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We study the chaotic properties of a large-spin XXZ chain with onsite disorder and a small
number of excitations above the fully polarized state. We show that while the classical limit, which
is reached for large spins, is chaotic, enlarging the spin suppresses quantum chaos features. We
examine ways to facilitate chaos by introducing additional terms to the Hamiltonian. Interestingly,
perturbations that are diagonal in the basis of product states in the z-direction do not lead to
significant enhancement of chaos, while off-diagonal perturbations restore chaoticity for large spins,
so that only three excitations are required to achieve strong level repulsion and ergodic eigenstates.

I. INTRODUCTION

Partially motivated by the Bohigas-Giannoni-Schmit
conjecture [1, 2], quantum chaos was extensively studied
in the 1980’s and 1990’s [3–5]. In the last ten years, the
subject has seen a resurgence of interest due to its strong
connection with several questions currently studied ex-
perimentally and theoretically, that include the issue of
thermalization in isolated many-body quantum systems
[6–8], the problem of heating in driven systems [9–11],
the difficulty to achieve many-body localization [12–15],
and the fast scrambling of quantum information [16–20].
For systems with well-defined classical or semiclassical
limits, quantum chaos refers to signatures found in the
quantum domain, such as level statistics as in full random
matrices [21], that indicate whether the classical system
is chaotic in the sense of positive Lyapunov exponent and
mixing. While this correspondence holds well for some
systems with a small number of degrees of freedom, such
as Sinai’s billiard [1, 2], it has recently been shown to be
violated in triangular billiards [22] and quantum triangle
maps [23]. As one moves to systems with many interact-
ing particles, this issue gets even more complicated, since
the classical limit is not always straightforward [24].

In this work, we investigate a one-dimensional system
of many interacting spins described by the Heisenberg
XXZ model with nearest-neighbor couplings and onsite
disorder. We employ the term “quantum chaos” as a syn-
onym for level statistics as in random matrices. When
the total magnetization in the z-direction is close to zero,
this model is chaotic for spin-1/2 [25], spin 1 [26, 27], and
larger spins [28, 29]. For spin-1/2, the model has also
been shown to demonstrate chaotic traits for as little as
3 or 4 excitations above a fully polarized state of spins
[30, 31] and even for a chain of only 3 spins-1/2 [32].
Here, we extend this analysis and examine the case of
large-spin chains with a low number of excitations. In the
semiclassical limit of a continuous spin, we verify that the
system has a positive Lyapunov exponent. This might
suggest that increasing the spin size would require even
fewer excitations than in the case of spin-1/2 to reach
the quantum chaotic regime. However, rather counter-

intuitively, the opposite takes place, larger spin takes us
away from quantum chaos. We then try to remedy this
problem by adding terms to the Hamiltonian. We show
that chaos can be recovered with the inclusion of per-
turbations that are off-diagonal in the basis of product
states in the z-direction, but the same does not happen
for diagonal perturbations. With off-diagonal perturba-
tions, quantum chaos can finally be reached with only 3
excitations.

II. THE MODEL

We consider the large-spin version of the XXZ model
with onsite disorder and open boundaries described by
the following Hamiltonian

Ĥ =
Jxy

s (s+ 1)

L−1∑
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(
Ŝx
k Ŝ
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k+1 + Ŝy

k Ŝ
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where Ŝα
k , with α = x, y, z, stands for spin-s opera-

tors acting on a lattice site k with eigenvalues in [−s, s].
The parameter Jxy corresponds to the coupling strength
in the xy plane and Jz stands for the strength of the
interaction along the z-axis. To stay away from the
isotropic point, Jxy = Jz, we choose Jxy = 1 and
Jz = 0.55. The onsite disorder, where hk is indepen-
dent and uniformly distributed random numbers in the
interval [−W,W ], is introduced to break spatial symme-
tries. We use a weak amplitude, W = 0.5, to avoid pos-
sible localization effects at higher disorder strength. For
spin-1/2 and W ∼ Jxy ∼ Jz, model (1) is known to be
chaotic [25, 33, 34]. The model conserves the total z-
magnetization

∑
k Ŝ

z
k , and through the work we consider

almost fully polarized magnetization sectors with magne-
tization −sL + N . Here N is the number of excitations
on top of the fully polarized state.

