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Abstract

The braiding of the worldlines of particles restricted to move on a network (graph) is governed by the
graph braid group, which can be strikingly different from the standard braid group known from two-
dimensional physics. It has been recently shown that imposing the compatibility of graph braiding with
anyon fusion for anyons exchanging at a single wire junction leads to new types of anyon models with
the braiding exchange operators stemming from solutions of certain generalised hexagon equations. In
this work, we establish these graph-braided anyon fusion models for general wire networks. We show
that the character of braiding strongly depends on the graph-theoretic connectivity of the given net-
work. In particular, we prove that triconnected networks yield the same braiding exchange operators
as the planar anyon models. In contrast, modular biconnected networks support independent braiding
exchange operators in different modules. Consequently, such modular networks may lead to more effi-
cient topological quantum computer circuits. Finally, we conjecture that the graph-braided anyon fusion
models will possess the (generalised) coherence property where certain polygon equations determine the
braiding exchange operators for an arbitrary number of anyons. We also extensively study solutions to
these polygon equations for chosen low-rank fusion rings, including the Ising theory, quantum double of
groups, and Tambara-Yamagami models. We find numerous solutions that do not appear in the planar
theory of anyons.
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1 Introduction

A topological quantum computer performs its computations using anyons, quantum quasi-particles that obey
exotic types of quantum statistics which make such a computer intrinsically robust against errors arising from
decoherence [55, 40, 28]. Crucially, performing computations on a topological quantum computer requires
the ability to move the anyons around and exchange them. This is a great technological challenge which
is currently being addressed by considering architectures for quantum computers that have the structure of a
network, where anyons are moved along the edges of the network and exchanged at the junctions [38, 5, 37]. Of
particular importance in this context is Kitaev’s superconducting quantum wire model that supports Majorana
edge modes [38]. Such a system can be realised in semiconductor nanowires coupled to a superconductor
[5, 30], as well as other solid state [57, 47, 20, 52, 53], and photonic systems [74]. However, there also exist
numerous proposals for realising other types of anyonic excitations on networks. This includes parafermionic
excitations [27, 4, 75, 37, 16, 42, 41], and Fibonacci excitations [46], although topological protection may be a
problem [14]. Such network-based proposals have been recognised as some of the most robust candidates for an
architecture of a topological quantum computer. However, anyon braiding, a crucial ingredient, is still in early
development. There have been proposals for braiding Majorana modes [5, 17, 30], accompanied by studies
of the resulting errors and qubit fidelity e.g. [10, 65]. There has also been work addressing the scalability of
network-based topological quantum computers [36, 37]. Finally, we mention recent experimental evidence of
Majorana measurement [3].

Notably, the above mentioned substantial body of literature also shows that, in contrast to anyon theory in
two dimensions (2D), there is no uniform theory describing anyons on quantum wire networks. In other words,
for every type of anyons which is known from 2D physics (Ising/Majorana, Fibonacci, etc.) a new microscopic
model for a quantum wire has to be proposed and the existence of well-defined topological anyonic exchange
operators has to be proved. In this work, we aim to establish a universal anyon theory for quantum wire
networks which is analogous to the braided fusion theory of anyons in 2D [55, 39]. Braiding describes all
the possible ways the anyons can be exchanged (up to continuous deformations of anyons’ worldlines). This
information is encoded in a mathematical object called the fundamental group of the appropriate configuration
space, also called the braid group (see the seminal work [45] for more details). For 2D anyon theory the relevant
mathematical object is Artin’s well-known braid group [8]. However, according to the general theory laid out
in [45], Artin’s braid group does not describe anyon exchange on a network. The correct mathematical object
describing anyon braiding on a network (graph) is its graph braid group [9, 2]. This crucial observation has led
to the necessity of developing new physical and mathematical models for anyons constrained to exchange on a
network [9, 34, 32].
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Intuitively, a full description of braiding of many anyons on arbitrary networks can be considerably compli-
cated and requires using advanced mathematical tools [19, 43, 44]. However, recently a tractable and physically
intuitive description of graph braid groups has been accomplished [6, 48]. Importantly, it shows that graph
braids have strikingly different properties than planar braids. One such property is the lack of the standard
Yang-Baxter relation between the graph braids. Moreover, a fixed pair of anyons can typically be exchanged
in several topologically independent ways on a given graph. Since graph braid groups govern the anyon ex-
change on networks, this raises the importance of understanding what exchange statistics are possible. This
question can be answered only when one takes into account anyon fusion, i.e. processes where anyons are not
only braided with each other, but also where a group of anyons behaves as one composite anyon. Importantly,
braiding and fusion of anyons must be compatible with each other, a fact which for planar anyon theories is
guaranteed by the hexagon equations [55, 39]. Only recently, the compatibility of braiding and fusion on a
single junction (i.e. a network that consists of multiple edges incident to a single vertex) has been considered in
[18], by two of the authors of this paper. The results show numerous important differences between 2D anyon
models and anyon models defined on a network. In particular, the planar hexagon equations are replaced by the
more general P- and Q-hexagon equations that lead to Abelian and non-Abelian quantum exchange statistics
which do not appear in the planar theory. In this work, we follow the programme set out in [18], and work
towards a complete anyon fusion theory where anyon fusion and braiding are compatible on arbitrary networks
(composed of multiple junctions and also containing loops) and for arbitrary numbers of anyons. These compat-
ibility conditions are encoded in a finite set of certain polygon equations. By solving the polygon equations, we
show numerous possibilities for the existence of quantum exchange statistics which are not present in 2D anyon
theories. Besides emphasising the fundamental importance of this fact, we also show that the new possibilities
can be utilised in topological quantum computers to build more efficient quantum circuits.

We aim for the presented material to be self-contained. Thus, we include an introduction to the relevant
notions from the planar anyon fusion theory in Section 2 as well as a brief recap of the key features of the graph
braid groups in Appendix A. Because our work builds on the results of [18] concerning the trijunction, we
review the main points of this work at the beginning of Section 3. In Section 3.1 we take the first steps towards
generalising the results of [18] and build anyon models for higher numbers of particles on a trijunction. This is
subsequently generalised to anyons constrained to move on tree graphs in Section 3.3. Our general methodology
is to build anyon models for certain small canonical graphs which are the building blocks of larger networks.
Consequently, in Sections 4 and 5 we study anyon models on a circle and on a lollipop graph respectively.
Section 6 contains a discussion about the solutions to the graph-braid equations for several fusion rings. In
Section 7 we study anyon models on a Θ-graph in order to show that the exchange operators in our anyon
models on any triconnected network are identical to the exchange operators from the corresponding planar
anyon model. In other words, sufficiently highly connected networks can host only planar exchange statistics.
Thus, the new exchange statistics may appear within our presented framework only on one-connected (also
known as separable) networks (e.g. star graphs or trees) or biconnected networks, a possibility which may be
useful for generating larger sets of topological quantum gates (Section 8). We also extensively study solutions
to our polygon equations (encoding the compatibility of fusion and braiding on a given network) for chosen
low-rank anyon models such as the Ising model (Appendix G), Tabmara-Yamagami models (Appendices F and
I) and the quantum double of Z2 (Appendix H). Some key general features of the solutions are also collected
in tables which are distributed throughout the main body of the paper. Finally, we conjecture that our anyon
models will possess a generalised coherence property. Our reasoning is outlined in Appendix C.

2 Planar braiding of anyons

In this section, we will provide a brief overview of planar braiding of anyons. For further detail, we refer the
reader to [39, 51], as well as recent papers such as [12]. By an anyon model we mean the following data;
a fusion algebra, labelling the topological charges and their fusion rules, the F - symbols, giving consistent
recoupling rules, and the R− symbols, which give the exchange statistics of the anyons in the model. We shall
review each of these in order.

A fusion algebra consists of a finite set of particles, labelled by their topological charge with fusion rules
written as,

a× b =
∑

c

N ab
c c. (1)
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The coefficients N ab
c ∈ Z≥0 are the dimension of the fusion space V ab

c of ground states with two particles
of charges a and b and with overall charge c. There is a unique anyon, 1 called the vacuum, such that
a × 1 = 1 × a = a. Each anyon has a unique antiparticle such that, a × ā = 1 + . . . . Anyon a is called
abelian if there is only the vacuum charge on the right-hand side, i.e. a × ā = 1. In this paper we will focus
on multiplicity-free fusion algebras which means the coefficients N ab

c are either 0 or 1 and consider only com-
mutative product which means that a × b = b × a. Considering non-commutative products would be a natural
extension of the work presented in this paper. Intuitively, it would be a very suitable extension, as placing
anyons on an edge of a network naturally imposes their linear ordering.

We choose an orthonormal basis for each nontrivial fusion space V ab
c . This choice introduces a gauge

freedom uab
c , a unitary matrix of dimension N ab

c . In the multiplicity free case, uab
c ∈ U(1). The two isomorphic

ways to fuse three anyons to get a total topological charge d are related by a change of basis given by the matrix
elements of the F -symbols,

�

F abc
d

�

:
⊕

e
V ab

e ⊗ V ec
d →

⊕

f

V a f
d ⊗ V bc

f . (2)

The action of the F -symbols are graphically represented as,

a b c

e

d

a b c

f

d

=
∑

f

�

F abc
d

�

e f

a b c

e

d

a b c

f

d

=
∑

e

�

�

F abc
d

�−1�

f e
,

The F -symbols are required to satisfy the pentagon equations,

�

F f cd
e

�

gl

�

F abl
e

�

f k =
∑

h

�

F abc
g

�

f h

�

F ahd
e

�

gk

�

F bcd
k

�

hl . (3)

A solution of the pentagon equations gives a set of F symbols which can be used to rearrange the compositional
order of fusion locally [49, 23].

The other important ingredient for anyon models is the exchange statistics and the resulting braiding opera-
tors. The exchange statistics in planar anyon models are governed by the R- symbols which, for multiplicity-free
fusion rules, are U(1) matrices acting on the fusion space;

Rba
c : V ba

c → V ab
c . (4)

The action of the R-symbols is graphically represented as

ba

c

= Rba
c

a b

c

,

ba

c

=
�

Rab
c

�−1

a b

c

.

This action allows one to resolve a simple braid in spacetime diagrams by introducing an R-symbol acting on
the states in the fusion space. We will frequently use graphical depictions later in this work when we discuss
graph braiding of anyons. A change of basis of V ab

c introduces a gauge transformation of the R- symbols and F -
symbols, which is discussed in Section E. The compatibility of fusion and braiding is implemented by enforcing
that we can slide a fusion vertex through a braid in spacetime history;

d

a b c

e

d

a b c

e
=
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This is implemented by the hexagon equations which come from hexagonal commutative diagrams [39, 23, 63,
58]. There are four hexagon equations corresponding to four topologically inequivalent ways that fusion can
commute with braiding. However, only two of them are independent. Here we show one of them:

d

g

a b c

d

a b c

e

d

e

a b c d

cba
d

b ca

f

f

d

g

a b c
�

F acb
d

�

g f

Rca
g Rcb

f

�

F abc
d

�

e f

Rc f
d

�

F cab
d

�

g f

.

The other independent diagram is obtained when the worldlines of anyons a and b braid over the worldline of
anyon c. The resulting hexagon equations read as follows;

Rca
g

�

F acb
d

�

g f Rcb
f =

∑

e

�

F cab
d

�

ge Rce
d

�

F abc
d

�

e f ,

Rca
g

�

(F bac
d )−1

�

ge Rba
e =

∑

f

�

(F bca
d )−1

�

g f R f a
d

�

(F abc
d )−1

�

f e .
(5)

Satisfying the above consistency relations describing the compatibility of fusion and braiding of N = 3 anyons
implies the compatibility of fusion and braiding for any number of anyons, a result known as the braided co-
herence theorem [60]. Furthermore, there are only a finite number of solutions to the planar hexagon equations
up to gauge equivalence. This property is known as Oceanu rigidity [39, 24]. One particular gauge invariant
quantity we will discuss on the circle graph in Section 4 is the topological twist. In the planar case, this is
represented by the following spacetime diagram;

a

a

a

a

= =

a

a

θa,

a

a

a

a

==

a

a

θ ∗a .

The twist factors θa can be expressed in terms of the R-symbols as,

θa = θā =
∑

c

dc

da
Raa

c , (6)

where da is the quantum dimension of anyon a. By Vafa’s theorem [72], the twist factors are constrained to be
roots of unity. The twist factors are related to changing an anyon’s so-called “framing” [61]. Another relation
between the twist factors and the R-symbols is the ribbon property,

Rab
c Rba

c =
θc

θaθb
. (7)
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The ribbon property comes from considering the worldlines of anyons as world-ribbons which get twisted
when an anyon’s worldline is wrapped around itself. In other words, the twist factors represent full twists
of the world-ribbons. Similarly to the full twists, one can also consider half-twists (also called the π-twists).
Interestingly, the full and the half-twists come up naturally in the graph setting (see Appendix D), and are
necessary for proofs of our results in the later sections.

Recall that any planar braid is a composition of simple braids exchanging pairs of neighbouring anyons.
Thus, using the R-symbols which satisfy the hexagon equations, one can construct a representation of the planar
braid group. In particular, for N = 3 identical anyons of topological charge a and the total charge of the system
c, we get the following representation of B3→ U(d), [63, 22, 54],

ρ (σ1) = diag
�

Raa
b1

, . . . , Raa
bk

�

, ρ (σ2) =
�

F aaa
c

�−1
ρ (σ1) F

aaa
c , (8)

where are the bk fusion outcomes of a × a = b1 + · · · + bk. The k × k unitary matrices ρ (σ1) and ρ (σ2)
are called the braiding exchange operators. Crucially, the braiding exchange operators satisfy the Yang-Baxter
relation, i.e.

ρ (σ1)ρ (σ2)ρ (σ1) = ρ (σ2)ρ (σ1)ρ (σ2) .

In other words, the braiding exchange operators form a representation of Artin’s braid group [8]. In the quantum
computing context, the braiding exchange operators have the interpretation of topological quantum gates acting
on a single qudit. In Section 8 we consider similar topological quantum gates coming from graph-braided
anyon models. We also address computational universality and the circuit depth of a graph-based topological
quantum computer. In particular, we show that the graph-based architecture may allow one to build quantum
circuits of a lower depth.

