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We calculate the quantum Fisher information for a generic many-body fermionic system in a pure
state depending on a parameter. We discuss the situations where the parameter is imprinted in
the basis states, in the state coefficients, or both. In the case where the parameter dependence of
coefficients results from a Hamiltonian evolution, we derive a particularly simple expression for the
quantum Fisher information. We apply our findings to the quantum Hall effect, and evaluate the
quantum Fisher information associated with the optimal measurement of the magnetic field for a
system in the ground state of the effective Hamiltonian. The occupation of electron states with high
momentum enforced by the Pauli principle leads to a “super-Heisenberg” scaling of the sensitivity
with a power law that depends on the geometry of the sensor.

I. INTRODUCTION

The Hall effect offers a precise and economic way
of measuring magnetic fields with small, integrated
sensors. Typical commercially available Hall sensors
based on silicon have sensitivities of about 100 nT/Hz1/2
[1]. Graphene-based ones are projected to achieve
sensitivities normalized to the width w (Bminw) of
4 pT·mm/

√
Hz at room temperature [2]. The quantum

Hall effect, reached at very strong magnetic fields and
low temperatures, has also become a cornerstone of
metrology, allowing a measurement of the von Klitzing
constant RK = h/e2 to 10 digits precision [3].

In the present work we do not investigate the precision
with which one can access RK , but assess the ultimate
sensitivity of magnetic field sensors based on the quan-
tum Hall effect. This ultimate sensitivity is only bound
by quantum noise and thermal noise of the sensor,
and should be attainable once all the technical noises,
such as electrical noise in the amplifiers and wires,
vibrations, fluctuating charges in the materials etc. have
been removed. A powerful formalism for calculating
this ultimate sensitivity is provided by the quantum
Cramér-Rao bound (QCRB) [4–6], expressed in terms of
the quantum Fisher information (QFI), which leads to
an important ultimate benchmark of the sensitivity.

Motivated by the Hall effect application, we first in-
vestigate here more generally quantum parameter esti-
mation with a system consisting of a large number of
indistinguishable fermions (typically electrons). Such a
system is most concisely described by fermionic quantum
field theory, which we will briefly review in the follow-
ing for setting up the notations used. We will consider
quantum states written in a basis of many-particle states.
These basis states are obtained by “creating” fermions in

single-particle states, chosen here as eigenstates of some
single-particle Hamiltonian. We will consider three dif-
ferent ways by which a parameter dependence can be im-
printed on such a state: via a parameter-dependent evo-
lution Hamiltonian, via parameter-dependent fermionic
many-particle basis states, or via a Bogoliubov transfor-
mation. Note that many other possibilities exist to im-
print a parameter on a state, see [7]. In all three cases
mentioned above, a parameter-independent initial state
will be transformed into a parameter-dependent state via
a parameter-dependent unitary transformation. Let us
now discuss these three ways in turn.

i.) Time evolution generated by a Hamiltonian that
depends on a parameter is the standard situation in
most single-particle or single-mode applications of quan-
tum metrology, where one typically considers a fixed
(parameter-independent) basis and initial states, and
time-dependent and parameter-dependent amplitudes for
those. Both dependencies of the amplitudes arise from
propagation with the Hamiltonian.

ii.) The parameter dependence may be imprinted in
the many-particle basis states themselves. Indeed, as
these are anti-symmetrized linear combinations of single-
particle energy eigenstates, a change of the single-particle
Hamiltonian can modify its eigenbasis, so that even with-
out time evolution the state of the system can contain
information about the value of the parameter. For a spe-
cific example, consider a single particle in a harmonic
trap. Assume the particle is in the ground state of the
oscillator, and the parameter we are interested in is the
frequency of the trap. Through the oscillator length the
ground-state wave function clearly depends on the fre-
quency. Increasing the frequency squeezes the ground-
state wave function in position space. Hence, even with-
out time-evolution, one can measure, at least in princi-
ple, the frequency of the harmonic oscillator (see [8] for
details). In quantum optics, the quantum fluctuations
of the vacuum state (i.e. without any photons present)
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have indeed been measured directly [9], and it is clear
that they depend on the frequency considered.

An underlying physical assumption of this reasoning
is that the system is always in the actual parameter-
dependent ground state (or any other state specified
through a given number of excitations of a single-particle
Hamiltonian or linear combinations thereof) when the
parameter is changed. A change of the parameter must
therefore happen adiabatically. However, according to
the formalism of the quantum Cramér-Rao bound, only
infinitesimal changes of the parameter need to be con-
sidered for determining the best sensitivity with which
the parameter can be estimated, and hence adiabatic
changes over infinitesimal changes of the parameter suf-
fice to justify the model. We will therefore assume that
the system indeed tracks the parameter-dependent many-
particle states over infinitesimal changes of the parame-
ter. This is a common assumption in the literature, see
e.g. [10] and works citing it, where the QFI was calcu-
lated for a many-body ground state driven across a phase
transition.

iii.) In the more general situation encountered in quan-
tum field theory the number of particles need not be
conserved, which creates an additional freedom for en-
coding parameters compared to single-particle quantum
mechanics. Indeed, the most general linear transforma-
tions of the creation and annihilation operators that pre-
serve their fermionic anti-commutation relations are Bo-
goliubov transformations. We will therefore consider Bo-
goliubov transformations as a third way of coding param-
eters in a state. In the most general situation, Bogoliubov
transformations allow to mix excitations with creation of
holes, which opens the way to a new kind of quantum pa-
rameter estimation not possible with single-particle basis
change. We will first discuss this general case and de-
rive very general expressions for the QFI. We will then
consider the special case where the particle number is
conserved, that is, when Bogoliubov transformations mix
creation operators with creation operators only and anni-
hilation operators with annihilation operators only. This
corresponds to changing the single-particle basis states.
This case will be relevant to application of our results to
the quantum Hall effect.

Bogoliubov transformations for quantum parameter-
estimation have been considered before in bosonic field
theories [11]. Analytical results were obtained for the es-
timation of small parameters in terms of Bogoliubov coef-
ficients for single-mode and two-mode Gaussian channels.
The QFI for specific two-mode bosonic Gaussian states
was also found in [12]. In [13] an exact expression for the
QFI of an arbitrary two-mode bosonic Gaussian state was
obtained. Carollo and co-workers calculated the symmet-
ric logarithmic derivative of general Gaussian fermionic
states [14]. In [15] a proper definition of entanglement
in fermionic systems and its connection to the sensitiv-
ity of quantum metrology schemes based on them was
investigated.

Here, we investigate quantum-parameter estimation

for arbitrary pure states of indistinguishable fermions,
and include all three ways of encoding a parameter de-
scribed above. Performing a time evolution, a basis
change or a Bogoliubov transformation amounts to ap-
plying a unitary operator to the initial quantum state.
In Section III we calculate the QFI in the case where
an initial parameter-independent state is subjected to a
parameter-dependent unitary transformation. We then
derive a chain rule for the QFI in the case of two suc-
cessive unitary transformations, which allows us to iden-
tify the contribution from each of them as well as their
mutual influence. In Section IV we calculate the QFI
for Bogoliubov transformations (whose formalism is re-
viewed in Section II). Section V is dedicated to applying
this formalism to the quantum Hall effect.

II. FERMIONIC QUANTUM FIELD THEORIES
AND BOGOLIUBOV TRANSFORMATIONS

The present section introduces some notation in Sub-
section II A and recalls the Bogoliubov formalism in Sub-
sections II B, II C and II D. The reader familiar with this
formalism can skip these latter subsections and go di-
rectly to Section III.

A. Fermionic basis states

The most general pure state of indistinguishable
fermions in M single-particle modes can be written in
the form

|ψ⟩ =
∑
n

ψn |n⟩c , (1)

where the sum runs over all M -tuples n =
(n0, n1, . . . , nM−1) with nk ∈ {0, 1}, and

|n⟩c= (c†0)
n0(c†1)

n1 ...(c†M−1)
nM−1 |vac⟩c , (2)

which by convention we abbreviate to∏M−1
k=0 (c†k)

nk |vac⟩c, is the state of nk particles in
mode k for k = 0, . . . ,M − 1. Here, the states |n⟩c are
the N -particle states |n0⟩c ⊗ |n1⟩c ⊗ · · · ⊗ |nM−1⟩c, or
equivalently |n0, n1, . . . , nM−1⟩c, with N =

∑
k nk, and

|nk⟩c are eigenstates of a single-particle Hamiltonian,
with k = 0, 1, 2, . . .. The operator c†k creates a fermion
in mode k out of the vacuum |vac⟩c. The vacuum state
|vac⟩c of particles c is defined as the state that satisfies
ck |vac⟩c = 0 ∀k = 0, . . . ,M − 1, i.e. it is a state that
contains no particles of type c.

The set of all 2M states |n⟩c, with n running over all
M -tuples of 0 and 1, forms a basis of Fock space, and
ψn in (1) are the (complex) coefficients of |ψ⟩ in that
basis. We will consider |ψ⟩ to depend on a parameter
ω that we want to estimate. In the most general situa-
tion the parameter dependence can arise both from the
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ψn and from the basis states |n⟩c. Note that for ener-
gies much smaller than the rest masses of the fermions,
superpositions containing a different number of particles
are forbidden by the particle-number superselection rule.
States of the form (1) are nevertheless considered for ex-
ample in BCS theory of superconductivity [16], where
particle number conservation is enforced only on average
(and to a very good precision, for a large number of par-
ticles). Of course, by an appropriate choice of the ψn,
one can restrict |ψ⟩ to a state with a fixed number of
particles.