We write the Hamiltonian matrix in the basis cor-
responding to the eigenstates of Sz

k , that is, product
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states in the z-direction. This means that the terms
involving the operators Ŝz

k are diagonal and those in-
volving Ŝx

k Ŝ
x
k+1 + Ŝy

k Ŝ
y
k+1 = 1

2

(
Ŝ+
k Ŝ−

k+1 + Ŝ−
k Ŝ+

k+1

)
are

off-diagonal.
The effective Planck constant of the model is ℏeff =

I/
√
s (s+ 1), where I is the classical angular momentum

which we set I = 1. The semiclassical limit of Eq. (1)
is obtained for very large spin numbers, s ≫ 1. More
precisely, to study the classical limit, it is convenient
to normalize the spin operators, Ŝα

k = Ŝα
k /

√
s (s+ 1),

which amounts to fixing the largest eigenvalue of the

Ŝ2 =
∑

k

(
Ŝα
k

)2

operator to 1. Using the normalized
spin operators, the quantum Hamiltonian is given by
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k Ŝx

k+1 + Ŝy
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where the commutation relations of the normalized spins
follow directly from the standard commutation relations
of the spin, [

Ŝα
k , Ŝβ

k

]
= i

1√
s (s+ 1)

ϵαβγ Ŝγ
k , (3)

where ϵαβγ is the Levi-Civita symbol. In the s → ∞
limit the normalized spins commute, which corresponds
to the classical limit. We can then replace the operators
Ŝα
k by real numbers sαk , and obtain the classical version

of the disordered XXZ model,
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which represents classical interacting rotators s⃗k =
(sxk, s

y
k, s

z
k) on a unit sphere. The classical system also

conserves the total magnetization. We start by studying
the chaotic properties of the model in the classical limit.

III. CLASSICAL CHAOS

To examine the chaotic properties of the classical
Hamiltonian Hcl in Eq. (4), we examine the Lyapunov
exponents starting from all the rotators pointing down
in the z-direction, which corresponds to the lowest mag-
netization limit. The equations of motion of the rotators
are obtained using Eq. (4) and Poisson brackets,

dsαk
dt

= {Hcl, s
α
k} ,

{
sαk , s

β
l

}
= δklϵ

αβγsγk , (5)

which gives
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(6)

and can be compactly written as nonlinear Bloch equa-
tions,

ds⃗k
dt

= −b⃗k × s⃗k, (7)

with an effective magnetic field,

b⃗k =

 Jxy
(
sxk+1 + sxk−1

)
Jxy

(
syk+1 + syk−1

)
hk + Jz

(
szk+1 + szk−1

)
 . (8)

Since the equations conserve s2k = s⃗k · s⃗k = 1 for each
rotator separately, the equation of one of the compo-
nents of s⃗ is redundant and it is advantageous to use
a numerical integration scheme which conserves all s2k
explicitly. One way to do this is to parametrize the
orientation of the rotators on the unit sphere as s⃗k =
(sin θk cosϕk, sin θk sinϕk, cos θk). This yields the follow-
ing equations of motion for the angles,

dϕk

dt
= Jxy sin θk−1 cot θk (cosϕk−1 cosϕk + sinϕk−1 sinϕk)

+ Jxy sin θk+1 cot θk (cosϕk+1 cosϕk + sinϕk+1 sinϕk)

− Jz (cos θk+1 + cos θk−1)− hk, (9)
dθk
dt

= Jxy sin θk+1 (cosϕk+1 sinϕk − sinϕk+1 cosϕk)

+ Jxy sin θk−1 (cosϕk−1 sinϕk − sinϕk−1 cosϕk) .

To calculate the Lyapunov exponents of this system we
initialize all of the rotors at angle θ from the z axis.
Angles θ ≈ 0 correspond to the low magnetization set-
ting considered in this work. For each disorder realiza-
tion we initiate the angles ϕk in the xy plane randomly
in [−π, π], and integrate the equations of motion. The
maximal Lyapunov exponent is calculated with the al-
gorithm proposed in Ref. [35], which is based on finding
the rate of growth of the fastest growing tangent space
vector. The process involves selecting a starting distance,
between two phase space trajectories. This distance is al-
lowed to diverge over a short period of time, before being
reset back to its initial value. The procedure is repeated,
and the largest Lyapunov exponent is determined from a
sum of divergences [35].

We use a chain of 50 spins to calculate the Lya-
punov exponents and integrate Eq. (9) using the LSODA
method described in Ref. [36] with time steps chosen op-
timally by the algorithm.
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Figure 1. Largest Lyapunov exponents as a function of θ/π.
Each point corresponds to a different realization of disorder
and the angles of the rotors in the xy-plane, ϕk. The black
circles correspond to the largest Lyapunov exponent of the
model in Eq. (4), while the red triangles correspond to the
largest Lyapunov exponent of the model in Eq. (14) with ad-
ditional nonlinear terms. A chain of L = 50 is considered for
these simulations.