To end this review section, we will collect results for a few concrete anyon models we intend to reference
later in the paper. For any finite Abelian group, H , one can construct a fusion algebra where the group multi-
plication gives the fusion rules. There is always guaranteed at least one solution to the pentagon equation given
by the trivial F - symbols. However, often more solutions exist. One interesting family of models is provided by
H = ZN . The anyons are labelled by [a]N , the least reside of a modulo N and the F -symbols are given by U(1)
valued three-cocycles in the group cohomology of H [13]. Here the family splits into two cases depending on
whether N is even or odd. The situation becomes interesting if one tries to introduce a non-trivial cocycle for
the F - symbols. Then, there is only a solution to the hexagon equations if N is even [51, 23, 29].

Another family of interest is the Tambara-Yamagami models (TY(G)) [70], which are constructed over a
finite Abelian group, G with the addition of a non-Abelian anyon; σ. The fusion rules are given by

σ×σ =
∑

i

gi , gi ×σ = σ× gi = σ, gi × g j = gi g j . (9)

The corresponding non-trivial F -symbols are,
�

F
giσg j
σ

�

σσ
=
�

Fσgiσ
g j

�

σσ
= χ(gi , g j),

�

Fσσσσ

�

gi g j
= κτ−1χ(gi , g j), (10)

where χ is a symmetric non degenerate bicharacter, κ is the Frobenius Schur indicator and τ = |G|−1/2. It has
been proven that unless G is a direct product of Z2 factors, there are no solution to the hexagon equations, [67].
For graph braided particles with Tambara-Yamagami fusion rules this result remains the same for graphs with
junctions. We provide a proof of this result in Appendix F. For the circle graph, however, there are solutions
to the graph-braid hexagon equations. Specific solutions can be found in Appendix I. In the case G = Z2, the
anyons are usually denoted (1,ψ,σ), where ψ is the non trivial element of Z2. There are two solutions to the
pentagon equations, which are related by the choice of the Frobenius-Schur indicator κ = ±1, [39, 58]. The
solutions to the hexagon equations are,

Rψψ1 = −1, Rσψσ = Rψσσ = ±i, Rσσ1 = e±i(2k+1)π/8, Rσσψ = ±iRσσ1 , (11)

where k ∈ {0, 1,2, 3}. The particular values of k = 0 and k = 3 are for the choice of κ= 1 and the other values
of k are for the choice κ = −1. The choice of κ = +1 is often called the Ising model, [39]. The topological
twists for the Ising solutions to the hexagon equations are,

θψ = −1, θσ = e
iκπ
8 . (12)
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There are many other notable anyon models such as; the Fibonacci anyon model, [71], quantum groups with a
truncated tensor product [7, 11], Rep(G), the category of representations of G any finite group [23, 25], and a
quantum double of a finite-dimensional semisimple Hopf algebra [40]. Recently there have been experimental
measurements of the exchange statistics for the case D(Z2) [64, 69, 76].

3 Anyon models on star graphs and tree graphs

Let us briefly recall the fundamental differences between graph braided anyon models and the planar braided
anyon models. Following the formalism introduced in [18], we associate V ab

c with the fusion space of anyon
states, where fusion takes place on the edges of the graph Γ . The n-strand braid group [2, 6] of the graph Γ will
be denoted by Bn(Γ ).

The general strategy is to assign different braiding exchange operators (acting on the states of the fusion
space) to different (i.e. topologically inequivalent) elements of the graph braid group. In particular, on a tri-
junction, we can represent the exchange of the two particles closest to the junction by a U(1)matrix, analogous
to planar anyon models. The braiding exchange operators corresponding to the exchange of the two particles
closest to the junction are associated with R-symbols as shown in Figure 1. The corresponding simple braid is
denoted σ(1,2)

1 , where 1 and 2 refer to the edge assignment as can be seen in Figure 1. The particle closest to
the junction is sent to edge with label (1), which we identify with the back plane and the second particle is sent
to edge with label (2), which we identify with the front plane. Consequently, σ(2,1)

1 is the inverse of the braid
σ
(1,2)
1 . We can view the action of a σ1 graph braid as a spacetime process where particles initially placed on an

edge of the graph are transported through a junction point to other edges and then returned to the initial edge in
a different order. From now on, all the R-symbols will be associated with such a σ(1,2)

1 graph braid and should
not be confused with the R-symbols used in Section 2 in the context of 2D anyon models. In particular, they
may not solve the heaxgon equations (5).

Figure 1: The simple braid σ(1,2)
1 and the associated R-symbol. The superscript in σ(1,2)

1 refers to the edge
assignment the particles are sent to under the graph braid.

To incorporate the commutation of fusion and braiding processes, we need to consider at least three anyons.
Here we find the first clear differences between braiding in the plane and braiding on a graph. Firstly, there
are two topologically inequivalent ways of realising the simple braid σ2 on a trijunction [48, 6]. Namely,
the two realisations are distinguished by the edge visited by the anyon closest to the junction. These simple
braids are denoted by σ(1,1,2)

2 and σ(2,1,2)
2 (see Figure 2 and Appendix A for more explanation). Despite these

differences, it is possible to construct a graph anyon model on a trijunction which reflects the properties of the
respective graph braid group in the sense that different unitary operators represent inequivalent simple braids
on the Hilbert space, [18]. The key idea relies on introducing P-symbols and Q-symbols associated with the
simple braids σ(1,1,2)

2 and σ(2,1,2)
2 respectively, We display the action of these in Figure 2.
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Figure 2: The P- and Q-symbols associated with the simple braids σ(1,1,2)
2 and σ(2,1,2)

2 on a trijunction.

The gauge transformations of the R-, P- and Q- graph braid symbols have the same structure as the
gauge transformations of the planar R-symbols, since the topological charge e is conserved. We discuss the
gauge equivalence of solutions in Appendix E. However, so defined simple braids do not satisfy the Yang-
Baxter relation, i.e. the composite braid σ(1,2)

1 σ
(1,1,2)
2 σ

(1,2)
1 is topologically inequivalent to the composite braid

σ
(1,1,2)
2 σ

(1,2)
1 σ

(1,1,2)
2 . In fact, the three-strand braid group of a trijunction is a free group generated by the above-

defined three simple braids [6]. In other words, the corresponding braiding exchange operators determine some
particular unitary representations of the graph braid group.

Next, let us revisit the derivation of the generalised hexagons containing the P- and Q-symbols as it contains
ideas which are key for the remaining parts of this paper. We will study only the Q-hexagon in detail. The
derivation of the P-hexagon is completely analogous and has been done in detail in [18]. The key idea is
to incorporate the commutation of fusion and graph braiding of anyons into the spacetime histories. This is
done by considering compositions of the simple braids where the spacetime configuration of worldlines of two
anyons is such that the two worldlines stay next to each other throughout the process, and their fusion vertex can
be pulled through the entire exchange. An example of such a braid isσ(1,2)

1 σ
(2,1,2)
2 whose relevant deformations

are shown in Figure 3.

Figure 3: The fusion vertex of anyons b and c can be pulled through the entire braid σ(1a ,2c)
1 σ

(2c ,1a ,2b)
2 so that

the resulting process is just a simple braid of the composite anyon f = b × c with anyon a, i.e. σ(1a ,2b×c)
1 . The

diagram on the furthest right expresses the σ(1a ,2b×c)
1 graph braid.

We can observe that the diagrams on the far left and far right of Figure 3 can be related by sequences of F
symbols and resolving the graph braids analogous to the derivation of the planar hexagon equations. This leads
to the Q-hexagon diagram shown in Figure 4.
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Figure 4: The hexagon diagram which we call the Q-hexagon. It is derived from the identity
σ
(1a ,2c)
1 σ

(2c ,1a ,2b)
2 = σ(1a ,2b×c)

1 shown in Figure 3 and applied in the bottom-left corner of the hexagon. The
hexagon diagram provides a set of hexagon Equations (13) which allow one to express the Q-symbols via the
R- and F -symbols.

Equating the upper and lower path in Figure 4 leads to the Q-hexagon equations,

Rca
g

�

�

F bac
d

�−1�

ge
Qbac

ed =
∑

f

�

�

F bca
d

�−1�

g f
R f a

d

�

�

F abc
d

�−1�

f e
. (13)

There are three more hexagon diagrams coming from the braids σ(1,1,2)
2 σ

(1,2)
1 , σ(2,2,1)

2 σ
(2,1)
1 and σ(2,1)

1 σ
(1,2,1)
2 ,

but only two of the four lead to independent hexagon equations. The other independent set of hexagon equations
is the following,

P cab
gd

�

F acb
d

�

g f Rcb
f =

∑

e

�

F cab
d

�

ge Rce
d

�

F abc
d

�

e f . (14)

In [18], it is shown that solving the graph hexagon equations for N = 3 particles with TY(Z2) (also known
as Ising) fusion rules and F -symbols on a trijunction leads to a two parameter family of solutions for the R-
symbols;

Rσσ1 = ±iRσσψ , Rσψσ = Rψσσ = ±i, Rψψ1 , Rσσ1 ∈ U(1). (15)

The only constraints on Rψψ1 and Rσσ1 is that they are elements of U(1). As we explain in Appendix G, further
consistency equations for N = 4 Ising anyons on a trijunction will fix Rψψ1 = −1 and only Rσσ1 will remain
the free parameter of the theory. The corresponding expressions for P and Q symbols are contained in Section
2 of the Supplementary Material of [18]. Analogous to the planar braiding of anyons, there is no solution to
the graph braiding hexagon equations for TY(G) on a trijunction, unless G = Z2 to some power, we provide a
proof of this in Section F.

Although we have focused on a trijunction, the analysis generalises to junctions of arbitrary order. See,
for instance, the Supplementary Material of [18] where the tetrajunction is studied. Although increasing the
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valence introduces additional topologically inequivalent ways to exchange particles at the junction, in particular,
a valence d star graph will have (d−1)(d−2)/2 inequivalent σ1 generators and (d−1)2(d−2)/2 inequivalent
σ2 generators. The introduction of fusion commuting with braiding effectively “splits” the star graph into a
collection of trijunctions. On each trijunction, one has two independent sets of hexagon equations, while on a
valence d star graph, one has (d−1)(d−2) independent hexagon equations. However, there are no consistency
relations mixing exchanges on different trijunctions (see [18] for more explanation).

3.1 Greater particle number

In this section, we will discuss graph braided anyon models with four or more particles. For planar braided
anyon models, this situation is covered by MacLane coherence theorem [49] and the braided coherence theo-
rem, [60]. The implication of these theorems is that the solutions of the pentagon and hexagon equations are
sufficient for the description of any number of anyons. Explicitly, if one constructed some braiding polygon for
N > 3 particles, one could use the pentagon and hexagon equations iteratively to satisfy this polygon and find
no new constraint equations on the R and F symbols of the theory. However on a graph, since there are multiple
topologically inequivalent choices for σ j with j > 1 (as we discussed earlier), satisfying the 3-particle P- and
Q-hexagons does not guarantee that we have a full description for any number of particles. In this section we
will focus on a trijunction, the simplest graph permitting particle exchange and discuss later how the analysis
translates to higher valence graphs.

The new generators of the graph braid group for N = 4 (see Appendix A for an exhaustive definition of the
generators) and their corresponding symbols are

ρ(σ(1,1,1,2)
3 ) = X , ρ(σ(2,2,1,2)

3 ) = Y, ρ(σ(2,1,1,2)
3 ) = B, ρ(σ(1,2,1,2)

3 ) = A. (16)

The gauge transformation of the four particle graph braid symbols is given in Appendix E where we discuss
removing the gauge symmetry from the obtained solutions. There, we also list our convention for the four
particle anyon labels in Equation (59). We will use this convention in the present section.

The first step is to resolve how the σ3-graph braids from (16) act in the fusion space of four anyons V abcd
e .

For the σ2-braids represented on a three-particle fusion space this is unambiguous – the two particles being
exchanged are joined by a fusion vertex (as we can see in Figure 2). Thus, the respective braiding exchange
operators are necessarily diagonal in the left-fused basis where the second and third particle away from the
junction point are joined by a common fusion channel. However, for the σ3-braids acting on the fusion space
of four anyons, the choice of the appropriate fusion tree is not clear at the first sight. Clearly, the two particles
being exchanged must be joined by a common fusion vertex. This leaves two choices for the fusion tree
structure of the other two particles – the fully left associated (left-fused) basis or the pairwise associated basis.
Crucially, there are important physical arguments that dictate the correct choice of the fusion tree. Namely, if
a braiding exchange operator is diagonal in a certain basis, then all the anyon charges appearing in the chosen
fusion tree have to be conserved throughout the corresponding braiding exchange process. The total charge of
a set of anyons is conserved if one can bound this set of anyons by a disk which remains sufficiently separated
from the anyons outside the disk throughout the entire exchange process. These disks are associated with the
choice of the fusion tree. For instance, the fusion tree with anyons a, b, c, d being fused pairwise implies two
separate disks containing the pairs a, b and c, d respectively and one disk containing all the anyons a, b, c, d
(note that the disks cannot leave the graph as this is the actual space where the anyons move) – see Figure 5a.
Importantly, the pairwise-associated fusion tree is not a correct basis for representing the braid σ(1d ,2c ,1b ,2a)

3
diagonally as anyons b and a will necessarily enter the disk containing anyons d and c during the exchange,
hence the total charge of c and d may not be conserved. This is shown in Figure 5b.
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Figure 5: a) The disks associated with the left-fused basis (top panel) and the pairwise-fused basis (bottom
panel). b) The configuration of particles during the σ(2,1,1,2)

3 -exchange right before the particles bounded by the
red disk exchange. The disks in the left-fused basis remain separated during the exchange (top panel) whereas
in the pairwise-fused basis (bottom panel) the red disk has to necessarily intersect the blue disk because the
blue disk is stretched across the junction. c) A configuration of particles during the σ(1,1,1,2)

3 -exchange right
before the particles bounded by the red disk exchange. The disks in both bases remain separated throughout
the entire exchange.

Figure 5 also explains that the left-fused basis is a good basis for representing diagonally any σ3-braid.
However, the braids σ(1d ,1c ,1b ,2a)

3 and σ(2d ,2c ,1b ,2a)
3 must be represented diagonally both in the left-fused basis

and the pairwise-fused basis. This is because anyons d and c visit the same edge during the exchange and thus
can also be bounded by a well-separated disk (see Figure 5c). The braidσ(1,1,1,2)

3 is represented in the left-fused
basis by the X -symbols as shown in Figure 6.