B. Bogoliubov transformations

We consider the situation where the ck arise from
a parameter-dependent Bogoliubov transformation from
parameter-independent creation and annihilation oper-
ators a†k and ak. Bogoliubov transformations are the
most general linear transformations that preserve canon-
ical anticommutation relations. They take the general
form

c†i = a†jUji + ajVji

ci = ajU
∗
ji + a†jV

∗
ji (3)

(with Einstein summation convention), where Uji, Vji
are parameter-dependent complex numbers. The preser-
vation of the anticommutation relations {c†i , cj} =

{a†i , aj} = δij implies the condition U†U + V †V = IdM ,
while {ci, cj} = {ai, aj} = 0 gives U tV +V tU = 0, where
V t denotes the transpose of V , and IdM the M ×M -
dimensional identity matrix. When arranged as a matrix
W with

W =

[
U V ∗

V U∗

]
, (4)

the two above conditions on U and V can be equiv-
alently expressed as W †W = Id2M , so that W is
unitary. Following [17] we introduce the compact vector
notation α = (a†, a) ≡ (a†0, . . . a

†
M−1, a0, . . . aM−1), and

correspondingly γ = (c†, c) ≡ (c†0, . . . c
†
M−1, c0, . . . cM−1).

We shall denote by α† the column vector
(a0, . . . aM−1, a

†
0, . . . a

†
M−1)

T . The Bogoliubov transfor-
mation (3) can then be written simply as γ = αW .

Let S be the 2M × 2M matrix defined from W by the
relation

W = exp(iSΞ) (5)

with

Ξ =

[
0 IdM

IdM 0

]
. (6)

Because of (5) and the definition (4), the matrix S has
the block form

S =

[
S(2) S(1)

−S(1)∗ −S(2)∗

]
, (7)

where S(1) and S(2) are (in general complex) M × M
matrices, with S(1) = S(1)† Hermitian and S(2) = −S(2)t

antisymmetric. The matrix S is not Hermitian in general,
but it satisfies St = −S, and hence S† = −S∗. We define
the operators

Ŝ(α) =
1

2
αSαt , (8)

T̂ (α) = exp(iŜ(α)) . (9)

Since αt = Ξα† (where the † conjugates the annihilation
and creation operators and transforms the row vector into
a column vector), Ŝ(α) can be written in the alternative
form Ŝ(α) = 1

2αSΞα
†. The operator T̂ (α) satisfies the

identity

T̂ (α)αT̂ (α)† = αW = γ . (10)

C. Relation between bases

To the vacuum state |vac⟩c for particles of type c cor-
responds a vacuum state |vac⟩a for particles of type a. It
is defined by ak |vac⟩a = 0 ∀k = 0, . . . ,M−1. In general,
the two vacua are different, |vac⟩c ̸= |vac⟩a, as is obvious
from the fact that whenever Vji ̸= 0 in Eq. (3), the op-
erator ci creates a particle of type a. The two vacua are
related via

|vac⟩c = T̂ (α) |vac⟩a , (11)

as can be readily seen by noting that Eqs. (10) and (11)
imply

ck |vac⟩c = T̂ (α)akT̂
†(α)T̂ (α) |vac⟩a = T̂ (α)ak |vac⟩a = 0

(12)
(see e.g. [17]). Only in the case where V = 0 (i.e. the Bo-
goliubov transformation does not mix creation operators
with annihilation operators) does one have, up to possi-
bly a phase, |vac⟩c = |vac⟩a. Equation (11) generalizes
to an arbitrary state: one has for a Fock state

|n⟩c =

M−1∏
k=0

(c†k)
nk |vac⟩c

=

M−1∏
k=0

(
T̂ (α)(a†k)

nk T̂ (α)†
)
T̂ (α) |vac⟩a

= T̂ (α)

M−1∏
k=0

(a†k)
nk |vac⟩a

= T̂ (α) |n⟩a , (13)

and by linearity for an arbitrary pure state

|ψ⟩ =
∑
n

ψn |n⟩c = T̂ (α)
∑
n

ψn |n⟩a . (14)
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D. One-particle overlaps

We now calculate the overlap between one-particle
states in terms of the Bogoliubov parameters. Let R
be the M ×M matrix defined as

Rkl = a ⟨k|l⟩c , (15)

where |k⟩c is the state with one particle in mode k, i.e. the
state |n⟩c with ni = δik, 0 ≤ i ≤ M − 1. Using the
expression of γi given by Eq. (10), we have for i, j ∈
{1, . . . , 2M}

a ⟨vac|αj γi |vac⟩c = a ⟨vac|αj αk |vac⟩cWki (16)

(again with implicit summation). Since by definition
aj |vac⟩a = |0⟩ and ci |vac⟩c = |0⟩, the left-hand side of
(16) has the block structure[

0 0
R 0

]
. (17)

On the right-hand side of (16) the term
a ⟨vac|αj αk |vac⟩c has the block structure[

0 0
P Q

]
. (18)

Using the block structure (4) of W , Eq. (16) readily gives

PU +QV = R (19)
PV ∗ +QU∗ = 0 . (20)

Matrices P and Q can be calculated by using the fol-
lowing canonical decomposition for the operators T̂ (α)
[17]:

T̂ (α) = |U†|1/2eẐeŶ eX̂ , (21)

where

X̂ =
1

2

∑
i,j

Xijaiaj , X = U∗−1V, (22)

Ŷ =
1

2

∑
i,j

Yija
†
iaj , e−Y = U†, (23)

Ẑ =
1

2

∑
i,j

Zija
†
ia

†
j , Z = V ∗U∗−1 , (24)

and |.| denotes the determinant (recall that in general
U is not a unitary matrix). While operators X̂ and Ŷ

contain annihilation operators, Ẑ only contains creation
operators. Thus |vac⟩c = T̂ (α) |vac⟩a = |U†|1/2eẐ |vac⟩a
and the overlap between vacua reads

a ⟨vac| vac⟩c = |U†|1/2 . (25)

Matrix P is readily obtained as

Pkj = a ⟨vac| ak a†j |vac⟩c = |U†|1/2δkj . (26)

Using the identity [18][
ak, e

Ẑ
]
=
∑
l

Zkla
†
l e
Ẑ (27)

(which can be shown by induction), we get

a ⟨vac| anakeẐ |vac⟩a = a ⟨vac| an
[
ak, e

Ẑ
]
|vac⟩a

=
∑
l

a ⟨vac| ana†l e
Ẑ |vac⟩a Zkl

= a ⟨vac| eẐ |vac⟩a Zkn
= −Znk (28)

(the relation U tV + V tU = 0 implies Zt = −Z). There-
fore,

Qnk = a ⟨vac| anak |vac⟩c = −Znk|U†|1/2 . (29)

When we replace P and Q by their above expression in
Eq. (20), we get V ∗ − ZU∗ = 0, which is in fact a direct
consequence of the definition of Z. Doing the same in
Eq. (19) we get |U†|1/2(U − ZV ) = R. Using (24), this
gives

R = |U†|1/2
(
U − V ∗U∗−1V

)
. (30)

We recognize the Schur complement of the block U∗ in
matrixW , which appears in the expression for the inverse
of the block matrix W . Since W is unitary, Eq. (30)
reduces to

R = |U†|1/2 U†−1 . (31)

If the Bogoliubov transformation is such that V = 0, then
the relation U†U+V †V = IdM implies that U is unitary.
From Eq. (31) we then have U = R, so that for this par-
ticular Bogoliubov transformation U is simply the matrix
of one-particle overlaps. In other words, the Bogoliubov
transformation between two single-particle bases can be
obtained by taking U = R and V = 0. This is the situa-
tion we encounter in section IV A4 below.

III. QUANTUM CRAMÉR-RAO BOUND AND
QUANTUM FISHER INFORMATION IN

FERMIONIC QUANTUM FIELD THEORIES

A. Quantum Cramér-Rao bound

Let |ψω⟩ be a quantum state which depends on a pa-
rameter ω. More generally, consider a density matrix
ρ(ω) that describes a parameter-dependent mixed state.
One would like to know how precisely one can estimate
ω based on the measurement of some observables. This
will depend in general, of course, on a lot of things, start-
ing with the measurements chosen, the precision of the
measurement devices used, the noisiness of the environ-
ment, the number of measurements, the statistics of the
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data obtained, and how the data are analyzed. However,
with the quantum Cramér-Rao bound (QCRB) [4–6], a
very powerful theoretical tool is available that allows one
to calculate the smallest possible uncertainty of any un-
biased estimate of ω, no matter what positive-operator-
valued measure (POVM) measurements are performed,
and what estimator functions are used to analyze the
data, as long as they are unbiased estimator functions
based on the measurement results alone. Suppose we
want to estimate a parameter ω by measuring Me times
a quantity X (e.g. a POVM) whose statistics of outcomes
P (X = x|ω) depends on ω. An estimator ω̂(x1, . . . , xMe)
is any function that maps the Me measurement results
x1, . . . , xMe

to an estimate of the parameter ω. It is
called unbiased if the average of ω̂ for the probability
distribution P (X = x|ω) is ⟨ω̂⟩ = ω locally. With such
an estimate at hand, measurement of X allows one to
access ω. However, since the measurement results fluctu-
ate in general due to the quantum nature of the state, so
does the estimator. Its smallest possible variance gives
the optimal sensitivity with which one can estimate ω by
measuring X. The QCRB provides a lower bound for the
variance of ω̂. It reads

var(ω̂) ≥ 1

Me

1

I(ρ(ω), ω)
, (32)

where I is the quantum Fisher information, given by

I(ρ(ω), ω) = tr
(
ρ(ω)L2(ω)

)
(33)

and the symmetric logarithmic derivative operator L(ω)
is a linear operator defined through

∂ωρ(ω) =
1

2
(L(ω)ρ(ω) + ρ(ω)L(ω)) . (34)

The bound can be saturated in the limit ofMe → ∞. The
QFI can generically [19, 20] be interpreted geometrically
through the Bures distance between two states ρ(ω) and
ρ(ω + δω) that differ infinitesimally in the parameter.
This gives an appealing physical interpretation to the
QCRB: the ultimate sensitivity with which a parameter
coded in a quantum state can be estimated is all the more
large as the state depends strongly on the parameter.