In Fig. 1 for each angle θ we present the largest Lya-
punov exponents computed for 100 different realizations
of disorder and initial conditions, ϕk. We do not average
the data to show the spread of the exponents. It can be
seen that even for low values of θ, which is equivalent to
a low number of excitations in the quantum limit, the
largest Lyapunov exponent is positive, indicating that
the classical limit is chaotic.

IV. QUANTUM CHAOS

After establishing that the classical limit of our model
in Eq. (4) is chaotic at low magnetization, we proceed to
examine whether the quantum Hamiltonian in Eq. (1) ex-
hibits properties associated with quantum chaos. These
properties include correlated eigenvalues, as in random
matrix theory, and eigenstates that away from the edges
of the spectrum are close to the eigenstates of full random
matrices, that is, their components are nearly indepen-
dent real random numbers from a Gaussian distribution
satisfying the normalization condition [6, 7]. The on-
set of these almost random vectors in many-body quan-
tum systems results in normal distributions of the off-
diagonal elements of local observables [37–43], which is
one of the features of the eigenstate thermalization hy-
pothesis (ETH) [27, 44–52].

Needless to say, realistic many-body quantum models
differ from full random matrices (see Ref. [7] and refer-
ences therein, and for newer discussions in the context
of ETH, see [53–55]. One looks for properties similar to
those of full random matrices, however, correlations are
always present among the elements of the Hamiltonian
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Figure 2. Average of the r-metric for four different spin sizes,
s = 1, 2, 3, 4, as a function of the number of excitations N
and various system sizes. Darker circles represent larger chain
sizes (see legends). In the calculations of this metric, the top
and bottom 15% of the eigenvalues are omitted. The dashed
horizontal lines stand for rPoisson = 0.39 and rGOE = 0.53.
The average is performed over 250 disorder realizations.

matrix of real systems. These correlations then affect
the structure of the eigenstates and the results for the
observables. In this work, we analyze how the proper-
ties of our system further depart from those of random
matrix as we increase the spin size s.

Our analysis of quantum chaos focuses on level statis-
tics and the off-diagonal ETH. It is done for the subspace
with total z-magnetization equal to −sL + N , where N
is a fixed number of excitations.

To study the level statistics, we use the so called r-
metric [56–58],

rα = min

(
δα

δα−1
,
δα−1

δα

)
, (10)

where δα = Eα+1−Eα is the spacing between the neigh-
boring eigenvalues of the Hamiltonian. The r-metric cap-
tures short-range correlations among the energy levels.
For an integrable system with Poissonian level spacing
distribution, the average of rα over the spectrum gives
rPoisson ≈ 0.39, while for chaotic systems rGOE ≈ 0.53
[57]. The latter is the value obtained for full random ma-
trices from Gaussian orthogonal ensembles (GOE) [57].

In Fig. 2 we plot the average of the r-metric, ⟨r⟩, for
four different spin sizes as a function of the number N of
excitations in the system. We repeat our calculations
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Figure 3. Distributions of the off-diagonal elements of the
Ŝz
L/2 operator for spin 1 (top row) and spin 4 (bottom row)

and varying system sizes. Left column corresponds to N = 3
excitations and right column to N = 4 excitations. We use
250 eigenstates in the middle of the spectrum to compute
the off-diagonal elements, and normalize the distributions to
have unit variance. The dashed black line shows a Gaussian
distribution with unit variance..

for chain lengths ranging from 10 to 38 sites (darker
colors indicate larger chains). Surprisingly, while the
classical limit of this model is chaotic, as shown in the
previous section, for larger spin sizes, more excitations
are required to reach signatures of chaos in the quan-
tum domain. Similarly to the spin-1/2 model studied in
Refs. [30, 31], the system with spin 1 is fairly chaotic for
N = 3 and 4, as seen in Figs. 2 (a)-(b), but ⟨r⟩ for the
spin-4 model does not reach rGOE for the system sizes
considered, as evident in Fig. 2 (d). For a fixed system
size and a fixed number of excitations, the r-metric in
Fig. 2 indicates that a system with a larger spin presents
a weaker degree of chaos than its counterpart with a
smaller spin.