Figure 6: Here we display the symbol X bacd
f ge resolving the graph braid σ(1,1,1,2)

3 .

The σ3 generators can of course be expressed in the pairwise associated basis, given by conjugation by the
appropriate F -symbols;

�

W̃ bacd
f e

�

l,l ′
=
∑

g

�

(F f cd
e )−1

�

l g W bacd
f ge

�

F f cd
e

�

gl ′ , W ∈ {X , Y, A, B}, (17)

where f is the total charge of a and b, g is the total charge of a, b, c and l, l ′ are the total charges of c, d. It is
generally not guaranteed that a graph braiding exchange operator which is diagonal in the left associated basis
is diagonal in the pairwise associated basis (the total charge of the anyons c and d may change), hence we use
the matrix notation for the W̃ symbols acting in the pairwise associated basis.

Let us next proceed with an analysis of the equations involving the four particle symbols. The σ(1,1,1,2)
3

sends the two particles closest to the junction to the back plane as displayed in Figure 6. Using the F -moves to
join the two particles c and d closest to the junction by a fusion vertex, we can slide the c× d = l, fusion vertex
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through the graph braid. Thus, in the pairwise associated basis the braiding exchange operator corresponding
to σ(1,1,1,2)

3 is effectively represented via ρ(σ(1l ,1a ,2b)
2 ) = P bal

ed , i.e. a P-symbol. We display the corresponding
commutative square for X and P in Figure 7.

Figure 7: Here we display the polygon diagram which reduces an X -symbol to a P- symbol using fusion
commuting with graph braiding. One can make an analogous figure for the Y− symbol to reduce it to a Q−
symbol. The relevant diagram is essentially the same, except the first two particles go to edge 2 (the front plane)
instead of edge 1.

This leads to the following equations,

X bacd
f ge δg g ′ =

∑

l

�

F f cd
e

�

gl P bal
f d

�

(F f cd
e )−1

�

l g ′ , (18)

where we are explicitly imposing the diagonality of the relevant braiding exchange operator in the left fused
basis. We can apply analogous reasoning the second the second generator in Equation (16) and express any
Y -symbol as a combination of F -and Q- symbols,

Y bacd
f ge δg g ′ =

r
∑

l

�

F f cd
e

�

gl Qbal
f e

�

(F f cd
e )−1

�

l g ′ . (19)

Hence, even though these are two new four particle generators in the graph braid group, the introduction of
fusion and naturality of graph braiding allows us to express them via three particle generators. As such, in any
equation utilising an X− or Y− symbol, we can express these symbols in terms of an equation for the P− and
Q−symbols respectively.

Consider next the two rightmost generators in Equation (16), σ(1,2,1,2)
3 and σ(2,1,1,2)

3 . Note that the particles
not being exchanged (the two closest to the junction) go to different edges. Thus, the reasoning presented in
Figure 7 cannot be applied to the A- and B-symbols in order to reduce them to the P- or Q- symbols. However,
one can make one further simplification. Namely, the two generators are related by the pseudocommutative
relation [6], in the graph braid group,

σ
(1,2,1,2)
3 σ

(1,2)
1 = σ(1,2)

1 σ
(2,1,1,2)
3 . (20)
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We can adapt this relation to our graph braiding anyon models to get the following equation which comes from
an octagon diagram,

Abadc
f je

�

F f dc
e

�

jl Rdc
l =

∑

g,l ′

�

F f dc
e

�

jl ′ R
dc
l ′
�

(F f cd
e )−1

�

l ′g Bbacd
f ge

�

F f cd
e

�

gl ′ . (21)

This allows us to express the A-symbols via the B-symbols (or vice versa). To summarise, there are a total of
7 generators in the four-strand braid group of the trijunction, however, any anyon model can be described with
only four independent sets of symbols: R-, P-, Q- and B-symbols.

Now that we have defined the action of the generators in different bases and discussed relations amongst
them, we next proceed with constructing further N = 4 equations expressing the compatibility of graph braiding
with anyon fusion. As a premise, we would like to adapt the three-particle diagram in Figure 3 where fusion
commutes with graph braiding, to four particles. Recall that for N = 3 the relevant relations which led to the
P- and Q-hexagons read

σ
(1a ,2c)
1 σ

(2c ,1a ,2b)
2 = σ(1a ,2b×c)

1 , σ
(1b ,1a ,2c)
2 σ

(1b ,2c)
1 = σ(1a×b ,2c)

1 . (22)

We can raise the above relations to N = 4 by conjugating both sides of the equation by a move taking anyon d
(closest to the junction) to edge x with x = 1,2. This leads to the relations

σ
(xd ,1a ,2c)
2 σ

(xd ,2c ,1a ,2b)
3 = σ(xd ,1a ,2b×c)

2 , σ
(xd ,1b ,1a ,2c)
3 σ

(xd ,1b ,2c)
2 = σ(xd ,1a×b ,2c)

2 . (23)

Note that in Equations (23) we used the convention for anyon labels given in (59). By choosing x = 1 we
obtain two relations that allow us to express the A-symbols via P-symbols (the left relation) and the X -symbols
via P-symbols (right relation). Similarly, by putting x = 2 we obtain two relations that allow us to express
the Y -symbols via Q-symbols (the left relation) and the B-symbols via Q-symbols (right relation). One can
show by a straightforward but tedious calculation that the resulting equations lead to only one independent
consistency equation involving B- and Q-symbols (see also Appendix E), which comes from putting x = 2 in
the left equation of (23) and considering the resulting octagon diagram. The resulting consistency relation reads
as follows.

δnn′δg g ′B
cabd
nge =

r
∑

f ,h,k

�

F cab
g

�

nf
Qc f d

ge

�

F abc
g

�

f h

�

F ahd
e

�

gk (Q
cbd
hk )

−1
�

(F ahd
e )−1

�

kg ′

�

(F acb
g ′ )

−1
�

hn′
. (24)

There is another way of realising the property of fusion commuting with braiding, namely, one can consider
a σ1-braid exchanging two composite anyons. For N = 4 anyons, the possible options for braiding one or two
composite anyons via the simple braid σ(1,2)

1 are as follows;

σ
(1a×b×c ,2d )
1 , σ

(1a×b ,2c×d )
1 , σ

(1a ,2b×c×d )
1 . (25)

Starting from each of these braided states we can pull back the fusion vertices, similar to going from the
rightmost state to the leftmost state in Figure 3. We can then resolve the resulting graph braids (i.e. expand
them to obtain a concatenation of simple braids which involves the constituent factors of the composite anyons),
in different ways, analogous to the planar, and graph hexagon equations. For instance, the braid in the rightmost
panel from Figure 8 is the concatenation of the simple braids

σ
(1a×b ,2d×c)
1 = σ(1b ,1a ,2d )

2 σ
(1b ,2d )
1 σ

(2d ,1b ,1a ,2c)
3 σ

(2d ,1b ,2c)
2 . (26)

The relation (26) can be derived by iteratively applying the relations (23) and (22). What is more, the polygon
equations obtained this way do not yield any new constraints for the relevant symbols as they readily follow
from the equations obtained from the relations (23), (22) and the squares (18) and (19). We have checked that
the same fact holds for all the relations stemming from braiding composite anyons using σ1- and σ2- graph
braids. This suggests that the polygon equations (18), (19), (21) and (24) are all the consistency relations which
are needed for the compatibility of fusion and graph braiding of four anyons on a trijunction. However, we do
not have a rigorous proof of this fact.
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Figure 8: The fusion vertices of anyons a, b and c, d can be pulled through the simple braid
σ
(1a×b ,2d×c)
1 involving two composite anyons. The diagram on the furthest left expresses the composition;

σ
(1b ,1a ,2d )
2 σ

(1b ,2d )
1 σ

(2d ,1b ,1a ,2c)
3 σ

(2d ,1b ,2c)
2 of graph braids. This is in analogy to the relation from Figure 3 which

allowed us to derive the Q-hexagon equations.

Another important property of the graph braided anyon models is that any symbol representing a σ j graph
braid, with j > 1 can be expressed an appropriate of products of F -symbols and R-symbols. This is because
one can reduce any σ3-braid to a product of σ2-braids (involving composite anyons) by using the relations
(23). The resulting σ2-braids can be in turn reduced to products of σ1-braids involving composite anyons by
applying relations (22). As the final result, we obtain that any σ3-braid is a product of σ1-braids which involve
appropriate exchanges of composite anyons. Thus, translating this relation to the braiding exchange operators
acting on the left-fused basis we are able to express the A-, B-, X - and Y - symbols as sums of products of
R-symbols and F - symbols. This fact generalises in a straightforward way to N > 4, see Appendix C.

In Section 6 we have applied the N = 4 polygon equations (18), (19), (21) and (24) to chosen anyon models
of low rank. Importantly, we have found numerous examples of Abelian and non-Abelian anyon models that
satisfy all the above polygon equations and are different from planar braiding models. Examples include the
Abelian Zn anyons, the Ising anyons, Tambara-Yamagami anyons over Z2 ×Z2 and D(Z2).

A natural question follows: does this procedure ever end? Namely, do we have to consider higher and
higher particle numbers leading to more complicated fusion diagrams which may further constrain our anyon
model? By considering the pseudocommutative relations and using the commutativity of fusion and braiding
for N > 4 [6] one can see that any graph braid of the type σ j can be expressed by F -, R-, P-, Q- and B-symbols
(see Appendix C for more explanation). Thus, no new symbols are introduced for N > 4. However, there still
may be some new relations appearing in N > 4 systems. In Appendix C we take steps toward resolving this
issue by conjecturing that it is enough to consider the polygon equations derived from braiding diagrams of
N = 5 particles on a trijunction. In other words, we conjecture that the graph-braided anyon models will be
coherent for N > 5 particles. Moreover, we conjecture that on top of the N = 4 polygon consistency relations
introduced in this section, the only new relations appearing for N = 5 systems come from imposing diagonality
of certain braiding exchange operators in appropriate bases (relations analogous to the square equations (18),
(19)). In Appendix C we provide evidence for the existence of above generalised coherence property and sketch
a possible pathway for proving it.

3.2 Anyon models with simplified symbols

In general, it is a computationally complex problem to determine the braiding exchange operator that cor-
responds to an arbitrary σ j graph braid. However, there exists an important simplification which resolves
this issue and still leads to graph-braided anyon models that are not planar and which (conjecturally) become
coherent already for N > 4. These are the models where the braiding exchange symbols depend only on
at most four labels, namely on i) the charges of the exchanging anyons – a and b, ii) the total charge of a
and b – c, iii) the total charge of a, b and all the anyons standing between b and the junction point – d.
In other words, if we have N anyons exchanging on a trijunction and the anyon types are given by the se-
quence aN , . . . , aN− j−1, b, a, a j−1, . . . , a1 (where a and b are the anyons that exchange), then c = a × b and
d = b×a×a j−1×· · ·×a1. We define the simplified symbols of the theory by dropping certain labels as follows

Rba
c , P ba

cd , Qba
cd , Bba

cd .

See Appendix C for more explanation. The models with such simplified symbols have the property that all the
σ j graph braids are described by the same symbol, regardless of the edges that are visited by the anyons
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a1, . . . , a j−1 and independently of the fusion tree of the anyons a1, . . . , a j−1. In particular, if the anyons
a1, . . . , a j−1 visit edge 1, then the braid σ(1,...,1,1,2)

j is always resolved by a P-symbol. Similarly, the braid

σ
(2,...,2,1,2)
j is always resolved by a Q-symbol. If at least two of the anyons a1, . . . , a j−1 visit two different

edges, then the corresponding σ j graph braid is always resolved by a B-symbol. Importantly, both the Ising
anyon model and the Tambara-Yamagami Z2 ×Z2 anyon model which for N = 4 have solutions different than
planar, turn out to realise such a graph braided model with the simplified symbols. We further conjecture that
for the simplified anyon models the coherence is attained already for N = 5, i.e. no new constraints appear for
N > 4. This conjecture implies in particular that the graph-braided Ising anyon model has the free parameter
Rσσ1 for any N .

3.3 The H-graph and general tree graphs

Let us next move on to consider a simple network consisting of two trijunctions joined along one edge. The
resulting graph is the H graph, denoted ΓH . The features of anyon braiding models, which we describe in this
section, also extend naturally to any tree graph. The H-graph is displayed in Figure 9. The two junction points
are denoted by v and w, with v being the junction closest to anyons’ initial position. The three-strand graph
braid group B3(ΓH) is freely generated by the following simple braids [19, 6, 26] (see also Appendix A for more
explanation)

σ
v;(1,2)
1 , σ

v;(2,1,2)
2 , σ

v;(1,1,2)
2 , σ

w;(1,2)
1 , σ

w;(2,1,2)
2 , σ

w;(1,1,2)
2 . (27)

In other words, each junction point permits an exchange of particles and exchanges at different junctions are
topologically inequivalent. Consequently, the exchanges at v will be represented by different symbols than the
exchanges at w. Namely,

ρ
�

σ
v;(1,2)
1

�

= R, ρ
�

σ
v;(1,1,2)
1

�

= P, ρ
�

σ
v;(2,1,2)
1

�

=Q,

ρ
�

σ
w;(1,2)
1

�

= R̃, ρ
�

σ
w;(1,1,2)
1

�

= P̃, ρ
�

σ
w;(2,1,2)
1

�

= Q̃.

Moreover, we have two different sets of hexagon equations, with each set of hexagons coming from embedding
a trijunction at v or w, respectively. There is one P-hexagon (see (14)) involving P-symbols and R-symbols and
one P-hexagon involving P̃-symbols and R̃-symbols. Similarly, we have one Q-hexagon (see (13)) involving
Q-symbols and R-symbols and one Q-hexagon involving Q̃-symbols and R̃-symbols.

Figure 9: a) The H-graph. It contains two junction points denoted by v and w. The branches of each junction
are enumerated by (1) and (2) relative to the orientation of the junction with respect to the initial configuration
of the anyons (black dots). b) A schematic picture showing that the exchanges at junction v are topologically
independent of the exchanges at junction w.

