side, and domain walls where an algebra is con-
densed on one side (Example III.2).

Example III.1. Suppose X is an A-enriched fu-
sion category. Invertible defects between regions
with ZA(X ) bulk topological order correspond to
invertible enriched X − X bimodule categories (i.e.
Morita equivalences), which correspond to braided

autoequivalences Φ ∈ Autbr⊗ (ZA(X )) by [ENO10,
JMPP19]. Anyons which cross the boundary are
permuted by the symmetry Φ, i.e. an anyon c ∈
ZA(X ) crosses the domain wall to become Φ(c).
Invertible defects have been discussed extensively
in the literature [BK05, CAS13, LBRS12, Che12,
BQ14, BJQ13, AF16, BBCW19, BQ12, YW12]. Lo-
cally, such invertible defect lines are simply a be-
nign relabelling of anyon types on one side of the
defect relative to the other. However, they can have
striking physical consequences, such as altering the
ground state degeneracy, when the defect lines ter-
minate.

Another important class of domain walls comes
from condensable algebras, a.k.a. unitarily separable
étale algebras A in a UMTC C. We include a review
of condensable algebras in Appendix § B below. As
the name suggests, a condensable algebra A is a col-
lection of anyons which can be condensed, leading
to a distinct phase with a different topological order
[BS09, Kon14b, BSS11, Bur18]. When the anyons
before condensation are described by the UMTC C,
the condensed phase is described by the UMTC ClocA ,
which we will describe presently (see Appendix § B
for details). By Constructions II.8 and II.11, the dis-
cussion of condensation in [Kon14b] applies equally
well, regardless of whether C is a Drinfeld center or
an enriched center.

Example III.2. The article [Kon14b] (see also
[BSH09]) explains how anyon condensation can be
carried out on one side of a domain wall, giving
a topological boundary between the uncondensed
phase with topological order C and the condensed

phase with topological order ClocA , the category of lo-
cal right A-modules in C. Excitations on the bound-
ary are described by CA, which is the fusion category
obtained from C by condensing A, but not demand-
ing locality, which physically corresponds to requir-
ing that the excitation braid trivially with A.

The data necessary to perform anyon conden-
sation is a condensable algebra A, which is a col-
lection of anyons (described mathematically as a di-
rect sum) in C together with a collection of fusion
channels satisfying consistency conditions [Kon14b].
These conditions guarantee that A-lines can be
treated as equivalent to vacuum lines. Similarly, the
data of an excitation on the domain wall created by
condensation is a direct sum of anyons M ∈ C to-
gether with a choice of how the condensate A can be
absorbed by M , which is mathematically the choice
of an A-action morphism in C(MA→M).23 This is
the mathematical data of an A-module, i.e. an ob-
jectMA in CA. Here, the letterM refers to the direct
sum of anyons of the uncondensed phase, and the
subscript ·A reminds us of the A-action. We empha-
size that, although we usually denote simple objects
by lowercase letters, we will usually denote simple
objects in CA by uppercase letters, because the un-
derlying object in C may not be simple. Physically,
this action allows M to absorb excitations from the
condensate A through fusion as if they were the vac-
uum.

The UMTC ClocA which describes bulk excita-
tions in the condensed phase is a subcategory of
CA, consisting of those particles which braid triv-
ially with the condensate A. Thus, we typically de-
note anyons in the condensed phase with the same
notation as wall excitations, although we add the
superscript M◦

A to point out that an object lives in
ClocA .

Bringing an anyon M◦
A ∈ Irr(ClocA ) out of the

condensate corresponds to applying the forgetful
functor ClocA → CA → C : M◦

A 7→ MA 7→ M ; this
functor forgets the data of the A-action onMA, leav-
ing only the underlying direct sum of anyonsM . The
resulting bulk excitation in the uncondensed region
can in general be viewed as a direct sum of different
anyon types in C. We provide further explanation of
CA and ClocA , including their physical interpretation,
in Appendix B.

Now suppose that C = Z(X ), where X ∈ UFC.
As we show in Appendix B, the condensed phase

23 One can view M as another collection of anyons and con-
sistent fusion channels where the fusion channels have one
input leg from M and one leg from A, and the output leg is
again in M . The consistency conditions are entirely similar
to those of a condensable algebra.
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ClocA is then the center of the fusion category XA of
right A-modules,24 Z(XA) ∼= Z(X )locA . The fusion
category XA can be obtained from X in the follow-
ing way. Objects of XA are objects Y of X equipped
with a module action Y A→ Y satisfying associativ-
ity and unitality conditions, which we depict in the
diagrammatic calculus as a trivalent vertex. The
tensor product on XA is the relative tensor product
(YA, ZA) 7→ YA⊗A ZA over A, which is the image of
the following projection.

Y Z

∈ X (Y Z → Y Z),

The Y and Z strings in the diagram above repre-
sent worldlines of excitations Y and Z confined to
the domain wall at the boundary of the region where
A is condensed. (We use capital letters for Y , and
Z because they in general they correspond to di-
rect sums of bulk anyons.) The unlabelled black
string is the worldline of the condensable algebra
A ∈ Z(X ). The orange and green trivalent vertices
describe processes where the anyons A are brought
to this gapped boundary, and fused with a Y or Z
boundary excitation.

There are several ways to interpret the category
XA. First, as we have just alluded to, objects in
XA correspond to excitations on the gapped bound-
ary between Z(XA) and Z(X )locA . Second, because
Z(XA) ∼= Z(X )locA , XA fixes the data for a commut-
ing projector model for the condensed region. Fi-
nally, XA can be viewed as a X −XA bimodule cate-
gory, describing the states of the resulting string-net
near the domain wall. The action of XA on XA is
just the tensor product ⊗A, while the action of X is
the free module functor X → XA : x 7→ xAA.

To see how this construction generalizes to the
enriched case, let X be an A-enriched fusion cate-
gory. If A ∈ C := ZA(X ) is a condensable algebra,
then XA is again an A-enriched fusion category,25

describing the topological order to the right of the
domain wall. Since the free module functor X → XA
is monoidal (i.e. it respects the tensor product), we
can also view XA as an A-enriched X − XA bimod-
ule. Construction II.8 then shows how to obtain

24 Here we suppress some of the data associated with XA; for
an explicit discussion of the full data see e.g. [FRS02a,
FRS02b]

25 By [DMNO13, Thm. 3.20], Z(XA) ∼= Z(X )locA . Since

Z(X ) ∼= ZA(X ) ⊠ A and A ∈ ZA(X ), we have Z(X )locA
∼=

ZA(X )locA ⊠ A. Thus, XA is A-enriched, with ZA(XA) ∼=
ZA(X )locA .

the Witt equivalence EndAX−XA
(XA) ∼= ZA(X )A de-

scribing point-like excitations on the domain wall
from this enriched bimodule.

We sometimes wish to condense the algebra A
to the left of the domain wall, instead of to the
right. In this case, we use the similarly defined A-
enriched fusion category AX of left A-modules in X
for the condensed bulk region, and the domain wall
is given by the A-enriched AX − X bimodule cate-
gory AX . We do so because the fusion category X
most obviously acts on the opposite side from where
A acts. However, the fusion categories XA and AX
are canonically monoidally equivalent: given a right
A-moduleMA, we obtain a left action of A onM by
composing the right action with the half-braiding
on A. Similarly, ZA(AX ) ∼= loc

A ZA(X ) ∼= ZA(X )locA ,
with the canonical braided monoidal equivalence
ZA(X )A → AZ

A(X ) preserving the subcategories
of local modules. Consequently, we will sometimes
tacitly identify AX and XA, e.g. in (38).

Example III.3. Condensing a condensable algebra
on one side of a domain wall as in Example III.2 re-
sults in a topological boundary to vacuum precisely
when the algebra is Lagrangian [Kon14b, Rem. 5.4]
[Lev13]. If A is a condensable algebra in a UMTC
C, the Drinfeld center of CA satisfies

Z(CA) ∼= C ⊠ ClocA (11)

by [DMNO13, Cor. 3.30]. (Recall that D is the same
unitary fusion category as D, but equipped with the
reverse braiding.) Hence A is a Lagrangian algebra
if and only if ClocA ∼= Hilb. Eq. (11) implies that this
can occur if and only if C is the Drinfeld center of
some unitary fusion category.

A priori, Example III.3 is a special case of Ex-
ample III.2. On the other hand, by the so-called
folding trick (see Fig. 7), any gapped boundaries be-

C D ⇝ D

C

FIG. 7. By folding, a topological boundary between C
and D is equivalent to a topological boundary between
C ⊠ D and the vacuum. Here, gray indicates regions
of the phases C and D (or D), and light blue indicates
that the line defect can be thickened to a region with an
intermediate topological order.

tween the topological orders C and D are equivalent
to gapped boundaries between C ⊠ D and the vac-
uum. Consequently, topological domain walls be-
tween C and D correspond to Lagrangian algebras
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in C ⊠ D, which correspond to fusion categories X
with a choice of equivalence Z(X ) ∼= C ⊠D by (11).

Remark III.4. In the A-enriched setting, when
performing the folding trick in UBFC, we have an
A-region between the two sheets, which corresponds
to taking a relative Deligne product over A. That
is, gapped A-enriched domain walls between X and
Y correspond to gapped boundaries for the ordinary
Hilb-enriched multifusion category X �A Ymp.

By [DNO13, Thm. 3.6], Lagrangian algebras
L = L(A,B,Φ) ∈ C ⊠D are determined by:

• condensable algebras A ∈ C and B ∈ D, where

A⊠ 1 := L ∩ C ⊠ 1D and 1⊠B := L ∩ 1C ⊠D,

and

• a unitary braided equivalence Φ : ClocA → Dloc
B .

To understand this, consider first when we have an
equivalence Φ : C → D. In this case, there is a
canonical Lagrangian algebra

L ∼=
⊕

X∈Irr(C)

X ⊠ Φ(X). (12)

In general, C and D are not equivalent, but if a La-
grangian algebra exists in C⊠D, we can find algebras
A ∈ C and B ∈ D that can be condensed such that
there is an equivalence ClocA → Dloc

B . We then get a
corresponding Lagrangian algebra in

(C ⊠D)locA⊠B
∼= ClocA ⊠Dloc

B ,

which is necessarily of the form (12).
To illustrate the meaning of L(A,B,Φ), we de-

scribe several special cases. In the case where A =
1C and B = 1D, the Lagrangian algebra must be
L(1, 1,Φ) for some equivalence Φ ∈ Funbr⊗ (C → D),
and we obtain an invertible domain wall, as in Ex-
ample III.1. This wall simply applies the relabeling
Φ to anyons crossing the wall, and when C = D,
can be thought of as applying a symmetry action
[BBCW19]. The inverse domain wall corresponds to
L(1D, 1C ,Φ

−1).
The condensation boundaries of Example III.2

correspond to Lagrangian algebras of the form
L(A, 1Cloc

A
, idCloc

A
) or L(1Cloc

A
, A, idCloc

A
), depending on

which side of the wall A is condensed on. These
walls are thoroughly analyzed in [Kon14b].

Remark III.5. We note that the trivial C−C topo-
logical boundary corresponds to the canonical La-
grangian algebra of C given by KC = L(1, 1, idC) ∈
C ⊠ C from (9). Physically, condensing c ⊠ c means
that a c particle from the left C-bulk and a c particle

from the right C-bulk annihilate on the boundary, or
equivalently, that a c particle can pass freely through
the wall. Thus, the domain wall is completely trans-
parent to all anyons in C, and must be trivial.

More generally, the Lagrangian algebra
L(A,A, idCloc

A
) contains (A ⊠ A) ∈ C ⊠ C as a

subalgebra, and hence corresponds to a Lagrangian

algebra in ClocA ⊠ ClocA ; this Lagrangian algebra is
precisely KCloc

A
.

Remark III.6. An isomorphism ψ : A → A′ be-
tween condensable algebras induces a braided ten-

sor equivalence ψ̃ : ClocA′ → ClocA . Thus, the La-
grangian algebra L(A,B,Φ) depends on the isomor-
phism classes of A and B, as well as on the choice of
Φ up to natural isomorphism and composition with
elements of Aut(A) and Aut(B).

The physical content of [DNO13, Thm. 3.6] is
that by unfolding the classification, every topolog-
ical domain wall between (2 + 1)D topological or-
ders can be obtained by juxtaposing walls of the
two types in Examples III.1 and III.2, as in Figure
8.26 For this reason, we refer to the domain walls

C

CA

Cloc
A

Φ

Dloc
B

BD

D
.

FIG. 8. Every topological boundary between topologi-
cal orders C,D can be obtained by juxtaposing conden-
sation boundaries and invertible boundaries cf. [DNO13,
§3].

described in Examples III.1 and III.2 as elementary
domain walls.

A dictionary between the mathematical formal-
ism and the physical interpretation for domain walls,
including additional details which we will discuss be-
low, appeared in Figure 4.

B. Composing domain walls

In this section, we review the mathematical op-
eration on bimodule categories for fusion categories
which corresponds to composition of domain walls
between anomaly-free topological orders. We then
argue that the concepts generalize in a straight for-
ward way to the A-enriched case.

26 The article [Kon14b] gives another method to decompose
topological domain walls into two condensations, but in the
reverse order of Figure 8.
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Notation III.7. Given UFCs X ,Y,Z, an X − Y
bimodule categoryM, and a Y − Z bimodule cate-
gory N , we can treat parallel domain walls defined
by M and N , as in (13) below, as a single domain
wall between the bulk regions determined by X and
Z. As described in [KK12, § 6], the X − Z bimod-
ule category which determines the composite string-
net Hilbert space associated with the composite do-
main wall is the relative Deligne product M �Y N
[ENO10, BBJ19a]. This bimodule category is de-
fined as

X

M

Y

N

Z ∼= XM�YNZ ∼= (M⊠N )SY (13)

The algebra SY ∈ Ymp ⊠ Y is given by

SY ∼=
⊕

y∈Irr(Y)

y ⊠ y,

with the multiplication⊕
x,y,z

∑
γ∈Bz

x,y

γ† ⊠ γ : SY ⊗ SY → SY ,

where x, y run over Irr(Y), and Bzx,y is an orthonor-
mal basis of Y(xy → z), i.e. a set of fusion channels
xy → z. One can check that this multiplication is
basis independent. In fact, �• is the definition of
1-composition for 1-morphisms in UFC. Note also
that XM�YNZ is defined to be the category of SY -
modules inM⊠N , which is itself a module category
for the tensor category Y ⊠ Y where SY lives. This
notion is discussed in Remark B.1.

In the diagram in equation (13), as in many
diagrams throughout the remainder of this paper,
the labels X ,Y,Z of spatial regions denote (A-
enriched) UFCs which determine a commuting pro-
jector model, rather than the corresponding UMTCs
of local excitations. Such diagrams naturally live
in the graphical calculus of UFC. However, they
can also be interpreted physically as representing 2-
dimensional spatial regions labelled with the cate-
gories necessary to define string-net models, using
the constructions of [KK12] to describe the corre-
sponding gapped domain walls. The correspond-
ing UMTCs can be obtained by taking the (en-
riched) center. In the string-net picture, there is an
equivalent definition of the relative Deligne product
as a ladder category [BBJ19a]. In physical terms,
M �Y N describes the space of local ground states
at the boundary, modulo the action of string opera-
tors in the Y bulk which have one endpoint on each
domain wall, as in the following sketch.

X

M

Y

N

Zc

While such a string operator can create nontriv-
ial wall excitations, since these excitations were ob-
tained from a pair of antiparticles, they must fuse
to the vacuum and so cannot be detected from far
away.

Warning III.8. As with � (see Warning II.6), the
operation which we have denoted by �Y is also con-
ventionally denoted by ⊠Y , despite the apparently
different definition. We have again introduced the
notation �Y as a disambiguation.

Remark III.9. One can check that, as an algebra
in Ymp ⊠ Y, the image of the canonical Lagrangian
algebra (9) KZ(Y) ∈ Z(Y) ⊠ Z(Y) ∼= Z(Ymp ⊠ Y)
is Morita equivalent to SY , i.e. (Ymp ⊠ Y)SY and
(Ymp ⊠ Y)KZ(Y)

are equivalent as Ymp ⊠ Y module
categories. In other words, � and � have equiva-
lent definitions; the difference lies in interpretation,
and in the fact that in the (3+1)D case where � is
used, the additional structure of a braiding on the
categories describing bulks and a tensor product on
the categories describing the boundaries produces a
tensor product on U �A V.

Notation III.10. Just as we can compose bimod-
ule categories for parallel domain walls to obtain a
bimodule category which dictates the data for the
composite boundary in a string net model, we can
also compose Witt equivalences to obtain the bimod-
ule (multi)tensor category of wall excitations on the
composite domain wall. In the situation of (13),
the category of excitations on the composite domain
wall is EndX−Z(M �Y N ). For ordinary (i.e. un-
enriched) bimodule categories ZMY and YNZ , by
[KZ18a, Thm. 3.1.7 and 3.1.8], we have

EndX−Z(M�
Y
N ) ∼= EndX−Y(M) ⊟

Z(Y)
EndY−Z(N ). (14)

as Z(X ) − Z(Z) bimodule multifusion categories,
where ⊟ is defined identically to � (see (10)). The
product ⊟

Z(Y)
reflects the fact that when the two do-

main walls are composed, a pair of wall excitations
associated with bringing a to M and a to N is a
trivial excitation, since the two anyons can be lo-
cally annihilated in the bulk.

Warning III.11. Although the operations ⊟C and
�C have the same mathematical definition, and are
both conventionally denoted by ⊠C , we use a differ-
ent symbol to emphasize the different physical in-
terpretations. Namely, the operation � describes
how the data which defines the ground state Hilbert
space of a commuting projector model for (2+1)D
defects between (3+1)D Walker-Wang models be-
haves under stacking, while ⊟ describes the category
of wall excitations on a composite (1+1)D domain
wall between (2+1)D bulks.
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We now describe how the above story general-
izes to the case of nontrivial anomaly. Mathemati-
cally, the picture in (13) can be thought of as a pic-

ture in the diagrammatic calculus of UFCA, where
X , Y, Z, M, and N are now A enriched. In this
case, the figure depicts a 2D region on the boundary
of a (3+1)D Walker-Wang bulk, which we have not
drawn. The X −Z bimodule categoryM�Y N will
be A-enriched by Lemma II.12, Remark III.9, and
the fact that, since Z(Y) ∼= A ⊠ ZA(Y), we have
KZ(Y)

∼= KA ⊠KZA(Y) as well.

In the A-enriched setting, it is claimed in [KZ21,
Thm. 4.15] that (14) implies

EndAX−Z(M�
Y
N ) ∼= EndAX−Y(M) ⊟

ZA(Y)
EndAY−Z(N ) (15)

as ZA(X ) − ZA(Z) bimodule multifusion cate-
gories.27 This shows that ⊟ is still the correct oper-
ation to compose categories of excitations.

This mathematical argument has the following
physical interpretation. As discussed in § IID, by
Lemma II.12, in theA-enriched setting, each domain
wall factors into a domain wall between the two en-
riched centers, and a trivial domain wall between A
and itself; the latter is compatible with attaching the
system to the boundary of a Walker-Wang model,
leaving only a topological domain wall between the
enriched centers. From this perspective, composing
the domain walls corresponding to A-enriched bi-
module categoriesM and N amounts to composing
domain walls ZA(X )−ZA(Y)−ZA(Z) in one layer,
and trivial domain walls in the A layer.

In fact, we can turn this physical picture into
a proof of (15). By (the correspondence outlined
in) Lemma II.12, for an arbitrary indecomposable
A-enriched X − Y bimodule M, EndX−Y(M) is a
Witt equivalence of the form (Z(X ) ⊠ Z(Y))L⊠KA ,

where L is a Lagrangian algebra in ZA(X )⊠ZA(Y).
Consequently, the point defects/wall excitations
which live on this domain wall factor according to
EndX−Y(M) ∼= EndAX−Y(M) ⊠ A, where A is the
identity A−A bimodule.

This insight allows us to obtain (15) from (14),
by exploiting the following sequence of equivalences

27 The symmetry enriched version has also recently appeared
in [Sun22].

of Witt equivalences Z(X )→ Z(Z).

EndA(M�
Y
N )⊠A

∼= End(M�
Y
N )

∼= End(M) ⊟
Z(Y)

End(N )

∼= (EndA(M)⊠A) ⊟
ZA(Y)⊠A

(EndA(N )⊠A)

∼= (EndA(M) ⊟
ZA(Y)

EndA(N ))⊠A

The two sides of (15) are now just the (ZA(X ) ⊠
1)−(ZA(Z)⊠1) bimodule tensor subcategories gen-
erated (as bimodule categories) by the tensor unit
– in other words, the set of domain wall excitations
corresponding to the identity particle in the A layer.
These are precisely the domain wall excitations that
are not confined by attaching the Walker-Wang bulk.

We now turn to the key issue which makes un-
derstanding the composition of parallel domain walls
so difficult. The composition M �Y N of two in-
decomposable A-enriched bimodule categories need
not be indecomposable, and so the Witt equivalence
EndAX−Z(M �Y N ) of wall excitations on the com-
posite wall is in general a multifusion category. In
other words, it does not describe a single topological
domain wall, but rather a direct sum of multiple dis-
tinct domain wall types. Physically, this means that
stacking two domain wallsM and N in general can
decompose into a direct sum of distinct indecompos-
able superselection sectors. Each superselection sec-
tor corresponds to a type of gapped boundary that
is invariant under the action of all local operators.