B. General expressions for the quantum Fisher
information

The QFI for systems with infinite-dimensional Hilbert
space is in general difficult to calculate, as it typically re-
quires the diagonalization of the density matrix in order
to determine the logarithmic derivative or the calcula-
tion of the Bures distance. However, if the state is given
already in diagonalized form, closed expressions for the
QFI can be found. The simplest case in this category is
that of a pure state |ψω⟩. Its QFI can be shown to be
[21]

I(|ψω⟩ , ω) = 4
(
⟨ψ̇ω|ψ̇ω⟩+ ⟨ψ̇ω|ψω⟩2

)
, (35)

where |ψ̇ω⟩ ≡ ∂ω |ψω⟩ (see Eq. (26) in [22]). Note that
in the whole paper dots denote derivatives with respect
to the parameter ω. For a mixed state ρ(ω) given in
its eigenbasis, ρ(ω) =

∑
r pr(ω)|ψ

(r)
ω ⟩⟨ψ(r)

ω |, where the
|ψ(r)
ω ⟩ form an orthonormal basis, one has

I(ρ(ω), ω) =
∑
r

(∂ωpr)
2

pr
+2
∑
n,m

(pn − pm)2

pn + pm

∣∣∣⟨ψ(n)
ω | ψ̇(m)

ω ⟩
∣∣∣2 ,

(36)
where the sums are over all terms with non-vanishing
denominators.

The form (35) can be equivalently expressed as

I(|ψω⟩ , ω) = 4 ⟨ψ̇ω| (1 − |ψω⟩⟨ψω|) |ψ̇ω⟩ . (37)

Under that form, the QFI can be directly related to the
Fubini-Study metric. More generally, the QFI has a sim-
ple geometric interpretation: it is related to the Bures
distance between two infinitesimally close states [23] via
the identity [24]

I(ρ(ω), ω) = 4 lim
δω→0

dB (ρ(ω), ρ(ω + δω))
2

δω2
, (38)

with

dB(ρ, ρ
′) =

(
2− 2 tr

√
ρ

1
2 ρ′ρ

1
2

) 1
2

. (39)

C. QFI for a unitary transformation

1. General pure state

The most general pure states of a system described
within quantum field theory are of the form (1). Both the
basis states |n⟩c and the amplitudes ψn(ω) can depend
on the parameter ω, so that we have to deal with states
of the form

|ψω⟩ =
∑
n

ψn(ω) |n⟩ω . (40)

The reason for this is that the basis states |n⟩ω are
constructed as antisymmetrized linear combinations of
single-particle eigenstates that can depend on the pa-
rameter through the single-particle Hamiltonian. For ex-
ample, in the case of the quantum Hall effect that we
will consider in detail in section V, the single-particle en-
ergy eigenstates correspond to Landau levels that depend
on the magnetic field (or equivalently the cyclotron fre-
quency ω), i.e. they are energy eigenstates of an harmonic
oscillator with frequency ω, leading e.g. in position rep-
resentation to wavefunctions with a typical length scale
given by the frequency-dependent oscillator length.

As mentioned in the Introduction, a parameter can be
imprinted on a quantum state via an evolution Hamilto-
nian, via many-particle basis states even in the absence
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of a time evolution, or via a Bogoliubov transformation.
A parameter-independent initial state is transformed into
a parameter-dependent state via a parameter-dependent
unitary transformation. In addition, the propagation
of a superposition of eigenstates leads to parameter-
dependent phases of the amplitudes. As we will show, the
form (40) can be obtained from a parameter-independent
state by means of two consecutive unitary operators. We
first consider the case where a single unitary operator is
applied. Of course, one could always combine these two
unitaries into a single one, but for some applications the
decomposition into two unitaries is natural, as will be
illustrated in Sec. IV B below.

2. A single unitary

Suppose the unitary transformation is of the form
T̂ω = exp(iŜω), with Ŝω Hermitian, acting on some
parameter-independent reference state |ψω0

⟩, so that the
state is of the form |ψω⟩ = T̂ω |ψω0

⟩. This situation arises
for example by a time evolution driven by a Hamilto-
nian Ĥω that depends on the parameter ω (in which case
Ŝω = −Ĥωt is also proportional to time t). A simple
calculation shows that the QFI (35) can be rewritten as

I(|ψω⟩ , ω) = 4 var(H, |ψω0
⟩) , with H = −iT̂ †

ω
˙̂
Tω ,
(41)

where the operator H is Hermitian and

var(H, |ψ⟩) = ⟨ψ|H2 | ψ⟩ − ⟨ψ|H |ψ⟩2 . (42)

3. Two unitaries and chain rule for the QFI

Let us now consider the case where the parameter is
encoded in |ψω⟩ by means of two consecutive unitaries
depending on ω. Our aim is thus to calculate the QFI of
a state of the form

|ψω⟩ = ÛωT̂ω |ψω0
⟩ . (43)

In the same way as H in Eq. (41), we define U = −iÛ†
ω
˙̂
Uω.

From unitarity of Ûω and T̂ω we have

H = −iT̂ †
ω
˙̂
Tω = i

˙̂
T †
ωT̂ω, H2 =

˙̂
T †
ω
˙̂
Tω (44)

U = −iÛ†
ω
˙̂
Uω = i

˙̂
U†
ωÛω, U2 =

˙̂
U†
ω
˙̂
Uω (45)

with H and U Hermitian. We introduce the state

|ϕω⟩ = T̂ω |ψω0
⟩ , (46)

so that

|ψω⟩ = Ûω |ϕω⟩ (47)

|ψ̇ω⟩ = ˙̂
Uω |ϕω⟩+ Ûω |ϕ̇ω⟩ , (48)

|ϕ̇ω⟩ = ˙̂
Tω |ψω0

⟩ . (49)

This yields the identities

⟨ϕ̇ω|ϕ̇ω⟩ = ⟨ψω0
|H2|ψω0

⟩ (50)

⟨ϕ̇ω|ϕω⟩ = −i ⟨ψω0
|H|ψω0

⟩ . (51)

From Eq. (35) we then obtain

1

4
I(|ψω⟩ , ω) = var(H, |ψω0

⟩) + var(U , |ϕω⟩) (52)

− 2 Im ⟨ϕ̇ω|U|ϕω⟩ − 2 ⟨ϕω|U|ϕω⟩ ⟨ψω0
|H|ψω0

⟩ .

Equation (52) provides a chain rule for the QFI asso-
ciated with two unitary operators. If Ûω or T̂ω is the
identity operator, one gets back the expression (41) for
a single operator. When two unitaries are present, the
variances sum up, but in addition there is a cross term
that comes from the variation of both Ûω and T̂ω with
the parameter. Note that recently, a chain rule for the
QFI was derived in a different context, namely in a case
where quantum evolution is followed by a POVM that
depends itself on the parameter [25].

IV. SOME SPECIFIC CASES

A. QFI for Bogoliubov transformations

We now consider the situation where the parameter ω
is encoded in |ψω⟩ by means of a single unitary transfor-
mation T̂ω(α) associated with a Bogoliubov transforma-
tion. The operator T̂ω(α) is defined by Eqs. (4)–(9), with
matrices W and S depending on a parameter ω. In the
language of section III C, particles of type c correspond
to parameter value ω and particles of type a to parameter
value ω0.

This situation is a special case of section III C where
the operator Ŝω is quadratic in creation and annihilation
operators. The QFI is thus directly given by Eq. (41),
where the Hermitian operator H is H = −iT̂ω(α)† ˙̂

Tω(α).
Our aim is to reexpress the QFI in terms of the matrices
U and V defining the Bogoliubov transformation.