We can observe that the graph braid group of ΓH for N = 3 particles is essentially two copies (formally
speaking, the free product) of the trijunction graph braid group, generated by exchanges at the junctions v and
w. A natural question presents itself: Could one construct a new independent consistency equation involving
fusion commuting with braids at v and w simultaneously? The answer is no, which we will now explain.
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As discussed at the beginning of this section and in [18], to introduce consistency equations from fusion
commuting with graph braiding, two of the three particles must go to the same edge, and they must be joined
by a fusion vertex throughout the entire exchange, so that we can “slide” the fusion vertex through the graph
braid diagram. We can see an example of this in Figure 3. Consider next similar reasoning for the H-graph.
Assume that the labels of the anyons in Figure 9 are a, b, c with anyon c being the closest to the junction and
anyon a being the furthest from the junction. In order to look for possible new relations, we need to consider
all the possible exchange processes where a pair of anyons stays joined by a common fusion channel so that the
fusion vertex can be pulled through the worldline diagram of the entire process. If this is the case, one obtains
a new relation by comparing the effective two-particle exchange process (where the two anyons stay joined by
a common fusion channel) with the original three-particle exchange process. Two possible options exist for
joining the neighbouring anyons by a common fusion channel. Namely, anyons b and c are joined together into
anyon f or anyons a and b are joined together into anyon e. Suppose we slide the fusion vertex throughout the
worldline diagram of a three-particle exchange process. In that case, we are left with an effective two-particle
exchange process involving anyons a and f or e and c, respectively. However, all two-particle exchange
processes are generated by the σv

1 and σw
1 with appropriate superscripts. Thus, it is enough to consider the

consistency diagrams where fusion commutes with braiding only for these types of generators. In the case
when a and b are joined into anyon e, this leaves us only with the following four options for exchanges taking
place at v or w: σv;(1c ,2e)

1 , σv;(2c ,1e)
1 , σw;(1c ,2e)

1 , σw;(2c ,1e)
1 . These can only lead to separate P- and Q-hexagons

for R and P/Q or R̃ and P̃/Q̃ respectively. Similarly, we reproduce the same set of hexagon equations when
considering exchanges of f = b× c with a.

Consider next N = 4. Using the orientation of the junctions shown in Figure 9a), we have that B4(ΓH) is
generated by the simple braids listed in Equation (27) together with the following six σ3-braids

σ
u;(1,1,1,2)
3 , σ

u;(2,1,1,2)
3 , σ

u;(2,2,1,2)
3 , u= v, w.

Consequently, the simple exchanges at v are represented by one set of symbols R, P,Q, B (as explained in Section
3.1) and the simple exchanges at w are represented by another set of symbols R̃, P̃, Q̃, B̃. However, in contrast
to the three-strand braid group, the four-strand braid group B4(ΓH) is no longer freely generated, as we have the
following commutative relation [6]

σ
v;(1,1,1,2)
3 σ

w;(1,2)
1 = σw;(1,2)

1 σ
v;(1,1,1,2)
3 . (28)

Intuitively, relation (28) means that two disjoint pairs of anyons can be exchanged at different junctions in-
dependently. Interestingly, this relation does not impose any constraints on the corresponding symbols in the
anyon model. This is due to the fact that the simple exchange σv;(1,1,1,2)

3 can be effectively represented by a
P-symbol using the pairwise-fused basis (explained in Section 3.1) describing a spacetime process where the
two anyons closest to the junction remain fused at all times. In such a pairwise-fused basis relation (28) is
satisfied automatically provided that the square diagram (18) is satisfied.

To reiterate, all the possible exchanges with two out of the three anyons fused together only lead to hexagon
equations which concern exchanges that are fully localised on one of the junctions. This implies that one can
treat the solutions at different trijunctions of the H-graph as independent. For instance, if we chose an anyon
model on a trijunction whose solutions to the polygon equations (18), (19), (21) and (24) have free parameters
(e.g. Ising fusion rules where the R-symbol Rσσ1 is a free parameter), then these parameters remain free on
the H-graph. Moreover, there will be two independent sets of free parameters since braids at v and w are
topologically inequivalent. If we joined more and more trijunctions forming a tree architecture, then we could
make further independent choices for the free parameters at each junction point. In Section 8 we argue that
this property of graph-braided anyon models may be useful for designing more efficient topological quantum
computing circuits.

4 Braiding and fusion on the circle

Having revisited the graph anyon models on the simplest building block of networks, i.e. the trijunction, we
proceed to define an analogous construction for another simple building block which is the circle. Following
this, we will study the interplay between both of these situations by moving to a lollipop graph which consists
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of a single trijunction and a single loop. On a circle, we first arrange particles next to each other at a particular
place on the circle (which is equivalent to fixing the basepoint for the generator of the braid group BN (S1)). We
can then change the ordering by cycling particles around the loop, this is given by the move δ. In other words,
the braid group of the circle is a free group on one generator which we denote by δ. It is uniquely defined
by picking an orientation of the circle. Here, we assume the orientation to be counterclockwise. The action
of δ moves one of the outermost particles around the circle according to the circle’s orientation as shown in
Figure 10.

Figure 10: The δ-move.

With the δ- move we associate the D-symbols that depend on three anyon labels as shown in Figure 11.

Figure 11: The braiding exchange operator associated with the δ-braid is described via D-symbols. The def-
inition extends in a natural way to the δ-move involving N > 2 anyons by fusing together the N − 1 anyons
which do not travel around the circle and by sliding their fusion vertex effectively obtaining the δ-move acting
on two anyons only. Note that with the above convention we necessarily have Db1

b = 1 and Da1
a = 1 (the trivial

anyon going around the circle), but D1a
a and D1b

b are generally different from one.

The gauge transformations of the D-symbols have the same structure as the gauge transformations of the
planar R-symbols as explained in Appendix E. Requiring the fusion to commute with the δ-braid leads to two
families of hexagon equations shown in Figure 12 and Figure 13.
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Figure 12: The naturality condition for δ showing that fusion commutes with the δ-braid for N = 3. Equating
the upper and lower path leads to Eq. (29).

The second set of hexagon equations comes from demanding the δ−1-move to be compatible with fusion.

Figure 13: The naturality condition for δ−1 showing that fusion commutes with the δ−1-braid for N = 3. This
leads to another set of hexagon equations given in Equation (30).

Dg b
d

�

(F bca
d )−1

�

g f D f a
d =

∑

e

�

F cab
d

�

ge Dce
d

�

F abc
d

�

e f (29)
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Dg b
d

�

F cab
d

�

ge Dec
d =

∑

f

�

�

F bca
d

�−1�

g f
Da f

d

�

�

F abc
d

�−1�

f e
. (30)

In fact, hexagons (30) follow from the hexagons (29). To see that, put c = 1 in (29) to obtain

Dab
e Dba

e = D1e
e . (31)

Then, apply the above identity to the RHS of (30) as Da f
d = D f a

d D1d
d and insert 1= Dg b

d Dg b
d to obtain

∑

f

�

�

F bca
d

�−1�

g f
Da f

d

�

�

F abc
d

�−1�

f e
= Dg b

d

∑

f

Dg b
d

�

�

F bca
d

�−1�

g f
D f a

d D1d
d

�

�

F abc
d

�−1�

f e
.

Next, under the above sum, we recognise the LHS of (29), thus we can rewrite it as the double sum which we
subsequently sum over f

Dg b
d D1d

d

∑

f ,e′

�

F cab
d

�

ge′ D
ce′
d

�

F abc
d

�

e′ f

�

�

F abc
d

�−1�

f e
= Dg b

d D1d
d

∑

e′
δee′

�

F cab
d

�

ge′ D
ce′
d =

= Dg b
d

�

F cab
d

�

ge Dce
d D1d

d .

Finally, we use (31) again to obtain Dce
d D1d

d = Dec
d and the above expression becomes the LHS of (30).

As a final comment to this section, we note the connection of the D-symbols D1a
a to the twist factors. The

symbol D1a
a is associated with the δ-move taking just a single anyon a around the circle. This is exactly the

move which in the 2D anyon theory corresponds to the topological twist. Indeed, for every anyon model, the
solutions to the D-hexagons (29) always contain the topological twist θa expressed in terms of the planar R-
symbols in Equation (6) as a special case. However, for our graph anyon models we do not have the relation
(6) and thus we define the generalised topological twist as

θa := D1a
a . (32)

So-defined topological twists typically can have more possible values than their counterparts known from the
2D theory. For example, anyons with Z3 fusion have only third roots of unity as conventional twists, while
the solutions to equations (29) also allow for ninth roots of unity as topological twists. Another example is the
TY(Z3) fusion category which admits no braiding at all, yet has solutions to equations (29). These solutions
can be found in Appendix I.2.

Importantly, the above defined anyon theory on the circle is readily coherent, i.e. the D-hexagon (29)
implies the compatibility of anyon fusion with the δ-braid for any N > 3 (see Appendix B for the proof). We
present solutions of the D-hexagons for low-rank anyon models in Section 6 and Sections G.4.2, H.3.2 and I.2.
We have found that all the tested models are rigid, i.e. have a finite number of solutions with no free parameters
left. We note that our anyons on a circle graph bears a striking resemblance to the tube category, see for example
[31], however, establishing this connection rigorously is outside the scope of this work.

5 The lollipop graph

The next key step is to incorporate loops and junctions into a single graph. The simplest possible configuration
is the lollipop graph, ΓL , shown in Figure 14.
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Figure 14: The lollipop graph. a) Our choice of the rooted spanning tree (solid lines) with the root ∗ which
determines an embedding of the trijunction graph into the lollipop. The resulting deleted edge is marked by the
dashed line. b) The base configuration of anyons corresponding to our choice of the rooted spanning tree and
the δ-move coming from embedding the circle-subgraph into the lollipop.

The lollipop graph contains one loop, with which we associate a δ-move and one essential vertex v, with
which we associate the simple graph braids. This is done via the embedding of the trijunction graph shown
in Figure 14a (and presented in more detail in Appendix A). In other words, the graph braid group B3(ΓL) is
generated by

δ, σ
(1,2)
1 , σ

(1,1,2)
2 , σ

(2,1,2)
2 .

The above generators are subject to one relation which connects the δ-braid with the simple graph braids.
Namely, we have (see also Figure 15)

δσ
(1,2)
1 = σ(1,1,2)

2 δ. (33)

Figure 15: A pictorial proof of the lollipop relation (33).

This leads to the square diagram shown in Figure 16.
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Figure 16: The square diagram corresponding to (33). The homotopy relation from Figure 15 has been used
in the top panel of the diagram. The two rightmost arrows represent the braiding exchange operators corre-
sponding to the δ-move followed by the simple braid σ(1,2)

1 . The two leftmost arrows represent the braiding
exchange operators corresponding to the simple braid σ(1,1,2)

2 followed by the δ-move.

The resulting equation reads
D f a

d P cba
f d = Rcb

f D f a
d ,

Notably, the diagram 16 does not use any F -symbols. Using the fact that the D-symbols D f a
d ∈ U(1), the above

equation boils down to
P cba

f d = Rcb
f . (34)

On top of the condition (34) the P- and Q- hexagons (14) and (13) are also valid equations for the lollipop as
they describe the simple graph braids at the junction of the lollipop. Note that putting P = R in the P-hexagons
readily reproduces one set of the hexagon equations from the planar anyon theory (5). In other words, creating
a lollipop from a trijunction by creating a single loop makes the graph braided anyon model more similar to
the planar braided anyon model. As we will see in Section 7, one can continue this line of thought to make a
complete transition to the planar anyon theory by considering the graph braided anyon theory on the theta-graph
and more generally, on the family of triconnected graphs.

5.1 The ∆-move

There is an auxiliary braid on the lollipop which we will extensively use in Section 7. It is the braid ∆ defined
in Figure 17 which takes into account the possibility of an anyon occupying the lollipop’s stick while the
remaining two anyons do a δ-like-move. It is expressed by the standard generators as

∆= σ(2,1)
1 δ, (35)

where σ(2,1)
1 is the inverse of the simple braid σ(1,2)

1 .
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Figure 17: The braid ∆. Note that if c = 1 (the trivial anyon), then ∆ reduces to δ.

The braid ∆ will be represented by the G-symbols as shown in Figure 18.

Figure 18: The definition of the G-symbols. The anyon c moves out of the way of anyon a so that a can
exchange with b utilising the circle of the lollipop.

The relation (35) leads to the hexagon diagram from Figure 19 which connects G-, D- and R-symbols.

Figure 19: The hexagon following from the relation (35).

�

Gbac
d

�

ee′ =
∑

g, f

�

F bac
d

�

eg Rca
g

�

�

F bca
d

�−1�

g f
D f a

d

�

�

F abc
d

�−1�

f e′
. (36)

In particular, if b = 1 we obtain the relation
�

G1ac
ag

�

aa′
= Dca

g Rca
g δaa′ . (37)

Furthermore,
�

Gb1c
f

�

bb′
= δbb′ ,

�

Gba1
e

�

ee′ = δee′ D
ba
e .
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Just as in the case of the D-symbols there is a completely analogous naturality for the G-symbols, which
follows from the hexagon in Figure 19.

Note that the planar anyon theory is retrieved from the graph braided anyon theory on the lollipop by
imposing that Gbac

d -symbols are independent of c in which case the G-hexagons imply
�

Gbac
d

�

ee′ = Dba
e δee′ (38)

and become equivalent to the condition Q = R. This is because substituting in the hexagon equations (36) i) the
G-symbols with the D-symbols according to Equation (38) and ii) D-symbols Dca

g with Rca
g θa (recall θa := D1a

a )
according to Equation (37) makes the hexagon equations (36) equivalent to the Q-hexagons with Q = R. Thus,
we have that Q = P = R, so under these assumptions, the simple braids on the lollipop are represented by the
same R-symbols as the ones coming from the planar anyon theory. What is more, the symbols G1ac

g then acquire
the interpretation as the twist factors, i.e.

G1ac
g = θa = D1a

a .

Interestingly, the so-defined twist factors (by satisfying the extra condition (38)) can still differ from the planar
twist factor (defined in equation (6)).

6 Solutions to the graph braiding equations

We solved the graph braiding equations for the circle, the trijunction (with three and four particles), and the
lollipop graph for the following anyon models: Z2, Fibonacci, Ising, Rep(D3), PSU(2)5, Z3, Z2 ×Z2, SU(2)3,
Z4, TY(Z3), Rep(D4), and SU(2)4.