It is instructive to consider the following sim-
ple example involving the fusion of boundaries be-
tween Z/2-toric code; complete fusion rules for such
boundaries appear in [BBJ18], [KZ22, Table 1].

Example III.12. Consider a vertical strip of Z/2
toric code, sandwiched between two smooth gapped
boundaries to the vacuum, where the m-particle be-
comes condensed. Mathematically, we realize the
toric code bulk D(Z/2) := Z(Hilb[Z/2]) from the fu-
sion category Y = Hilb[Z/2], and the vacuum from
the trivial fusion category X = Z = Hilb. The
smooth domain walls are obtained from the bimod-
ule categories M = N = Hilb[Z/2], with the action
of Hilb[Z/2] on Hilb[Z/2] given by the tensor prod-
uct.

As for the corresponding Witt equivalence be-
tween D(Z/2) and Z(Hilb) ∼= Hilb, the action
D(Z/2) → EndHilb[Z/2](Hilb[Z/2]) ∼= Hilb[Z/2] is
given by the forgetful functor, which forgets the half-
braiding. That is, if Irr(M) = Irr(N ) = Z/2 =
{1, g}, where g ∈ Z/2 is the nonidentity element,
then the anyons 1 and m forget to the tensor unit
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1 ∈ Hilb[Z/2], i.e. the vacuum, while e and ϵ forget to
the nontrivial object in Hilb[Z/2], and become non-
trivial wall excitations. This gives the left (right)
boundary of our Toric code strip the structure of a
Hilb − Hilb[Z/2] (Hilb[Z/2] − Hilb) bimodule tensor
category.

In this case, the composite bimodule category
M�YN is just Hilb[Z/2] ∼= Hilb⊕Hilb as a Hilb−Hilb
bimodule – i.e. the direct sum of two copies of the
trivial domain wall from the trivial topological order
to itself. The fact that there are two copies arises
because, with appropriate boundary conditions, the
toric code strip has a GSD associated with the num-
ber of m-lines running between the two boundaries.

Example III.12 illustrates a general property
composing domain walls, described in detail in and
below Theorem III.22: in general, we can project
onto an individual summand (or domain wall type)
in the (decomposable) composite domain wall using
a linear combinations of certain short string oper-
ators connecting the two domain walls. The short
strings in question do not create wall excitations,
because the associated anyons - in this case, the m
particles- are condensed at each wall. The resulting
projectors are local, as they need not be separated
by more than the width of the central Y strip. To
go between different summands, however, requires a
non-local operator, such as a string operator which is
extended parallel to the domain walls. In our Exam-
ple III.12 above, the relevant operator is an e-string
extending across the Y strip parallel toM and N .

In contrast, the Witt equivalence of wall exci-
tations on a composite domain wall, which is the
composition of two Witt equivalences in UBFC, is

not decomposable, since Mod(ZA(X )⊠ZA(Z)) is a
connected fusion 2-category [DR18, Remark 2.1.22].
For example, in Example III.12, the composition
of the two Witt equivalences is Hilb[Z/2] ⊟D(Z/2)
Hilb[Z/2] ∼= M2(Hilb), an indecomposable unitary
multifusion category (and hence an indecomposable
Hilb − Hilb bimodule tensor category). The under-
lying reason for this indecomposability is that the
multifusion category EndAX−Z(M�Y N ) of wall ex-
citations on the composite domain wall consists both
of localized excitations in the individual summands,
and of point defects that connect different sum-
mands (i.e. different types of domain walls). We will
further explore the details of this in § IVD, once we
have developed the necessary tools.

Remark (Mathematical) III.13. Expanding on
Mathematical Remark II.4, we take a moment to
discuss the issue of finding a correct 3-category
of (2+1)D topological orders. It is natural that
(2+1)D topological orders should form a 3-category,
where objects are (2+1)D bulk topological orders,

1-morphisms are codimension 1 defects (i.e. do-
main walls), 2-morphisms are codimension 2 de-
fects (i.e. point defects), and 3-morphisms are topo-

logical local operators. We have proposed UFCA

as a 3-category of topological orders. However,
(2+1)D topological orders are frequently understood
in terms of the anyons, which form a UMTC. It is
therefore natural to wonder if the 4-category UBFC
is somehow related to a 3-category of (2+1)D topo-
logical orders.

In § IIA and (15), we saw that the categorical
data which determine commuting projector models
for (2+1)D bulk topological orders and (1+1)D do-

main walls between them, i.e. data in UFCA, are
mathematically interchangeable with the tensor cat-
egories describing bulk and wall excitations, which
are their counterparts in UBFC.

A precise formulation of this statement is as fol-
lows. Consider the two ‘truncated’28 1-categories

• UFCA
≤1, where objects are A-enriched fu-

sion categories and morphisms are equivalence
classes of A-enriched bimodule categories

• UMTC≤1, where objects are UMTCs and mor-
phisms are Morita equivalence classes of Witt
equivalences.29

The enriched center construction gives a functor
UFCA

≤1 → UMTC≤1 which is an equivalence onto its
image, and by Example II.3, everything in UMTC≤1

appears in the image of UFCA
≤1 for some A. Thus,

these candidate 1-categories of (2+1)D topological
order, where objects are (2+1)D bulk theories and
morphisms are domain walls up to invertible point
defect, agree.

The only question is whether this agreement can
be extended to include point defects and topolog-
ical local operators, which should respectively be
2-morphisms and 3-morphisms in a 3-category of
(2+1)D topological orders. That is, is there an

also embedding UFCA
≤2 → UMTC≤2 or UFCA →

UMTC≤3? If that were the case, one could ana-
lyze (2+1)D topological order by only considering
the categories of excitations (bulk excitations, wall
excitations, and superselection sectors at point de-
fects), and the machinery of enriched fusion cate-
gories which we have introduced would be superflu-
ous. However, the equivalence outlined in § IIA fails

28 Given an n-category C, for 0 ≤ k < n, we can truncate to
obtain a k-category C≤k, where 0-morphisms up through
(k − 1)-morphisms are the same as in C, and k-morphisms
in C≤k are k-morphisms in C up to equivalence.

29 Here, UMTC is the 4-subcategory of UBFC whose objects
are UMTCs and whose higher morphisms are all invertible.
For mathematical experts, UMTC = Ω(core(B(UBFC))),
the loop space of the core of the delooping of UBFC.
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to extend even one category level higher, because the
composition of 1-morphisms in UFCA can be decom-
posable, while the composition of the corresponding
1-morphisms in UBFC is indecomposable. This can
already be seen in studies of domain wall decompo-
sition in the non-anomalous case [BBJ19a, BBJ19b].

Decomposability of the composition of 1-
morphisms in UFCA means that there are 2-
morphisms, i.e. A-balanced bimodule functors,
which project onto individual summands. On the
other hand, 2-morphisms in UBFC are bimodule cat-
egories between Witt equivalences, and there is no
bimodule category which can project onto a corner
of an indecomposable multifusion category. Thus,
a hypothetical embedding UFCA

≤2 → UBFC≤2 has
nowhere to map the bimodule functors which project
onto summands.

This can be compared to the basic fact that (for
n ≥ 2) the vector space Cn decomposes as a di-
rect sum ⊕nC, while the algebra End(Cn) =Mn(C)
is simple. There are matrices in Mn(C) projecting
onto individual components of a vector in Cn, i.e. di-
agonal matrices with a single nonzero entry, but
Mn(C) does not act on any of these 1-dimensional
subspaces. We saw something extremely similar in
Example III.12: the space of ground states of the
string-net model for the composite domain wall was
described by Hilb ⊕ Hilb, with two summands to
project onto, but the multifusion category M2(Hilb)
of wall excitations contains point defects between
these two summands, and hence does not decom-
pose as a direct sum of the (trivial) categories of
wall excitations for each summand.

Thus, as candidate 3-categories of (2+1)D topo-
logical order, truncations of UMTC do not agree with
[KK12] as to the possible point defects between do-
main walls, leading us to adopt UFC, and more gen-
erally UFCA, as 3-categories of (2+1)D topological
orders.

C. Decomposing composite domain walls

Consider the horizontal composition of two in-
decomposable domain walls, as in (13), which we
reproduce here.

XM�Y NZ ∼=
X

M

Y

N

Z
(13)

As we have seen in Example III.12, such a compos-
ite domain wall can be decomposable, meaning that
there are multiple superselection sectors. A super-
selection sector is characterized by the fact that it
remains unchanged when any local operator acts on

or near the composite domain wall, and that it can-
not be further decomposed into components invari-
ant under such local operators. Each superselection
sector is therefore an indecomposable domain wall
between ZA(X ) and ZA(Z) bulk topological orders.

Mathematically, these superselection sectors are
the summands of the A-enriched X − Z bimodule
category M �Y N . In this section, we provide the
mathematical tools needed to obtain them, and to
describe the local operators which project into each
superselection sector. We will show how to use these
tools in many explicit examples in § V below.

Before giving the full mathematical arguments,
we present a physical outline of our results. To un-
derstand the superselection sectors of composite do-
main walls, we must first identify the (semisimple)
algebra S of topological local operators which act on
a composite domain wall and preserve the space of
ground states. Because these operators are local, by
definition superselection sectors must be fixed under
their action. It follows that superselection sectors
must be the images of minimal central projections
of S, i.e. minimal projections in Z(S).30

One class of local operator which acts non-
trivially on the space of ground states can be ob-
tained by creating a particle-antiparticle pair c ⊠ c
in the ZA(Y) bulk region, and bringing one to each
domain wall. If c (c) is condensed at the left (right)
wall, as depicted in (16), then the resulting local
operator creates no topological excitations, i.e. the
trivial domain wall exctiations 1M and 1N , and
hence can return the system to its ground state.

X

M

Y

N

Zc
(16)

As we will later show in the proof of Theorem
III.22, modulo operators which act trivially on the
space of ground states (such as creating a particle-
antiparticle pair, moving them onto the same bound-
ary, and then annihilating them), linear combina-
tions of such operators make up all of S.

What is the vector space of linear combinations
of operators of the form (16)? Suppose the La-
grangian algebras corresponding to the A-enriched
bimodule categoriesM and N are L1 = L(A,B1,Φ)
and L2 = L(B2, C,Ψ) respectively, so that B1 and
B2 are the algebras in Z

A(Y) which condense at each
domain wall. Then the data of an operator of the
form (16) consists of three choices: an anyon type

30 The Abelian algebra Z(S) is isomorphic to Cn for some n,
and the minimal projections are the ei ∈ Cn which are all
zeroes except for a 1 in the i-th slot.
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c ∈ Irr(ZA(Y)), and morphisms α ∈ ZA(Y)(c →
B1) ∼= ZA(Y)(B1 → c) and β ∈ ZA(Y)(c → B2).
which live in the multiplicity spaces of the anyons
c, c in B1, B2 respectively. These morphisms deter-
mine how c is condensed at each wall. The space of
linear combinations of such operators is thus⊕
c∈Irr(ZA(Y)) Z

A(Y)(B1 → c)⊗ ZA(Y)(c→ B2) (17)

and composing the two tensor factors gives an iso-
morphism to the hom space31 ZA(Y)(B1 → B2),
which describes the set of possible short string op-
erators in (16).

Now that we have identified the space of local
operators as ZA(Y)(B1 → B2), we need to be able to
multiply two such operators. To do so, we can apply
them in parallel. The strings passing through the
ZA(Y) can be topologically deformed, and therefore
fused:

X

M

Y

N

Z
c

d =
∑ X

M

Y

N

Z
c

d

f

Diagrams of the form

X

M

Y

N

Z
c

d

f
(18)

are local operators which take an f -particle in the
ZA(Y) bulk and condense it on the N wall, so they
should be elements of ZA(Y)(f → B2). Resolving
them as such, however, is not trivial. For one thing,
if anyons c and d appear in the condensate B2, it is
still possible that some fusion products f of c and
d do not appear in B2, so that the morphism (18)
may be 0.

The data required to resolve such vertices comes
from the multiplication m : B2B2 → B2 on B2: if
x : c → B2 and y : d → B2 are the data used to
condense c and d at the wall, then the morphism in
(18) is precisely m ◦ (x ⊗ y). Applying this at both
domain walls, we find that ZA(Y)(B1 → B2) carries
a multiplication ⋆ which we now define.

Definition III.14. Suppose C is a UMTC and
A,B ∈ C are condensable algebras. The convolu-
tion multiplication ⋆ on the hom space31 C(A→ B)

31 Suppose the simple objects of a UFC X are Irr(X ) =
{x1, . . . , xn}. Given objects a, b ∈ X , we can write a =

is given in the graphical calculus for C by

A

B

x ⋆

A

B

y :=

A

B

x y .

This product gives a way of composing the two maps
x and y, both of which take objects in A to objects in
B, into a single map from A to B. If u : 1→ A and
v : 1 → B are the units of each algebra, then vu† ∈
X (A→ B) is the identity for ⋆. The involution32 is
given by 

A

B

x


∗

:=
A

B

x† .

Here, the univalent vertices are the units of the al-
gebras (see Appendix B on condensable algberas).
One can view this cap and cup (with the univalent
vertices) as standard duality pairings of A and B re-
spectively, which is similar to an (a, a, 1) vertex for
an anyon a in a UMTC. The hom space C(A → B)
with this convolution multiplication and involution
is a finite dimensional C∗ algebra. Moreover, the
multiplication is commutative because

x ⋆ y =

A

B

x y =

A

B

x y = y ⋆ x.

The commutativity of (ZA(Y)(B1 → B2), ⋆)
also makes sense in terms of the string operators
across the ZA(Y) bulk going between domain walls.
Since the strings can be deformed topologically, the
middle parts of two parallel strings can slide past one
another, and commutativity of B1 and B2 means
that the endpoints on the domain walls can also
change places.

⊕n
i=1 nixi and b =

⊕
mixi. The hom space X (a → b) =⊕n

i=1 Mmi×ni (C). Matrix units Ekℓ for Mmi×ni (C) are
given by the rank one operators |xi,k⟩⟨xi,ℓ|, where xi,ℓ de-
notes the ℓ-th copy of xi in a and xi,k denotes the k-th
copy of xi in b.

32 One can define this ∗ in the case A,B ∈ X are Frobenius,

i.e., the multiplication m†
A is an A−A bimodule map, and

similarly for B.
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Thus, to find the superselection sectors of the
composite domain wall M �Y N , we need only di-
agonalize the finite dimensional commutative C∗ al-
gebra ZA(B1 → B2).

33 We carry this computation
out in each of our examples in § V.

The remainder of this section is devoted to a
rigorous justification of the results we have just out-
lined. The main detail we did not explain above is
why ZA(B1 → B2) is the correct algebra of topolog-
ical local operators.

1. Dualizability

The calculations in the remainder of this sec-
tion utilize the graphical calculus for 3-categories
from [BMS12], which applies to weak 3-categories
by [Gut19]; in particular, we work in the 3-category

UFCA, which satisfies important finiteness, semisim-
plicity, and dualizability conditions as it is a full 3-
subcategory of a hom 3-category in UBFC.34

There are 2D and 3D diagrams drawn in this
section. 3D diagrams represent the top level of 3-
morphisms in UFCA, i.e., topological local opera-
tors (see Figure 3). These include 1D world-lines
of anyons in the bulk regions or point defects on
domain walls, 2D surfaces corresponding to world-
sheets of domain walls, 3D world-volumes of bulk
topological order, and 0D point-like operators. The
horizontal 2D slices are spatial, and the third verti-
cal dimension represents time. Reading our diagram
from bottom to top represents the time-ordering of
applying topological local operators.

More specifically, a bulk 3D space-time region
is labelled by an A-enriched fusion category X ,Y,Z
which determines a (2+1)D topological order with
anomaly A. A codimension 1 surface separating
a pair of 3D space-time regions is labelled by A-
enriched bimodule categoryM,N , which specifies a
(1+1)-dimensional topological domain wall. A codi-
mension 2 line is labelled by a A-centered bimodule
functor, which specifies a point defect. When such
a line lives in a 3D bulk region, it depicts an anyon
world-line. When it is localized to a domain wall
world-sheet, however, it corresponds to the world-
line of a point-like excitation on the domain wall,

33 Since C∗-algebras a semisimple, ZA(B1 → B2) is a finite
dimensional Abelian semisimple algebra, i.e. it is isomor-
phic to ⊕nCn for some n. The minimal projections are the
ei as in Footnote 30.

34 Here, we assume the 3-category UFCA has sufficient ad-
ditional structure to permit the use of the 3D graphical
calculus, as in [BMS12, DR18]. Physically, the use of this
graphical calculus can be justified via the notion of topo-
logical Wick rotation [KZ20, KZ21].

or of a point defect separating two different domain
walls. 0D point defects in our 3D space-time dia-
grams are labelled by natural transformations, which
correspond to completely local, topologically trivial,
operators.

The 2D diagrams can be thought of as spa-
tial slices of the 3D diagrams at a fixed time. As
in previous sections of this paper, each bulk 2-
dimensional region can therefore be thought of as
a topologically ordered ground state, described by a
A-enriched fusion category X . 2D diagrams can also
contain domain walls M,N , ... separating different
A-enriched fusion categories, as well as point defects
– i.e. with A-centered bimodule functors, which are
2-morphisms in UFCA one level down. Finally, 2D
diagrams which involve arrows connecting point de-
fects, which we have previously used (e.g. (16)) to
represent short string operators, should be inter-
preted as 3-morphisms (or types of 3-morphisms),
where the string with the arrow shows the passage
of time. In other words, the 2D diagram simultane-
ously depicts the source and target of a 3-morphism.

In the formulae below, we will associate a 2D
diagram with each possible type of point or line
defect. Thus, a 2D region labelled by a single A-
enriched fusion category X , containing no visible line
or point defects, depicts the trivial/identity point
defect. This corresponds to the identity endofunc-
tor of X (viewed as an A-enriched X −X bimodule
category), namely 1 ∈ Irr(ZA(X )), as explained in
Example II.9. Similarly, a 2D diagram with only a
single 0D point defect in the bulk represents an A-
centered endofunctor of XXX , which corresponds to
an object of ZA(X ), i.e. an anyon or direct sum of
anyons. A 2D diagram with a single 1D defect be-
tween 2D regions labelled by an A-enriched X − Y
bimodule XMY with no point defect denotes the
identity endofunctor of M in EndAX−Y(M), i.e. the
trivial wall excitation. Throughout this section, we
will consistently use pink to denote X -labeled re-
gions, and light blue to denote Y-labeled regions,
unless otherwise stated.

X = 1ZA(X )

M

X Y
= idM

Dualizability in UFCA means we can topologi-
cally deform world-sheets of domain walls in space-
time. We use dualizability in this section in several
important ways.

Example III.15. Dualizability allows us to close
a line corresponding to an (irreducible) A-enriched
bimodule XMY into a closed loop. Zooming out,
we may view this loop as a point defect, labeled
by direct sum of those anyons in ZA(X ) that can
dissappear at the domain wall M with no energy
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cost. Dualizability also means we can form a ‘pair
of pants’ multiplication for this object, under which
it becomes a condensable algebra in ZA(X ) (up to
scaling).

M

X

Y (19)

Sub-Example III.16. When A = Hilbfd is the triv-
ial enrichment, it is well known [Kon14b, LWW15,
HW15, HLP+18] that, if a module category XM la-
bels a topological boundary to vacuum, and L ∈
Z(X ) is the Lagrangian algebra associated to XM,
i.e. EndX (M) ∼= Z(X )L, then we have

M

X

= L.

Physically, this means that the point defect can con-
tain any anyon in L, since these are condensed in the
white region and therefore cost no energy.

Sub-Example III.17. More generally, we can con-
sider the case whenM is a condensation boundary.
If the blue region is obtained from the pink one via
condensing A, i.e. ZA(Y) = ZA(X )locA , then the cir-
cle bounded byM is a droplet of condensate. As a
defect in the ZA(X ) bulk, it is equivalent to A, the
the direct sum (with multiplicity) of all the anyons
which have condensed.

On the other hand, if the pink region is ob-
tained from the blue one via condensing B, i.e.
ZA(X ) = ZA(Y)locB , then the circle bounded byM
is a small region where B is not condensed. Because
this region is surrounded by condensate, and does
not contain an excitation, it is equivalent to the vac-
uum of the ZA(Y)locB -bulk; the circle is the same as
a pink sheet with nothing in it.

These assertions are justified in Lemma III.19
and Proposition III.20 below.

Example III.18. Just as we have the isomorphism
EndZ(z) ∼= HomZ(1Z → zz) in a fusion category
Z, given an A-enriched bimodule XMY , we have an
isomorphism

EndA

(
M

X Y

)
∼= HomZA(X )

(
1ZA(X) → M

X
Y

)

where the maps both ways are given by

fX

M

Y 7→ f

X

M
Y

g

X
M

Y
← [

g

X
M

Y

2. Decomposing a domain wall

Suppose X ,Y ∈ UFCA are A-enriched fusion
categories, andM is an A-enriched X −Y bimodule
category, which may be decomposable. We now see
how the condensable algebra of an M-loop can be
used to decompose M into irreducible A-enriched
X − Y bimodule summands.