To better understand why the degree of quantum chaos
decreases as the spin is enlarged, we resort to the analy-
sis of the distribution of the off-diagonal elements of the
local magnetization, Ŝz

L/2. For this purpose we take 250
states from the middle of the spectrum and compute the
matrix elements Zαβ ≡ ⟨α| Ŝz

L/2 |β⟩ where |α⟩ and |β⟩
are two different eigenstates. Since the variance of the
distribution decreases with the Hilbert space dimension
D [49], we normalize the distribution by dividing Zαβ by
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Figure 4. Kurtosis of the distributions of the off-diagonal
elements of the Ŝz

L/2 operator for four different spin sizes,
s = 1, 2, 3, 4, as a function of the number of excitations N
and various system sizes. Darker circles represent larger chain
sizes (see legends). In the calculations of the kurtosis we used
250 eigenstates from the middle of the spectrum. For a chaotic
system the kurtosis is supposed to be zero.

its standard deviation,

σ =

√〈
Z2
αβ

〉
− ⟨Zαβ⟩2, (11)

where ⟨.⟩ indicates the average over all different pairs
of eigenstates |α⟩ and |β⟩ that we retain. The resulting
distributions for s = 1, 4 and N = 3,4 can be seen in
Fig. 3. The distributions for the spin-1 case in Figs. 3 (a)-
(b) are very close to Gaussian (dashed black line) for both
N = 3 [Fig. 3 (a)] and N = 4 [Fig. 3 (b)] excitations.
However, the spin-4 distributions depicted in Fig. 3 (c)-
(d) are strongly peaked around zero. To quantify how
close the distributions are to a Gaussian, we calculate
their normalized kurtosis,

κ =
⟨O4

αβ⟩ − ⟨Oαβ⟩4
σ4

− 3, (12)

which is equal to 0 for a Gaussian distribution. Figure 4
shows the kurtosis of the distributions for s = 1, 2, 3 and
4 as a function of the number of excitations N for dif-
ferent system sizes. For s = 3 and 4 [Figs. 4 (c)-(d)]
the dependence of the kurtosis on the number of excita-
tions is non-monotonic around N = 2, 3. For s = 4 in
Fig. 4 (d), the kurtosis only decreases when N > 4, and
much slower than for s = 1, 2 in Figs. 4 (a)-(b). Notice
that the scale in the y-axis for s = 1, 2 in Figs. 4 (a)-(b)
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is not the same as for s = 3, 4 in Figs. 4 (c)-(d). These
results confirm that larger spins require more excitations
to reach the chaotic regime. Note that the situation does
not improve with system size, since for larger L, the kur-
tosis actually moves further away from zero, specially for
s = 3, 4 around N = 2, 3.

In the following section we consider ways to restore
quantum chaos in large-spin chains by perturbing the
original model.

V. ENHANCING QUANTUM CHAOS

We consider two ways to improve the chaotic proper-
ties of the finite, large-spin system in Eq. (1) by mod-
ifying its Hamiltonian. The first mechanism consisting
of adding properly normalized nonlinear magnetization
terms to the Hamiltonian,

H1 = H +
α

s (s+ 1)

∑
k

(
Ŝz
k

)2

, (13)

+
µ

(s (s+ 1))
3/2

∑
k

(
Ŝz
k

)3

,

where α = 0.87, µ = 0.91. The new term in Eq. (13)
corresponds to a diagonal perturbation to the Hamilto-
nian (1) written in the basis of product states in the
z-direction.

The classical limit of this model is

Hcl
1 = Hcl + α

∑
k

(szk)
2
+ µ

∑
k

(szk)
3
. (14)

In Fig. 1, we present the maximal Lyapunov exponents
of this model with red points and verify that they closely
follow the Lyapunov exponents of the classical disordered
XXZ model in Eq. (4). We note that the addition of these
terms slightly increases the Lyapunov exponents.

The second quantum chaos enhancement mechanism
that we consider is via an off-diagonal perturbation of
the form,

H2 = H1+ (15)

+

L−1∑
k=1

s∑
n=2

Jxy
sn (s+ 1)

n

[(
Ŝ+
k Ŝ−

k+1

)n

+
(
Ŝ+
k+1Ŝ

−
k

)n]
.

The added terms move n-excitations between neighbor-
ing sites with 2 ≤ n ≤ s. While the classical limit of this
model is well defined, the derivation of its Hamiltonian
in a closed form is cumbersome, because the sum over
n of the nonlinear ladder operators has to be computed
explicitly, so we do not show it here.