Some of these anyon models have different properties when braiding is confined to a graph rather than
the plane. There exist, in particular, several fusion categories that never admit planar braiding, despite having
solutions for the graph-braid equations. For the anyon models we studied, we observed the following:

• The equations (29) for anyons on a circle, like the planar hexagon equations, lead to discrete sets of
solutions. There are always at least as many solutions as the planar hexagons allow. Interestingly, the
equations for a circle sometimes admit solutions even when the planar hexagons do not. The TY(Z3)
fusion model (see I.2 for the solutions) is such an example.

• The three-particle trijunction equations are the P- and Q-hexagons (equations (13) and (14)). Increasing
the number of particles to N = 4 means adding equations (18), (19), (21) and (24). As was pointed out
in [18], solutions to the trijunction equations for three particles sometimes contain free parameters. If we
add the equations for four particles, then, depending on the model, this freedom either remains unaltered
(e.g. for Abelian anyons), gets partially restricted (e.g. Ising anyons), or disappears completely (e.g.
Rep(D3) anyons). For the models we investigated, we found that if a model has solutions for the three
particle equations, it also has solutions for the four particle equations. Specific results on the number of
free variables and solutions to the trijunction equations can be found in table 1.

• The equations for the lollipop graph consist of (a) the trijunction P- and Q-hexagons (14) and (13), (b)
equations demanding equality between the P and R symbols (34), and (c) equations for anyons on a
circle (29). We will call the combined set of (a) and (b) the lollipop trijunction equations. The lollipop
trijunction equations are sufficient to fix all degrees of freedom in the standard trijunction solutions. Since
the equations on a circle give rise to a discrete set of solutions, all investigated models have a discrete
set of solutions to the full lollipop equations. Let nc , nt , nl denote the number of gauge-inequivalent
solutions to the circle equations, lollipop trijunction equations, and full lollipop equations, respectively.
Although the equations for a circle graph are independent of the lollipop trijunction equations, nl need
not be equal to the product ncnt . This happens when there is still some gauge freedom left after fixing
the values of the F -symbols. In this case, the number of solutions to each set of equations gets reduced
by the same factor. This implies that the number of gauge-independent solutions to the combined set of
equations will be greater than the product of the number of solutions of the individual equations. For the
cases studied only the Z2 ×Z2 model has remaining gauge symmetry. More information on the number
of solutions to the planar hexagon equations, the circle equations, lollipop trijunction equations, and full
lollipop equations can be found in tables 2 and 3.
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If all the anyons are Abelian (i.e. the fusion algebra is a group algebra), then:

• The trijunction equations are trivially fulfilled for 3 and 4 particles. All non-trivial R- symbols are thus
free variables for trijunction. In particular, each set of trijunction equations admits continuous parameter
families of solutions. This is not the case for the planar hexagon equations. For, e.g., Z3 anyons only the
trivial F -symbols admit a braided structure and for Z2 and Z2 × Z2 only half of the sets of F -symbols
admit a braided structure.

• For the circle, Lollipop trijunction, and full lollipop equations, we find that, for a fixed anyon model,
each set of F -symbols gives rise to the same number of solutions. If the F -symbols allow solutions to
the planar hexagon equations, then some of the solutions to the lollipop equations are also planar. The
number of planar solutions to the lollipop equations is always greater than the number of solutions to
the hexagon equations. For more information on the number of solutions to the lollipop equations for
Abelian anyons, see table 3.

If some of the anyons are not Abelian then:

• The solutions to the trijunction equations without free variables are always planar, and the solutions with
free variables are planar for a discrete set of values of the free variables.

• All solutions to the lollipop equations are planar. The number of planar solutions to the lollipop equations
is always greater than the number of solutions to the hexagon equations.

For more information on how we solved these equations, see Appendix E.

Fusion

Algebra

Solutions to the trijunction hexagon equations per set of unitary F -symbols

N = 3 N = 4

# Solutions # Free Variables # Solutions # Free Variables Planar?

Fibonacci 2 None 2 None Always

Ising 2 2 2 1 UCC

PSU(2)5 2∗ None 2 None Always

SU(2)3 2∗ 2 2 1 UCC

SU(2)4 2∗ 2 2 1 UCC

TY(Z3) 0

Rep(D4) 4 10 4 1 UCC

Table 1: Properties of solutions to the trijunction equations for three and four particles for various non-Abelian
anyon models. Here UCC means that under certain conditions on the free R-symbols the solutions are planar.
All solutions listed are gauge-inequivalent. Note that the number of solutions corresponds to the number of
gauge-inequivalent families of solutions, possibly parametrized by some free variables.
*For these models we only obtained solutions for 1 set of unitary F -symbols per model. See Appendix E for
more info.
**For Rep(D3) it looks like there are more solutions to the equations for N = 4, but this is only due to the
fact that for N = 4 all free parameters are fixed and thus instead of 2 continous families of solutions we find 3
discrete families of solutions.
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Fusion

Algebra

Amount of solutions per type of equations

(3 particles) per set of unitary F -symbols

Planar Hexagon Circle Lollipop Trijunction Full Lollipop

Fibonacci 2 2 2 22

Ising 22 24 22 26

PSU(2)5 2∗ 22 2 23

Rep(D3) 3,0, 0 3, 3,3 3,0, 0 32, 0, 0

SU(2)3 2∗ 26 2 27

TY(Z3) 0 3 0 0

SU(2)4 2∗ 28 2 29

Rep(D4) 23 27 23 210

Table 2: Number of gauge inequivalent solutions to the consistency equations for various non-Abelian anyon
models. Except for the planar hexagon equations all equations were constructed for systems with only three
anyons. All of the solutions to the lollipop trijunction equations in this table are planar, i.e. P = Q = R. For
Rep(D3) a different amount of solutions was found for the different solutions to the pentagon equations and so
we used a notation where the i th number in each column corresponds to data regarding the i th solution to the
pentagon equations. *For these models we only obtained solutions for 1 set of unitary F -symbols per case. See
appendix E for more info.

Fusion

Algebra

Number of solutions per type of equations (3 particles)

per set of equivalent F -symbols

Planar Hexagon Circle Lollipop Trijunction Full Lollipop
Lollipop but

non-planar

Z2 2 22 2 23 0

Z3
3 33 32 35

�2
3

�

35

0 33 32 35 35

Z2 ×Z2
23 27 25 213

�3
4

�

213

0 27 25 213 213

Z4
22 28 26 214

�15
4

�

214

0 28 26 214 214

Table 3: Number of gauge inequivalent solutions to the consistency equations for various Abelian anyon mod-
els. Here we say two sets of F -symbols are equivalent if they both have solvable planar hexagon equations or
not. We chose to do this because, within each equivalence class, all members give rise to identical rows.

7 Θ-graph yields effective planar anyon models

The Θ-graph shown in Figure 20a) has two independent loops and two essential vertices of degree three.
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Figure 20: a) The Θ-graph ΓΘ together with the underlying choice of the rooted spanning tree (solid lines) with
the root ∗ and the initial position of anyons. b) and c) The choice of the spanning tree uniquely defines the
circular moves δ and δ̄ of Bn(ΓΘ).

Using the universal generators of graph braid groups from [6] (which are also described in Appendix A),
we have that B3(ΓΘ) is generated by the respective simple braids at vertices v and w

σ
v;(1,2)
1 , σ

v;(1,1,2)
2 , σ

v;(2,1,2)
2 , σ

w;(1,2)
1 , σ

w;(1,1,2)
2 , σ

w;(2,1,2)
2

and the two circular moves δ and δ̄. As explained in Appendix A, all the above generators are defined relative
to a choice of the spanning tree of the graph Θ which is shown in Figure 20. However, there are many relations
between these generators which allow one to present the group B3(ΓΘ) using only three independent generators
σ

v;(1,2)
1 , δ and δ̄ (in fact, the same holds for Bn(ΓΘ) with any n ≥ 2 [6]). What is more, by taking the quotient

of Bn(ΓΘ) which identifies all the circular moves with each other, the graph braid group Bn(ΓΘ) becomes the
standard Artin braid group describing anyons in the plane. In the following, we will look into these relations
in detail and study their consequences for the graph anyon model on the Θ-graph. In particular, we will show
that by assuming that the circular moves δ and δ̄ on the Θ-graph are represented by the same D-symbols, the
relations between the generators of B3(ΓΘ) imply

P bac
ed =Qbac

ed = Rba
e , (39)

P̃ bac
ed = Q̃bac

ed = R̃ba
e , (40)

and
Rba

e = R̃ba
e , (41)

where the symbols in (39) refer to the simple exchanges at the vertex v and the symbols in (40) refer to the
simple exchanges at the vertex w. By Theorem 1 in [6] (and Proposition 5 therein), our results apply not only
to the Θ- graph, but also to the more general family of triconnected graphs.

Let us start with Equalities (39). These equalities follow immediately from the lollipop relations for the
lollipop subgraphs ΓL,v and ΓL,v from Figure 21a) and c).

Figure 21: The relevant three different embeddings of the lollipop graph into the Θ-graph.

To see this, apply the diagram from Figure 16 to the respective lollipop relations

σ
v;(1,1,2)
2 δ = δσv;(1,2)

1 , σ
v;(2,1,2)
2 δ = δσv;(1,2)

1 .
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The first diagram yields P bac
ed = Rba

e and the second diagram yields Qbac
ed = Rba

e , exactly as we derived Equation
(34). Similarly, the lollipop relation for the subgraph ΓL,w from Figure 21b) gives

σ
w;(1,1,2)
2 δ = δσw;(1,2)

1 ,

thus P̃ bac
ed = R̃ba

e .
The derivation of the remaining equalities Rba

e = R̃ba
e and Q̃bac

ed = R̃ba
e is considerably more complicated and

technical. Importantly, it requires considering the anyon worldlines as world-ribbons and introducing ribbon
half-twists. Due to the technical and complicated nature of the proof, we postpone it to Appendix D where we
also describe the world-ribbon half-twists on graphs in more detail.

To summarise, we have shown that on the Θ-graph, any graph-braided anyon model is equivalent to the
planar anyon model if all the circular moves δ are represented by the same D-symbol. This can be viewed as a
mathematical justification for translating results known from the anyon theory in 2D to the network-based set-
ting. For instance, it is known that the Majorana zero modes which were initially proposed in two-dimensional
FQHE systems [50, 33], and later proposed in one-dimensional networks [57, 47], can host the same exchange
statistics in both settings (see [5, 30, 17] for explicit models for the Majorana zero mode exchange on the tri-
junction). However, our approach here is different from the previous work, because it is independent of the
microscopic model.

8 Consequences for the quantum circuit depth using topological quantum gates

In the standard paradigm of topological quantum computing schemes, the quantum gates acting on a finite set of
qudits come from the unitary matrices ρ(σi) ∈ U(d). The representation ρ depends on the anyon model at hand
and on the chosen topological Hilbert space Htop which is also associated with the particular way of encoding
qudits in Htop. It is well-known that a minimal requirement to realise a universal quantum computer is to have
i) a set of universal single-qudit gates and ii) at least one entangling two-qudit gate. More formally, for a finite
set of single qudit gates S ⊂ U(d) we denote the group generated by the matrices from S by 〈S〉. The elements
of the group 〈S〉 are all the possible unitary matrices obtained by sequentially composing gates from S. The set
of gates S is universal if and only if all the unitary matrices from 〈S〉 fill in the group U(d) densely. In other
words, any matrix U ∈ U(d) can be approximated by a sequence of gates from a universal set S with arbitrary
precision ε. However, the circuit depth, i.e. the length of the sequence of gates necessary to approximate
(compile) a given U increases when the required precision grows, see the celebrated Solovay-Kitaev algorithm
[21, 1]. In this section, we argue that topological quantum gates coming from the graph braided anyon models
can reduce the circuit depth when compared to quantum gates coming from the 2D braided anyon models.

In short, the reason why graph braided anyon models can lead to lower-depth quantum circuits is that
the simple braids realised at different junctions of the graph can be topologically inequivalent, i.e. cannot
be transformed one into another via isotopies of their corresponding world-lines. This allows us to associate
different sets of the R-, P- Q-symbols (and their higher-particle number counterparts) with the junctions which
yield topologically inequivalent braids. Such a phenomenon occurs, for instance, in the H-graph as discussed
in Section 3.3. Another example of a network architecture where this phenomenon occurs is the stadium graph
or, more generally, a biconnected modular network that consists of a chain of triconnected modules that are
connected by bridges consisting of two edges [6, 48], see Figure 22. This has also been pointed out in the case
of Abelian quantum statistics on graphs in [32].
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Figure 22: A schematic representation of a modular biconnected network composed of three triconnected mod-
ules (represented by grey boxes). According to the general prescription presented in Appendix A, the base
configuration of anyons is on an external edge of the leftmost module. The simple graph braids realised in
different modules are topologically independent. By the results of Section 7, the braiding within each module
is effectively governed by an independent set of R-symbols which constitute a solution to the hexagon equations
from the corresponding 2D anyon theory. Thus, such a network architecture allows for simultaneous coexis-
tence and mixing of different sets of R-symbols.

For concreteness, let us focus on the stadium graph The stadium graph and its generalisations (involving
more vertical ribs) have been proposed as a typical setup for network-based topological quantum computer [5].
As shown in Figure 23, there are two ways of embedding a Θ-graph into the stadium graph where the embedded
Θ-graph contains either the opposite pairs of essential vertices v and v′ or w and w′.

Figure 23: a) The Θ-graph together with the choice of the rooted spanning tree. b) and c) Two different
embeddings of the Θ-graph into the stadium graph (marked by red and blue) which by the results of Section 7
imply that the simple braids at v and v′ are equivalent to the braiding in 2D and are represented by the same
set of R-symbols. Similarly, the simple braids at w and w′ are represented by another set of R-symbols coming
from the 2D anyon theory.

Thus, by the results of Section 7 any graph braided anyon model on the stadium graph will admit two
independent sets of the planar R-symbols. Namely, the simple braids at v or v′ will be represented by one set
of R-symbols coming from the 2D braided anyon model and the simple braids at w or w′ will be represented
by another, a priori different, set of R-symbols coming from the 2D braided anyon model. Let us reiterate the
crucial fact that, the simple braids at w and w′ are topologically independent from the simple braids at v or
v′, thus it is a priori possible to represent them by different sets of R-symbols. This in turn can increase the
number of the available topological single-qudit quantum gates which constitute the set S. Having access to a
larger set of topological gates S gives one more flexibility when compiling the target quantum algorithm and
thus increases the efficiency of the given quantum circuit by lowering the circuit depth.