First, we note that the hom 2-category
UFCA(X → Y) of A-enriched X − Y bimodule
categories is finitely semisimple in the sense of
[DR18, Definition 1.4.2], as it is a hom 2-category
in UBFC. By [DR18, Prop. 1.3.16], indecomposable
A-enriched X −Y bimodule summands of XMY cor-
respond to minimal projections in EndAX−Y(idM).
Now, using Example III.18, these minimal projec-
tions correspond to copies of the unit 1ZA(X ) in the
condensable algebra corresponding to the M-loop
from Example III.15. This algebra is the image of

1ZA(Y) under the lax monoidal functor ZA(Y) →
ZA(X ) given by

ZA(Y)→ EndAX−Y(M)
I−→ ZA(X ),

where I is the adjoint of the tensor functor ZA(X )→
EndAX−Y(M).

In the case of trivial anomaly, we identify the
condensable algebra in question in the following
lemma. We will then generalize to the case of ar-
bitrary A in Proposition III.20.

Lemma III.19. When A = Hilb is the trivial en-
richment,

M
X

Y = L ∩ Z(X )⊠ 1 (20)

where L ∈ Z(X ) ⊠ Z(Y) is the Lagrangian algebra
corresponding to the X ⊠ Ymp-module categoryM.
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Proof. By the folding trick, we can view M as a
X ⊠ Ymp-Hilb module category, corresponding to a
Lagrangian algebra L ∈ Z(X ) ⊠ Z(Y) by [DKR15,
Def. 3.3]. As in Sub-Example III.16,

M =

X

Ymp

= L (21)

where the purple color denotes the stacking of the
blue and pink sheets. We then obtain the left-hand
side of Equation (20) by closing up the Ymp sheet to
a hemisphere.

⇝ M
X

Y

Since the only excitation supported in a contractible
region of Z(Ymp)-bulk is the vacuum, this reduces
L to the right-hand side of Equation (20).

Proposition III.20. For an arbitrary A-
enrichment,

M
X

Y = A ∈ ZA(X )

where L(A,B,Φ) ∈ ZA(X ) ⊠ ZA(Y) is the
Lagrangian algebra corresponding to the Witt-
equivalence EndAX−Y(M) from Construction II.8.

Proof. By Lemma III.19, ignoring theA-enrichment,
i.e. forgetting the A-centered structure and consid-
ering M as an X − Y bimodule category, we know
that a closedM-loop with external X⊠Ymp shading
corresponds to a Lagrangian algebra L. But since
X ,Y are A-enriched and XMY is an A-enriched bi-
module, by Lemma II.12, L contains the canonical
Lagrangian KA as a subalgebra where

Z(X ⊠ Ymp) ∼= Z(X )⊠ Z(Y) ∼= ZA(X )⊠ ZA(Y)⊠A⊠A.

Now instead of ignoring the A-enrichment at
the beginning, we can perform the A-enriched fold-
ing trick (see Remark III.4) for A-enriched fusion
categories, which also requires we perform a rela-
tive tensor product over A, leading to an anomaly
cancellation. This relative tensor product over A is
accomplished by condensing KA. So the enriched
Lagrangian algebra we obtain from the A-enriched
folding trick is isomorphic to the image of L after
condensing KA in

ZA(X )⊠ ZA(Y) ∼= Z(X ⊠ Y)locKA
.

This yields exactly L(A,B,Φ), by Construction
II.11. The result now follows by gluing in a hemi-
sphere (with attached A-bulk) corresponding to Y,
as in Lemma III.19.

Combining Example III.18, [DR18,
Prop. 1.3.16], and Proposition III.20 above, we
get the following result.

Corollary III.21. Indecomposable X − Y sum-
mands of an A-enriched X − Y bimodule M corre-
spond to copies of 1ZA(X ) in the condensable algebra

A ∈ ZA(X ), where L(A,B,Φ) ∈ ZA(X ) ⊠ ZA(Y)
is the Lagrangian algebra corresponding to the Witt-
equivalence EndAX−Y(M).

3. Decomposing a composite domain wall

Now, we are finally ready to mathematically jus-
tify our identification of the algebra of local opera-
tors which preserve the ground state of the com-
posite domain wall M �Y N with ZA(Y)(B1 →
B2). As just explained in § III C 2, this algebra

is EndAX−Z(idM�YN ), by definition. By applying
the results of the previous subsection, we will verify
that EndAX−Z(idM�YN ) ∼= (ZA(Y)(B1 → B2), ⋆),
as promised.

Theorem III.22. Suppose XMY and YNZ are two
A-enriched bimodules between the A-enriched fusion
categories X ,Y,Z. Let

L1 = L(A,B1,Φ) ∈ ZA(X )⊠ ZA(Y)

L2 = L(B2, C,Ψ) ∈ ZA(Y)⊠ ZA(Z)

be the Lagrangian algebras corresponding to the
Witt-equivalences EndAX−Y(M) and EndAY−Z(N ) re-
spectively from Construction II.8. Indecomposable
A-enriched X−Z bimodule summands of XM�YNZ
correspond to minimal projections33 in the Abelian
algebra (ZA(Y)(B1 → B2), ⋆), as defined in Defini-
tion III.14.

For the graphical proof, we use the same region
shadings from (13).

Proof. Since the A-enriched X −Z bimodules form a
finitely semisimple 2-category, indecomposable sum-
mands of XM�YNZ correspond to minimal projec-
tions in EndAX−Z(idM�YN ) [DR18, Prop. 1.3.16].

In more physical terms, the A-enriched bi-
module (a 1-morphism in UFCA) XM �Y NZ de-
scribes the system depicted in (13), the endofunctor
idXM�YNZ (a 2-morphism) corresponds to the vac-
uum states of this system, i.e. when there are no
pointlike localized excitations, and 3-morphisms in
idXM�YNZ are topological local operators that pre-
serve the ground states. Thus, minimal projections
in EndAX−Z(idM�YN ) are topological local operators
which project onto a single summand of the compos-
ite domain wall.
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Therefore, we need only check that
EndAX−Z(idM�YN ) ∼= (ZA(Y)(B1 → B2), ⋆).
By dualizability, we have

EndAX−Z

(
X

M
Y

N
Z

)
∼= HomZA(Y)

(
M

Y
X → N

Y
Z

)
.

By Proposition III.20, we have

M
Y

X = L1 ∩ 1⊠ ZA(Y) = B1

N
Y

Z = L2 ∩ ZA(Y )⊠ 1 = B2,

so EndAX−Z(idM�YN ) ∼= (ZA(Y)(B1 → B2), ⋆) as
∗-algebras, and the result follows.

We will decompose M �Y N using Theorem
III.22 for many explicit examples in § V below.

Remark III.23. One reason that we investigated
the algebra of local operators abstractly, rather than
as operators on the Hilbert space of ground states,
is that the space of ground states depends on our
choice of manifold. We point out one particular case.
Observe that, if we place the parallel domain walls
in the statement of Theorem III.22 on a sphere, as
in

X Z
Y

then the space of ground states is exactly
ZA(Y)(B1 → B2). Thus, we see that in the right
circumstances, there is a factor of topological ground
state degeneracy local to the strip between the two
walls which is isomorphic to ZA(Y)(B1 → B2) as a
representation of ZA(Y)(B1 → B2). We expand on
this idea in § IV and § V, where we will see that,
when the strip of ZA(Y) bulk is closed up to a tube,
noncontractible (and thus nonlocal) Wilson loop op-
erators in the ZA(Y) strip which fail to commute
with ZA(Y)(B1 → B2) act transitively on the su-
perselection sectors of the composite domain wall.

So far, we have identified the algebra of local
operators which can be analyzed to determine su-
perselection sectors of the composite domain wall.
However, we have not yet explained how to char-
acterize the indecomposable domain wall in each
sector, or computed any concrete examples; that
will be the work of the following sections. In the
next section, we will flesh out our particle mobil-
ity perspective on domain walls, and outline how

it can be used in conjunction with Theorem III.22
to characterize the summands of the composite wall.
Concrete examples where the minimal projections in
ZA(Y)(A→ B) are computed, along with the Witt
equivalences of wall excitations in each summand,
will appear in § V.

IV. ANYON MOBILITY AND TUNNELING
OPERATORS

An important property of domain walls between
regions with (2+1)D topological order is anyon mo-
bility: which anyons from each bulk are confined to
one side of the wall, which can pass through the wall,
and the different possibilities for what an anyon can
become when crossing the wall. In this section, we
will explain how to turn the data of a Witt equiva-
lence of wall excitations into a set of tunneling chan-
nels, which move an anyon from one side of a domain
wall to another. In a (2+1)D bulk region, we have
local operators which bring a pair of anyons together
to produce a single anyon, which one might well call
fusion operators; these all arise as linear combina-
tions of a finite set of operators satisfying an orthog-
onality condition, which select distinct “fusion chan-
nels.” We will see below that, in an analogous way,
possible tunneling operators are also generated as
linear combinations of operators which select “tun-
neling channels.” Indeed we can think of tunnel-
ing channels as a special kind of fusion channel, in
which two anyons from opposite sides of a domain
wall fuse to the vacuum on the wall. We will then
apply the results of the previous section to describe
sets of tunneling operators through the composition
of two domain walls in terms of tunneling operators
through the individual domain walls, so that Theo-
rem III.22 can be used to identify the domain wall
present in each superselection sector.

We define tunneling channels as follows.

Definition IV.1. Let XMY be an A-enriched bi-
module category, and let c ∈ Irr(ZA(X )) and d ∈
Irr(ZA(Y)) be anyons. A set of tunneling channels
Tc→d = {Ti} from c to d through the domain wall
corresponding to XMY is a maximal set of orthog-
onal partial isometries. In other words, a tunneling
channel is an operator local to the domain wall and
adjacent bulk regions which acts as a partial isome-
try between the space of states containing a c anyon
at a given location in the ZA(X )-bulk, and the space
of states containing a d anyon at a given location in
the ZA(Y)-bulk, and distinct tunneling channels Ti
and Tj satisfy the condition that whenever j ̸= i,

T †
j Ti = 0.

We now unpack Definition IV.1. We begin by
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defining the space of tunneling operators as the space
of morphisms

HomUFCA

 M
c

−→ M
d

 .

Here c and d denote anyon types that are fixed, and
we are interested in the space of operators that bring
c across the domain wall to give d. In fact, this is
equivalent to the space of operators which take a c
particle from the left bulk, and a d particle from the
right bulk, annihilating them on the domain wall.
However, because c and d can each correspond to di-
rect sums of different domain wall excitations, there
can be multiple distinct ways in which this anni-
hilation can occur; in this case there are multiple
distinct tunneling channels associated with this an-
nihilation.35

A set {Ti} of tunneling channels c→ d is a basis
for this space of tunneling operators satisfying addi-
tional conditions, just as fusion channels are special
elements of the space of operators which fuse two
anyons. By semisimplicity, any tunneling operator
factors as a linear combination of operators which
first bring c to the domain wall as a simple wall ex-
citation m, and then bring m off the wall as a d
particle, as shown below.

M

c
7→

M
m 7→

M

d

Thus, the space of tunneling operators c → d is of
the form⊕

m∈Irr(W)

W(c▷ 1W → m)⊗W(m→ 1W ◁ d)

∼=
⊕

m∈Irr(W)

Mnd
m×nc

m
(C).

Here we adopt the notation W := EndAX−Y(M) for
brevity, c ▷ 1W and 1W ◁ d denote the direct sums
of wall excitations obtained by bringing the anyon
c or d to the domain wall, and ncm and ndm are the
multiplicities of m as a summand of c ▷ 1W and
1W ◁ d. The maximal set of partial isometries in⊕

m∈Irr(W)Mnd
m×nc

m
(C) is, up to a unitary change

of basis, {emi,j}, where all entries of emi,j are 0 ex-
cept the i − j entry of the m summand. Thus, by

35 It is also possible that c or d could decompose into wall exci-
tations with non-trivial multiplicities, introducing another
source for multiple tunneling channels.

specifying that tunneling channels must be partial
isometries, definition IV.1 yields tunneling channels
which factor through a single m ∈ Irr(W), rather
than a direct sum of multiple wall excitation types
m. Evidently, a set of tunneling channels c → d is
mapped to a set of tunneling channels d→ c by †.

Remark IV.2. By dualizability, the space of tun-
neling operators above is isomorphic to

HomUFCA

 c
M −→

d

 .

This second process is directly analogous to the pro-
cess which ‘injects a droplet’ and then selects the d
anyon [KK12, §5].

Tunneling channels to the vacuum have a spe-
cial interpretation: a particle which has a tunneling
channel to the vacuum can condense on the domain
wall. Moreover, in the setting of Theorem III.22,
the set of projections in (ZA(Y)(B1 → B2), ⋆) onto
superselection sectors of the composition of two do-
main walls is exactly the set of tunneling channels
from the vacuum to the vacuum across the compos-
ite domain wall!

As we will illustrate below, the set of possible
tunneling channels is uniquely fixed (up to a unitary
change of basis for each type of simple wall excita-
tion) by the choice of bulk topological orders and
the topological domain wall, and does not depend
on non-universal details of the boundary conditions.
In other words, different choices of A-enriched fu-
sion categories, enriched bimodules, and anomaly
A which produce equivalent UMTCs of bulk exicta-
tions and Witt equivalences of wall excitations will
also give rise to equivalent sets of tunneling chan-
nels. To see this, observe that because a set of tun-
neling channels throughM is a set of morphisms in
the Witt equivalence EndAZA(X )−ZA(Y)(M), defined

in terms of the actions of ZA(X ) and ZA(Y), the
possible sets of tunneling channels depend only on
the Witt equivalence EndAZA(X )−ZA(Y)(M).

Next, we turn to the question of how to compose
tunneling operators across parallel domain walls. If

XMY and YNZ are two A-enriched bimodule cat-
egories, with c ∈ Irr(ZA(X )), d ∈ Irr(ZA(Y)), and
e ∈ Irr(ZA(Z)), tunneling operators T from c to d
and S from d to e can be concatenated to obtain
tunneling operators c→ e:

M

N
c

T⊠1−−−→
M

N
d

1⊠S−−−→
M

N
e

(22)
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Notice that this operation involves all levels of our 3-
category of topological order UFCA. We will discuss
this composition of tunneling operators further in
§ IVC.

In § IVB we identify elementary tunneling chan-
nels, i.e. the tunneling channels through elementary
domain walls. We will see in § IVC that sets of
tunneling channels through multiple parallel domain
walls can be obtained by composing sets of tunnel-
ing channels through the individual domain walls.
That is, all tunneling operators through a compos-
ite domain wall can be obtained as compositions,
as in (22), and there is no redundancy among tun-
neling operators obtained in this way which is not
implied by linearity. In particular, this will allow
us to characterize tunneling channels through any
indecomposable domain wall, using the decomposi-
tion into elementary domain walls shown in Figure
8. Finally, in § IVD, we will describe the interaction
between sets of tunneling channels through the com-
position of two domain walls and the decomposition
of two parallel walls into indecomposable summands
obtained in Theorem III.22. This will allow us to un-
derstand each summand of a composite domain wall
in terms of the fates of anyons near the domain wall.
The examples in § V will also contain computations
of sets of tunneling channels.

A. A first example of tunneling channels

We begin by discussing a simple example, in
which we compare sets of tunneling channels in two
models for the same topological domain wall be-
tween Abelian topologically ordered phases. Our
example illustrates the following important phe-
nomenon: two gapped boundaries between a pair of
phases with the same topological order, but different
microscopic realizations, give different, but equiva-
lent, sets of tunneling channels.

Example IV.3. For a minimal example, we choose
a bulk topological order with anyons described by
C ∼= D(Z/4), the Z/4-toric code. This is realized
by a lattice model for the fusion category X ∼=
Hilbfd[Z/4], with C4 spins on each edge of an ori-
ented square lattice, where links in the lattice are
oriented upwards and to the right, while those in
the dual lattice are oriented downwards and to the
right.

The usual lattice model for Z/n-toric code
[Kit03] (see also [BB07, LW05]) on a 2D square lat-
tice with n-state spin degrees of freedom on each
edge is described by the Hamiltonian:

H = −
∑
v

Av −
∑
p

Bp, (23)

where

Av =
∑n
k=1 Zk

n (Zk
n)

†

Zk
n

(Zk
n)

†

v
, Bp =

∑n
j=1 Xj

n

Xj
n

(Xj
n)

†

(Xj
n)

†

p .

(24)
Here Xn and Zn are n × n clock matrices which
satisfy the relations XnZn = ωnZnXn, where ωn :=
e2πi/n is a primitive n-th root of unity. For the case
n = 4, these have the form:

X4 =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 Z4 =

i 0 0 0
0 −1 0 0
0 0 −i 0
0 0 0 1

 .

For general n, these models have two types of
excitations. The first, which we denote ek, k =
1, ..., n − 1, are pair-created from the ground state
by the string operator Ske (π). Here π is an ori-
ented path on the lattice running from an initial
vertex vi to a final vertex vf . Ske (π) applies Xk

(X−k = (Xk)†) along upward and rightward- (down-
ward and leftward)-oriented edges, creating ek (e−k)
at vf (vi). The resulting state |ϕ(k, vi, vf )⟩ hosts an
ek particle (anti-particle) at the vertex vf (vi), with
Avf |ϕ⟩ = ωkn|ϕ⟩, Avi |ϕ⟩ = ωn−kn |ϕ⟩, with Av|ϕ⟩ =
Bp|ϕ⟩ = ϕ⟩ for all p, and v ̸= vi, vf .

The second type of excitation, which we denote
mj , are pair-created from the ground state by the
string operator Skm(π̃), where π̃ is an oriented path
in the dual lattice, running from an initial plaque-
tte pi to a final plaquette pf . The operator Skm(π̃)
applies Zj (Z−j) along downward and rightward-
(upward and leftward)-oriented edges, creating mk

(m−k) at pf (pi). The resulting state |ϕ(j, pi, pf )⟩
obeys Bpf |ϕ⟩ = ωjn|ϕ⟩, Bpi|ϕ⟩ = ωn−jn |ϕ⟩, and
Av|ϕ⟩ = Bp|ϕ⟩ = ϕ⟩ for all v, and p ̸= pi, pf . Sample
string operators are shown in Figure 9.

X X
X

X†

e

e

Z†

Z†
Z

m

m

FIG. 9. String operators for the particles e (red) and m
(blue).

We now consider a lattice with a boundary be-
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tween Z/4 and Z/2 toric code.

Above, all edges carry C4 spins, and we change the
Hamiltonian to condense m2 on the right hand side,
i.e. creating the condensation boundary correspond-
ing to A = 1⊕m2. There are multiple different ways
to do this. For example, we may redefine the Bp
term in the condensed (green) region as

B′
q =

1

2

1 +

X2

X2

X2

X2 q

 (25)

on any plaquette q containing at least one green
edge, and choose the Hamiltonian to be

H = −
∑
v

Av −
∑
p

Bp −
∑
q

B′
q −K

∑
ℓ

Cℓ,

with

Cℓ =
1

2

(
1 + Z2

ℓ

)
on any green edge. Notice that [Cℓ, Bp] = 0, so this
Hamiltonian is frustration-free; for K > 0 its ground
state is a simultaneous eigenstate of all Av, Bp and
Cℓ operators with eigenvalue 1. Since Z2

ℓ is the op-
erator which creates a pair of m2 particles on the
two plaquettes adjacent to ℓ, in this ground state,
m2 is condensed on any plaquettes with at least one
green edge. Moreover, Cℓ has the effect of confin-
ing e and e3 particles: since [Z2, X] ̸= 0, the corre-
sponding string operators incur a finite energy cost
per unit length. (All other quasiparticle string oper-
ators commute with Cℓ.) Here we consider the limit
K ≫ 1, where the confinement scale is very short,
and such Cℓ- violating terms do not enter into the
low energy physics.

In this case, we can tunnel anm particle into the
green region using the usual string operator Skm(π̃).
On the green links, (1 + Z2

ℓ ) acts as the identity
on states in the low-energy Hilbert space, and this
string operator becomes equivalent to the string op-
erator creating mA ∼= m⊕m3. More generally, since
Z−Z3 = Z(1−Z2) and (1−Z2)Cℓ = 0, any opera-
tor T = α(Z−Z3)+β(Z+Z3) in the linear span of
{Z,Z3} acts in this way on the low-energy Hilbert
space. Thus T = Z + Z3 is the unique choice of
string operator on the green links, up to a scalar. In
other words, the set of tunneling channels m→ mA

contains only one element, T .

Z Z T T
m 7→

mA

To tunnel from the condensed (green) region
to the left hand side, we must bring the particle
mA ∼= m⊕m3 across a vertex from a green link to a
black one using an operator that commutes with all
terms in the Hamiltonian. Since applying Z2 to any
green edge commutes with the Hamiltonian, there
are two choices for the resulting anyon, correspond-
ing to tunneling operators from mA ∼= m⊕m3 → m
and from mA→ m3, which differ by an application
of Z2 on all links the particles crosses after exiting
the green region. The resulting operators are:

m

m3

← [
Z

Z3

Z

Z3

T

T

T

T
mA

mA

Since the space of tunneling operators in each case
is 1-dimensional, each of these choices is unique up
to a scalar. In other words, there are two 1-element
sets of tunneling channels: one from mA→ m, and
one from mA→ m3.