The results for the Hamiltonians in Eq. (13) and
Eq. (15) show a systematic improvement for all consid-
ered quantum chaos metrics when compared to the dis-
ordered XXZ model in Eq. (1). Figure 5 shows the av-
erage r-metric of all three models computed for spin 1
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Figure 5. Averaged r-metric as a function of the Hilbert space
dimension D for spin-1 models (top row) and spin-4 models
(bottom row). The left column shows N = 3 excitations and
the right column shows N = 4 excitations. Circles correspond
to the disordered XXZ model in Eq. (1), triangles to the model
in Eq. (13), and squares to the model in Eq. (15). The dashed
horizontal lines stand for rPoisson = 0.39 and rGOE = 0.5307.

[Figs. 5 (a)-(b)] and spin 4 [Figs. 5 (c)-(d)] as a function
of the Hilbert space dimension, D. The spin-1 case is
already fairly chaotic for the Hamiltonian (1), so the ad-
dition of the new terms in Eq. (13) and Eq. (15) do not
affect the values of ⟨r⟩. However, for spin 4, adding the
nonlinear magnetization terms in Eq. (13) dramatically
improves the degree of quantum chaos for both N = 3
and 4. The addition of the nonlinear ladder operators in
Eq. (15) is even more effective and leads to strong level
repulsion for as few as 3 excitations, making the results
analogous to the case of spin-1/2 studied in Ref. [31].
This significant enhancement of the degree of quantum
chaos is corroborated by the other chaotic metrics consid-
ered in this work, namely the distributions of off-diagonal
observables and the kurtosis of these distributions (not
shown).

VI. LARGE-SPIN LIMIT

In this section, we investigate whether the chaos en-
hancements that we proposed in Sec. V survive in the
limit of large-spins. The system remains restricted to
the low-magnetization sector with

∑
k S

z
k = −sL + N .

In this sector, the operator norm of the diagonal terms
in Hamiltonians (1), (13) and (15) asymptotically, do not
depend on s. On the other hand, the operator norm of
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Figure 6. Average r-metric (left) and kurtosis (right) as
a function of spin for N = 3. Circles correspond to the
disordered XXZ model (1), triangles to model (13), and
squares to model (15). The dashed horizontal lines stand
for rPoisson = 0.39 and rGOE = 0.5307.

the off-diagonal terms decrease with s as N/s.
In the classical limit, despite the small energy contri-

bution of the terms containing spin projections on the
xy-plane, the Lyapunov exponent remains positive, as
shown in Fig. 1. In the quantum domain, chaos is only
robust for the Hamiltonian in Eq. (15). This is shown in
Fig. 6, where we plot the r-statistics for spins up to s = 20
and N = 3. The unperturbed Hamiltonian in Eq. (1)
and the diagonally perturbed Hamiltonian in Eq. (13)
become increasingly non-chaotic for larger spins. On the
other hand, the off-diagonally perturbed Hamiltonian in
Eq. (15) stays chaotic, with only a slight decrease in the
chaotic properties.

VII. DISCUSSION

The driving question of this work is whether increas-
ing the spin size of a one-dimensional spin model can
reduce the number of spin excitations needed to achieve
quantum chaos. For this purpose we studied the large
spin limit of a disordered XXZ chain. For a single spin-
1/2 excitation this model is integrable and localized via
the Anderson localization mechanism, while at zero z-
magnetization and sufficiently low disorder it is chaotic.
In previous studies of spin-1/2 chains, it was established
that at least 3 spin excitations are required to achieve
quantum chaos [30, 31]. In the present work, by consider-
ing chaotic metrics based on both the eigenvalues and the
eigenstates, we found that, although the classical limit of
the disordered XXZ chain is chaotic for very low magneti-
zation, the large spin version of the quantum XXZ model,
surprisingly, shows significantly reduced chaotic behav-
ior, compared to its spin-1/2 counterpart. We analyzed
two ways of enhancing quantum chaotic behavior: by the
introduction of diagonal and off-diagonal perturbations

to the Hamiltonian. Interestingly, while the diagonal
perturbation enhances chaos only slightly, off-diagonal
perturbation allows for the onset of quantum chaos with
only N = 3 excitations. In addition, we showed that
while the unperturbed and diagonally perturbed Hamil-
tonian show diminishing quantum chaos properties in the
large-spin limit, the off-diagonally perturbed Hamilto-
nian stays chaotic for spins as large as s = 20. An in-
teresting question, which our study raises, is which types
of off-diagonal perturbations lead to quantum chaotic be-
havior in the large-spin limit? More broadly, our study
suggests that care should be taken in considering large-
spin limits of quantum models and that classical and
quantum chaos might not be so tightly bound.
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