The potential advantage of using the stadium graph architecture and its generalisations is also evident when
considering certain non-universal anyon models. For instance, consider the Tambara-Yamagami model with
G = Z2 ×Z2 [70]. Denote by σ the anyon with the property

σ×σ =
⊕

g∈G
g, G = Z2 ×Z2.

The topological Hilbert space of the three σ-anyons of the total charge σ is given by

Htop = Span {|σ,σ→ g〉 |g,σ→ σ〉 : g ∈ G} ∼= C4.
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In such a setting, the braiding operators are single-ququart topological quantum gates. In the stadium-graph
geometry, the simple braids σv;(2,1)

1 and σv′;(2,1)
1 are represented by the same braiding exchange operator R

which is a diagonal 4× 4 matrix whose diagonal entries are the R-symbols Rσσg , g ∈ G, which are solutions to

the hexagon equations for the anyon model in 2D. The simple braids σw;(2,1)
1 and σw′;(2,1)

1 are represented by
the matrix R̃ constructed from another set of solutions to the hexagon equations for the anyon model in 2D. For
concreteness, let us choose the following solutions to the planar hexagon equations

R=















eiπ/4 0 0 0

0 ei3π/4 0 0

0 0 ei3π/4 0

0 0 0 e−i3π/4















, R̃=















−i 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −i















.

The relevantσ2-braidsσv;(112)
2 ,σv;(212)

2 ,σv′;(212)
2 andσv′;(212)

2 are represented by the matrix B =
�

Fσσσσ

�†
R Fσσσσ

while σw;(112)
2 , σw;(212)

2 , σw′;(212)
2 and σw′;(212)

2 are represented by the matrix B̃ =
�

Fσσσσ

�†
R̃ Fσσσσ . Here, the

relevant F -matrix reads

Fσσσσ =
1
2















−1 −1 −1 −1

−1 1 −1 1

−1 −1 1 1

−1 1 1 −1















.

Let us next consider the (finite) groups generated by the sets S := {R, B} and S̃ := {R̃, B̃}. We will focus on
how the resulting quantum gates act on a single ququart which means that we neglect the global phase factors.
In other words, we look at the resulting groups projectively by projecting every element to the group PSU(4).
It can be verified in a straightforward way that the groups 〈S〉 ⊂ PSU(4) and 〈S̃〉 ⊂ PSU(4) are different and
both are isomorphic to S4, the permutation group of four elements

〈S〉 6= 〈S̃〉, 〈S〉 ∼= 〈S̃〉 ∼= S4 ⊂ PSU(4).

Furthermore, by considering combinations of exchanges on the two Θ-subgraphs of the stadium graph we can
generate the group 〈S ∪ S̃〉 ⊂ PSU(4) which is a finite group of rank 96 and strictly contains the groups 〈S〉
and 〈S̃〉. Thus, by combining braids at different junctions of the stadium graph we are able to generate a bigger
(although still finite) subgroup of PSU(4) which means that we have increased the computational power when
compared to the standard 2D setting.

The crucial feature of the above calculation was that the subgroups of PSU(d) generated by the braiding
exchange operators R, B and R̃, B̃ were different. A necessary condition for this to happen is that the (unitary)
braiding exchange operator R is different than eiφR̃ for everyφ ∈ [0,2π]. Finding such operators R and R̃ is not
possible for every model. For instance, in the Ising model (Tambara-Yamagami with G = Z2) all the braiding
exchange operators corresponding to different hexagon solutions are related via multiplication by such a global
phase factor. The Tambara-Yamagami model with G = Z2 × Z2 is the lowest rank fusion category we could
find where the different braiding exchange operators are not related by a global phase factor.

9 Conclusions

In this work, we have developed a universal framework for studying topological quantum systems hosting
anyonic excitations on quantum wire networks. Using the results of this work, any 2D anyon theory (understood
as a fixed set of fusion rules and F -symbols) can be readily translated to a network setting. Our framework
assumes the same basis of fusion states as on the plane (described in Section 2). It is not obvious that this is a
full description of the states on a graph. For instance, even on a 2D torus, a description of the topological Hilbert
space requires labels associated with the nontrivial loops around the torus. One may expect such extra labels to
appear also for graphs with loops or perhaps even for graphs without loops. However, we have decided to work
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with our choice of the fusion basis as a starting point. This has already led to interesting classes of solutions
– we have found nontrivial solutions for models that do not admit braiding in 2D as well as new classes of
solutions for other models. We have also shown that the character of Abelian and non-Abelian exchange
depends strongly on the structure of the given network. In particular, the possible braiding exchange operators
that arise from our framework applied to simple junctions or tree graphs are less constrained than the ones that
arise in more complex networks. At the far end of this spectrum of possibilities are triconnected networks,
for which the resulting exchange operators are equivalent to the 2D anyon theory. Hence, for triconnected
networks we recover coherence as well as rigidity (number of solutions modulo gauge is finite). At the other
end, we have the trijunction, where we find the most freedom in the braiding exchange operators as there exist
continuous families of solutions to our polygon equations. Coherence remains an open question. However, we
conjecture that on a trijunction the theory is coherent for N > 4 particles and we discuss evidence for this. For
biconnected and one-connected networks we have found numerous examples of new Abelian and non-Abelian
exchange statistics that do not exist in 2D. We have argued that physically realising some of these possibilities
could lead to proposals for topological quantum computers where quantum algorithms would be compiled
more efficiently. A natural next step would be to look for physical models which could host the Abelian or
non-Abelian quantum statistics that do not exist in 2D anyon models. One possible way of finding systems
that host the new exchange statistics on networks would be through certain generalisations of discrete gauge
theories. This approach has been employed in [59].

Another direction posed by our work is an examination of the space of states on a graph. In particular,
we chose to consider each edge of the graph as hosting particles with the same fusion rules & F -symbols
as anyons in the plane. In doing so, we found several similarities. One example of this is the absence of
a solution to the graph hexagon equations for parafermion zero modes, which in this context are associated
with the non-Abelian anyon in TY(ZN ). For example the fusion rules for parafermions in this context can
be found in the Supplementary Material of [15]. In this sense, parafermionic zero modes can be seen as a
generalisation of Majorana zero modes, which occur for the particular choice N = 2. Crucially, when N 6= 2p

there is no solution to both the planar hexagon equations [67] and our graph hexagon equations on a star
graph, see Section F. However, parafermionic zero modes have been proposed to exist on one-dimensional
wires [27, 41, 42]. In addition to this, it has also been proposed that parafermion zero modes can exist on
interfaces between FQHE states [16] which, when arranged into certain geometries, may allow the zero modes
to be braided [15]. Therefore, it seems surprising that we find no solution to the graph hexagon equations on a
star graph for parafermions (although we do find solutions on a circle graph). It seems possible that considering
each edge of the graph as a non-trivial boundary of a 2D topological order may be the most comprehensive
description.
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A Generators of graph braid groups for general graphs

In this section we will discuss some necessary facts about the generators of graph braid groups. In particular,
we recap the systematic construction of the generating set of graphs braids which works for any planar graph
[6]. We subsequently use this general procedure to study some small canonical graphs from the main text of
the paper. The simple braids are specific generators of the graph braid group of a rooted star graph. In general,
graph braids are created via sequences of moves transporting anyons to certain edges of the graph and returning
them to their original configuration. It will be convenient to introduce a separate notation for a move where
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a single anyon is transported from one location to another. The relevant moves are called the β-moves – they
transport anyons from the base configuration on the edge containing the root to another leaf of the star graph.
A β-move, βx , is decorated by a subscript 1 ≤ x ≤ E (E + 1 is the number of legs of the star graph) which
denotes the index of the leaf of the star graph where the anyon which is the closest to the junction is transported
from the base configuration. Consequently, β−1

x transports an anyon from leaf with label x back to the base
configuration (see Figure 24).

Figure 24: The auxiliary move βx and it’s inverse. The root is decorated by ∗.

Thus, an exchange of two anyons which involves leaves x and y with 1 ≤ x < y ≤ E is given by the
commutator of the corresponding β-moves

�

βx ,βy

�

:= βxβyβ
−1
x β

−1
y .

We will call this a simple exchange and denote by σ(x ,y)
1 , see Figure 25.

Figure 25: The simple exchange σ(x ,y)
1 =

�

βx ,βy

�

. The root is decorated by ∗.

In order to realise a simple exchange of anyons i and i+1 one needs to first distribute the anyons 1 through
i − 1 on the leaves of the star graph and move them back in the same order after the exchange. This is realised
by the following sequence of β-moves

σ
(x(1),...,x(i+1))
i = βx(1) . . .βx(i−1)

�

βx(i),βx(i+1)
�

β−1
x(i−1) . . .β−1

x(1), (42)

where x(k) is the leaf visited by kth anyon (with anyon 1 being the closest to the junction). Analogous β-moves
can be realised on a rooted tree graph (T,∗). Namely, let v ∈ T be an essential vertex (i.e. a vertex of degree
d(v)≥ 2). One can embed a rooted star graph of the order d(v), (S,∗S), into a neighbourhood of v in T

ιv : (S,∗S)→ (T,∗),

so that the essential vertices are mapped onto each other and ιv(∗S) lies on the unique path connecting v with
∗ ∈ T , as shown in Figure 26a. Then, the move βv,x is defined as the composition βv,x := β0βx , where
β0 transports an anyon from the base configuration on the edge containing the root ∗ ∈ T to ιv(∗S) and βx
transports the same anyon from ιv(∗S) to the leaf a of the embedded star graph, see Figure 26b.
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Figure 26: a) Embedding a star graph into a neighbourhood of the essential vertex v of a tree graph. b) The
resulting βv,3-move.

Thus, we analogously define the simple braids associated with the vertex v as

σ
v;(x(1),...,x(i),x(i+1))
i = βv,x(1) . . .βv,x(i−1)

�

βv,x(i),βv,x(i+1)
�

β−1
v,x(i−1) . . .β−1

v,x(1).

Note that any simple graph braid in Bn(Γ ) can be embedded into Bn+1(Γ ) via conjugation by a βu,y -move where
u is an essential vertex of Γ and 1≤ y ≤ d(v)− 1.

Bn(Γ ) 3 σ
v;(x(1),...,x(i+1))
i 7→ βu,y σ

v;(x(1),...,x(i+1))
i β−1

u,y ∈ Bn+1(Γ ).

In particular, if u= v, then we have

βv,y σ
v;(x(1),...,x(i),x(i+1))
i β−1

v,y = σ
v;(y,x(1),...,x(i),x(i+1))
i+1 .

We use this fact several times throughout the paper, see for instance Equation (23).
For a planar graph Γ which is not a tree graph, i.e. Γ which contains loops, some new generators appear. The

new generators correspond to different ways of embedding the circle graph and its corresponding δ-move which
has been introduced in Section 4. Let us next review a systematic way of counting the relevant embeddings of
the circle graph into any planar graph Γ which is not a tree. We first fix the planar embedding of Γ , ιΓ : Γ → R2.
Next, we choose a spanning tree T ⊂ Γ (a tree which contains all the vertices of Γ ) such that every essential
vertex of Γ is contained in T together with its star-shaped neighbourhood in Γ (formally, this may require adding
some dummy vertices of order two in the interiors of certain edges of Γ , a procedure called edge subdivision,
for details see [6]). Using such a choice of the spanning tree we build a basis of loops of Γ in the following
way. The number of loops of Γ is equal to the first Betti number of Γ , B1(Γ ) = |E(Γ )| − |V (Γ )|+ 1, where E(Γ )
and V (Γ ) are the sets of edges and vertices of Γ respectively. Edges from E(Γ ) which do not belong to T are
called the deleted edges. The number of deleted edges is equal to B1(Γ ) and each e ∈ E(Γ )− E(T ) defines a
loop in Γ in the following way. Let v and w be the end-vertices of e. We necessarily have that v, w ∈ T , thus
there is a unique path P(v, w) ⊂ T that connects v with w in T . Thus, the union le := e ∪ P(v, w) is a loop in Γ
(see Figure 27a). The set LΓ := {le| e ∈ E(Γ )− E(T )} forms a generating set of simple loops of Γ .
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Figure 27: a) A graph with a spanning tree marked by solid lines and the deleted edges marked by dashed
lines. The loop le is a simple loop corresponding to the deleted edge e. b) The planar embedding of Γ and
its resulting decomposition of the plane into four connected components: the bounded discs D1, D2, D3 and the
unbounded component C0. A possible choice for the external deleted edge e0 and the root ∗ is shown. c) The
linear ordering of the graph’s vertices implied by the planar embedding and the choice of the root.

The set R2 − ι(Γ ) is topologically a disjoint union of a number of connected components. In particular,
among the connected components there are disks D1, . . . , DB1(Γ ) which are enclosed by the loops from LΓ and
one unbounded component which we denote by C0 (see Figure 27b). Let us next choose a deleted edge e0 which
is external relative to the embedding ιΓ , i.e. it belongs to the boundary of C0. We define the root ∗ ∈ T as one of
the endpoints of e0. We give the edge e0 an orientation directed from its other endpoint to the root as shown in
Figure 27b. Then, le0

is the oriented loop which supports the circular move δ from Section 4 whose orientation
is induced by the orientation of e0. To every other deleted edge e we associate an independent circular move
δe in the following way. We order the vertices of Γ by drawing a ribbon around T in a clockwise direction,
starting at the root and labelling all the visited edges by consecutive integers as shown in Figure 27c. This way,
each edge e ∈ Γ acquires an orientation which points from the vertex labelled by the higher number (called the
initial vertex ι(e)) to the vertex labelled by the lower number (called the terminal vertex τ(e)), ι(e)> τ(e)). In
particular, this holds for every deleted edge e and induces an orientation of the associated loop le. We are now
ready to define the circular move δe associated with a deleted edge e. There are two cases (see Figure 28 for
examples).

1. If ι(e)< ι(e0), then δe i) takes an anyon from the base configuration at the edge of T containing the root
∗ and moves it to the vertex τ(e) along the unique path P(∗, ι(e)) ⊂ T , ii) moves the anyon from τ(e) to
ι(e) along e, iii) moves the anyon from ι(e) to ι(e0) along the unique path P(ι(e), ι(e0)) ⊂ T , iv) moves
the anyon from ι(e0) to τ(e0) = ∗ along e0.