One may also describe an antiferromagnetic con-
densed region, by instead choosing36

C ′
ℓ =

1

2

(
1− Z2

ℓ

)
.

The two choices of Cℓ above are orthogonal projec-
tions, with Cℓ + C ′

ℓ = 1. The eigenspaces of each
Cℓ can exchanged by applying X or X3 at ℓ. Since
(1 + Z2)Cℓ = 0, the string operator acting on green
edges is now T = Z − Z3. Again, we obtain two
single-element sets of tunneling channels, one from
m → mA, and one from mA → m, and mA → m3,
each unique up to phase.

The analysis of tunneling operators and chan-
nels for other anyons is completely analogous. For
each anyon c ∈ Irr(D(Z/4)), there are a unique (up
to phase) tunneling channels c → cA → c, and
c → cA → cm2. Tunneling operators cA → c and
cA→ cm2 again differ by applying the operator Z2

on a string of black edges in the dual lattice.
In string-net models for (2+1)D topological or-

ders [LW05, KK12, LW14, LLB21], string operators
create pairs of excitations, while hopping operators

36 A more general discussion of antiferromagnetic couplings,
including the relationship to Z(Ising) topological order, ap-
pears in [SB16].

32



[HGW18] move anyons adiabatically around the sys-
tem; in Abelian models, these operators coincide.
The present discussion illustrates the general fact
that in string net models, tunneling operators are
closely related to the hopping operators which move
an existing excitation from one place to another. In-
deed, tunneling channels can be viewed as hopping
operators which end on different sides of a domain
wall; similarly the set of tunneling channels c → c
through the trivial domain wall contains a single ele-
ment, the hopping operator for c. In the example at
hand, the operator T applied at the boundary of the
green and black regions is also simply the hopping
operator for an mA excitation in the green bulk re-
gion; this coincidence is an artifact of working with
Abelian anyons.

B. Elementary tunneling channels

In this section, we will work out sets of ele-
mentary tunneling channels, i.e. sets of tunneling
channels through elementary domain walls. Tun-
neling operators through an invertible domain wall
are simple to understand, because locally, an in-
vertible domain wall does nothing more than rela-
bel anyons. By Remark IV.2, we see that tunneling
operators c → d through an invertible domain wall
M which applies the braided tensor autoequivalence
Φ : C → D live in a space isomorphic to the hom
space (see Footnote 31) D(Φ(c) → d), which is ei-
ther 0 or 1-dimensional, depending on whether Φ(c)
and d are the same anyon type. In other words,
surrounding an anyon by M to create a ‘droplet’
amounts to applying the functor Φ, and droplets can
be freely attached to and detached from the domain
wall. Thus,

M
c

∼= M
c
∼= M

Φ(c)
,

and there is a unique choice of tunneling channel
c→ Φ(c) up to a phase.

Next, we will consider the elementary tunneling
channels through a domain wall corresponding to a
condensation. We begin with domain walls obtained
by condensation, as in Example III.2. Suppose we
start with C topological order and condense the al-
gebra A ∈ C, so that wall excitations are described
by the Witt equivalence CA from C to ClocA . On the
domain wall, particles can fuse freely with the A
condensate by local operators. If M◦

A ∈ Irr(ClocA )

is an anyon in the condensed phase,37 then the ele-
mentary tunneling channels can be chosen from the
set of morphisms which take c through the wall to
become M◦

A:{
v ∈ CA(cAA →M◦

A)
∣∣vv† = idM◦

A

}
. (26)

Here, CA(cAA →M◦
A) is a hom-space31 in the fusion

category CA. This set spans the space of tunneling
operators, but is overcomplete as a basis, because
not all the elements are orthogonal. Thus, a set of
tunneling channels is just a maximal subset {vi} of
the set (26) satisfying v†jvi = 0 for j ̸= i.

Similarly, bringing a particleM◦
A ∈ Irr(ClocA ) out

of the condensate corresponds to applying the func-
tor ClocA → C :M◦

A 7→M which forgets the A action.
The resulting bulk excitation in the uncondensed re-
gion can in general be viewed as a direct sum of dif-
ferent anyon types in C; because this direct sum is
not a simple object, we denote it with a capital let-
ter. An elementary tunneling channel which brings
M◦
A across the domain wall to become a particular

anyon c in this direct sum corresponds to a choice{
w ∈ C(M → c)

∣∣ww† = idc
}
. (27)

Again, a set of tunneling channels is just a maximal
orthogonal set of members of (27).

In order to see how the choices of operators v
and w in equations (26) and (27) are related explic-
itly, recall that the free module functor is adjoint to
the forgetful functor CA → C, which forgets about A-
module structures, taking an A-module MA to the
object M ∈ C. (Here, we drop the ◦, since the fact
that M◦

A is a local A-module is not needed.) This
means that we have isomorphisms of vector spaces

CA(cAA →MA) ∼= C(c→M) ∼= C(M → c) (28)

where the first isomorphism is from [KO02, Fig. 4]
and the second isomorphism is the antilinear † op-
eration.

Because c ∈ Irr(C) and M◦
A ∈ Irr(ClocA ) are sim-

ple objects, the isomorphisms (28) allows us identify
the possible choices of v in (26) with those of w in
(27), up to some strictly positive scalar depending
on c, A ∈ C and M◦

A ∈ ClocA . In other words, sets of
tunneling channels from c to M◦

A or from M◦
A to c

correspond to orthonormal bases of C(c → M) and

37 Here, the anyon M is given the subscript A to remind the
reader that M has a right A-action. Similarly, the unit of
Cloc
A is denoted by A◦

A. Even though MA is an anyon, we
denote it by an uppercase letter, to remind ourselves that
the underlying collection of anyons M can contain more
than one summand.
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C(M → c) respectively. Notice that these general
statements about tunneling channels through an ele-
mentary domain wall with condensation match with
our observations in Example IV.3.

Remark IV.4. We have seen that if c and d are
equivalent after fusing with the condensate A, then
a c particle can enter the condensed region, and re-
turn as a d particle. A natural related question is
whether, in the case where c splits to

∑
i(Mi)A in

the condensed region, particles from the condensed
region can enter the uncondensed region and return
as a different anyon type. In particular, if A ∈ C is a
condensable algebra in a UMTC, and c ∈ Irr(C) is an
anyon in the uncondensed region, and MA and M ′

A
are distinct anyon types which appear as summands
of cAA, one might suspect that an MA-particle can
be brought across the domain wall as c, and then
back into the condensate as M ′

A.
It turns out that this is not the case; in the

absence of other excitations, MA can only tunnel
through the uncondensed region and back to become
MA. This is because a nonzero operator which took
MA to M ′

A could be deformed smoothly into a local
operator on the boundary, where wall excitations are
given by CA. But there is no non-zero operator local
near the wall that can turn MA into M ′

A, since they
are distinct simple objects in the Witt equivalence
of wall excitations.

However, it is sometimes possible for MA to en-
ter the uncondensed region as c, braid around an
anyon c′ which is confined by the wall, and return
as M ′

A. We will explore this in detail at the end of
§ IVD below.

C. Composition of tunneling operators

Having described elementary tunneling opera-
tors, we now discuss how one composes tunneling
operators through a composite domain wall. As an
application, we can characterize tunneling channels
through an indecomposable domain wall using its
horizontal decomposition from Figure 8. The main
result of this section is Proposition IV.5, which says
that a set of tunneling channels through the compo-
sition of two domain walls can be obtained by com-
posing the members of sets of tunneling channels
through each wall.

Proposition IV.5. Suppose XMY and YNZ are
A-enriched bimodules. For each c ∈ Irr(ZA(X )),
d ∈ Irr(ZA(Y)), and e ∈ Irr(ZA(Z)), let Tc→d be a
set of tunneling channels c → d, and Td→e be a set
of tunneling channels d→ e. Then the set

∪d {(idM⊠u) ◦ (v ⊠ idN )|u ∈ Td→e, v ∈ Tc→d} (29)

of horizontal composites of tunneling channels from
Tc→d and Td→e is a set of tunneling channels c→ e
across XM�Y NZ .

Proof. By 3-dualizability, i.e. by two applications
of Remark IV.2, we have an isomorphism from the
hom-space

HomUFCA

 M

N
c

−→
M

N
e


to the hom-space

Hom

 c
M −→

e
N

 . (30)

As this latter hom-space (30) is contained in the
UMTC ZA(Y) which is semisimple, any morphism
in this hom-space factors through a simple ob-
ject/anyon in ZA(Y). This fact has the following
two important consequences:

(1) composites of nonzero morphisms in the hom-
spaces

Hom

 c
M −→

d

 (31)

and

Hom


d

−→
e

N

 (32)

are non-zero, and

(2) the dimension of the hom-space (30) is the prod-
uct of the dimensions of the two hom-spaces (31)
and (32).

By (1) above, the elements of (29) are non-zero par-
tial isometries, and by (2) above, they are a complete
set of tunneling operators c→ e across XM�Y NZ ,
as claimed.

Example IV.6. We now use this proposition to
characterize tunneling operators through an inde-
composable domain wall by considering the domain
wall as a concatenation of elementary domain walls
from § IIIA.

Let X and Y be A-enriched fusion categories,
with M an A-enriched X − Y bimodule category
corresponding to the Lagrangian algebra L(A,B,Φ).
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ThenM is the composition of three boundaries: the
condensation boundary which condenses A, i.e. the
X −XA bimodule XA, a bimodule category I which
is a Morita equivalence between XA and BY, and the
condensation boundary which condensed B, which is
the BY −Y bimodule BY. Categories of excitations
on the three boundaries are ZA(X )A, ZA(X )locA ∼=
ZA(Y)locB , and BZ

A(Y), respectively.
Suppose c ∈ Irr(ZA(X )) and d ∈ Irr(ZA(Y))

are two anyon types. Tunneling operators across
the three individual boundaries were explained
in § IVB above. For a local module M◦

A ∈
Irr(ZA(X )locA ), tunneling operators across the con-
densation boundary for A taking c → M◦

A are
morphisms in ZA(X )A(cAA → MA); similarly, for
N◦
B ∈ Irr(ZA(Y)locB ), tunneling operators across the

condensation boundary for B taking N◦
B → d are

morphisms in ZA(Y)B(NB → dBB). Finally, there
are unique tunneling channels, and 1-dimensional
spaces of tunneling operators, M◦

A → Φ(M◦
A) across

the invertible middle domain wall. Thus, we see that
the spaces of tunneling operators c → d across the
indecomposable domain wallM are⊕
M◦

A∈Irr(ZA(X )locA )

ZA(X )A(cAA →MA)⊗ ZA(Y)B(Φ(MA)→ dBB)

∼=ZA(Y)locB (Φ(ℓ(cAA))→ ℓ(dBB)),

where ℓ(·) denotes the local part of a module.
Moreover, the tunneling channels c → d have

a straightforward description, as the composite of
tunneling channels across all three boundaries. The
choice of a tunneling channel c → M◦

A corresponds
to choosing an isometry c → M , i.e. including c
as a summand of the direct sum M . There is a
unique channel across the middle invertible bound-
ary, which relabels the anyon M◦

A as Φ(M◦
A). Fi-

nally, picking a tunneling channel Φ(M◦
A) → d

amounts to choosing a coisometry Φ(M◦
A) → d,

i.e. projecting onto a particular summand of Φ(M◦
A)

which is of type d. (Here, we forget the object
Φ(M◦

A) into D when choosing a coisometry.)

D. Tunneling operators and the decomposition
of parallel domain walls

In addition to Example IV.6, we can also con-
sider the case of a domain wall between two bulk
topological orders, where each is obtained by con-
densing a third topological order. This is the con-
text in which gapped boundaries were discussed in
[Kon14b, § 3.2]. In other words, given a bulk topo-
logical order with UMTC C and two condensable
algebras A,B ∈ C, one can obtain a Witt equiva-
lence between ClocA and ClocB by composing the Witt
equivalences ClocA → C → ClocB . In terms of enriched

fusion categories, if C ∼= ZA(X ), then one composes
the AX −X bimodule AX and the X −XB bimodule
XB . Here, we will see that methods similar to those
used in proving Theorem III.22 give a method to
explicitly compute the tunneling operators for each
summand of a composite domain wall. We will carry
out these computations in several examples in § V
below.

Remark IV.7. One reason to look specifically
at examples involving the horizontal composition

AX �X XB is that, according to Theorem III.22, the
ground state degeneracy which leads to parallel do-
main walls decomposing into superselection sectors
depends only on the algebras of anyons from the
middle bulk which condense on each domain wall.
Therefore, this special case already captures all the
possible complexity of the interaction between the
decomposition of a composite domain wall into su-
perselection sectors and the composition of tunnel-
ing operators across the individual domain walls to
give tunneling operators across the composite wall.
If we want to analyze the composition of an arbi-
trary pair of indecomposable domain walls, we only
need to compose a wall of the form AX �X XB with
other elementary domain walls in a way that does
not contribute additional degeneracy.

By Proposition IV.5, if M◦
A ∈ Irr(ZA(X )locA )

and N◦
B ∈ Irr(ZA(X )locB ), then tunneling channels

M◦
A → N◦

B across the composite domain wall are
compositions of tunneling channels M◦

A → c and
c → N◦

B for c ∈ Irr(ZA(X )). The space of such
compositions is just⊕
c∈Irr(ZA(X ))

ZA(X )(M → c)⊗ZA(X )(c→ N) (33)

or (by composing the two tensor factors)
ZA(X )(M → N). Note the similarity to (17),
which described operators local to the X region,
connecting left and right condensates. Here, the
condensates have been replaced with modules over
those condensates, because we wish to consider
processes that move non-trivial anyons from AX to
XB . An immediate consequence is that, if an anyon
c ∈ Irr(ZA(X )) splits at one or both domain walls
so that cAA or cBB has multiple local summands,
then there are nonzero tunneling operators taking
any local summand of cAA to any local summand
of cBB .

On the other hand, as we saw in Theorem III.22,
composite domain walls of this form are in gen-
eral decomposable, with superselection sectors cor-
responding to minimal projections in the algebra
(ZA(X )(A → B), ⋆). From Definition IV.1, it is
clear that a set of tunneling channels through a di-
rect sum of domain walls W =

⊕
iWi is a disjoint
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union of sets of tunneling channels for each sum-
mand Wi. We would therefore like to determine
which tunneling channels correspond to each super-
selection sector.

In order to do so, we observe that the space
of tunneling operators ZA(X )(M → N) carries an
action of the algebra (ZA(X )(A→ B), ⋆) (see Defi-
nition III.14), given by

M

N

f ◁

A

B

ϕ :=

M

N

A

B

f ϕ . (34)

Here, ◁ indicates that ϕ (an element of the algebra
of short string operators) acts on the tunneling op-
erator f . Note that (34) makes sense for any A- and
B-modules MA and NB , not just local modules.

We now give a physical interpretation of the ac-
tion (34). If ZA(X )(M → N) is nonzero, then there
is some c ∈ Irr(ZA(X )) such that MA is a summand
of cAA and NB is a summand of cBB . Morphisms
in ZA(X )(M → N) correspond to operators of the
form

AX

AX

X

XB

XB
MA

c
NB (35)

IfM◦
A ∈ Irr(ZA(AX )loc) and N◦

B ∈ Irr(ZcA(XB)loc),
then ZA(X )(M → N) is the space of tunneling oper-
ators MA → NB across the composite domain wall.
Indeed, if M◦

A is simple, then MA is simple (though
in general there are multiple choices for c), so we can
deform (35) to obtain the following.

AX

AX

X

XB

XB

M◦
A

c
N◦

B

Indeed, as in (17), operators of the form (35)
are determined by a choice of anyon c in the mid-
dle bulk ZA(X ) topological order, an operator in
ZA(X )(M, c) bringing the MA excitation out of the
left region of condensate as c, and an operator in
ZA(X )(c,N) bringing c into the right region of con-
densate as N◦

B . Thus, the overall space of such
operators is ZA(X )(M → N), as it was in (33).
Recall that in § III C, we saw that the algebra
(ZA(X )(A→ B), ⋆) was spanned by local operators
of the form

AX

AX

X

XB

XBc

where c ∈ Irr(ZA(X )) appears as a summand of
both A and B. The action shown in (34) simply in-
volves applying these two kinds of operators in par-
allel, as shown below.

AX

AX

X

XB

XB

MA
c

NB

c′ (36)

Since applying operators in parallel was also how we
obtained the multiplication ⋆ on ZA(X )(A → B),
this is clearly an algebra action.

We now introduce one more computational tool.
In § V, we will consider the case A = B, i.e. where
a strip where the condensable algebra A ∈ ZA(X )
is not condensed is considered as a domain wall
between two regions where A is condensed, which
have ZA(X )locA topological order. We will see that
the trivial domain wall between two regions with
ZA(X )locA topological order always appears as a
summand, corresponding to the identity morphism
idA ∈ ZA(X )(A → A), which is a projection (but
not the identity) for the convolution product ⋆. If
M◦
A, N

◦
A ∈ Irr(ZA(X )locA ) are anyons, then tunneling

operators M◦
A → N◦

A through the trivial summand
corresponding to the projection idA are just the sub-
space ZA(X )A(MA → NA) ⊆ ZA(X )(M → N), by
the following lemma.

Lemma IV.8. Suppose MA, NA ∈ ZA(X )A. Then
f ∈ ZA(X )(M → N) is in ZA(X )A(MA → NA) if
and only if

f =

M

N

f =

M

N

Af = f ◁ idA .

Note that the condition that f = f ◁ idA is not
trivial, since idA is the identity for the composition ◦,
and not the convolution multiplication ⋆. We leave
the routine proof of the lemma as an exercise.

We conclude by exploring the relationship be-
tween anyon types in the middle ZA(X ) bulk re-
gion and summands of the composite domain wall

AX �X XB . There is an obvious monoidal38 functor
ZA(XA)⊠ZA(X )⊠ZA(XB)→ EndA

AX−XB
(AX �X

38 This functor does not lift to a braided monoidal func-
tor to Z(EndA

AX−XB
(AX �X XB)), because the right ac-

tion on the left domain wall is a braided monoidal functor
ZA(X ) → EndA

AX−XB
, rather than being from ZA(X ).
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XB), given by

MA ⊠ c⊠NB 7→ AX

AX
X

XB

XB

MA c NB

. (37)

In Lemma IV.9 below, we will show that this func-
tor is dominant, i.e. the image generates the whole
multifusion category EndA

AX−XB
(AX �X XB).

Before proving Lemma IV.9, we explain its phys-
ical consequences and applications. We can think of
the multifusion category EndA

AX−XB
(AX �X XB) as

a matrix of categories of bimodule functors: if

AX �X XB ∼=
⊕
i

Wi,

then

EndA
AX−XB

(AX �X XB) ∼=
⊕

i,j Hom
A
AX−XB

(Wi →Wj).

The i-th diagonal entry is EndA
AX−XB

(Wi), the cate-
gory of wall excitations in the i-th superselection sec-
tor, while the i, j entry is HomA

AX−XB
(Wi → Wj),

the category of point defects between the domain
walls in the i-th and j-th sectors. The fact that
EndA

AX−XB
(AX �X XB) is a Witt equivalence, and

therefore indecomposable as a multifusion category,
means that all of these categories of point defects
are nonzero; such point defects always exist.

On the other hand, since the superselection sec-
tors that AX�XXB decomposes into are AX−XB bi-
module summands, acting by an anyon from the left
and right ZA(AX ) and ZA(XB) bulk regions cannot
change the superselection sector; the image of these
categories in EndA

AX−XB
(AX �X XB) lies on the di-

agonal. Consequently, all of the off-diagonal entries
must come from the image of ZA(X ), the UMTC
of excitations in the middle bulk region. In other
words, all point defects between the domain walls in
distinct superselection sectors are of the form

AX

AX XB

XB

wi

wj

c
(38)

Here, wi and wj refer to minimal central projections
in (ZA(X )(A→ B), ⋆); when i ̸= j, c ∈ Irr(ZA(X ))
is an anyon type in the middle bulk region which
becomes confined (in at least one fusion channel) by
both condensates A and B. The red line labelled by
wj braids under the c-string because wj is applied
second, i.e. on states where the c anyon already
exists.

To see that these are the only point defects that
can separate distinct superselection sectors, observe

that if either free module cAA or cBB happens to
be local, then the point defect c appearing in (38) is
deconfined in either the left or the right bulk region,
and is therefore a direct sum of anyons in either the
left ZA(AX ) or right ZA(XB) bulks regions. Such
point defects cannot change the domain wall type,
and hence only occur when i = j. This reflects the
fact that only anyon types which are confined by
both condensates can braid non-trivially with the
short string operators which comprise the algebra
algebra ZA(Y)(A → B) of operators that preserve
the ground state.

Another interpretation of (38) is that, after ap-
plying a minimal projection wi ∈ ZA(X )(A → B)
to select a particular superselction sector, an ex-
tended string operator associated with a confined
anyon type c (which is not a local operator) can
take the system into other superselection sectors. In
other words, the operator:

AX

AX XB

XB

wj

c

wi

(39)

can be nonzero for i ̸= j. If we place our system
on a sphere, as in Remark III.23, then the extended
c string operator can become a closed loop opera-
tor. The same can be done on a torus, or any other
topology where the middle ZA(X ) strip is closed up
to a tube.