1. General case

Using Eq. (A4) giving the derivative of an integral, we
first rewrite H as [24, 26]

H =

∫ 1

0

ds e−isŜω(α) dŜω(α)

dω
eisŜω(α) (53)

=
1

2
Ṡij

∫ 1

0

ds e−isŜω(α)αie
isŜω(α)e−isŜω(α)αje

isŜω(α)

(again with implicit summation over repeated in-
dices). The term e−isŜω(α)αie

isŜω(α) can be rewritten
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as T̂ω(α)−sαiT̂ω(α)s = (αe−isSΞ)i, yielding

H =
1

2

∫ 1

0

ds (αe−isSΞ)iṠij(αe
−isSΞ)j (54)

=
1

2
αl

∫ 1

0

ds (e−isSΞ)liṠij(e
−isSΞ)kjαk (55)

=
1

2
αl

∫ 1

0

ds (e−isSΞ)liṠij(e
isΞS)jkαk , (56)

where between (55) and (56) we have used (SΞ)t = −ΞS
due to antisymmetry of S. The operator H can thus be
expressed as a quadratic form in the ai, a

†
i as

H =
1

2
αΩ̃αt , (57)

with

Ω̃ =

∫ 1

0

ds e−isSΞṠeisΞS . (58)

In Appendix A we give an alternative proof of (58) based
on the commutation relations of Ŝ and ˙̂

S. The above
equation gives the most general expression for the opera-
tor whose variance gives the QFI. The remaining integral
in Eq. (58) makes it uneasy to use. In order to make some
progress we now consider a natural additional hypothesis.

2. Case [S,Ξ] = 0

The general result (57)–(58) can be further simplified
if we make the additional assumption that S and Ξ com-
mute: The block structure (7) implies that [S,Ξ] = 0 if
and only if S = −S∗, that is, iS is a real matrix. In such
a case, using (A4), Eq. (58) gives

Ω̃Ξ =

∫ 1

0

ds e−isSΞṠΞeisSΞ = −iW †Ẇ , (59)

so that H becomes

H =
1

2
αΩα† with Ω = −iW †Ẇ (60)

(we used the identity Ξαt = α† mentioned below Eq. (9)).
Thus, in such a case where iS is real, the matrix W that
defines the Bogoliubov transformation, together with its
derivative with respect to the parameter ω, provide an
expression for H as a quadratic form of the operators
a†i , ai.

Below, we will be interested in the calculation of the
QFI as a function of ω in the vicinity of a fixed parameter
ω0. We will therefore evaluate all quantities in the limit
ω → ω0. In this limit, the Bogoliubov transformation
goes to the identity, so that we have U → IdM and V →
0. The matrix Ẇ then involves derivatives of U and V
with respect to ω taken at ω → ω0, that we will denote
U̇ and V̇ . Taking the derivative of the relations U†U +

V †V = IdM and U tV +V tU = 0M with respect to ω and
then the limit ω → ω0 we get U̇+U̇ t = 0 and V̇ +V̇ t = 0;
this can be shown by using the fact that since iS is real
then W = exp(iSΞ) is, too (with Ξ defined by Eq. (6)),
and therefore also U and V . With this antisymmetry of
U̇ and V̇ together with the fermionic anticommutation
relations, Eq. (60) becomes, using antisymmetry of U̇
and V̇ ,

H = −i
∑
k<l

(
U̇kla

†
kal − U̇kla

†
l ak + V̇kla

†
ka

†
l + V̇klakal

)
.

(61)

3. Case U = R real and V = 0

From now on we will specialize to the case where the
Bogoliubov transformation does not mix creation and an-
nihilation operators, i.e. V = 0, and the unitary transfor-
mation U is orthogonal. This case is of great relevance,
since it is precisely the framework in which we will de-
rive expressions in Section V. Indeed, in the context of
the quantum Hall effect the Bogoliubov transformation
is given by the matrix R of overlaps (C1), whose entries
are real. The fact that these overlaps are real is a conse-
quence of the structure of the Hall wavefunctions in the
Landau gauge, given by Eq. (102) below: the complex
phase is a plane wave that does not depend on the pa-
rameter ω, yielding a (real) delta function in the overlap.

In this case, W is real and one can always choose a
matrix S in (5) such that iSΞ is real. Hence iS is real,
and as a consequence [S,Ξ] = 0. Equation (61) can thus
be used, and it gives

H = −i
∑
k<l

Ṙkl(a
†
kal − a†l ak). (62)

4. QFI for a basis state

Let us consider the case where |ψω⟩ is the parameter-
dependent basis state |n⟩ω = T̂ω |n⟩ω0

. Again we asso-
ciate mode c with ω and mode a with ω0. According
to (41), the QFI is given by the variance I(|n⟩ω , ω) =
4var(H, |n⟩ω0

).
In the remainder of the paper we will only address the

case where [S,Ξ] = 0, in which case H is given by the
expression (61). It only requires to calculate H |n⟩a. We
have

ak |n⟩a = δnk,1 (−1)
∑k−1

j=0 nj |nk⟩a , (63)

a†k |n⟩a = δnk,0 (−1)
∑k−1

j=0 nj |nk⟩a , (64)

where |nk⟩a is the state |n⟩a with nk replaced by 1− nk
(i.e. the kth “bit” in the binary string n is flipped). This
leads (for k < l) to

a†kal |n⟩a = δnk,0δnl,1 (−1)
∑l−1

j=k nj |nk,l⟩a , (65)

a†l ak |n⟩a = −δnk,1δnl,0 (−1)
∑l−1

j=k nj |nk,l⟩a , (66)
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where in |nk,l⟩a bits k and l are flipped. Similarly we
have (still for k < l)

a†ka
†
l |n⟩a = δnk,0δnl,0 (−1)

∑l−1
j=k nj |nk,l⟩a , (67)

akal |n⟩a = δnk,1δnl,1 (−1)
∑l−1

j=k nj |nk,l⟩a . (68)

Inserting these expressions into Eq. (61) leads to

H |n⟩a = −i
∑
k<l

(
U̇klδnk,0δnl,1 + U̇klδnk,1δnl,0

+V̇klδnk,0δnl,0 + V̇klδnk,1δnl,1

)
(−1)

∑l−1
j=k nj |nk,l⟩a ,

(69)

which can be shortened to

H |n⟩a = −i
∑
k<l

(−1)
∑l−1

j=k nj D
(|nk−nl|)
kl |nk,l⟩a , (70)

with D(0) = V̇ and D(1) = U̇ . Since each flipped state
|nk,l⟩a is orthogonal to |n⟩a, we have a ⟨n|H |n⟩a = 0.
The quadratic term in (42) is given by the square of the
2-norm of H |n⟩a. Since all terms in the sum (70) are
orthogonal to each other, the QFI finally reads

I(|n⟩ω , ω) = 4
∑
k<l

|D(|nk−nl|)
kl |2 . (71)

In the case where U = R is real and V = 0, H is given
by Eq. (62). Only D(1) = Ṙ contributes, so that Eq. (71)
reduces to

I(|n⟩ω , ω) = 4
∑
k<l

|nk−nl|=1

|Ṙkl|2 . (72)

This is the expression which we shall use in Section V in
the context of the quantum Hall effect.

It is interesting to analyze Eq. (72) in the context of
a finite-dimensional Hilbert space. The sum in (72) is a
sum over all pairs of occupied and unoccupied modes. For
a finite-dimensional Hilbert space of single-particle states
where each state is occupied (e.g. an insulating band in
a solid), this sum vanishes. Indeed, as the corresponding
Fock space is one-dimensional, all parameter dependence
through unitary transformations amongst the annihila-
tors trivially reduces to a phase, which cancels in the
density matrix. Hence, the state is independent of the
parameter under such unitaries, as can be checked ex-
plicitly for N = 2, which is consistent with the fact that
the QFI is zero. This implies of course, that ω cannot be
measured at all, but not that the variance of any unbi-
ased estimator diverges. Rather, the conditions for the
QCRB break down: one cannot have an unbiased esti-
mator in an ϵ-interval about the true value ω if the state
is independent of ω: ⟨ω̂⟩ = ω can only be true at a single
point if the lhs is independent of ω, not in a whole finite
interval, even if it is arbitrarily small.

B. QFI for a Bogoliubov transformation followed
by a Hamiltonian evolution

In Section III C 3 we obtained the QFI associated with
a state obtained by applying an operator T̂ω followed by
an operator Ûω. It is expressed via the chain rule (52).
This expression takes a much simpler form in the case
where Ûω is the evolution operator associated with the
ω-dependent Hamiltonian

Ĥω =
∑
k

ϵk(ω)n̂k(ω) , (73)

describing a system of non-interacting fermions, and T̂ω is
the Bogoliubov transformation that changes the basis by
mapping particles of type a (corresponding to parameter
value ω0) to particles of type c (corresponding to parame-
ter value ω). In (73), ϵk(ω) are the parameter-dependent
single-particle energy eigenvalues, and n̂k are the occu-
pation number operators. We have, from Eq. (13), the
identity

|n⟩ω = T̂ω |n⟩ω0
. (74)

Let the initial state be parameter-independent (or,
equivalently, taken at a fixed value ω0 of the parameter).
The evolution operator Ûω = exp(−iĤωt) is diagonal in
the basis |n⟩ω, so that

|ψω(t)⟩ = ÛωT̂ω |ψω0
(0)⟩

= e−iĤωt
∑
n

ψn |n⟩ω

=
∑
n

ψne
−iEn(ω)t |n⟩ω

=
∑
n

ψn(ω, t) |n⟩ω , (75)

with ψn(ω, t) = ψne
−iEn(ω)t and En(ω) =

∑
k ϵk(ω)nk

the total energy of many-body basis state |n⟩ω. Thus
one can go from |ψω0(0)⟩ to a state of the form (40) with
two unitaries, one for the change of basis and the other
for time evolution.