2. ι(e) > ι(e0), then δe i) takes an anyon from the base configuration at the edge of T containing the root
∗ and moves it to the vertex ι(e) along the unique path P(∗, ι(e)) ⊂ T , ii) moves the anyon from ι(e) to
τ(e) along e, iii) moves the anyon from τ(e) to ι(e0) along the unique path P(τ(e), ι(e0)) ⊂ T , iv) moves
the anyon from ι(e0) to τ(e0) = ∗ along e0.
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Figure 28: Examples of δ-moves for a graph with multiple loops. a) The δ-move associated with the edge e0
which is incident to the root ∗. b) The δe-move when ι(e)< ι(e0). c) The δe-move when ι(e)> ι(e0).

Summing up, the graph braid group of Γ is generated by the simple braids

σ
v;(x(1),...,x(i),x(i+1))
i , 1≤ x( j)≤ d(v), x(i)< x(i + 1), d(v)> 2,

and the circular moves
δ, δe, e ∈ E(Γ )− E(T )− {e0}.

B Coherence for graph anyon models on the circle

In this section we will discuss the graph anyon model on a circle for N > 3 particles. In particular, we show
that such a model has the coherence property mentioned in Section 2. Our aim is to show that the consistency
equations for four particles are already guaranteed by the solution of the circle hexagon equation for three
particles given in Equation (29). In other words, no new constraints for the D symbols appear for N > 3.
This is in contrast to the simple braids at junctions, in which, the addition of new particles introduces new,
topologically inequivalent generators (up to when the number of particles is at least one greater than the valence
of the junction), as discussed in Section 3.1 and Appendix C.

Figure 29: A four-particle consistency diagram for particles cycling around the circle graph. In the bottom
left we display the fusion commuting with graph braiding states, which are related by sliding a fusion vertex
through a δ-braid. The middle diagonal path is what informs us this is will not lead to new constraints on the
D- symbols, as it can already be tessellated by the hexagon diagrams.

We start by considering the action of the D- symbols given in Equation (11). The D- symbol depends on
the topological charge of the particle cycling around the circle and the total topological charge of the remaining
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particles. See, for instance the action of D f a
d in the upper path of Figure 12. Similarly, if there are N particles

on the circle, then anyon f is the total charge of a set of N − 1 anyons and the action of the D f a
d - symbol only

depends on the total topological charge of the N − 1 particle group and a.
To construct a consistency equation, we consider a diagram where fusion commutes with braiding of four

particles and then look at all the possible ways to resolve the braids. This strategy has been employed to derive
the D-hexagons in Figure 12 (see Figure 3 for a similar treatment of the trijunction). Equivalently, we can view
this methodology as expressing a braid involving a composite anyon in terms of the composition of simple
braids of its constituents. So, explicitly for four particles, we would like to impose the following relations on
our anyon model (we use the labelling convention from Equation (59));

δ(k, a)δ(r, b)δ( j, c) = δ(l, f )δ( j, c) = δ(d, g), (43)

where the right entry of δ labels the topological charge of the particle cycling around the graph and the left
entry labels the total topological charge of the remaining particles. This is analogous to Equation (22) for a
junction. The resulting diagram is shown in Figure 29. Note that in the bottom left of Figure 29 we have
equated three states using the fact that fusion commutes with braiding several times. From these states, we
can construct consistency equations, stemming from applying appropriate D-moves and F -moves to make the
diagram commutative. In other words, every loop in the diagram in Figure 29 represents a consistency relation.
However, the crucial observation is that the large outer loop (decagon diagram) is a composition of two smaller
loops, each containing six states (hexagon diagrams). Thus, satisfying the consistency equations corresponding
to the two inner hexagonal diagrams will imply that the consistency equations corresponding to the outer
decagonal diagram will be satisfied as well. Let us next take a closer look at the leftmost hexagon diagram.
Note first that in the resulting equations the constituents of the composite anyon f = a × b will not appear,
as the particles a and b are always connected by a common fusion channel. Thus, this diagram is effectively
a three-particle diagram involving particles f , c and d. Comparing the two paths starting from the leftmost
state and ending at the pairwise associated state at the bottom of the diagonal path we obtain the following
consistency equation

∑

g

�

(F d f c
e )

�

j g Dd g
e

�

F f cd
e

�

gl = D jc
e

�

(F cd f
e )−1

�

Dl f
e . (44)

Importantly, Equation (44) becomes identical to the D-hexagon from Equation (29) after appropriate relabelling
of anyons. Similarly, the rightmost sub-hexagon diagram leads to effective three-particle equations involving
anyons a, b and l = c × d

∑

f

�

F lab
e

�

r f Dl f
e

�

F abl
�

f k = Dr b
e

�

(F bla
e )−1

�

rk Dka
e , (45)

which can also be identified as D-hexagon equations after relabelling.
To summarise, we started with the four particle fusion commuting with graph braiding states which could

have led to new constraints on the D- symbols, however, we were able to recognise that this diagram was readily
satisfied just by the three particle hexagon diagrams. Therefore, when solving these equations for a given fusion
model this will add no new constraints (see Section E for details on solving these equations). Inducting over
the number of particles, one can see that similar reasoning shows that we can always do this on a circle, and as
we add more and more particles this will lead to no new constraints.

C Towards coherence for anyon models on general graphs

In this section, we will discuss how our graph anyon models change when increasing particle number. In
particular, we will look into the coherence property of these anyon models – is there a particle number N0
above which no new consistency relations appear?

Firstly, let us discuss what coherence is and why it is a priori not clear that our anyon models have this
property. The coherence of anyon theory in the plane has been discussed e.g. in [39, 51]. Let us start with fusion
(monoidal) coherence. In order to formulate fusion coherence for N anyons, one considers a diagram whose
nodes are all the possible N -anyon fusion trees (N anyons at the top of the tree fusing to one total charge) and
the edges are the F -moves between the fusion trees. The coherence theorem for F -moves (fusion coherence)
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states that any sequence of F -moves between a fixed pair of nodes of such a diagram results in the same
morphism of the corresponding topological Hilbert spaces, provided that the pentagon equations are satisfied
(together with some trivially satisfied square diagrams). In other words, solving the consistency equations for
the F -moves in the case of N = 4 anyons implies that the entire theory is consistent for any N > 4. Similarly,
the braided coherence theorem states that any sequence of morphisms which involves F - and R-moves between
two fixed states results with the same morphism of the corresponding topological Hilbert spaces provided that
the pentagon and hexagon equations are satisfied. The proof of this theorem relies on more abstract results in
category theory, known as the Mac Lane monoidal (fusion) coherence theorem [49], and the braided coherence
theorem [60].

One of the first things to observe is that we do have the fusion coherence, since, as discussed in [18] and
in Section 3, we do not modify the fusion rules and we use the same F -symbols as the planar anyon models.
However, the braiding structure on networks is different. When considering higher numbers of anyons, more
and more topologically inequivalent generators of the graph braid group are introduced (see Section 3.1, further
details of which can be found in [6]). In order to faithfully represent the new generators of the graph braid
group, we introduce new symbols. For example, increasing the number of particles from three to four on a
trijunction introduces the new generators in Equation (16). Therefore, new consistency equations (expressing
the compatibility of fusion and braiding) are introduced; (18), (19), (21) and (24). As we explain in Section 7,
if the graph is sufficiently highly connected, we recover planar braiding, and therefore all the aforementioned
coherence theorems known from the planar anyon theory. However, all the biconnected and one-connected
graphs require separate treatment. For concreteness, we will next focus on a trijunction. The entire following
discussion extends mutatis mutandis to arbitrary graphs.

As we explained in Section 3, our aim is to build an anyon theory which faithfully represents topologi-
cally inequivalent graph braid group generators. This is done by assigning different symbols to topologically
inequivalent generators. If we solve all of the N -particle consistency equations, increasing the number of parti-
cles to N+1 introduces new generators and, in principle, new relations, which may not be satisfied by solutions
to the consistency equations for N particles. As we conjecture below, for every graph Γ there exists a certain
number N0(Γ ) such all the consistency relations for any N > N0(Γ ) are readily satisfied by the solutions to
the N = N0(Γ ) consistency relations. This is what we call the graph braided coherence conjecture. For the
trijunction, Γ = ΓT , we conjecture that N0(ΓT ) = 5. For the simplified anyon models defined in Section 3.2 (all
the symbols having at most four labels), we conjecture that N0(ΓT ) = 4.

What is more, we conjecture what the complete set of consistency relations looks like for any N . We
distinguish three types of consistency relations for anyon models on the trijunction that form the complete set
of relations: the pseudocommutative relations (Equation (47)), the analogues of the N = 3 hexagon relations
(Equation (50)) and the topological charge conservation relations.

1. The pseudocommutative relations. As we explain in Appendix A, a simple graph braid on the trijunc-
tion has the form

σ
(x(1),...,x(i−1),x(i),x(i+1))
i , (46)

where x(k) ∈ {1, 2} and x(i)< x(i+1). However, such simple braids form an over-complete generating set of
the corresponding graph braid group as they are subject to the following pseudocommutative relations [6, 48],
for j − i ≥ 2 and j > i

σ
(x(1),...,x( j+1))
j σ

(x(1),...,x(i+1))
i = σ(x(1),...,x(i+1))

i σ
(x(1),...,x(i−1),x(i+1),x(i),x(i+2),...,x( j+1))
j . (47)

An example of such a relation has been considered in Section 3.1 in Equation (20). The pseudocommutative
relations allow us to find a minimal generating set of the braid group for a junction of any valence (for junctions
other than just trijunctions, one needs to also consider certain pseudobraiding relations) [6, 18], ultimately
showing that graph braid groups for particles moving on a single junction are free groups [6]. In the case of the
trijunction, the minimal generating set consists of generators of the form

σ
(2,...,2,1,...,1,1,2)
j , (48)

where the first string of twos has length K and the second string of ones has length L, so that K + L + 1= j. In
other words, any simple braid σ(x(1),...,x(i−1),x(i),x(i+1))

i can be expressed as a product of the minimal generators
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of the form (48) with j ≤ i. Thus, the braiding exchange operator corresponding to any simple braid can be de-
termined from the braiding exchange operators representing the minimal generators (48) via the corresponding
polygon diagrams. Therefore, it is sufficient to assign different symbols to different minimal generators. For
N = 4, the relevant symbols are R, P, Q and B (see Section 3.1).

Importantly, any generator of the form (48) is effectively a four-particle exchange process (at most) and as
such can be expressed in terms of the R-, P-, Q- or B-symbols. To see this, consider the corresponding exchange
operator representing the simple braid

σ

�

2d1
,...,2dK ,1c1 ,...,1cL ,1a ,2b

�

j ,

where the anyons d1 × · · · × dK = f and the anyons c1 × · · · × cK = e are joined by a common fusion channel
and the total charge of the entire system is i. In such a basis, the fusion vertices e and f can be pulled through
the entire spacetime diagram of the exchange process, so that such a process effectively becomes a four-particle
process. Thus, the above simple braid can be represented by Bbae f

ghi , where g = a× b and h= g× e. If K = 0 or

L = 0 this reduces to P bae
gi or Qba f

gi respectively. Therefore, by the preceding discussion, we conclude that any
simple braid (46) can be expressed by the R-, P-, Q- and B-symbols. However, the resulting expressions can be
quite involved as they require using pseudocommutative relations repeatedly.

2. Analogues of the hexagons for higher particle number. Recall that the P- and Q-hexagons were
derived from the following relations expressing the fact that fusion commutes with graph braiding for N = 3
anyons on a trijunction [18],

σ
(1a ,2c)
1 σ

(2c ,1a ,2b)
2 = σ(1a ,2b×c)

1 , σ
(1b ,1a ,2c)
2 σ

(1b ,2c)
1 = σ(1a×b ,2c)

1 . (49)

One can lift the above relation in order to impose the commutativity of fusion and braiding for any N > 3 by
adding a string of particles from the side of the junction. This has been done for N = 4 in Equation (23). In
general, if the added particles have the charges d1, . . . , dM , we obtain the analogous relations for N = M + 3
by appending a sequence x =

�

x(1)d1
, . . . , x(M)dM

�

to each superscript in Equations (49). Here, x(k) ∈ {1,2}
denotes the branch of the trijunction visited by the kth anyon (of the charge dk with anyon d1 being the closest
one to the junction). The resulting lifted relations read

σ
( x , 1a , 2c)
M+1 σ

( x , 2c , 1a , 2b)
M+2 = σ( x , 1a , 2b×c)

M+1 , σ
( x , 1b , 1a , 2c)
M+2 σ

( x , 1b , 2c)
M+1 = σ( x , 1a×b , 2c)

M+1 . (50)

As explained in Section 3.1 for N = 4, the relations (50) show a key property of the graph-braided anyon
models. Namely, the graph braiding exchange operator representing a simple braid σ(x ,y,1,2)

i can be expressed
in terms of the graph braiding exchange operators representing the simple braid σ(x ,1,2)

i−1 . By repeating this

argument (i−1) times, we obtain that the graph braiding exchange operator representing a simple braidσ(x ,y,1,2)
i

can be expressed in terms of F - and R-symbols only.

Crucially, we have observed that the consistency relations (50) for M > 1 are readily implied by the (four-
particle) consistency relations for M = 1 (a statement which we will prove elsewhere). The four-particle
consistency relations are also presented in Section 3.1 in Equation (23) where we also explain that they lead to
the octagon Equations (24).

3. Charge conservation relations. As we explained in Section 3.1, the total charge of a given subset of
particles is conserved throughout an exchange process if this subset of particles can be enclosed by a disk such
that no particle enters or leaves the disk during the exchange, see Figure 5. This implies certain diagonality
conditions for the braiding exchange operators in appropriate bases. Namely, whenever the total charge of a
subset of particles is conserved during an exchange, the corresponding braiding exchange operator must be
diagonal in the basis where this subset of particles is joined by a common fusion channel. In particular, the
exchange operator representing a simple graph braid (46) has to be diagonal in the left-fused basis (see the top
panel of Figure 5). What is more, whenever x(k) = x(k + 1) in (46) for some k, the corresponding exchange
operator is diagonal in another basis where particles k and k+ 1 are joined by a common fusion channel. This
observation has been used to derive the N = 4 square diagrams for the X - and Y -symbols in Figure 7 and
Equations (18) and (19). For N > 4 this leads to fully analogous, but more complicated diagonality conditions.
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On the other hand, anyon models with simplified symbols introduced in Section 3.2 avoid these complications
as the charge conservation relations are automatically satisfied for these models. However, for the general (non-
simplified) models on a trijunction we conjecture that it is enough to satisfy the charge conservation relations
only for N ≤ 5.