We now turn to the mathematical justification
for the above description of the relationship between
different superselection sectors.

Lemma IV.9. The functor (37) is dominant.

Proof. By (15), the canonical functor

EndA
AX−X (AX ) ⊟

ZA(X )
EndAX−XB

(XB)→ EndA
AX−XB

(AX �X XB)

is an equivalence. Hence, we only need to check
that the map ZA(AX ) ⊠ ZA(X ) ⊠ ZA(XB) →
EndA

AX−X (AX )⊟ZA(X ) End
A
X−XB

(XB) is dominant.
Since the bimodule category AX is indecompos-

able, EndA
AX−X (AX ) is a fusion category (rather

than multifusion). This means that the forgetful

functor Z(EndA
AX−X (AX )) → EndA

AX−X (AX ) is a

dominant tensor functor. Since EndA
AX−X (AX ) is

a Witt equivalence ZA(AX ) → ZA(X ), the action

functor ZA(AX ) ⊠ ZA(X ) → Z(EndA
AX−X (AX )) is

an equivalence. Composing, we have a dominant
tensor functor

ZA(AX )⊠ ZA(X )→ Z(EndA
AX−X (AX ))

→ EndA
AX−X (AX ).

37



Similarly, the action gives a dominant tensor functor

ZA(X )⊠ ZA(XB)→ EndAX−XB
(XB).

Overall, so far, we have a dominant tensor functor

ZA(AX )⊠ ZA(X )⊠ ZA(X )⊠ ZA(XB)
→EndA

AX−X (AX )⊠ EndAX−XB
(XB).

Note that, as tensor categories (i.e. forgetting

the braiding), ZA(X ) ∼= ZA(X ) Composing with the
canonical dominant tensor functor

EndA
AX−X (AX )⊠ EndAX−XB

(XB)
→ EndA

AX−X (AX )⊟ZA(X ) End
A
X−XB

(XB),

we obtain a dominant tensor functor which is
ZA(X )-balanced, and hence factors through

(ZA(AX )⊠ ZA(X ))⊟ZA(X ) (Z
A(X )⊠ ZA(XB))

∼=ZA(AX )⊠ ZA(X )⊠ ZA(XB),

completing the proof.

As another application, we are now in a posi-
tion to justify our the assertion in Remark IV.4:
that, if anyons M◦

A and N◦
A in ZA(AX ) ∼= ZA(X )locA

are both summands of the free module cAA for
c ∈ Irr(ZA(X )), i.e. they are both obtained as sum-
mands when a c anyon is brought to the domain wall,
then there is a nonzero local operator

AX

AX

X

M◦
A

d

7→

AX

X
N◦

A d

(40)

After some topological deformation, the above pic-
ture becomes

AX XA

AX

M◦
A

d
7→

AX XA

AX

N◦
A

d

Here, the dotted line is the identity/trivial domain
wall, which is a superselection sector of the compos-
ite domain wall given by the A-enriched AX − AX
bimodule AX �X AX . As we will explain in de-
tail in § V below, this identity bimodule is a sum-
mand of the composite domain wall, corresponding
under Theorem III.22 to the convolution projection
idA ∈ ZA(X )(A → A). The blue strip corresponds
to another summand of this same composite domain
wall. The local operators depicted above are then
just (adjoints of) tunneling operators N◦

A → M◦
A

through this composite domain wall; such tunnel-
ing operators always exist by Proposition IV.5. A
priori we might worry that some summands of the
composite wall could fail to appear in the above di-
agram. However, because the pair of parallel do-
main walls are joined by a cup, Lemma IV.9 tells us
that all summands will appear, for some choice of
d ∈ Irr(ZA(X )). On the other hand, when d ∼= 1,
the cup is just the inclusion of the trivial domain wall
into the composite, and nonzero tunneling operators
through that wall only take M◦

A to itself.

V. XYX EXAMPLES

In this section, we will use the tools developed
in § III and § IV to work out the decomposition of
composite domain walls in several explicit examples.
We will investigate composite domain walls of the
form

YA Y YA

AY YA

W := AY �Y YA ∼= AYA,

where Y is an A-enriched fusion category and A ∈
ZA(Y) is a condensable algebra. For brevity, we de-
note C := ZA(Y), X := YA, and W ∼= AY �Y YA ∼=
AYA is the YA−YA bimodule category describing the
composite domain wall. Thus, ZA(X ) ∼= ZA(YA) ∼=
ClocA , and the ClocA − ClocA bimodule multifusion cate-
gory of excitations on the composite domain wall is
End(W) ∼= AC ⊟C CA ∼= ACA, the category of A− A
bimodules in C.

We take a moment to discuss our choice to fo-
cus on such examples, which we call XYX exam-
ples. In the previous section, we have just seen that
XYX examples arise naturally when analyzing op-
erators of the form (40), which are natural to con-
sider whenever a domain wall based on anyon con-
densation appears. Beyond that, XYX examples
are parameterized by a minimal amount of data: we
only need a choice of anomaly representative A, an
A-enriched fusion category Y to determine the un-
condensed bulk topological order, and a choice of
condensable algebra A ∈ ZA(Y). Then, the A-
enriched fusion and bimodule categories labelling the
regions where A is condensed and the walls bound-
ing those regions are all just YA. As explained in
Remark IV.7, examples of the form AX �X XB are
already able to illustrate all the interactions between
the decomposition of composite domain walls and
tunneling operators. In studying XYX -examples,
we only impose the further restriction that B = A.
This class of examples therefore simplifies the com-
putational task ahead, and as we will see, still allows
for a variety of interesting behavior.
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We now show that, for XYX examples, the triv-
ial domain wall from ZA(X ) topological order to it-
self always appears as a summand of the composite
domain wall W. This observation will prove use-
ful in the analyses of the examples that folow. To
show this, we recall that under the correspondence
set out in Theorem III.22, (indecomposable) sum-
mands of W correspond to (minimal) projections in
the commutative algebra C(A → A) with the con-
volution product. However, C(A → A) also carries
another product: the composition ◦ of morphisms in
the category C, with identity idA.

A

A

x ◦
A

A

y :=

A

A

A

y

x

A

A

idA = A .

That is, if A ∼= ⊕ixi, where each xi ∈ Irr(C) and
pi : A→ xi is the projection onto the i-th summand,

then idA =
∑
i p

†
ipi; interpreted as short string op-

erators as in (16), idA is a sum of operators which
bring each channel in A across the strip. Because
A ∈ ZA(X ) is separable, the morphism idA is a pro-
jection for ⋆:

A

A

idA ⋆

A

A

idA = = A =

A

A

idA .

Since A is connected, it follows directly from
EndCA

(AA) = C idA that idA is a minimal projec-
tion in (C(A → A), ⋆) (visibly, for any projection
p ≤ idA, p = p ⋆ idA ∈ EndCA

(AA)). Therefore, its
image is a superselection sector denoted W1 of the
composite domain wall W. In order to character-
ize this sector, we compute the action of idA on the
spaces of tunneling operators; as described in § IVD,
the space of tunneling operators M◦

A → N◦
A through

W1 is just the image of idA acting on C(M → N)
with the action (34). But by Lemma IV.8, the image
of idA is just CA(MA → NA) ⊆ C(M → N), showing

that EndAY−Y(W1) is just the identity Witt autoe-

quivalence of ClocA . Thus, as claimed, for any XYX
composite domain wall, the trivial domain wall ap-
pears as a superselection sector, since it is the image
W1 of a minimal projection. We will therefore refer
to W1 as the identity superselection sector.

Furthermore, we see that the inclusions
CA(MA → NA) ⊆ C(M → N) have two natural
interpretations in our setting. The first is that M
and N are classical mixtures of anyons, which result
from bringing a domain wall excitation (in CA) into
the C bulk. C(M → N) is thus the space of topolog-
ical local operators taking one such mixture to an-
other, and CA(MA → NA) is the subspace of these

operators which is stable under fusion with the con-
densate A.39 The second is that C(M → N) is the
space of tunneling operators M◦

A → N◦
A through the

composite domain wall, and CA(MA → NA) is the
subspace of tunneling operators through the identity
superselection sector.

Both interpretations will play a role in the exam-
ples below. In particular, suppose MA = NA = cAA
is a free module, where c ∈ Irr(C) is an anyon.
Then under the first interpretation, CA(cAA, cAA) ⊆
C(cA, cA) contains the morphisms which split the
anyon c into indecomposable wall excitations at
the domain wall. Under the second interpretation,
C(cA, cA) consists of local operators bringing a c
anyon from the left domain wall to the right one,
and CA(cAA, cAA) is again the subspace of those
operators supported in the superselection sector W1

associated to idA.

Remark V.1. There is an alternative way to see
that the identity domain wall must appear as a sum-
mand in our XYX -examples, which does not involve
the results of § III and IV. In our chosen examples,
X ∼= YA, and the bimodule category labelleing the
composite domain wall is AY �Y YA ∼= AYA, the
category of A − A-bimodules in Y. As described in
Appendix B, the tensor product on YA comes from
a monoidal embedding into AYA, and both the left
and right actions of YA on AYA will also come from
this embedding. Therefore, the trivial domain wall,
corresponding to the identity YA−YA-bimodule cat-
egory YA, appears as a summand of AYA.

In the following examples, we will show that the
other superselection sectors can exhibit a wide vari-
ety of behaviors: they may also be equivalent to the
trivial domain wall, as in § VA, they can be differ-
ent invertible domain walls, as in § VB and § VC, or
they can be noninvertible domain walls, where ad-
ditional anyons become condensed or confined, as in
§ VD.

For each of the examples below, we use all of
the tools developed in the preceding sections to an-
alyze the composite domain wall, according to the
following steps.

(1) Specify a UMTC A (fixing the anomaly), an A-
enriched fusion category Y (§ IIA), and a con-
densable algebra A ∈ ZA(Y) (§ B). The con-
densed phase is given by the enriched fusion

39 As described in Footnote 31, operators in C(M → N)
are not very interesting; in general, C(M → N) is just
a multiplicity space. However, the choice of subspace
CA(MA → NA) is part of the data specifying the wall ex-
citations MA and NA.
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category X = YA, which has bulk excitations
ZA(X ) ∼= ZA(YA) ∼= ZA(Y)locA . In all cases, we
also provide references to literature describing
a specific lattice model for the domain wall in
question.

(2) Compute the convolution algebra
(ZA(Y)(A→ A), ⋆) of short string opera-
tors on the middle strip, where ⋆ is the
convolution multiplication from Definition
III.14. Identify the minimal projections in this
algebra, which are local operators that project
onto superselection sectors of the composite
domain wall, by Theorem III.22.

(3) Identify the summands of any anyons c ∈ ZA(Y)
from the uncondensed phase which split on the
domain wall to the condensed phase, by com-
puting the decomposition of free modules cAA.
Identify the spaces of tunneling channels for each
pair of anyons through the composite domain
wall, or at least give dimensions.

(4) Using sets of tunneling channels (Defini-
tion IV.1) for the original domain walls, the
decomposition of splitting anyons, and the ac-
tion (34) of (ZA(Y)(A → A), ⋆) on spaces of
tunneling operators, we work out sets of tun-
neling channels for the indecomposable domain
wall in each superselection sector. This allows
us to identify the indecomposable domain wall
associated to each minimal central projection
wi ∈ ZA(Y)(A → A), either as an indecompos-
able X − X A-enriched bimodule category Wi,
the associated Witt equivalence EndAX−X (Wi),

or the Lagrangian algebra in ZA(X ) ⊠ ZA(X )
which is condensed at the wall.

(5) Based on (38), we briefly describe how different
superselection sectors are related by extended
string operators which are confined to the un-
condensed region, as well as how anyons from
the middle bulk become point defects between
superselection sectors.

A. Toric code

(1) In this example, we choose

A = Hilb

X = Hilb[Z/2]
Y = Hilb[Z/4]

XMY = Hilb[Z/2].

Setting A = CZ/2 ∈ Z(Y) to be the algebra ob-
tained by condensing the boson m2, we obtain
Z(X ) = Z(Y)locA = D(Z/2), the toric code.

We will use the same Hamiltonian as described
above in (23)-(25), but a different configuration
of green and black edges, as shown.

(2) We now analyze the wall W := M using The-
orem III.22. As an object in C := Z(Y) ∼=
D(Z/4), we have A ∼= 1⊕m2. Therefore, C(A→
A) is 2-dimensional, generated by projections
π1 : A→ 1→ A and πm2 : A→ m2 → A for the
usual categorical composition in EndZ(Y)(A) (as
opposed to the convolution multiplication ⋆ for
EndZ(Y)(A)). The convolution multiplication ⋆

has identity 2π1, and πm2 ⋆ πm2 = 1
2π1, so that

the generators 2π1 and 2πm2 form the group Z/2,
i.e. (C(A → A), ⋆) ∼= C[Z/2]. (The factors of 2
and 1

2 appear because |Z/2| = 2, and are nec-
essary to make the condensate A unitarily sepa-
rable.) The minimal convolution projections in
C(A→ A) are thus

w1 := idA = π1 + πm2

w−1 := π1 − πm2 .

(3) In this case, the objects of Irr(CA) are all of the
form x ⊕ m2x for x ∈ Irr(C), so they partition
the objects of Irr(C). Hence, for MA ̸= NA ∈
Irr(ClocA ), we have C(M → N) ∼= 0 meaning
that there are no tunneling operators between
distinct simple objects. On the other hand, for
MA ∈ Irr(ClocA ), there are 2 tunneling channels
MA →MA, one for each projection w±1.

(4) Since w1 = idA, the corresponding summandW1

of the composite domain wall is equivalent to
the trivial domain wall (i.e. no domain wall)
from ZA(X ) topological order to itself. The
other summand W−1 is also an invertible do-
main wall, which applies a Z2 symmetry Φ ∈
Autbr⊗ (D(Z/2)) which does not permute anyon
types, but under which the m anyon is charged.
For a single domain wall, however, the result-
ing phase cannot be detected physically; hence
W−1 must be equivalent toW1, in the sense that
both produce the same Witt autoequivalence of
D(Z/2).

(5) We can understand why there are two dis-
tinct summands W1 and W−1 by examining the
ground-state degeneracy obtained from putting
our system on a sphere with A uncondensed at
the equator and condensed near the poles, as in
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Remark III.23. In other words, we impose peri-
odic boundary conditions orthogonal to the do-
main walls, and then cap off the two bulk regions
where A is condensed. In this case, the algebra
C(A → A) becomes the 2-dimensional space of
ground states.

To understand the difference between W1 and
W−1, consider the closed string operator Le of
type e which runs around a non-contractible loop
in the middle unshaded region.

e

La for a = e2,m,m2, or m3 act trivially on the
space of ground states, since these strings can
slide into the green region and be contracted.
However, e is confined in the green regions; hence
Le need not have a trivial action. Indeed, be-
cause [Le, πm2 ] = −1, we know that Lew1 =
w−1Le, so Le exchanges the two summands of
W. In summary, the two summands of W can
be distinguished by the number of e-lines mod-
ulo 2 running around a non-contractible loop in
the C-bulk region.

Thus, we see that in the geometry depicted
above, the image of the projectors w1 and w−1

differs by an extended e-string operator in the
strip of the original uncondensed phase. Al-
though the two summands exhibit the same be-
havior in terms of particle mobility, the compos-
ite tunneling operators Tm : mAA → m→ mAA
and Tm3 : mAA → m3 → mAA will pick up
different phases on each summand, which we
denote by λm,1, λm3,1, λm,−1, and λm3,−1 re-
spectively. The phases themselves are not well
defined, since they can be modified by adding
strictly local operators in the vicinity of the do-
main wall. However, we can define a phase that
is independent of these details, by first tunneling
an m across using Tm (or Tm3), then applying
the non-local Le operator, and finally tunneling
the particle back using T−1

m (or T−1
m3 ). The net

phase acquired in this process is λm,−1/λm,1 (or
λm3,−1/λm3,−1), which is ±i. The overall sign is
also not well defined, since it can be modified by
adding a contractible Le2 string encircling the
domain wall. However, the ratios

(λm,−1)
2/(λm,1)

2 = (λm3,−1)
2/(λm3,−1)

2 = −1

are well-defined, in the sense that they are inde-
pendent of any local or contractible operators.

This is the sense in which the two boundaries
represent different Z2-symmetry actions on the
m particle, which carries a 1/2 Z2 charge under
one of the symmetry actions.

The process of computing λm,−1/λm,1 described
above cannot tell us whether the system was ini-
tially in the image of W1, or that of W−1. On
the spherical geometry, this is true in general:
no physical process can reliably tell us which of
the two domain wall types we have, since there is
no way to measure the presence of the Le string
that is robust to adding local operators near the
domain wall; the physically well-defined infor-
mation is simply that the two domain wall types
are different. This is reflected mathematically
by the fact that W1 and W−1 are equivalent as
X−X bimodule categories, even though they are
different summands ofW. On the other hand, on
the torus with a single white region around the
meridian, the presence of an extended e string
in the white region can be detected by a process
that transports an m particle around the torus.

Remark V.2. In a given microscopic realization,
we can see that we obtain the summand with an odd
number of extended e-strings parallel to the domain
walls in either the image of w1 or of w−1, but not
both. Recall that when we defined the lattice model,
we had to make choice of operator Cℓ to condense
m2 in the green region. If we choose Cℓ = 1

2 (1 +

Z)2 in both regions, then w1 selects states with an
even number of extended e-strings, and w−1 selects
states with an odd number. If we instead choose
Cℓ = 1

2 (1 + Z)2 in the left bulk region and Cl =
1
2 (1−Z)

2 in the right bulk region, then the situation
is reversed.

Finally, we consider adding an e-e3 pair to the
uncondensed D(Z/4) region. Each of these ex-
citations corresponds to a nontrivial point de-
fect separating the two distinct types of domain
wall identified above. As above, because there
is no physical process that can detect a closed
Le string, a priori the resulting domain wall can
either have W1-type domain wall below the e
particle, and a W−1 wall above it, or be in a
configuration where the roles of W1 and W−1

are reversed. Note also that there is no univer-
sal meaning to which particle we call e and which
we call e3, since this can be altered by bringing
a pair of e2 particles from one of the toric code
regions, and binding one to each defect.

In the presence of such defects, however, we can
see the projective Z2 symmetry action more ex-
plicitly. Tunneling an m := mAA particle from
the condensed D(Z/2) toric code in a closed path
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encircling an e or e3 defect gives a phase of
ϕ = ±i. The overall sign is not universal, in
the sense that it can be modified by binding an
e2 particle to the defect. However, the fact that
ϕ2 = −1 is universal, and cannot be modified by
either local operators, or binding anyons from
the Toric code bulk to the defects. Thus, we see
that the m particle carries a 1/2 charge under
one of the Z2 symmetries associated with this
domain wall.

B. Doubled Ising

(1) In this example, we choose

A = Hilb

X = Hilb[Z/2]
Y = Ising

XMY = Hilb[Z/2].

Recall that the Ising UMTC40 has anyons 1, ψ,
and σ, where ψ is a fermion and dim(σ) =

√
2.

Like any modular tensor category, its double
C := Z(Y) ∼= Ising ⊠ Ising consists of two copies
with opposite chirality. The particle ψ ⊠ ψ is a
boson, and after condensing this boson, i.e. con-
densing the algebra

1⊠ 1⊕ ψ ⊠ ψ ∈ Ising ⊠ Ising ∼= Z(Ising),

we obtain ClocA ∼= Z(X ) = D(Z/2) [BS09,
BSS12], the toric code topological order.

A concrete description of the string-net [LW05]
lattice model of Z(Ising) ∼= Ising ⊠ Ising, includ-
ing the modifications needed to condense ψ⊠ψ,
appears in [BSS12, HBFL16]. Many mathemat-
ical details of the resulting boundary between
doubled Ising and Z/2-toric code resulting from
the condensation of A appear in [CJK+19], and
another lattice model of the boundary with de-
tailed analysis appears in [ZHW+22].

(2) As in § VA, the algebra C(A → A) is 2-
dimensional, and generated by composition pro-
jections π1 and πψ corresponding to the simple

objects 1⊠ 1 and ψ⊠ψ respectively. Again, 2π1

40 The Ising UMTC (which is distinct from SU(2)2) is
the semisimple part of the Temperley-Lieb-Jones category

T LJ (ie−
2πi
16 ) with braiding (4), pivotal structure given by

the identity for all simples, and dagger structure from Foot-
note 12. The formulas for S, T are given in [Wan10, p. 19];
compare with Footnotes 13 and 14.

is the identity for ⋆, and πψ ∗ πψ = 1
2π1. The

minimal convolution projections are thus

w1 := idA = π1 + πψ

w−1 := π1 − πψ

Remark V.3. One might wonder why, despite the
fact that the UMTC C = Z(Ising) and algebra
A in this example are different from the UMTC
C′ = D(Z/4) and algebra A′ ∼= 1 ⊕ m2 from the
previous example, the algebras (C(A → A), ⋆) and
(C′(A′ → A′), ⋆) are isomorphic. This happens
because the subcategories generated by each alge-
bra are equivalent; both are equivalent to Hilb[Z/2]
with the trivial/symmetric braiding. On the level
of objects, the equivalence is given by 1 7→ 1 and
m2 7→ ψ⊠ψ, and it indeed maps A′ to A. However,
because the overall UMTCs C′ and C are different,
the remaining details of this example will differ sig-
nificantly from those in the previous one.