Our aim is to calculate the QFI of

|ψω⟩ =
∑
n

e−iEn(ω)tψn |n⟩ω , (76)

where ψn are the coordinates of the initial state |ψω0
(0)⟩

in the basis |n⟩ω0
and thus are independent of ω. We

introduce

|γω⟩ =
∑
n

(
−iĖn(ω)t

)
e−iEn(ω)tψn |n⟩ω , (77)

|χω⟩ =
∑
n

e−iEn(ω)tψn |ṅ⟩ω , (78)

|φω⟩ =
∑
n

e−iEn(ω)tψn |n⟩ω0
, (79)
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so that |ψ̇ω⟩ = |γω⟩ + |χω⟩. In terms of |γω⟩ and |χω⟩,
the QFI Eq. (35) reads
1

4
I(|ψω⟩ , ω) = ⟨γω|γω⟩+ ⟨γω|ψω⟩2 + ⟨χω|χω⟩+ ⟨χω|ψω⟩2

+ ⟨γω|χω⟩+ ⟨χω|γω⟩+ 2 ⟨γω|ψω⟩ ⟨χω|ψω⟩ .
(80)

One then readily gets from (77)

⟨γω|γω⟩+ ⟨γω|ψω⟩2 =
∑
n

|ψn|2Ė2
nt

2 − (
∑
n

|ψn|2Ėnt)
2.

(81)
If we define the diagonal operator Ė =

∑
n Ėn |n⟩⟨n|ω0

,
this gives

⟨γω|γω⟩+ ⟨γω|ψω⟩2 = var(Ėt, φω). (82)

Performing the derivative of Eq. (74) with respect to ω,
we get

|ṅ⟩ω =
˙̂
TωT̂

†
ω |n⟩ω (83)

and thus

|χω⟩ = ˙̂
TωT̂

†
ω |ψω⟩ =

˙̂
Tω |φω⟩ . (84)

This yields ⟨χω|ψω⟩ = −i ⟨φω|H|φω⟩ and thus

⟨χω|χω⟩+ ⟨χω|ψω⟩2 = var(H, φω). (85)

Noting that

|φ̇ω⟩ =
∑
n

(
−iĖn(ω)t

)
e−iEn(ω)tψn |n⟩ω0

= T̂ †
ω |γω⟩ ,

(86)
the last contribution in Eq. (80) involves the terms

⟨γω|ψω⟩ = i
∑
n

|ψn|2Ėnt ≡ i ⟨Ėt⟩ψω0
= i ⟨Ėt⟩φω

(87)

and ⟨γω|χω⟩, which from Eqs. (84) and (86) gives

⟨γω|χω⟩ = i ⟨φ̇ω|H|φω⟩ = −⟨Ėt H⟩φω
. (88)

We obtain

⟨γω|χω⟩+ ⟨χω|γω⟩ = −⟨Ėt H⟩φω
− ⟨H Ėt⟩φω

(89)

⟨γω|ψω⟩ ⟨χω|ψω⟩ = 2 ⟨Ėt⟩φω
⟨H⟩φω

. (90)

Summing together all contribution in (80) we get
1

4
I(|ψω⟩ , ω) = var(Ėt, φω) + var(H, φω) (91)

− ⟨Ėt H⟩φω
− ⟨H Ėt⟩φω

+ 2 ⟨Ėt⟩φω
⟨H⟩φω

,

= ⟨(Ėt−H)2⟩φω
− ⟨Ėt−H⟩2φω

. (92)

We thus obtain the very compact expression

I(|ψω⟩ , ω) = 4 var(Ėt−H, φω), (93)

with Ė =
∑

n Ėn |n⟩⟨n|ω0
and

ω0
⟨m|H |n⟩ω0

= i ω0
⟨m| ˙̂

T †
ωT̂ω |n⟩ω0

= i ω⟨ṁ|n⟩ω . (94)

Expression (93) generalizes well-known variance-based
formulas [24]. At t = 0, state |φω⟩ coincides with |ψω0

⟩
and thus we recover the QFI for a single unitary, Eq. (41).

C. QFI for a general state

We now put together the results from the previous
two subsections and consider the case of a superposition
|ψω⟩ =

∑
n ψn(ω) |n⟩ω of basis states. The QFI is given

by Eq. (93), that is, by the variance of Ėt − H in state
|φω⟩. That state is defined by (79), namely,

|φω⟩ =
∑
n

e−iEn(ω)tψn |n⟩ω0
(95)

in the basis of kets |n⟩ω0
. Operator H corresponds to a

Bogoliubov transformation and its action on basis states
|n⟩a is given by Eq. (70). Since ω0 is the frequency for
type-a particles, we have

H |n⟩ω0
= −i

∑
k<l

(−1)
∑l−1

j=k nj D
(|nk−nl|)
kl |nk,l⟩ω0

. (96)

By linearity, Eqs. (95)-(96) directly give

H |φω⟩ = −i
∑
n

ψn(ω, t)
∑
k<l

(−1)
∑l−1

j=k nj D
(|nk−nl|)
kl |nk,l⟩ω0

,

(97)
with ψn(ω, t) = ψne

−iEn(ω)t Permuting the two sums,
we make the change from nk,l to n in the sum over n.
This does not change the term D

(|nk−nl|)
kl , while flipping

nk changes the overall sign. This leads to

H |φω⟩ =
∑
n

hn(ω) |n⟩ω0
,

hn(ω) = i
∑
k<l

(−1)
∑l−1

j=k nj D
(|nk−nl|)
kl ψnk,l (ω, t) . (98)

The vectors H |φω⟩ are now both expressed in the same
basis |n⟩ω0

, so that

(
Ėt−H

)
|φω⟩ =

∑
n

(
Ėntψn(ω, t)− hn(ω)

)
|n⟩ω0

.

(99)
We therefore get

var(Ėt−H, φω) =
∑
n

∣∣∣Ėntψn(ω, t)− hn(ω)
∣∣∣2

−

(∑
n

(Ėnt|ψn|2 − ψ∗
n(ω, t)hn(ω))

)2

.

(100)

For a single particle the calculation can be done more
easily starting directly from (35). One checks that in
that case one gets (100) with n replaced by the index of
the single particle states.
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V. APPLICATION TO QUANTUM HALL
EFFECT

A. Single-particle quantum Hall physics

We now turn to an application of our results to quan-
tum Hall physics. We consider a two-dimensional sys-
tem of size L along the x-axis and w along the y-axis,
subjected to a perpendicular constant magnetic field B
along the z-axis. We choose the coordinate system such
that |y| ≤ w/2, 0 ≤ x ≤ L. We denote by A = Lw
the area of the sample. The frequency ω = eB/meff

is the cyclotron frequency of charge carriers with effec-
tive mass meff , lB =

√
ℏ/(eB) =

√
ℏ/(meffω) is the

magnetic length, and at the same time the oscillator
length associated with frequency ω. We denote with
nB = 1/(2πl2B) = B/(h/e) the magnetic flux density
(number of flux quanta Φ0 = h/e per unit area), and
M = nBA is the total number of flux quanta.

In the Landau gauge A = (−By, 0, 0), one can make
the Ansatz that the wave function factorizes in x and y
direction. Choosing periodic boundary conditions in the
x-direction results in plane waves in x with wave vector of
the form km = m(2π/L). The effective total Hamiltonian
is then given by

H =
p2y

2meff
+

1

2
meffω

2(y − ym)2 , (101)

where ym = kml
2
B is a shift of the oscillator in the y di-

rection that depends on the quantum number m of the
quantization in x-direction. The kinetic energy of the
plane wave is contained in the y2m term. As a conse-
quence, m enters only through the shift ym in (101) of
the origin of the oscillator, and thus energy eigenvalues
do not depend on m: Landau levels are degenerate. The
condition |ym| ≤ w/2 is equivalent to |m| ≤ A/(4πl2B) =
Ameffω/(4πℏ) = Φ/(2Φ0), which for ω the cyclotron fre-
quency amounts to |m| ≤ M/2. This is the well-known

result that the number M of states per Landau level (LL)
n, and hence degeneracy of each energy eigenvalue ℏωeffn,
is given by the number of flux quanta through the sur-
face. For simplicity we will assume M to be odd, so that
m takes the values m = −(M−1)/2, . . . , 0, . . . (M−1)/2.

The energy eigenstates |n,m⟩ω can be labeled with the
two quantum numbers n,m. They are conveniently de-
scribed in the chosen Landau gauge by the wave functions

⟨x, y|n,m⟩ω =
eikmx√
L
χn,m

(
y − kml

2
B

lB

)
, (102)

where

χn,m(η) =
Nn√
lB
Hn(η)e

−η2/2 (103)

is the usual harmonic-oscillator wave function in terms
of the Hermite polynomial Hn(η), while

Nn =
1√

2n
√
πn!

(104)

is a normalization factor.