(3) After condensing ψ ⊠ ψ, the boson σ ⊠ σ of
Z(Ising) splits into the direct sum e ⊕m in the
toric code, while 1⊠ψ and ψ⊠1 become em ∼= ϵ.
Thus there are tunneling operators Te→m and
Tm→e, as well as tunneling operators Ta→a for
a = 1, e,m, ϵ. There are no tunneling operators
between any other pairs of Toric code anyons,
since fusion with A at the domain wall is equiv-
alent to fusion with the vacuum. More precisely,
the free modules cAA for c ∈ Irr(C) partition the
simple objects of C, i.e. each c ∈ Irr(C) appears
in exactly one (isomorphism class of) dAA where
d ∈ Irr(C).
For the free modules AA and ϵ ∼= (ψ⊠ 1)AA, we
have C(A → A) ∼= C ⊕ C ∼= C((ψ ⊠ 1)A → (ψ ⊠
1)A), so there are 2 tunneling channels 1 → 1
and 2 channels ϵ → ϵ, corresponding to the two
choices of string operator (1 and ψ⊠ψ, or (ψ⊠1)
and (1 ⊠ ψ), respectively) which can transport
these between the left and right domain walls.
As in the previous example, this leads to one
tunneling channel for each particle in each of the
two summands W±1. Again, this is because the
toric code particles 1 and ϵ are free modules,
and hence the spaces of tunneling operators 1→
1 and ϵ → ϵ are isomorphic to C(A → A) as
representations of the algebra (C(A → A), ⋆) of
short string operators.

On the other hand, both e and m are local A-
modules (i.e. anyons in the condensed region)
with the same underlying simple object (anyon)
in the uncondensed topological order, namely
σ ⊠ σ ∈ Irr(C). Thus each of the 4 spaces
of tunneling operators involving e and m is 1-
dimensional, given by C(σ ⊠ σ → σ ⊠ σ) ∼= C.

42



In other words, there are unique (up to phase)
tunneling channels e → e, e → m, m → e, and
m → m. In a given summand of W, only one
of the two possible channels e → e, e → m is
non-vanishing (and similarly for m).

(4) To see how W1 and W−1 differ, we must ana-
lyze the spaces of tunneling operators through
each wall. The analysis for 1 and ϵ is analogous
to that in § VA; as promised, we find that W1

acts as the trivial superselection sector for these
anyons, whileW−1 induces an extra phase factor
when a ψ particle crosses.

To analyze the tunneling channels for e and m,
we must compute the action of (C(A→ A), ⋆) on
the spaces of tunneling operators e→ e,m→ m,
m → e, and e → m. As noted above, e and
m particles are both transported through the
Z(Ising) strip connecting the left and right Toric
code regions using the hopping operator for the
anyon σ⊠σ. Hence the four tunneling spaces are
all isomorphic to C(σ⊠σ → σ⊠σ) ∼= C; however,
they carry different actions of (C(A→ A), ⋆).

We now show how to use this action to obtain
a description of the superselection sectors, using
the mathematical machinery of § IVD. We begin
by investigating how, at either domain wall, the
anyon σ⊠σ ∈ Irr(D(Ising)) splits as the mixture
e ⊕ m of toric code anyons. If a σ ⊠ σ anyon
is near a domain wall to the A-condensate, we
can apply an operator bringing a ψ ⊠ ψ anyon
out of the wall and fusing it with the σ ⊠ σ.
Since two copies ψ⊠ψ fuse to 1, performing this
operation twice returns us to the original state.
Thus, our σ⊠σ anyon has a 2-dimensional space
of configurations. The local operators which can
act on a σ ⊠ σ anyon near the A condensate are
the space

C((σ ⊠ σ)A→ (σ ⊠ σ)A) ∼=M2(C), (41)

However, the operators which are stable under
fusion with the A condensate are the subspace

D(Z/2)(e⊕m→ e⊕m)
∼= CA((σ ⊠ σ)AA → (σ ⊠ σ)AA) (42)
∼= C⊕ C

spanned by projectors which pick out the toric
code excitations e⊕m into which σ⊠σ splits at
the wall.

In order to write down operators in C((σ⊠σ)A→
(σ⊠σ)A) as 2×2 matrices, we must choose a par-
ticular isomorphism (41), analogous to a choice
of orthonormal basis for the 2-dimensional con-
figuration space. We choose the basis {|0⟩, |1⟩},

where |j⟩ is a state where the number of ψ ⊠ ψ
lines from the condensate fused into the σ ⊠ σ
anyon modulo 2 is j. Mathematically, we can
describe this choice as follows. Since EndC(A) is
generated by the orthogonal projections π1 and
πψ onto the 1 ⊠ 1 and ψ ⊠ ψ anyons, and there
are unique fusion channels (σ⊠σ)(1⊠1) ∼= σ⊠σ
and (σ⊠σ)(ψ⊠ψ) ∼= σ⊠σ, EndC((σ⊠σA) con-
tains e1 := idσ⊠σ ⊗π1 and eψ := idσ⊠σ ⊗πψ as
orthogonal rank 1 projections. Then e1 is the
projection onto |0⟩ and eψ is the projection onto
|1⟩, so the isomorphism (41) becomes

e1 =

[
1 0
0 0

]
, eψ =

[
0 0
0 1

]
.

The operator (unique up to phase) which brings
a ψ ⊠ ψ line out of the condensate and fuses it
with σ⊠σ exchanges |0⟩ and |1⟩, so it is just the
Pauli matrix

X =

[
0 1
1 0

]

Now, we can determine matrices for the subalge-
bra (42) of operators stable under fusion with the
A condensate. To do so, we will first compute
the (C(A → A), ⋆) action on (41), and then ap-
ply Lemma IV.8. We know that idA = π1 + πψ,
that 2π1 is the identity for the convolution ⋆, and
that πψ ⋆ πψ = 1

2π1. Thus, the matrices satisfy-
ing the condition from Lemma IV.8 are exactly
those which are preserved under the action of
2πψ, which is conjugation by Pauli X, i.e.

M 7→
[
0 1
1 0

]
M

[
0 1
1 0

]
(43)

If we think of EndC((σ ⊠ σ)A → (σ ⊠ σ)A) as
a space of tunneling operators through the com-
posite domain wall, we can interpret this fact as
follows. Operators which take a σ⊠σ anyon from
the left domain wall to the right domain wall
map the 2-dimensional space of configurations
near the left wall to the 2-dimensional space of
configurations near the right wall. Thus, for ex-
ample, eψ is the operator |1R⟩⟨1L|, where the
subscripts L and R denote which configuration
space a state lives in. If T is such a tunneling op-
erator, then T ◁2πψ is obtained by applying the
short string operator associated with ψ parallel
to T ; this short string operator can be fused into
the σ ⊠ σ string near each domain wall, which
evidently has the effect (43).

The matrices which are invariant under (43) are
just those which are diagonalized in the eigenba-
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sis of Pauli X, and are hence spanned by

1

2

[
1 1
1 1

]
and

1

2

[
1 −1
−1 1

]
.

Since these matrices are orthogonal Hermitian
projections, one must be ide, the operator that
projects onto an e-type domain wall excitation,
and the other must be idm. The choice of which
is which is arbitrary, because making a different
choice amounts to applying the symmetry ex-
changing the e and m labels in toric code. We
choose

ide :=
1

2

[
1 1
1 1

]
and idm :=

1

2

[
1 −1
−1 1

]
.

Now that we know the projections which select
an e or m particle on each domain wall, it is
easy to determine the tunneling operators e→ e,
e→ m, m→ e, and m→ m across the compos-
ite domain wall. Since each of these projections
is rank 1, for each x, y ∈ {e,m}, the space of tun-
neling operators x→ y is spanned by the unique
(up to phase) partial isometry Tx→y from idx to
idy. Of course, a projection is a partial isom-
etry from itself to itself, so the unique (up to
scalar) tunneling operators e → e and m → m
are respectively

Te→e :=
1

2

[
1 1
1 1

]
and Tm→m :=

1

2

[
1 −1
−1 1

]
,

As 2× 2 matrices, these are the same as ide and
idm, but we now interpret them as tunneling op-
erators which map between the two configura-
tion spaces of σ⊠σ near each of the two bound-
aries, rather than local operators on the single
configuration space near one of the boundaries.
The other two partial isometries, which take ide
to idm and vice-versa, are:

Te→m =
1

2

[
1 1
−1 −1

]
and Tm→e =

1

2

[
1 −1
1 −1

]
.

These correspond to tunneling channels ex-
changing e and m.

Now that we have concrete matrices for each
tunneling channel Tx→y, as well as for the ac-
tion of (C(A→ A), ⋆) on these tunneling opera-
tors, we can reap the rewards. That is, we can
compute Tx→y ◁ wi for each choice of (x, y, i),
and thereby determine which tunneling opera-
tors correspond to which summand of the com-
posite domain wall W. The tunneling operators
Te→e and Tm→m are stable under conjugation
by Pauli X, and hence are tunneling operators

through the summand W1 determined by the
projection w1 = idA. Meanwhile, conjugating
the tunneling operators Te→m and Tm→e by X
introduces a factor of −1, so these are the tun-
neling operators through the summandW−1 de-
termined by the projection w−1.

This shows that EndX−X (W1) is the trivial
Witt autoequivalence of ClocA ∼= D(Z/2), while
EndX−X (W−1) is the autoequivalence coming
from the symmetry Φ : D(Z/2)→ D(Z/2) which
exchanges the anyons e and m.

(5) To understand the different superselection sec-
tors intuitively, we once again place our system
on a sphere as in Remark III.23. The ground
state Hilbert space contains states in which ex-
tended σ ⊠ 1 or 1 ⊠ σ string operators encircle
the strip where A is not condensed. Since σ ⊠ 1
and 1⊠ σ are the only anyons that become con-
fined in the Toric code regions, and they differ
by fusion with anyons that are deconfined every-
where, the operator Lσ that inserts such strings
is the only operator that can act non-trivially on
the ground state Hilbert space.

σ⊠1

The operator Lσ anti-commutes with πψ, since
S(ψ⊠ψ)(σ⊠1)/S1(σ⊠1) = S(ψ⊠ψ),(1⊠σ)/S1,(1⊠σ) =

−1. Thus Lσ exchanges the two summands W1

and W−1. Moreover, with this geometry, the
image of w1 (w−1) is a strip with an odd (even)
number of σ⊠1 or 1⊠σ lines encircling the white
strip at the center of the sphere.

We can now understand why the projections w±1

have the action that they do. First, because the
W−1 domain wall contains an odd number of ex-
tended σ strings, as shown in [BSS12, HBFL16],
an e particle that enters this domain wall will
exit as an m, and vice versa. Moreover, an ϵ
particle crossing such a wall will incur an extra
phase of ±i relative to the ϵ particle crossing the
trivial, W1 domain wall due to its half-braiding
with the extended σ line.

Finally, if we allow pairs of σ⊠ 1 or 1⊠ σ parti-
cles in our uncondensed strip, each particle cor-
responds to a defect separating W1 and W−1

domain wall types. Once again, local operators
cannot be used to distinguish the locus of each
domain wall type, but they are clearly distinct:
if we braid an e particle around such a defect
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it returns as an m, and vice versa. Bringing an
ϵ around such a defect in principle incurs a net
phase of −1; however in this case the phase is not
well-defined, as it can be modified by attaching
an e or m anyon from the bulk to the defect.

Remark V.4. As in the previous example, in the
spherical geometry discussed above the two sum-
mands W±1 cannot be distinguished by any local
process, since the choice of which anyon to call e or
m in each region is a matter of convention. How-
ever, as before, we can see that the two domain wall
types are distinct, by first tunneling an e across the
domain wall from left to right, then applying Lσ,
and finally tunneling the same anyon back across
from right to left. The particle that returns is nec-
essarily an m, showing that one of the two domain
wall types exchanges e and m, while the other does
not.

However, if we put the system on the torus, then we
find that in W−1, an e particle that traverses the
torus in the direction perpendicular to the strip re-
turns as an m. This changes the nature of the topo-
logically distinct ground states on the torus (though
not their number).

Remark V.5. Depending on the topology of our
system, we can relabel the toric code anyons on only
one side of the composite domain wall, exchanging e
andm. However, such a relabeling will only preserve
the Witt equivalence labelling one domain wall CA ∼=
EndXA−X (XA) ∼= EndX−XA

(XA) up to monoidal bi-
module equivalence, so it will also exchange which
short string operators are identified with w±1. Thus,
the Witt equivalences EndXA−XA

(W±1) will be pre-
served.

C. Chiral example: T Y3,− wall between SU(3)1
and SU(2)4

We now turn to a chiral example, based on Ex-
ample II B 1.

(1) We take

A = SU(3)1

X = SU(3)1

Y = T Y3,− = (SU(2)4)1⊕g

XMY = XYmp
Y .

As we saw in Example II B 1, ZA(Y) =
SU(2)4. It is clear that ZA(X ) = SU(3)1, as
SU(3)1 is modular. The algebra in ZA(Y) ∼=
SU(2)4 which condenses at the boundary is

1 ⊕ g. It follows that M := EndAX−Y(Y) ∼=
((SU(2)4)1⊕g)

mp ∼= (T Y3,−)mp.

These choices of Y and of the bimodule XYX
have an obvious implementation in terms of the
lattice model described in § II B: we simply re-
strict the set of labels of edges in regions labelled
by X to the simple objects of X ∼= A (as UFCs),
rather than allowing the additional simple object
of Y = T Y3,−. In other words, while the descrip-
tion of the topological boundary corresponding
to Y in § II B was somewhat involved, X is the
topological boundary for the A-bulk obtained by
simply cutting it off at a plane.

(2) The analysis of the algebra (C(A → A), ⋆) ∼=
C[Z/2] is identical to the non-chiral examples
VA and VB. In summary, if π1 and πg are min-
imal composition projections in C(A→ A), then
the identity for ⋆ is 2π1, and minimal projections
for ⋆ are

w1 := idA = π1 + πg

w−1 := π1 − πg

The domain wall W :=M �Y M therefore de-
composes as a direct sum W = W1 ⊕ W−1 of
two indecomposable domain walls. As before,
W1 is the identity domain wall of ClocA ∼= SU(3)1.
As we will see, W−1 is the nontrivial invertible
boundary which exchanges the anyons α and α2

of SU(3)1.

(3) The analysis is parallel to that of § VB. The
space of tunneling operators 1 → 1 across the
composite W domain wall is, as always, just
(C(A → A), ⋆). The only other anyons in
SU(3)1, α and α2, arise as summands when
the anyon f2 ∈ C splits on the domain wall:
f2AA ∼= α⊕α2. As in the previous example, the
forgetful functor SU(3)1 ∼= CA → C ∼= SU(2)4
maps both α and α2 to f2. Therefore, the space

C(f2A→ f2A) ∼=M2(C) (44)

which can be interpreted as the space of opera-
tors bringing an f2 anyon from the left domain
wall to the right domain wall, is the direct sum
of the four 1-dimensional spaces of tunneling op-
erators α→ α, α→ α2, α2 → α, and α2 → α2.

(4) To analyze the tunneling operators and deter-
mine which Witt autoequivalence of SU(3)1 de-
scribes each superselection sector, we must again
work out a concrete isomorphism for (44). One
can think of an f2 anyon near either of the do-
main walls as having a 2-dimensional configu-
ration space, again spanned by two orthogonal
states |0⟩ and |1⟩, where the state |i⟩ contains
i modulo 2 g-lines between the condensate and
the f2 anyon. Operators which pull a g out of
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the condensate and fuse it with f2 again act as
Pauli X on this configuration space.

In terms of our hom-spaces, C(f2A→ f2A) con-
tains the orthogonal projections e1 := idf2 ⊗π1
and eg := idf2 ⊗πg, which become the matrices

e1 =

[
1 0
0 0

]
eg =

[
0 0
0 1

]
This completely determines the isomorphism
(44). Then, by definition, e1 ◁ 2πg = eg and
eg ◁ 2πg = e1, so 2πg acts as Pauli X as
promised.

When interpreting (44) as the sum of spaces of
tunneling operators, we have a right action of
(C(A → A), ⋆); the action of πg is to apply a
short g-string operator between the two domain
walls in parallel to the tunneling operator. As
before, since this string could be fused with the
f2 string crossing the C bulk, the action of πg
is therefore conjugation by Pauli X, i.e. by the

matrix

[
0 1
1 0

]
.

This has two consequences. First, if we interpret
C(f2A→ f2A) as a space of local operators act-
ing on an f2 anyon near one of the domain walls,
then by Lemma IV.8, the subspace

SU(3)1(α⊕ α2 → α⊕ α2)
∼= CA(f2AA → f2AA) (45)
∼= C⊕ C

of (44), which is the space of operators stable
under fusion with the A condensate, is the space
of matrices stable under conjugation by Pauli
X. Just as in § VB, minimal projections in this
subspace are given by the following matrices.

idα :=
1

2

[
1 1
1 1

]
and idα2 :=

1

2

[
1 −1
−1 1

]
Of course, we could swap the roles of α and α2,
which amounts to composing with an invertible
domain wall which exchanges the two.

Second, now that we have identified projections
onto the α and α2 summands near each domain
wall, we can resume our interpretation of (44) as
the space of operators bringing an f2 anyon from
one domain wall to the other, in which case the
subspace (45) consists of tunneling operators in
the W1 sector. The above projections are thus
also tunneling operators

Tα→α :=
1

2

[
1 1
1 1

]
and Tα2→α2 :=

1

2

[
1 −1
−1 1

]
,

since a projection is a partial isometry from itself
to itself. Thus, we see that EndA(W1) is the
trivial Witt autoequivalance.

Meanwhile, tunneling operators through the
W−1 sector form the orthogonal complement of
(45) in (44), i.e. the space of matrices which ob-
tain a phase of −1 when conjugated by Pauli X.
Thus, they are spanned by the tunneling opera-
tors

Tα→α2 =
1

2

[
1 1
−1 −1

]
Tα2→α =

1

2

[
1 −1
1 −1

]
This confirms that the anyons α and α2 are ex-
changed in the W−1 sector.

(5) The anyons f1 and f3 in ZA(Y) ∼= SU(2)4 be-
come confined in the condensate. These differ
by fusion with the condensing g anyon. Thus if
we put our model on a capped sphere, there is a
single operator Lf , corresponding to an f1 or f3
string encircling the uncondensed strip, that acts
non-trivially on the ground state Hilbert space.
(In this case, f1 and f3 strings become identified
at the boundaries of the strip, as f1AA ∼= f3AA).

From the S-matrix in § II B, we can see that the
short string operator πg and an extended string
operator Lf anticommute, so that Lf exchanges
the images of the projections w1 and w−1. More-
over, we see that for the trivial domain wallW1,
which is the image of w1, the strip must con-
tain an even number of extended f1 or f3 loops.
The non-trivial domain wall W−1, in contast, is
encircled by an odd number of such loops.

Finally, a pair of f1 or f3 anyons in the strip
are point defects separating W1 and W−1 wall
regions. An α particle that is sent through the
domain wall on one side of such a point defect,
and brought back on the other, returns as α2.

In summary: as in § II B 1, by setting A =
SU(3)1 and X ∼= SU(3)1, we begin with a Walker-
Wang model associated to the UMTC SU(3)1 in the
(3+1)D bulk, and cut off along a plane to obtain a
(2+1)D boundary with ZA(X ) ∼= SU(3)1 topologi-
cal order. As a fusion category, X = SU(3)1 includes
as (the full subcategory spanned by) the invertible
objects of our chosen Y = T Y3,−, so we can extend
the boundary lattice model to allow the additional
simple object σ ∈ Irr(T Y3,−). This strip then ex-
hibits ZA(Y) ∼= SU(2)4 topological order, and the
algebra (1⊕ g) ∈ SU(2)4 condenses at each edge of
the strip.

Similar to the situation in § VB, the short g-
string operator between the two domain walls splits
the boundary into two superselection sectors, which
differ by the autoequivalence of ZA(X ) ∼= SU(3)1
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which exchanges α and α2. Applying the short g-
string operator can be interpreted as counting the
number of f1 and f3 lines in the uncondensed strip
modulo 2, and the confined f1 and f3 anyons be-
come point defects between the two summands of
composite domain wall.

D. Nonabelian condensate example: dihedral
groups

This example concerns a condensate in the dou-
ble of D(Dn) of the dihedral group Dn. Because a
complete description of D(Dn) is lengthy and the de-
tails are known to many in the community, we defer
a full treatment to Appendix C. Definitions, nota-
tion, and basic results regarding the double D(G)
of a finite group, as well as a thorough analysis of
the special case D(Dn) where this example arises,
appear there. In particular, we write C[H] for the
group algebra and CH for the algebra of functions
on a group H.

(1) In this example, we consider

A = Hilb

X = Hilb[Da]

Y = Hilb[Dn]

XMY = Hilb[Da],

where n is odd, and a is a divisor of n.
Here, Dk is the dihedral group of order 2k,
with the presentation Dk

∼= ⟨r, f |rk, f2, (rf)2⟩.
Anyons in D(Dk) ∼= Z(Hilbfd[Dk]) are irre-
ducibleDk-gradedDk-representations, which we
denote by (g, ρ), where g ∈ Dk and ρ ∈
Irr(Rep(StabDk

(g))).

At the domain wall, we condense the subgroup
algebra

A = C[⟨ra⟩] ∼=

n/a−1
2⊕

k=1

(rk, 1).

The resulting fusion category X ∼= YA is equiv-
alent to Hilb[Da], because Dn/⟨ra⟩ ∼= Da (note
⟨ra⟩ ∼= Z/na ). Thus, we have Z(X ) ∼= D(Da).
The Witt equivalence EndX−Y(X ) of wall ex-
citations is given by D(Da, Dn), where objects
are Da-graded Dn-representations; see Defini-
tion C.3 and Example C.4. As for the bimodule
tensor category structure, the action D(Da) →
D(Da, Dn) involves inducing each Da represen-
tation to all of Dn, while the action D(Dn) →
D(Da, Dn) involves applying the quotient map
Dn → Da to the grading.

Before doing any computations, we will sum-
marize the results of our analysis. The com-

posite domain wall W has n/a+1
2 summands.

One of these W0, is the identity domain wall of

D(Da). The remaining n/a−1
2 summands all cor-

respond to the Lagrangian algebra L(B,B, id) ∈
D(Da) ⊟ D(Da), where B = CDa/⟨f⟩ ∼= 1 ⊕
(1, ϵ). The anyon (f, 1) ∈ D(Dn) splits as a
direct sum of several wall excitations at each
D(Dn) − D(Da) domain wall, one of which be-
comes the anyon (f, 1) ∈ D(Da), and the rest
of which are distinct and confined to the wall.
Each summand of W gives a different identifica-
tion of the summands of (f, 1) on the left and
right domain walls, with only the identity sum-
mand of W identifying the mobile summands
(f, 1) ∈ D(Da) on both sides. We will see that
the summands other than W0 are all equivalent
as Witt equivalences D(Da)→ D(Da).

A description of string-net models for a class of
similar boundaries appears in Appendix C 2; this
boundary is the case where G = Dn, H = ⟨ra⟩ ⊆
Dn.

(2) The algebra C(A→ A) is generated under com-
position by projections πrka = πr−ka onto the
simple summands of A, where k runs from 0 to
n/a−1

2 . We also adopt the notation π1 := πr0 .

Observe that End(A) ∼= (C⟨ra⟩)f , the part of
the algebra C⟨ra⟩ of functions on ⟨ra⟩ ∼= Z/na
stable under the action of f , which exchanges
ra and r−a. Along the same lines, the algebra
(C(A → A), ⋆) is just C[⟨ra⟩]f , the part of the
group algebra of ⟨ra⟩ stable under the action of
f . Explicitly, the identity for ⋆ is n

aπ1, and the
convolution product is given by

πrka ⋆ πrja =
a

n
(πr(k+j)a + πr(k−j)a).

Minimal projections for the convolution product
are as follows.

w0 :=

n/a−1
2∑
j=0

πrja

wk :=

n/a−1
2∑
j=0

(e2πijk(a/n) + e−2πijk(a/n))πrja

We again denote the summand ofW correspond-
ing to wk byWk. The minimal projections corre-
spond to indecomposable Dn-subrepresentations
of C[⟨ra⟩], i.e. subspaces of C[⟨ra⟩] which are
preversed by the Dn-action. As usual, w0 is pro-
portional to idA, and W0 is the identity/trivial
domain wall from Z(X ) ∼= ClocA ∼= D(Da) to it-
self.
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(3) Most of the anyons d ∈ D(Da) ∼= D(Dn)
loc
A

are free A-modules. Similar to the the previ-
ous two examples, distinct free modules parti-
tion those simple objects of D(Dn) which have
the form (rx, ωj), including the objects (1, σj).
(Here rx represents a conjugacy class of Dn,
while ωj and σj are associated with irreducible
representations of Dn; see Appendix C 3 for de-
tails). For each such anyon c ∈ D(Dn), ei-
ther c is a summand of A, or cA is the direct
sum of n

a distinct simple objects. In fact, in
this case we have C(cA → cA) ∼= C[⟨ra⟩] as a
C(A → A) ∼= C[⟨ra⟩]f -module. Therefore, for
anyons d of the form (1, σk) or (rk, ωj), there
are 1-dimensional spaces of tunneling operators
d → d for the summand W0, and 2-dimensional
spaces of tunneling operators d→ d forWk when
k ̸= 0.

The remaining free modules can be divided into
two overlapping pairs: A and (1, ϵ)A; and (f, 1)A
and (f,−1)A. We begin with the latter. Some-
thing more interesting happens to the anyons
(f,±1) ∈ D(Da), because the anyons (f,±1) ∈
D(Dn) split into several summands at the do-
main wall, only one of which is local. Since
(f, 1) ∼= (f,−1)(1, ϵ), and the Abelian anyon
(1, ϵ) remains an Abelian anyon when A is con-
densed, we focus solely on the fate of (f, 1).
As described in Appendix C 3, the free module
(f, 1)AA decomposes as follows.

(f, 1)AA ∼= (f, 1)A ⊕

n/a−1
2⊕

k=1

(f, σk)A


Here (g, ρ)AA denotes a free module over an ob-
ject (g, ρ) ∈ Irr(D(Dn)), where g ∈ Dn and
ρ ∈ Irr(Rep(StabDn

(g))), while (h, λ)A denotes
an object in Irr(D(Dn)A ∼= D(Da, Dn), where
h ∈ Da, and λ ∈ Irr(Rep(StabDn

(h))), with Dn

acting on Da
∼= Dn/⟨ra⟩ by conjugacy. In par-

ticular, when we write (f, ρ)A, ρ is an irreducible
representation of

StabDn(f) = ⟨f, ra⟩ ∼= Dn/a.

The underlying object of (f, 1)A is the sim-
ple object (f, 1), while the underlying object of
(f, σk)A is (f, 1) ⊕ (f,−1). Consequently, there
are 1-dimensional spaces of tunneling operators
(f, 1)A → (f, 1)A.

(4) In this case, we will be able to identify the do-
main wall summandsWi by the numbers of tun-
neling channels alone. Since

W ∼=

n−1
2a⊕
k=0

Wk

has many summands, yet CA((f, 1)A, (f, 1)A) ∼=
C((f, 1), (f, 1)) is only 1-dimensional, we can im-
mediately see that there cannot be nonzero tun-
neling operators for the anyon (f, 1)A ∈ Z(X )
through all summands ofW - in fact, (f, 1) must
be confined in every summand but W0.

The fate of (1, ϵ) is closely related to that of
(f, 1). The anyon (1, ϵ) in the condensed D(Da)
topological order is just the free module (1, ϵ)AA.
However, since (1, ϵ)(rak, 1) ∼= (rak, 1), there are
many nonzero tunneling operators 1→ (1, ϵ) and
(1, ϵ)→ 1.

Explicitly, we have dim(C(A → A)) =

dim(C((1, ϵ)A → (1, ϵ)A)) = n/a+1
2 , while

dim(C(A → (1, ϵ)A)) = dim(C((1, ϵ)A → A)) =
n/a−1

2 = n/a+1
2 − 1. Thus, we see that the

anyon (1, ϵ) ∈ ClocA from the condensed region
condenses on at least some summands of the do-
main wall.

We can use these observations to give a more
precise description of the various summands in
terms of a Lagrangian algebra L(B,B,Φ) of the

folded theory D(Da) ⊠ D(Da). We know that
(f, 1) is confined by all but the trivial summand
W0. Thus some anyon which braids nontriv-
ially with (f, 1) must condense on each of the re-

maining n/a+1
2 − 1 summands. This can only be

(1, ϵ), since no other anyons of ClocA have nonzero
tunneling operators to the vacuum. Thus, with
the exception of W0, all summands of W must
correspond to a Lagrangian algebra L(B,B,Φ),
where B ∼= 1 ⊕ (1, ϵ) is the condensable al-
gebra in D(Da) described above, and Φ is an
outer automorphism of D(Da)

loc
B
∼= D(Z/a). In

other words, the indecomposable domain walls
in these superselection sectors correspond to a
strip of Z/a toric code containing an invertible
boundary corresponding to the autoequivalence
Φ, separating the two D(Da) bulk regions. Since
Z/a ⊆ Da is the subgroup generated by r ∈ Da,
this is an example of the ‘smooth’ boundary
D(G) − D(K) for K ⊆ G for which a lattice
model is given in § C2.

As shown in Appendix C, D(Da)
loc
B
∼= D(Z/a),

the Z/a toric code, with (rx, ωj) ∈ D(Da) split-
ting as exmj⊕e−xm−j . The possible autoequiv-
alences of D(Z/a) are computed in [FPSV15,
BBJ19a]. Because each (rx, ωj) only tunnels
to itself through each Wk, the autoequivalence
Φ : D(Z/a) → D(Z/a) must be either the iden-
tity, or the autoequivalence Ψ which maps e→ e,
m → m. However, because B ∼= CDn/⟨r⟩ ∼=
CZ/2, there is a nontrivial automorphism ψ of
B, which acts as 1 on the 1 component and −1
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on the (1, ϵ) component. This automorphism
ψ induces the automorphism Ψ of D(Dn)

loc
B , so

as explained in Remark III.6, L(B,B, id) and
L(B,B,Ψ) are isomorphic Lagrangian algebras,
meaning that the two possible autoequivalences
id and Ψ give equivalent domain walls.

(5) Anyons of the form (1, σk) where
n
a does not di-

vide k are confined to the middle D(Dn) strip.
From the half-braiding (C1) on D(Dn) and the
idempotents in C(A → A) computed above, we
can see that the operator Lσk

that inserts an
extended (1, σk)-string operator in the middle
strip satisfies Lσk

w0 = wkLσk
, meaning that Lσk

maps the W0 sector onto the Wi sector. More
generally, Lσk

maps theWi sector onto theWi+k

and Wi−k sectors.

One might interpret this by saying that the
idempotents wi count (up to sign) the number
of extended m-strings in the uncondensed bulk
region running parallel to the domain walls re-
gion in an appropriate non-Abelian sense, where
m⊕m−1 := (1, σ1). Of course, just as we saw in
the toric code example of § VA, the exact num-
ber of m-strings in a particular superselection
sector is not well-defined (even up to sign), be-
cause of the possibility of different microscopic
realizations of the condensation domain walls.
This is again reflected mathematically by the
fact that the summands Wi for i ̸= 0 are equiv-
alent X − X bimodule categories, even though
they are different as summands of W.

The description of point defects between differ-
ent summands in terms of D(Dn) bulk anyons
is exactly analogous to the examples discussed
above: the anyon (1, σk) becomes a point defect
between Wi and Wi+k⊕Wi−k. When an (rx, 1)
particle from one of the condensed regions with
D(Da) topological order is brought into the bulk,
braids around a (1, σk) anyon, and returns to the
boundary, it acquires a phase of ω±kx, with the
sign determined by the choice of superselection
sectors above and below the defect.

Similar to the previous examples, we can view an
(f, 1) anyon near a region where A is condensed
as having a configuration space corresponding
to the object (f, 1)A ∈ D(Dn). When an (f, 1)
anyon braids around a (1, σk) anyon, summands
of ((f, 1)A)(1, σk) ∼= (1, σk)((f, 1)A) acquire dif-
ferent phases, so that the summands of (f, 1)AA
are permuted. One of these summands becomes
the anyon (f, 1)A in the condensed phase D(Da),
while the others are confined excitations on the
domain wall. Thus, the (f, 1) particle in the
D(Da) condensate is unable to tunnel through
at least one of the wall segments adjacent to a

(1, σk) point defect, and hence its braiding with
such defects cannot be defined.

VI. CONCLUSIONS AND OUTLOOK

In this article, we introduced enriched UFCs as a
new categorical framework of for describing (2+1)D
topologically ordered phases and topological domain
walls between them. We propose that particle mobil-
ity through domain walls is characterized by tunnel-
ing operators, which appear as higher morphisms in
a 3-category of (2+1)D topological orders. We used
the action of tunneling operators on spherical ground
states to identify the superselection sectors of com-
posite domain walls, analyzing each sector from a
particle mobility perspective, and explicitly demon-
strated our methods in several examples.

In particular, we saw that when performing
anyon condensation in the complement of a strip,
the composite domain wall between condensed bulks
has several distinct superselection sectors. If our
condensate is associated with deequivariantization,
then different superselection sectors of the domain
wall act differently on anyons in the condensed phase
which arise from the splitting of an anyon in the
uncondensed phase. In examples which go beyond
deequivariantization, such as the dihedral example
of § VD, summands of the composite boundary may
differ in terms of particle mobility: anyons from the
condensed phase may become condensed or confined
at the domain wall in some superselection sectors
and not others.

We also saw that, when two parallel domain
walls are placed on a sphere, non-contractible loop
operators in the uncondensed strip exchange the su-
perselection sectors for the domain wall. One di-
rection for future investigation would be to uncover
the general story of non-local operators in the mid-
dle strip which map between superselection sectors
of the composite domain wall. Loop operators asso-
ciated with confined anyons act transitively on su-
perselection sectors, and point defects between the
domain walls which arise as summands of a compos-
ite domain wall come from confined anyons in the
middle bulk region, but such point defects may also
have a simpler description in terms of wall excita-
tions on the original domain walls.

Another possible direction involves using a more
general notion of boundary between (2+1)D topo-
logical orders. In this article, we considered only
(1+1)D domain walls which live on the boundary
of Walker-Wang models, which do not extend into
the (3+1)D bulk. One could also consider domain
walls which do extend into the bulk, i.e., (1+1)D do-
main walls on the boundary which are attached to
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a (2+1)D domain wall between Walker-Wang bulks.
This could potentially include gapless domain walls
between topological orders with a different Witt
class as the anomaly, which were studied extensively
in [KZ20, KZ21].

The ground state degeneracy associated with
domain walls in (2+1)D which we have ana-
lyzed has potential uses in quantum computa-
tion [BJQ13]. Also, there has been much re-
cent work on the machinery of fusion 2-categories
[DR18, Déc22b] and nondegenerate braided fusion
2-categories [JFR21], which provide a mathemati-
cal description of (3+1)D topological order [LKW18,
KTZ20b, KTZ20a]. Some of the theory of condens-
able algebras which underlies our results has already
been lifted to this setting [GJF19, Déc21, Déc22a],
and further lifting our results to the case of fusion
2-categories would be a natural approach to under-
standing the composition of (2+1)D domain walls
between (3+1)D topological orders.

Appendix A: Fusion and modular categories

Recall that a multifusion category X is a finite
semisimple tensor category where all objects are du-
alizable [EGNO15, Def. 4.1.1]. If the tensor unit 1X
is a simple object then X is called a fusion category.
As noted in the introduction, we will omit the tensor
product symbol and simply write ab for the tensor
product of two objects in X . We denote by Irr(X )
a set of representatives for the simple objects in X ,
so that every object is isomorphic to one of the form⊕

f∈Irr(X )Nff . The associator is a natural isomor-

phism

αa,b,c : (ab)c→ a(bc),

which will be suppressed whenever possible. For
the description in terms of F -matrices, we refer the
reader to [Wan10].

Given a fusion category X , one can construct
the fusion category Xmp where the order of tensor
product is reversed, i.e. x⊗Xmpy := y⊗Xx, replacing
α with α−1.

By [Reu19], if a fusion category is unitarizable,
then it is uniquely unitarizable. This means being
unitary is a property of a fusion category, which
manifests as the existence of a set Irr(X ) such that
the F -matrices are unitary.

In particular, a UMTC is a unitary fusion cate-
gory equipped with a unitary nondegenerate braid-
ing, where nondegenerate means that the S-matrix
is invertible. If C is a UMTC, objects in Irr(C) clas-
sify anyon types in a C topological order.

We make heavy use of the graphical calculus for
UMTCs [HV19, BBCW19]. Strings are labelled by

objects in a UMTC, and correspond to the world-
lines of direct sums of anyons [Kit06, BSS08, Bon07,
Wan10]. We denote the braiding of C by β, which
we depict graphically by a crossing:

βc,d =
dc

: cd→ dc. (A1)

For the description of the braiding in terms of uni-
tary R-matrices, we refer the reader to [Wan10]. In
general, the objects c and d in the above diagram
can be direct sums of simple objects; the braiding
between two direct sums is determined by the braid-
ings between each pair of summands.

By [Hau17, JFS17], the collection of fusion cat-
egories forms a 3-category named UFC, whose ob-
jects are fusion categories, 1-morphisms are finitely
semisimple bimodule categories, 2-morphisms are
bimodule functors, and 3-morphisms are bimodule
natural transformations. We refer the reader to
[DSPS20] for more details. This 3-category has a
symmetric monoidal structure given by Deligne ten-
sor product ⊠. Given fusion categories X ,Y, the
simple objects of X ⊠ Y are exactly f ⊠ g such that
f ∈ Irr(X ) and g ∈ Irr(Y), with the obvious tensor
product fusion rules.

A braided fusion category C can act on a fu-
sion category X via a braided tensor functor Φ :
C → Z(X ) into the Drinfeld center of X . A fu-
sion category X equipped with such a C-action is
called a module tensor category for C [HPT16]. If
U : Z(X ) → X is the functor which forgets the
half-braiding, then the action C ⊠ X → X given by
c⊠f 7→ U(Φ(c))f makes X an ordinary module cat-
egory for the underlying fusion category of C. The
full data of Φ can be thought of as compatibility be-
tween this action, the braiding in C, and the tensor
product in X . Given two braided fusion categories
C,D, a bimodule tensor category is a module tensor
category for the Deligne product C ⊠ D, where D
denotes taking the reverse braiding.41

Similarly, braided fusion categories form a sym-
metric monoidal 4-category called UBFC, whose ob-
jects are braided fusion categories, 1-morphisms are
bimodule multifusion categories, 2-morphisms are
finitely semisimple bimodule categories with appro-
priate coherences, 3-morphisms are bimodule func-
tors, and 4-morphisms are natural transformations.
We refer the reader to [BJS21, JMPP19] for more de-
tails. Again, UBFC is symmetric monoidal under the
Deligne product. Physically, the Deligne product

41 We use the same labels for objects in D and D, so that d de-
notes the dual of an object d, rather than the corresponding
object in D.
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C ⊠D corresponds to stacking two decoupled layers
of (2+1)D phases. The composition of 1-morphisms
will be discussed in § IIIA below.

Appendix B: Condensable algebras

In this appendix, we recall the mathematical
notions necessary to understand anyon condensa-
tion, most of which appear in [DMNO13], along with
their physical interpretation, which mostly follows
[Kon14b]. The basic idea of anyon condensation
is that some collection of anyons, the condensate,
becomes identified with the vacuum. In order to
consistently identify a condensate with the vacuum,
the condensate must come equipped with additional
data: the structure of a condensable algebra, also
known as a unitarly separable étale algebra. We also
define the category of modules over a condensable al-
gebra, which can be used to describe the topological
order in and at the boundary of regions where the
condensable algebra has been condensed.

An algebra object A in the UMTC C consists
of the data (A,mA, iA), where A is an object in C,
i.e. a direct sum of anyons, the multiplication oper-
ator mA : AA→ A is denoted by a trivalent vertex,
and the unit operator iA : 1C → A is denoted by a
univalent vertex, and mA and iA satisfy the iden-
tities below. In the remainder of this subsection,
unlabelled black strings refer to the object A.

=︸ ︷︷ ︸
associative

= =︸ ︷︷ ︸
unital

.

We denote the adjoints of mA and iA by their ver-
tical reflections. By composing mA with members
of an orthonormal basis for

⊕
x∈Irr(C) C(x,A) (or⊕

x∈Irr(C) C(A, x)) on each strand, one can see that

the choice of mA is equivalent to the choice of vertex
lifting coefficients [ERB14] for the condensate A.

An algebra (A,mA, iA) ∈ C is called condensable
if it is also:

• commutative: = mA ◦ βA,A = mA =

• unitarily separable: m†
A is an A−A bimodule

map and mA ◦m†
A = idA.

= = =

Typically, we also assume A is connected, i.e.,
dim(C(1C → A)) = 1. In this case, by [Müg03a,

Rem. 5.6.3], we get standard duality pairings for A
by

evA := coevA := .

Explicitly, as an important consequence of uni-
tary separability of a condensable algebra A, the
multiplication map mA determines an orthogonal

projection m†
AmA, selecting specific fusion channels

between the objects in the direct sum A. Likewise,
the unit map selects the unique vacuum channel.
The physical interpretation of all these conditions is
that, when the images of these projections are ener-
getically favored, strings labelled by A behave like
the vacuum string [ERB14], so that any 2D network
of A-strands only depends on the connectivity, and
not the genus. Thus, we may replace a single A-
strand by an ‘A-strand mesh’ which behaves like a
2D foam/defect [Kon14b, GJF19, CR16, CMR+21],
making A the new vacuum in this 2D region.