B. Wave function overlaps

In order to calculate the QFI using Eq. (72), we first
need to obtain the derivative of the matrix R of overlaps.
We calculate the overlap between states |n,m⟩ω0+δω,
where the frequency differs from ω0 by an infinitesimal
amount δω, and states |n′,m′⟩ω0 at some fixed frequency
ω0. At first order,

ω0
⟨n′,m′|n,m⟩ω0+δω ≃ δn,n′δm,m′

+ ω0⟨n′,m′|∂ω0 |n,m⟩ω0δω. (105)

The calculation of the first-order term is detailed in Ap-
pendix B. We get the final expression

ω0
⟨n′,m′|n,m⟩ω0+δω ≃ δn,n′δm,m′ +

[
kmlB√
2ω0

(√
nδn′,n−1 −

√
n+ 1δn′,n+1

)
+

1

4ω0

(√
n(n− 1)δn′,n−2 −

√
(n+ 2)(n+ 1)δn′,n+2

)]
δm′,mδω. (106)

An alternative way of deriving this quantity is to start from the Hutchisson formula [27] for Rn′n = ω0 ⟨n′|n⟩ω, given
by

Rn′n =
√
2−(n+n′)qn!n′!(−1)ne−

1
4γ

2p

min(n,n′)∑
r=0

(−2q)r

r!

⌊(n−r)/2⌋∑
s=0

(γp)n−r−2s

(n− r − 2s)!

xs

s!

⌊(n′−r)/2⌋∑
t=0

(γq)n
′−r−2t

(n′ − r − 2t)!

(−x)t

t!
, (107)

with γ = km(l2B(ω)− l2B(ω0))/lB(ω), x = (ω− ω0)/(ω+ ω0), q = 2(ωω0)
1/2/(ω+ ω0), and p = 2ω0/(ω+ ω0) (we took

the formula of [27] with ν′ = ω0 and ν′′ = ω). This approach is more cumbersome. As a check, we show in Appendix
C that a first-order expansion of (107) around ω = ω0 allows us to recover the result (106).
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C. Gauge choice and occupation numbers

We now consider the basis state |n⟩ω where N particles
fill the lowest available energy levels. The QFI is given
by (72), which involves a sum over all pairs of labels (k, l)
with k < l, so that only labels such that the occupation
number differs by 1 contribute. That is, since only the
lowest levels are filled, the sum runs over all pairs k < l
such that level k is occupied and level l is empty. In the
present context of the quantum Hall effect, each label k
has to be replaced by two quantum numbers (n,m); the
QFI is thus a sum over pairs of contributions such that
level (n,m) is full and level (n′,m′) is empty.

The filling factor ν = N/M , with M the number of
states per LL, determines how many LLs are occupied.
The largest integer smaller than ν is denoted by f . In an
infinitely extended sample without additional potentials
(“ideal sample”), it determines the last fully occupied LL.
The last LL is occupied by only m̄ particles, with N =
Mf + m̄.

In an ideal sample all single-electron states with the
same n are degenerate in energy, and the larger the value
of km the larger the sensitivity of these states to a change
of magnetic field. Indeed km determines how quickly the
wavefunctions oscillate, and hence how sensitive they are
to a change of lB with B. Importantly, while the different
values that km can take are to a certain degree arbitrary
in the ideal system of flat Landau levels in the absence
of an electrostatic potential, we consider in the following
a smoothly varying confinement potential that lifts the
degeneracy at the different values of km. The absolute
values of km therefore matter for the QFI, as the QFI
depends on the energy eigenstate considered.

As we have just mentioned, in a real sample, the
degeneracy in energy is broken by the electrostatic po-
tential, which takes into account both smooth disorder
and a possible confinement potential. The order in which
the LL states are occupied is nontrivial, and this can
influence the QFI. Here, we omit disorder and consider
a smooth confinement potential. In a sensor based on a
two-dimensional electron gas (2DEG), confined electro-
statically by metallic electrodes at a substantial distance
from the 2DEG, on the order of 100 nm, the confining
potential varies on a length scale typically much larger
than lB for a magnetic field on the order of 1T . The
additional potential hardly modifies the electron wave
functions in this case and hence just leads to a shift of
the energy eigenvalues corresponding to the value of the
potential where the energy eigenstate is localized. By
symmetry, one can expect the minimum of the confining
potential to lie at the center of the sample, where it
can be approximated by a slow-varying potential. The
shorter the sample in a given direction, the stronger a
variation of the confining potential in that direction, and
hence, the larger the additional potential energy. This
implies that the lowest-energy single electron states to
be populated are oscillator states extended in the largest
direction of the sample, where the potential energy

due to the confining potential grows more slowly. This
situation is naturally taken care of in the Landau gauge:
Ax = −By for w ≫ L, but Ay = Bx for L ≫ w (with
the other components of A equal zero). For w ≃ L,
a symmetric Landau gauge A = B(−y, x, 0) is most
appropriate and leads to axial-symmetric wave functions
and conservation of angular momentum instead of linear
momentum. But since the additional potential is, for
w = L, also symmetric under w ↔ L, both Ax = −By
and Ay = Bx should lead to the same result as the
symmetric gauge in this case.

In addition to this confining potential, there is typi-
cally also a disorder potential in a real sample. Disorder
arises from impurities or dopants that are in general rel-
atively far from the 2DEG as well, and hence lead to
a random potential that varies slowly over the sample.
Energy eigenstates are then localized at the minimum of
this potential and filled in order of increasing energy, like
puddles. The quantum number m ceases to be a good
quantum number and is replaced by a quantum number
that labels the position where the oscillator state corre-
sponding to the Landau levels are localized. This implies
a QFI that varies randomly from sample to sample, with
a statistics that is, however, beyond the scope of the pa-
per. In the following we restrict ourselves to a clean
sample with only a confining potential that breaks the
degeneracy in energy of the LLs.

D. Quantum Fisher information for the N-particle
quantum Hall effect

We shall now focus on the case w ≫ L with Ax = −By.
The QFI is given by (72), which involves a sum over all
pairs of labels (k, l) with k < l, so that only labels such
that the occupation number differs by 1 contribute. If
only the lowest levels are filled, the sum runs over all pairs
k < l such that level k is occupied and level l is empty. In
the present context of the quantum Hall effect, each label
k has to be replaced by two quantum numbers (n,m); the
QFI is thus a sum over all pairs of contributions such that
(n,m) is occupied and (n′,m′) is empty. The summand
is the derivative of the overlap between a level (n,m) and
a level (n′,m′), obtained from Eq. (106); it reads

Ṙn′,m′;n,m =

[
kmlB

(√
nδn′,n−1 −

√
n+ 1δn′,n+1

)
√
2ω0

+

√
n(n− 1)δn′,n−2 −

√
(n+ 2)(n+ 1)δn′,n+2

4ω0

]
δm′m .

(108)

Recall from Sect. V A that m = −M−1
2 , . . . , 0, . . . M−1

2
and N = Mf + m̄. The fully filled LLs are labelled n =
0, .., f − 1, while the last LL n = f contains m̄ particles
filling states

∣∣n,−M−1
2 + i

〉
with 0 ≤ i ≤ m̄ − 1. From

the δm′m in (108) only pairs with m = m′ contribute,
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therefore we sum over pairs (n,m) and (n′,m) with n <
n′ and with (n,m) occupied and (n′,m) empty. If m =
−M−1

2 + i with 0 ≤ i ≤ m̄ − 1, the occupied states are
n = 0, ..., f and the empty ones are n′ ≥ f + 1. If m ≥
−M−1

2 + m̄, the occupied states are n = 0, ..., f − 1 and
the empty ones are n′ ≥ f . Thus, the QFI (72) can be
expressed as

I(|n⟩ω , ω) = 4(

m̄−M+1
2∑

m=−M−1
2

f∑
n=0

∞∑
n′=f+1

+

M−1
2∑

m=m̄−M−1
2

f−1∑
n=0

∞∑
n′=f

)|Ṙn′,m;n,m|2 . (109)

Note that from the delta function in (108) only pairs with
m = m′ contribute. Only terms with n < n′ contribute to
the sum, so that only terms δn′,n+1 and δn′,n+2 survive.
Equation (109) reduces to

I(|n⟩ω , ω) = 4

 m̄−M+1
2∑

m=−M−1
2

f∑
n=0

∞∑
n′=f+1

+

M−1
2∑

m=m̄−M−1
2

f−1∑
n=0

∞∑
n′=f


×
(
(kmlB)

2(n+ 1)

2ω2
δn′,n+1 +

(n+ 2)(n+ 1)

16ω2
δn′,n+2

)
,

(110)

where we have set ω0 = ω. Only pairs n, n′ differing by
1 or 2 units contribute, thus (110) becomes

I(|n⟩ω , ω) =

1

ω2

 m̄−(M+1)/2∑
m=−(M−1)/2

(
2(kmlB)

2(f + 1) +
1

2
(f + 1)2

)

+

(M−1)/2∑
m=m̄−(M−1)/2

(
2(kmlB)

2f +
1

2
f2
) . (111)

Replacing km by its value 2πm/L, one can perform the
sum over m. This leads to the final expression

I(|n⟩ω , ω) =
1

6L2ω2

(
3L2(−f(f + 1)M + 2fN +N)

− 4π2l2B
(
2f(f + 1)(2f + 1)M3 + 6(2f + 1)MN2

− 3N(2fM +M)2 − 4N3 +N
))

(112)

The first line is independent of L and the geometry of
the sample. The remaining terms both depend on B and
L. Since ω and B are linearly related, error propagation
leads to the same relative minimal standard deviation of
an unbiased estimator σ(B̂) of B as for ω. Together with
Eq. (32) we obtain,

σ(B̂) ≥ meff/e√
MeI(|n⟩ω , ω)

, (113)

where Me is the number of independent measurements.
A necessary condition for the application of the formula
is that the very description of the system in terms of
harmonic oscillators is adequate. This implies that the
magnetic field must not be too weak, i.e. lB ≪ w, which
sets a lower bound on B for given w, B ≫ ℏ/(ew2)
with numerical values B[T ] ≫ 6.58 × 10−16/(w[m])2.
Conversely, for given B the formula implies a minimal
sensor size of w > 25.7nm/(

√
B[T]). Secondly, we recall

that we assumed w ≫ L. In the opposite case, w and
L should be exchanged. As explained above, symmetry
under exchange of w and L is not to be expected in
a sensor where the confining potential breaks that
symmetry.