Given a condensable algebra A ∈ C, we would
like to define the UMTC describing excitations in
a (2+1)D bulk region where A is condensed. How-
ever, it is more convenient to first define the UFC
CA, which describes wall excitations at the bound-
ary between a region with C bulk region, and a re-
gion where A has been condensed. This CA is the
category of right A-modules MA = (M, rM ) in C
[FRS02b] (see also [BS09] and [DMNO13, §3.3]).

The category CA is a UFC derived from C with
fusion rules consistent with the identification of A
with the vacuum. To a first approximation, mod-
ules MA = (M, rM ) are the equivalence classes of
anyons which are identified by condensing A. More
precisely, M is a direct sum of anyons and the right
action rM : MA → M , is a choice of fusion chan-
nels between M and the condensate A, allowing M
to absorb A. We denote MA by a green string and
the right action rM by a green trivalent vertex. The
choice of rM must make M stable under repeated
fusion with the condensate, leading to the following
associativity and unitality conditions.

M

=

M︸ ︷︷ ︸
associative

M

=
M︸ ︷︷ ︸

unital

.

Remark B.1. Note that this graphical definition
of a category of A-modules makes sense much more
generally: if X is a (multi)fusion category, A is an
algebra in X , andM is a right X -module category,
the same diagrams define a notion of right A-module
in M, and hence a category MA of such modules.
Such a category appears in the definition of Nota-
tion III.7.
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Since A is a condensable algebra, the category
CA of A-modules has a tensor product ⊗A, which
describes the fusion of two excitations living on the
domain wall. The tensor product of two A-modules
is the image of the projection

pM,N := ∈ EndC(MN),

where the orange string denotes N , and the crossing
is the braiding in C. One can interpret the tensor
product on CA as being defined by embedding CA →
ACA, where each right A-module is equipped with a
left action defined via the right action and the half-
braiding on A. The category ACA of A−A-bimodules
has a natural monoidal structure for any algebra A
in a fusion category [EGNO15, 7.8.25].

The image of the projection pM,N is the largest
subobject of MN where the effects of fusing a copy
of A into the M strand agrees with the effect of
fusing A into the N strand. Thus, fusion channels
inMN which are preserved by pM,N are stable under
fusion with the condensate, whereas fusion channels
which are killed by pM,N are also killed when fusing
with the condensate. In particular, AA is the tensor
unit of CA; when A is condensed, A becomes the new
vacuum.

The condensed region has topological order de-
scribed by ClocA , the subcategory of CA which con-
sists of wall excitations which braid trivially with
the condensate, and hence can be pulled off the wall
into the bulk region where A is condensed [Kon14b,
§ 2.4]. The UMTC ClocA consists of the local right
A-modules [DMNO13, Def 3.12], which satisfy

• local : = rM ◦ βA,M ◦ βM,A = rM = .

The braiding on ClocA is inherited from C, and one
checks that it is compatible with the tensor product
in CA. It is known that ClocA is again a modular ten-
sor category [KO02, Thm 4.5][DMNO13, Cor 3.30].
Since local modules braid trivially with the conden-
sate, they can still move adiabatically about the sys-
tem where A is condensed; modules that do not sat-
isfy the locality condition braid nontrivially with A,
and are therefore confined to the domain wall. In the
special case where ClocA ∼= Hilbfd, i.e. the condensed
region has trivial topological order, we say that A is
a Lagrangian algebra.

Often, we also consider inclusions A ⊆ B of con-
densable algebras in C. Restricting the multiplica-
tion map BB → B to BA gives B the structure of an
A-module, and the commutativity of B implies that

this A-module is local. Hence, condensable algebras
B which contain A as a subalebra are condensable
algebras in ClocA . Conversely, if BA is a condens-
able algebra in ClocA , then forgetting the module ac-
tion makes B a condensable algebra in C, with the
unit map AA → BA giving an inclusion of algebras
A→ B [DMNO13, 3.6].

Categories of modules over an algebra also play
an important role in understanding anyon conden-
sation from the perspective of enriched fusion cate-
gories, as outline in Example III.2. Observe that the
definition of the tensor product ⊗A does not use the
fact that C is braided, but only that A can half-braid
under objects in C, i.e. that A ∈ Z(C). Therefore,
given a unitary fusion category X and a condensable
algebra A ∈ Z(X ), we can define the unitary fusion
category XA of right A-modules in X . We then have
Z(XA) ∼= Z(XA)loc [DMNO13, Thm. 3.20], so that
XA provides the data for a lattice model realization
for both the domain wall and the bulk region where
A is condensed. As we outlined in Example III.2,
this generalizes straightforwardly to the case where
X is A-enriched and A ∈ ZA(X ).

Appendix C: D(Dn)

In this appendix, we provide some background
on the UMTC D(Dn), where Dn is the dihedral
group with 2n elements, with presentation Dn =
⟨r, f |rn, f2, (rf)2⟩. We begin in § C1 by establish
general facts and notation for D(G), where G is a
finite group. In § C2, we describe a commuting pro-
jector lattice model for D(G) topological order. Fi-
nally, in § C3, we work out the specific case G = Dn

in detail.

1. D(G) for a non-Abelian group G

Anyons in D(G) correspond mathematically
to irreducible G-graded G-representations [BK01,
§3.2] Explicitly, a G-graded Hilbert space is a
Hilbert space V together with a decomposition V =⊕

g∈G Vg. The subspace Vg is called the g-graded
component of V , and states v ∈ Vg are said to be g-
graded. Maps betweenG-graded Hilbert spaces must
preserve the grading, sending g-graded vectors to g-
graded vectors. A G-graded G-representation con-
sists of a G-graded Hilbert space V , together with an
action ϕ : G → End(V ) of G by unitary operators,
satisfying ϕhVg ∼= Vhgh−1 .

This algebraic description comes from the fact
that D(G) ∼= Z(Hilb[G]), the center of the category
of finite-dimensional G-graded Hilbert spaces. The
tensor product on Hilb[G] is the usual tensor product
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of Hilbert spaces, and the grading is defined by

(V ⊗W )g =
⊕
h

Vh ⊗Wh−1g;

the grading of a pure tensor is the product of the
two gradings. A half-braiding amounts to the data
of a G-representation. Explicitly, if Ch is the 1-
dimensional h-graded Hilbert space spanned by eh,
then the half-braiding Ch⊗V → V ⊗Ch is given by

eh ⊗ v 7→ ϕh(v)⊗ eh.

The requirement that the half-braiding preserves the
G-grading means the representation ϕ must conju-
gate the grading, as described above. Thus, if V and
W are objects in D(G), and vg ∈ V and wh ∈ W
are graded vectors, then the braiding has the form

βV,W : vg ⊗ wh 7→ ϕWg (wh)⊗ vg. (C1)

An irreducible G-graded G-representation is de-
termined by a pair (g, ρ) where g ∈ G and ρ ∈
Irr(Rep(StabG(g))) is an action of StabG(g) on a
Hilbert space V ρ. Consequently, we will generally
label simple objects in D(G) by such pairs. (Of-
ten, we just speak of the action ρ and suppress the
Hilbert space V ρ.) We can define a G-graded G-
representation W by setting Wg := V ρ, which gives
an irreducible G-graded StabG(g)-representation,
and inducing to get a G-representation. The final
Hilbert space W will still have Wg

∼= V ρ, Whgh−1
∼=

Wg for every h ∈ G, and Wk
∼= 0 if k is not con-

jugate to g. For completeness, we give an explicit
description of the construction of the G-graded G-
representation (g, ρ). Suppose {vi} is a basis for
V ρ. Then the induced representation will have the
basis

{
vhi
∣∣h ∈ [g]

}
, where [g] is the conjugacy class

of g. Choose R ⊆ G so that each h ∈ [g] satis-
fies h = rgr−1 for precisely one r ∈ R. Then ev-
ery h ∈ G can be written as rs for some r ∈ R
and s ∈ StabG(g). Setting ρ̃s(v

g
i ) := (ρh(vi))

g and

ρ̃r(v
g
i ) := (vrgr

−1

i ) completely determines the repre-
sentation ρ̃.

Example C.1. For an Abelian group A, the the-
ory of A-graded A-representations is straightfor-
ward: an A-graded A-representation is just a pair
(a, ρ) where a ∈ A and ρ ∈ Rep(A), with the entire
representation graded by a. As a fusion category,
D(A) ∼= Hilb[A]⊠ Rep(A).

We now provide a fully explicit example of a
G-graded G-representation where G is not Abelian.
The theory of dihedral groups will be analyzed in
much more generality in Appendix C 3 below, but we
still use the dihedral group G = D3

∼= S3 here, be-
cause it provides the simplest possible non-Abelian
example.

Example C.2. Consider

G = D3 = ⟨r, f |r3 = 1, rf, fr−1⟩.

Another way of understanding G is that G ∼= S3,
with r = (123) and f = (23). The group D3 has a
single 2-dimensional representation σ given by

σ : r 7→
[
e2πi/3 0
0 e−2πi/3

]
, f 7→

[
0 1
1 0

]
.

Here, σ acts on the Hilbert space V ∼= C2; a basis of
V is {e1 = (1, 0)T , e2 = (0, 1)T }.

There are 3 possible ways to define a D3-grading
on σ. First, we could set V1 := V (and Vg := 0 for
g ̸= 1). Since D3 = StabD3(1), this is the represen-
tation (1, σ).

Second, we could set Vr := span e1 and Vr−1 :=
span e2. Since r

−1 = frf−1, the D3-grading is com-
patible with the D3-action. Since StabD3

(r) = ⟨r⟩,
this is the representation (r, e2πi/3). Here, we de-
note a representation of the cyclic group ⟨r⟩ by the
eigenvalue of r, which uniquely determines the ac-
tion of ⟨r⟩ on the r-graded component, since all ir-
reducible representations of Abelian groups are 1-
dimensional. The formulae for the induced represen-

tation described above then force ẽ2πi/3 ∼= σ. This
representation could also be called (r−1, e−2πi/3). In
general, whenever g /∈ Z(G), we should expect (g, ρ)
to have multiple equivalent labels in this way.

Finally, we could set Vr−1 := span e1 and Vr :=
span e2. This is the representation (r, e−2πi/3) ∼=
(r−1, e2πi/3).

We also make some preliminary observations
about anyons which must braid trivially with each
other. If g ∈ Z(G), then (g, 1) is a pure flux exci-
tation. Since g ∈ StabG(h) for every h, the anyons
(g, 1) and (k, 1) braid trivially for every k. Anyons
of the form (1, ρ) are pure charge excitations, which
braid trivially since ρ(1) = 1 for every ρ. Other
anyons, including (g, 1) for g /∈ Z(G), are dyonic,
and determining whether they braid trivially in-
volves actually computing the braiding (C1). In
general, the double braiding between representations
(g, λ) and (h, ρ) is

vk ⊗ wℓ 7→ λ̃kℓk−1(vk)⊗ ρ̃k(wℓ),

where ·̃ refers to the induced representation, k ∈ [g],
and ℓ ∈ [h]. In particular (g, λ) and (1, ρ) commute
precisely when ρg = id, since the double braiding
simplifies to

vg ⊗ w1 7→ ρg(v
g)⊗ w1.

We now briefly describe some condensable alge-
bras over D(G), along with the categories of mod-
ules; full details, as well as a description of all con-
densable algebras in D(G,ω), appear in [Dav10]. We
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make use of the modified quantum double construc-
tion [BM06].

Definition C.3. If L andK are finite groups, and L
is equipped with a K-action ϕ : K → End(L), then
themodified quantum double D(L,K) is the cat-
egory of L-graded K-representations, where the ac-
tion of k ∈ K takes ℓ-graded vectors to (ϕ(k)(ℓ))-
graded vectors.

Example C.4. If G is a finite group, H is a normal
subgroup of G, and K is any subgroup of G, then
we have the fusion category D(G/H,K), where K
acts on G/H by conjugacy.

In particular, the usual quantum double D(G) is
a modified quantum double, namely D(G,G). The
category D(G/H,K) then becomes D(G) module
tensor category, with the action simply applying the
quotient map G→ G/H to the grading and restrict-
ing the representation from G to K.

If H ◁G is a normal subgroup, then the group
algebra A := C[H] is a condensable algebra in D(G).
This algebra is spanned by H, and the generator h
is an h-graded vector; as an object in D(G), we have
A ∼=

⊕
r∈R(r, 1), where R is a set containing one

representative of each conjugacy class in G which is
contained in H. We have D(G)A ∼= D(G/H,G), and
D(G)locA ∼= D(G/H).

IfK ⊆ G is any subgroup, then the algebra B :=
CG/K of functions on G/K (which need not be a
group, but carries a left action of G) is a condensable
algebra in D(G). This algebra is a G-representation,
and so can be viewed as an object of D(G) which is
entirely graded by 1. We have D(G)B ∼= D(G,K),
and D(G)locB ∼= D(K).

2. String-net realization

We now describe a string-net model adapted to
the special case of D(G). We begin with a model
dual to Kitaev’s quantum double model [Kit03],
built on a square lattice. This model can also be
viewed as a variant of [LW05], taking advantage of
the fact that Hilb[G] is multiplicity free. The special
case of D(S3) ∼= D(D3), appears explicitly in [Pac12,
§ 5.4].

To produce the D(G) bulk, we assign to each
link the Hilbert space CG. An orthonormal basis of
this Hilbert space is {|g⟩ : g ∈ G}, i.e. ⟨g|h⟩ = δg,h.
We define the operators λg and ρg by λg|h⟩ = |gh⟩
and ρg|h⟩ = |hg⟩. Notice that λ†g = λg−1 and ρ†g =
ρg−1 ; also, for every g and h, we have [λg, ρh] = 0.

For each plaquette p, we define the operator

Bp =
1

|G|
∑
g∈G

ρg

ρg

λ†
g

λ†
g

p .

For each vertex v, we define

Av

∣∣∣∣∣∣∣∣∣
a c†

b

d†

v

〉
= −11−χ1(abc

−1d−1)

∣∣∣∣∣∣∣∣∣
a c†

b

d†

v

〉
,

where χ1(1) = 1 and χ1(x) = 0 for x ̸= 1. The
Hamiltonian

H = −
∑
v

Av −
∑
p

Bp

is then a sum of commuting projectors.
We can describe a model for a ‘rough’ bound-

ary, where A = C[H] ∈ D(G) is condensed, by re-
placing a strip of black links with red ones, where
each red link carries a Hilbert space spanned by
G/H = {gH : g ∈ G}.

We redefine the operators Av and Bp at vertices and
plaquettes with red links as follows.

Av

∣∣∣∣∣∣∣∣ a
bH

dH

v
cH

〉
= (−1)1−χH(abc−1d−1H)

∣∣∣∣∣∣∣∣ a
bH

dH

v
cH

〉
,

Av

∣∣∣∣∣∣∣∣ aH
bH

dH

v
cH

〉
= (−1)1−χH(abc−1d−1H)

∣∣∣∣∣∣∣∣ aH
bH

dH

v
cH

〉
,

Bp =
1
|G|
∑
g∈G

ρg

ρg

λ†
g

p λ†
gH or 1

|G|
∑
g∈G

ρgH

ρgH

λ†
gH

λ†
gH

p .

Again, χH(H) = 1 and χH(xH) ̸= 1 if xH is not
the identity coset H.

For h ∈ H, we have χH(hH) = χH(H) = 1.
Consequently, anyons in D(G) of the form (h, ρ) for
h ∈ H will not excite Av terms at vertices v incident
to a red link, explaining why A becomes condensed.

We can also create a horizontal ‘smooth’ bound-
ary, where B = CG/K is condensed, by replacing a
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strip of black links with blue ones, where each blue
link carries a Hilbert space spanned by K.

We then redefine the operators Av and Bp at vertices
and plaquettes with blue links as follows.

Av

∣∣∣∣∣∣∣∣ a k

b

v

d 〉
= (−1)1−χ1(abk

−1d−1)

∣∣∣∣∣∣∣∣ a k

b

v

d 〉
,

Av

∣∣∣∣∣∣∣∣∣
i k

j

ℓ

v

〉
= (−1)1−χ1(ijk

−1ℓ−1)

∣∣∣∣∣∣∣∣∣
i k

j

ℓ

v

〉

Bp =
1

|K|
∑
k∈K

ρk

λ†
k

λ†
k

ρk

p or 1
|K|
∑
k∈K

ρk

ρk

λ†
k

λ†
k

p

3. Dihedral groups

We begin with a brief discussion of the UMTC
D(Dn), the quantum double of the dihedral group,
where n is odd. The dihedral group Dn has 2n ele-
ments and is given by the presentation

Dn = ⟨r, f |rn = f2 = 1, rf = fr−1⟩.

If n is even, we haveDn
∼= Dn/2×Z/2, and hence

D(Dn) ∼= D(Dn/2) ⊠ D(Z/2). We are interested in
behavior specific to non-Abelian topological orders,
so we always choose n to be odd in order to avoid
the unnecessary complication of keeping track of one
or more extra layers of toric code.

The one dimensional irreducible representations
of Dn are the trivial representation 1 and the sign
representation ϵ : r 7→ 1, f 7→ −1. The 2-
dimensional irreducible representations of Dn are
given by

σj : r 7→
[
ωj 0
0 ω−j

]
, f 7→

[
0 1
1 0

]
,

where ω = e2πi/n and j ranges from 1 to ⌊n2 ⌋. We
sometimes also mention the reducible representation
σ0 ∼= 1 ⊕ ϵ, or irreducible representations σ−j ∼=
σn−j ∼= σj .

The conjugacy classes in Dn are [1] = {1},
[rk] = {rk, r−k} for each k ̸= 0, and [f ] =

{
rkf
∣∣0 ≤ k < n

}
. The stabilizer of rk is ⟨r⟩ ∼= Z/n,

with irreducible representations determined by an
eigenvalue ωj of r, while the stabilizer of rkf is
⟨rkf⟩ ∼= Z/2, with two possible irreducible repre-
sentations ±1. We have

IndDn

⟨r⟩ (ω
j) ∼= σj

IndDn

⟨rkf⟩(1)
∼= 1⊕

⌊n
2 ⌋⊕

k=1

σk


IndDn

⟨rkf⟩(−1) ∼= ϵ⊕

⌊n
2 ⌋⊕

k=1

σk

 .

The fusion rules of D(Dn) are abelian, and are
summarized in the following table.

X Y X ⊗ Y
(1, ϵ) (1, ϵ) (1, 1)
(1, ϵ) (1, σk) (1, σk)
(1, σk) (1, σj) (1, σk+j)⊕ (1, σk−j)
(ra, ωk) (rb, ωj) (ra+b, ωj+k)⊕ (ra−b, ωj−k)
(1, ϵ) (f, 1) (f,−1)

(ra, ωk)k ̸= 0 (f, 1) (f, 1)⊕ (f,−1)
(f, 1) (f, 1) (1, 1)⊕

(⊕⌊n
2 ⌋

a=1

⊕n−1
k=0(r

a, ωk)
)

We note the isomorphisms (ra, ωk) ∼= (r−a, ω−k) and
define by convention (r0, ωk) := (1, σk). Most en-
tries of the table involving (f,−1) are omitted, but
since (f,−1) ∼= (f, 1)⊗ (1, ϵ) and (1, ϵ) is an Abelian
anyon, they can be easily computed.

The fusion graph for D(Dn) with respect to
(f, 1) is given by

1 (f,+1)

(1,σ1)

...

(r⌊n/2⌋,ωn−1)

(f,−1) ϵ

where the middle vertices range over all remaining
simple objects.

Observe that Dn has the index 2 normal sub-
group Z/nZ = ⟨r⟩, and thus Hilb(Dn) is a Z/2Z =
⟨f⟩-graded extension of Hilb(Z/nZ). By [GNN09],
the relative center ZHilb(Z/nZ)(Hilb(Dn)) is a Z/2Z-
crossed braided extension of D(Z/nZ), and the
Z/2Z-equivariantization of this relative center is
D(Dn). Physically, this tells us that anyons with a
flux other than [f ] can be thought of as direct sums
of the abelian anyons in Z/nZ-toric code, resulting
from the inclusion of loops labelled f in the ground
state. If we condense the algebra (1, 1) ⊕ (1, ϵ) ∼=
C[Z/2], confining f , we end up withD(Z/n) topolog-
ical order, and the 2-dimensional anyons in D(Dn)
all split. Explicitly, (1, σk) ∼= mk ⊕m−k, (ra, 1) ∼=
ea⊕e−a, and in general, (ra, ωk) ∼= eamk⊕e−am−k.
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Since frf−1 = r−1, lines labelled by f correspond to
the automorphism e 7→ e−1, m 7→ m−1 of Z/n-toric
code.

Thus, D(Dn) is an ⟨f⟩-graded tensor category,
with D(Dn)1 ∼= D(Z/n)⟨f⟩ as the trivial graded
component, and (f,±1) as the simple objects in
the f -graded component. As a D(Dn)1 module,

the component D(Dn)f is the category of mod-

ules over the algebra C[⟨r⟩] ⊗ CDn/⟨f⟩. Note that

CDn/⟨f⟩ ∼= 1 ⊕
(⊕⌊n/2⌋

k=1 σk

)
is isomorphic to the

standard representation of Dn, where Dn acts on
(a vector space spanned by) the vertices of a regular
n-gon.
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