The most interesting regime corresponds to N ≫ 1.
In a realistic sample, the areal density n2D = N/(Lw) of
the electrons is fixed. In this case, for increasing N , w or
L must increase as well, and with them M ∝ Lw ∝ N .
Hence, in the limit of large N one should replace M by its
value (N−m̄)/f . Suppose w = µNλlB and L = νN1−λlB
with 1/2 ≤ λ ≤ 1 to ensure that w ≫ L for large N . For
λ > 1/2, one always has w ≫ L for N → ∞, whereas for
λ = 1/2, w/L = µ/ν is fixed but can be large. Then the
leading term in N of the QFI becomes

I(|n⟩ω , ω) ≃
2π2

3f2ω2ν2
N1+2λ. (114)

and signals faster than “Heisenberg scaling” of the QFI
(meaning I(|n⟩ω , ω) ∝ N2 [28]) for λ > 1/2. The fastest
possible scaling, I(|n⟩ω , ω) ∝ N3 can be achieved in the
limit of fixed L and correspondingly w ∝ N , i.e. in the
limit of a strip-like sensor.

The origin of this “super-Heisenberg scaling” can
be traced back to the

∑
mm

2 in (111) with bounds
∼ M ∼ N which gives a scaling ∝ N3. It arises from
occupying high-momentum states in x-direction, as is
required for Fermions by the Pauli principle. Since km
determines also the shift ym = kml

2
B of the harmonic

oscillators in y direction, large values of km lead to
correspondingly large sensitivity to a change of lB
and hence of B. Interestingly, if the kinetic energy
in x-direction had a power-law scaling with kx with a
different power, also the scaling of the sensitivity with
N would change, with higher powers being favorable.
Numerically, using typical parameter values for Gallium
arsenide (meff ≃ 0.068me, n2D ≃ 1.0 × 1015/m2) and
a magnetic field of 1T, the minimal predicted error is
on the order of 6.2 × 10−11 T for a single measurement
with a sensor of size w = 1 cm, L = 1mm. The number
of information-carrying measurements per second is de-
termined by the bandwidth of the interrogation scheme.
That bandwidth is ultimately limited by the cyclotron
frequency, and hence the number of measurements in
1 s cannot be greater than Me ∼ 1/(ω · 1s) ≃ 1012 at
1 T. A more conservative bandwidth of 10 GHz yields
a bound on the achievable sensitivity on the order
of 10−16 T/Hz1/2, to be compared with 100 nT/Hz1/2
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Figure 1. Logarithmic contour plot of the minimal standard
deviation, i.e. log10 σ(B̂), of an unbiased estimate B̂ of the
magnetic field B based on the quantum Hall effect, Eqs. (113)
and (112) for a single readout, Me = 1, as function of the
width w of the sensor and magnetic field B for 10−8 ≤ B[T ] ≤
102. The minimal error is plotted only where the theory is
applicable, w > L, lB(B). The length is set to L = 1µm, and
w ≥ 10−5 m.

sensitivity of a silicon-based commercially available
sensor [1], or another one with 0.4µT sensitivity at
fields up to about mT with a chip of linear size ∼mm [29].

In Fig. 1 we plot the minimal estimation error σ(B)
as function of B and w in the parameter ranges where
lB(B) < w is satisfied, which is everywhere outside the
yellow left lower corner, whose boundary indeed scales as
w ∝ 1/

√
B. The length is fixed in this plot, i.e. λ = 1 in

eq.(114). The expected scaling σ(B) ∝ w−3/2 is reached
for sufficiently large w, as can be seen e.g. for B = 1T.
It should be kept in mind that i.) we considered the

case of zero temperature and neglected decoherence, and
ii.) the QCRB provides an idealized lower bound on the
error that can rarely be achieved in practice due to ad-
ditional technical noise and other imperfections. Never-
theless, the QCRB (113) constitutes an important bench-
mark that allows one to understand what sensitivity is
possible in principle as function of B and the size of the
sensor.

VI. CONCLUSION

In summary, we have derived analytical expressions for
the quantum Fisher information (QFI) that determines
the smallest possible fluctuations of an unbiased estima-
tor of a parameter encoded in an arbitrary pure quantum
state of a fermionic many-body system via three differ-
ent types of unitary transformations. In the case of two
concatenated unitaries we obtained a simple chain rule
for the QFI, Eq. (52), that simplifies further for param-
eters coded through a Bogoliubov transformation (61),
for a many-body basis state (71), or a Hamiltonian time

evolution paired with a modification of the single-particle
energy eigenstates (93). In the latter case, a variance of
a Hermitian generator naturally arises just as for a single
unitary evolution, albeit taken in an intermediate state.
We applied the general results to the quantum Hall ef-
fect in the ground state of non-interacting electrons and
calculated the smallest possible standard deviation of an
unbiased estimator of the magnetic field. We found a
scaling of the sensitivity (standard deviation) with which
the magnetic field can be measured as 1/

√
N1+2λ, where

λ ∈ [1/2, 1] controls the scaling of the width and length
of the sensor with the number of electrons.

For any λ > 1/2 this corresponds to a “super-
Heisenberg” scaling of the sensitivity, a term that is some-
what controversial. In [30] it was shown in the con-
text of quantum metrology of a parameter that drives a
many-body system through a continuous quantum crit-
ical point, with an energy gap which vanishes polyno-
mially with N at the critical point, that no faster than
Heisenberg scaling can be achieved without violating the
assumption of adiabaticity if the time needed for prepar-
ing the initial state through adiabatic driving is taken
into account. Our scenario is not of that type, how-
ever. We do not consider a phase transition with a clos-
ing gap, nor a time-dependent parameter in the present
case of the quantum Hall effect. The QFI that we cal-
culate, Eq. (114), does hence not contain time. Its value
merely reflects the dependence of the single-particle en-
ergy eigenstates on the cyclotron frequency. The initial
state of the sensor can be reached for any value of the
magnetic field by cooling the sample close to the ground
state. One can nevertheless prepare the initial state
starting from a different value of the magnetic field by
modifying the magnetic field as a function of time; how-
ever, we still make the assumption that degeneracy of
the energy-eigenstates is lifted at least by the confine-
ment potential. In real samples, a disorder potential lifts
the degeneracy additionally, and for generic values of the
magnetic field one expects no closed gaps, regardless the
number of electrons. Therefore, even in such a scenario,
where the magnetic field is driven as function of time we
do not expect that a slowing down of the rate of change
of the parameter is required with increasing N in order
to remain adiabatic over an infinitesimal change of the
parameter.

The “super-Heisenberg scaling” has its physical origin
in the occupation of high-energy momentum states, as
required by the Pauli principle, which lead to large spa-
tial displacements of the energy eigenstates correspond-
ing to the Landau-levels, proportional to the momentum
and the magnetic length squared. The large momenta
hence translate to high sensitivity to changes of the mag-
netic length and as a consequence of the magnetic field.
It should be kept in mind, however, that the analysis
is highly idealized: zero temperature was assumed, and
all decoherence effects as well as technical noise are ne-
glected. Future work will have to show how robust the
large sensitivities are, and how they change when using
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different materials.
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Appendix A: Alternative proof of (57)

Here we sketch an alternative proof of (57). For brevity
we define Ĥ = iŜ, and a 2M × 2M matrix H = iS/2,
i.e. Ĥ = αHαt. One then shows in the fermionic case by
direct calculation that

[Ĥ,
˙̂
H] = 2α(H, Ḣ)αt , (A1)

where the commutator-like bilinear form (A,B) of two
operators is defined as

(A,B) ≡ AΞB −BΞA (A2)

with Ξ defined in Eq. (6). Eq. (A1) generalizes to higher
order commutators [A,B]n defined recursively through
[A,B]n+1 = [A, [A,B]n] and [A,B]0 = B, and corre-
spondingly (A,B)n+1 = (A, (A,B)n) and (A,B)0 = B:

[Ĥ,
˙̂
H]n = 2nα(H, Ḣ)nα

t . (A3)

Next, one can write the derivative of an exponential of a
parameter dependent operator alternatively as

∂

∂ω
eβH(ω) =

∫ β

0

ds e(β−s)H(ω) ∂H(ω)

∂ω
esH(ω) , (A4)

where β is an arbitrary real number. The simplest proof
of (A4) follows the lines of [31] by showing that both sides
of the equation satisfy the first-order differential equation

∂F

∂β
−H(ω)F (β) =

∂H(ω)

∂ω
eβH(ω) , (A5)

together with F (0) = 0, which fixes the solution
uniquely. Next one checks the identities eAΞBe−ΞA =∑∞
n=0

1
n! (A,B)n and eABe−A =

∑∞
n=0

1
n! [A,B]n. With

this we have

H = −iT̂ † ˙̂
T = (−i)

∫ 1

0

due−iuŜi
∂Ŝ

∂ω
e−iuŜ (A6)

=

∫ 1

0

du

∞∑
n=0

1

n!
[−iuŜ, ˙̂S]n (A7)

=
α

2

[∫ 1

0

du

∞∑
n=0

(−iu)n

n!
(S, Ṡ)n

]
αt (A8)

=
α

2

∫ 1

0

du e−iuSΞṠeiuΞSαt (A9)

=
1

2
αΩ̃αt (A10)

with Ω̃ given by (58), which completes the proof.

Appendix B: Derivation of wavefunction overlaps

We start from Eq. (105). Instead of varying the fre-
quency, it is more convenient to make the change of vari-
ables to the magnetic length l ≡ lB =

√
ℏ/(meffω) (for

ease of notation, in the present Appendix we denote the
magnetic length just by l). Equation (105) becomes

ω0⟨n′,m′|n,m⟩ω0+δω ≃ δn,n′δm,m′+ l⟨n′,m′|∂l|n,m⟩l
dl

dω0
δω ,

(B1)
and dl/dω0 = −(1/2)l/ω0. The matrix element

l⟨n′,m′|∂l|n,m⟩l =
∫
dxdy l⟨n′,m′|x, y⟩∂l⟨x, y|n,m⟩l

(B2)
can now be calculated from the explicit expression (102)
of the wave functions. In particular (102) gives

∂l⟨x, y|n,m⟩l =
eikmx√
L
∂lχn,m(η) (B3)

with

η =
y

l
− kml. (B4)

Integration over x yields a δm,m′ coefficient. The matrix
element (B2) becomes

l⟨n′,m′|∂l|n,m⟩l = δm,m′ l

∫
dη χn′,m′(η)∂lχn,m(η) .

(B5)
Using

dη

dl
= − y

l2
− km = −η

l
− 2km, (B6)

we get
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∂lχn,m(η) = −χn,m(η)

2l
+

Nn√
l

dη

dl
∂η

[
Hn(η)e

−η2/2
]
= −χn,m(η)

2l
− Nn√

l

(η
l
+ 2km

)
[∂ηHn(η)− ηHn(η)] e

−η2/2 . (B7)

One thus obtains for the matrix element (B2)

l⟨n′,m′|∂l|n,m⟩l = − 1

2l
δn,n′δm,m′ − δm,m′NnNn′

∫
dη e−η

2

Hn′(η)
(η
l
+ 2km

)
[∂ηHn(η)− ηHn(η)]

= − 1

2l
δn,n′δm,m′ − δm,m′NnNn′

∫
dη e−η

2

Hn′(η)
(η
l
+ 2km

)
[2nHn−1(η)− ηHn(η)]

= − 1

2l
δn,n′δm,m′

− δm,m′NnNn′

∫
dη e−η

2

Hn′(η)

[
4kmnHn−1(η) +

2n

l
ηHn−1(η)− 2kmηHn(η)−

η2

l
Hn(η)

]
, (B8)

where we have used ∂ηHn(η) = 2nHn−1(η) [32]. These integrals can be evaluated if we express η and η2 in terms of
Hermite polynomials,

H1(η) = 2η, H2(η) = 2(2η2 − 1) ⇔ η2 =
1

2
+

1

4
H2(η), (B9)

so that (B8) becomes

l⟨n′,m′|∂l|n,m⟩l = − 1

2l
δn,n′δm,m′ − δm,m′NnNn′

∫
dη e−η

2

Hn′(η) [4kmnHn−1(η) (B10)

+
n

l
H1(η)Hn−1(η)− kmH1(η)Hn(η)−

1

2l
Hn(η)−

1

4l
H2(η)Hn(η)

]
.

We can now use the identity [32]∫ ∞

−∞
dη e−η

2

Hn′(η)Hm(η)Hn(η) =
2(m+n+n′)/2

√
πn′!n!m!

(s− n′)!(s− n)!(s−m)!
, (B11)

where s = 1
2 (n+ n′ +m) (note that s is an integer due to the parity of the Hermite polynomials – indeed, for an odd

integer value of n+ n′ +m the integrand in (B11) is an odd function and thus the integral vanishes). We also make
use of the orthogonality relation of the Hermite polynomials∫ ∞

−∞
dη e−η

2

Hn′(η)Hn(η) =
√
π2nn!δn′,n, (B12)

so that the matrix element (B10) becomes

l⟨n′,m′|∂l|n,m⟩l = −2
√
2nkmδn′,n−1δm′,m − δm′,mNnNn′

[
n

l

2(n+n
′)/2

√
πn′!(n− 1)!(

n′−n
2 + 1

)
!
(
n−n′

2

)
!
(
n+n′

2 − 1
)
!
Π(n+ n′)

−km
2(n+n

′+1)/2
√
πn′!n!(

n+1−n′

2

)
!
(
n′+1−n

2

)
!
(
n+n′−1

2

)
!
Π(n+ n′ + 1)− 1

4l

22+(n+n′)/2
√
πn′!n!(

n−n′

2 + 1
)
!
(
n′−n

2 + 1
)
!
(
n+n′

2 − 1
)
!

]
Π(n+ n′) , (B13)

where we have introduced a parity function

Π(m) =

{
1 for m even
0 for m odd

(B14)

to take into account the different cases for which the integral (B11) vanishes. Further simplifications can be obtained
by noticing that the factorials in the denominators of (B13) involve both n′ − n and n − n′ in each term. Since the
factorial of a negative number is infinite, we get the following simplifications

Π(n+ n′)(
n′−n

2 + 1
)
!
(
n−n′

2

)
!
= δn′,n−2 + δn′,n (B15)

Π(n+ n′ + 1)(
n+1−n′

2

)
!
(
n′+1−n

2

)
!
= δn′,n−1 + δn′,n+1 (B16)

Π(n+ n′)(
n−n′

2 + 1
)
!
(
n′−n

2 + 1
)
!
=

1

2
δn′,n−2 + δn′,n +

1

2
δn′,n+2 . (B17)
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Replacing the normalization factors NnNn′ by their value (104), Eq. (B13) then reduces to

l⟨n′,m′|∂l|n,m⟩l = −2
√
2nkmδn′,n−1δm′,m

−δm′,m

√
n′!n!

[
1

2l

1(
n+n′

2 − 1
)
!
(δn′,n−2 − δn′,n+2)

−
√
2km

1(
n+n′−1

2

)
!
(δn′,n−1 + δn′,n+1)

]
, (B18)

which further simplifies to

l⟨n′,m′|∂l|n,m⟩l = −
√
2km

(√
nδn′,n−1 −

√
n+ 1δn′,n+1

)
δm′,m

− 1

2l

(√
n(n− 1)δn′,n−2 −

√
(n+ 2)(n+ 1)δn′,n+2

)
δm′,m . (B19)

Expanding expression (B1) to linear order in δω we directly get Eq. (106).

Appendix C: Alternative derivation of (106)

We start from the Hutchisson formula for the overlaps Rnn′ = ω0 ⟨n|n′⟩ω. It is given by [27] with ν′ = ω0 and
ν′′ = ω, and reads

Rnn′ =
√
2−(n+n′)qn!n′!(−1)n

′
e−

1
4γ

2p

min(n,n′)∑
r=0

(−2q)r

r!

⌊(n′−r)/2⌋∑
s=0

(γp)n
′−r−2s

(n′ − r − 2s)!

xs

s!

⌊(n−r)/2⌋∑
t=0

(γq)n−r−2t

(n− r − 2t)!

(−x)t

t!
, (C1)

with γ =
√
ωmeff/ℏd = d/lB(ω), d = km(l2B(ω) − l2B(ω0)), x = (ω − ω0)/(ω + ω0), q = 2(ωω0)

1/2/(ω + ω0), and
p = 2ω0/(ω + ω0).

We want to calculate the first derivative of Rnn′ with respect to ω, taken at ω = ω0. In that limit we have
(γ2p)′ = q′ = 0. Contributions to the derivative will therefore come from derivatives of terms of the form (γp)a(γq)bxc

with a, b, c ≥ 0, that is,

[(γp)a(γq)bxc]′ = a(γp)a−1(γp)′(γq)bxc + (γp)ab(γq)b−1(γq)′xc + (γp)a(γq)bcxc−1x′. (C2)

In the limit ω = ω0 we have γ = x = 0, so that only terms
with an exponent 0 in (C2) can yield a nonzero contri-
bution. Equation (C2) reduces to (γp)′ = −km/ω3/2

0 for
a = 1, b = c = 0, to (γq)′ = −km/ω3/2

0 for b = 1, a =

c = 0, and to x′ = 1/(2ω0) for c = 1, a = b = 0. The
first case corresponds to s = t = 0, r = n′ − 1 = n. The
second case gives s = t = 0 and r = n′ = n − 1. The
third case leads to either s = 0, t = 1, r = n′ = n − 1 or
s = 1, t = 0, r = n′ − 1 = n. Gathering all contributions
together we exactly get the first-order term of Eq. (106).
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