D Half-twist of the world-ribbons on junctions

In this section, we view the anyon “world-ribbons" as ribbon braiding diagrams embedded in R3, see the
related work by Turaev [62]. The concept of half twist has been discussed in the categorical context in Refs.
[68, 35, 66].

By considering anyons’ world-lines as world-ribbons, we need to introduce some extra moves which induce
a half-twist (sometimes called a π-twist) of the world-ribbon at hand. Such a half-twist can be realised in the
planar theory in the way shown in Figure 30 and will be denoted by τ.

Figure 30: Half-twists of world-ribbons in the plane. For clarity, we colour the two sides of the ribbon by white
and blue. a) A world-ribbon half-twist in the plane, τ. b) Three consecutive half-twists are equivalent to the
simple exchange σ1. Note the orientations of the twists.

In order to incorporate the half-twists as morphisms of the topological Hilbert spaces, we denote the two
sides of the world-ribbon of anyon a by a (white ribbon) and A (blue ribbon) respectively. Let us start with the
simplest situation of a single world-ribbon. The resulting quantum states form the following Hilbert spaces

• two one-dimensional spaces Va and VA for the non-twisted ribbon,

• two one-dimensional spaces for the anti-clockwise twisted ribbon denoted by V a
A and V A

a ,

• two one-dimensional spaces for the clockwise twisted ribbon denoted by Ṽ a
A and Ṽ A

a .

Note that the ribbon half-twists are not local operations, as they change the boundary conditions at the end-
points of the world-ribbon. As such, they do not have corresponding gauge-invariant symbols. However,
because a twist is a morphism between two one-dimensional Hilbert spaces, we can represent it as a complex
number. Consequently, an anti-clockwise half-twist of a world-ribbon induces a morphism τ̂ between the one-
dimensional Hilbert spaces VA and V A

a or Va and V a
A . By picking bases of the relevant one-dimensional spaces

we can represent the morphism τ̂ by ( gauge dependent ) complex numbers TA
a and T a

A . Similarly, by τ̄ we
will denote the morphism between the vector spaces VA and Ṽ A

a or Va and Ṽ a
A with the clockwise twist. The

morphism ˆ̄τ will be represented by the complex number T̃A
a and T̃ a

A – see Figure 31.
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Figure 31: The morphisms τ̂ and ˆ̄τ representing the anti-clockwise and clockwise half-twists respectively.

Clearly, composing an anti-clockwise half-twist with a clockwise half-twist results in a trivial move, thus
we have the relations

TA
a T̃ a

A = 1, T a
A T̃A

a = 1.

What is more, two half-twists amount to a full twist represented by the twist factors. This gives rise to the
relation

TA
a T a

A = θA = θa.

In other words, there is a canonical isomorphism between the spaces V a
A and Ṽ a

A or V A
a and Ṽ A

a induced the full
twist and represented by the (gauge-invariant) twist factors θA = θa. Moreover, by the homotopy relation from
Figure 30b we can connect the T -symbols with the R-symbols via

T C
c

T a
A T b

B

= Rba
c .

A half-twist can be realised on a trijunction in the way where the ribbon visits edge (1) of the junction,
moves to edge (2) and goes back to its original position. Such a move will be denoted by τ(1,2) – see Figure 32a.
Similarly, for N = 2 world-ribbons we can define half-twists of the world-ribbon of the anyon which is further
from the junction. Then, the first anyon needs to make space for the half-twist by first moving either to edge (1)
or edge (2) of the junction. This leads to two independent ways of twisting the second anyon’s world-ribbon
which we denote by τ(112) and τ(212) respectively – see Figure 32b and Figure 32c.

Figure 32: Three independent world-ribbon half-twists for N = 2 anyons on a trijunction. For clarity, we colour
the two sides of the ribbon by white and blue. a) The move τ(1,2) where the world-ribbon of the anyon located
closest to the junction gets the half-twist. b) and c) The moves τ(112) and τ(212) where the world-ribbon of the
anyon located furthest from the junction gets the half-twist.

The trijunction half-twists are represented by analogous morphisms of the topological Hilbert spaces as it
was in the case of the half-twists in the plane. There also exists a trijunction counterpart of the relation from
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Figure 30b which reads (see also Figure 33)

τ(1c ,2C )τ(2B ,2A,1a)τ(2B ,1b) = τ(1a ,1b ,2B)σ
(1a ,2B)
1 τ(2B ,1b).

Figure 33: A relation between half-twists on the trijunction which is a counterpart of the relation between the
corresponding moves in the plane from Figure 30b.

The moves τ(1,2), τ(1,1,2) and τ(2,1,2) generalise to respective half-twists τ(1,2)
v , τ(1,1,2)

v and τ(2,1,2)
v on any

tree graph in a natural way by embedding them on a local trijunction at an essential vertex v.
There is an important difference between the half-twists in the planar anyon theory and the above introduced

half-twists in the anyon theory on networks. Namely, in 2D any spacetime diagram which involves fusion,
braiding and half-twists can be resolved using local R-moves and full twists provided that all the world-ribbons
that enter the diagram and leave the diagram are of the same colour (e.g. all white) [62]. An example of that is
shown in Figure 30b) where three half-twists are resolved by a single R-move. However, this is no longer true
for spacetime diagrams on a network. For instance, consider an analogous diagram involving three half-twists
of the world-ribbons which is shown on the leftmost panel in Figure 33. It is not possible to continuously
pull the bottom half-twist in the rightmost panel in Figure 33 through the σ(1,2)

1 graph braid to cancel the top
half-twist. Thus, it is not possible to resolve the spacetime diagram from the rightmost panel in Figure 33 using
an R-move.

D.1 Anyon models on the Θ-graph: proving Rba
e = R̃ba

e and Q̃bac
ed = R̃ba

e

In this section, we continue the proof from Section 7. Recall that the aim is to prove that any anyon model on
the Θ-graph yields a planar anyon model provided that the circular moves δ and δ̄ are represented by the same
D-symbols. Let us start with deriving the equality Rba

e = R̃ba
e , which means that the braiding exchange operators

at v and w are equal (in contrast to the H graph in Section 3.3 where these braiding exchange operators were
independent of each other).

Consider the lollipop embeddings ΓL,v and ΓL,w from Figure 21 and their corresponding three-anyon ∆v-
and∆w-moves (introduced in Section 5.1). We have the relations connecting the respective∆v- and∆w-moves
with the simple braids σv;(1,2)

1 and σw;(1,2)
1 via the δ-move (shown in Figure 34)

δ = σv;(1,2)
1 ∆v = σ

w;(1,2)
1 ∆w

which imply
σ

v;(1,2)
1 ∆v = σ

w;(1,2)
1 ∆w. (51)
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Figure 34: The homotopy equivalence σv;(1,2)
1 ∆v = δ. The same reasoning holds for the relation

σ
w;(1,2)
1 ∆w = δ associated with the lollipop subgraph ΓL,w.

Relation (51) translates to the following hexagon, where ∆v and ∆w are represented by the symbols G and
G̃ respectively.

Figure 35: The hexagon following from the relation (51). Note that all the states should be treated as states on
the Θ-graph. For the sake of the clarity of the presentation, the upper and lower paths of the diagram only show
the relevant embedded lollipops ΓL,v and ΓL,w from Figure 21.

Rca
g = R̃ca

g

∑

e,e′,e′′

�

�

F bac
d

�−1�

ge

�

G̃bac
d

�

ee′

�

�

Gbac
d

�−1�

e′e′′

�

F bac
d

�

e′′g . (52)

Next, we argue that the moves ∆v and ∆w are in fact represented by the same G-symbols. If this is the
case, then Equation (52) simplifies to the desired relation Rca

g = R̃ca
g . To prove the equality of the G-symbols,

consider an auxiliary move γ which takes an anyon around the top loop of the Θ-graph in an anti-clockwise
fashion (see the right panel in Figure 36). The move γ can be expressed via the δ-moves and a half-twist as

γ= δ̄δ−1τ(1,2)
w , (53)

where τ(1,2)
w is the world-ribbon half-twist at vertex w as defined at the beginning of Appendix D (Figure 32a).

This relation is proved in Figure 36.
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Figure 36: A pictorial proof of the homotopy equivalence of world-ribbons γ= δ̄δ−1τ(12)
w .

The assumption that both δ and δ̄ moves are represented by the same set of D-symbols implies that γ
induces the same morphisms of the topological Hilbert spaces as the half-twist τ(1,2)

w . In the remaining part
of this section, we assume that the half-twist τ(1,2)

w of the world-ribbon of anyon a is a morphism of one-
dimensional Hilbert spaces only (i.e. it does not depend on the spacetime histories of the remaining anyons in
the fusion tree). Under such an assumption, the morphism representing the half-twist τ(1,2)

w can be represented
as a complex number Ta. We have the relation

γ−1∆vγ=∆w, (54)

Figure 37: The homotopy equivalence γ−1∆vγ = ∆w. The left diagram includes two nontrivial half-twists of
the world ribbons implicitly included in the γ-moves via the relation (53). For the sake of simplicity, the ribbon
structure is not shown and only particles’ world lines are presented.

The relation (54) implies that ∆v =∆w (G = G̃ in terms of the G-symbols) – see Figure 38.
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Figure 38: The diagram following from the relation (54). Assuming that both circular moves δ and δ̄ are rep-
resented by the same D-symbols, the polygon implies T−1

c

�

Gbac
d

�

ee′ Tc =
�

G̃bac
d

�

ee′ , i.e.
�

G̃bac
d

�

ee′ =
�

Gbac
d

�

ee′ .
For the sake of simplicity, the ribbon structure is not shown and only particles’ world lines are presented.

Hence, using the fact that Gbac
d = G̃bac

d in (52), we obtain

Rca
g = R̃ca

g

∑

e,e′′

�

�

F bac
d

�−1�

ge
δee′′

�

F bac
d

�

e′′g = R̃ca
g .

Finally, let us show that Q̃bac
ed = R̃ba

e . To this end, we use another relation involving the γ-move which reads

γσ
w;(2,1,2)
2 γ−1 =

�

βv,2,
�

βv,1

�2�
σ

w;(1,2)
1

�

�

βv,1

�2
,βv,2

�

, (55)

where we use the notation involving the β-moves described in Appendix A. In order to prove relation (55), we
first note that the LHS is homotopy equivalent to

γσ
w;(2,1,2)
2 γ−1 = βv,2σ

w;(1,2)
1 β−1

v,2 .

Next, we expand the RHS and LHS completely in terms of the corresponding β-moves as follows.

βv,2σ
w;(1,2)
1 β−1

v,2 =
�

βv,2βw,1βw,2

�

�

β−1
w,1β

−1
w,2β

−1
v,2

�

,
�

βv,2,
�

βv,1

�2�
σ

w;(1,2)
1

�

�

βv,1

�2
,βv,2

�

=
��

βv,2,
�

βv,1

�2�
βw,1βw,2βv,2

�

×

×
�

β−1
v,2β

−1
w,1β

−1
w,2

�

�

βv,1

�2
,βv,2

��

.

Note that in the last equality we have not only expanded the braids in terms of β-moves, but also inserted an
extra expression βv,2β

−1
v,2 which is homotopy equivalent to the trivial move. In Figure 39 we prove the first

“half” of the relation (55), i.e.

βv,2βw,1βw,2
∼=
�

βv,2,
�

βv,1

�2�
βw,1βw,2βv,2. (56)

The homotopy equivalence of the other pair of the relevant terms follows in an analogous way.
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Figure 39: A pictorial proof of the homotopy equivalence (56).

Let us next consider the polygon which corresponds to the relation (55). In the leftmost and rightmost
pictures of the Figure 39 we can see that most of the relevant moves do not split the worldlines of anyons a and
b which start as the furthest ones from the vertex v. Thus, we can fuse the two anyons in the common channel
e = a× b to simplify the corresponding polygon equation so that no F -moves are used (see Figure 40).

Figure 40: The polygon following from the relation (55).

The polygon from Figure 40 yields
Tc Q̃bac

ed T−1
c = Rce

d R̃ba
e Rce

d ,

which implies Q̃bac
ed = R̃ba

e .
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E Solving the graph braid polygon equations

Solving the graph braid equations for a graph Γ and a set of anyons, whose fusion theory is described by a
given set of F -symbols, comes down to solving a system of polynomial equations. These are determined by the
various commuting diagrams, in particular

(a) if Γ is the lollipop graph, equations (13), (14), (34), and (29) must be satisfied, while

(b) if Γ is the trijunction, equations (13) and (14) must be satisfied (for three particles) together with some
extra equations for four particles: (62), (60), (61), and (63).

In what follows we will assume that the F -symbols are given a priori. To solve the graph braid equations we
implemented algorithms in the Wolfram Language that can be broken down into the following routines.

1. Setting up the relevant equations.

2. Solving all (monomial) equations of the form m1 = m2, where mi are monomials.

3. Substituting solutions from the previous step in the remaining equations. If some equations become
monomial equations, return to the previous step and repeat. If there are no new monomial equations the
remaining system is solved using the built-in Solve function of the Wolfram Language.

Since for both the lollipop and trijunction graphs, equations (13) and (14) need to be satisfied, it is beneficial
to start by searching for admissible sets of P,Q, and R-symbols for each given set of F -symbols. By inverting
some of the arrows and going around the whole hexagon, these equations can be re-expressed in terms of P and
Q as follows

P cab
ed δee′ =

∑

f ,g

�

(F acb
d )−1

�

ge′
�

F cab
d

�

e f Rc f
d

�

F abc
d

�

f g (R
cb
g )
−1, (57)

Qbac
ed δee′ =

∑

f ,g

�

F bac
d

�

e′g (R
ca
g )
−1
�

(F bca
d )−1

�

g f R f a
d

�

(F abc
d )−1

�

f e . (58)

Here the δee′ appears as a consequence of the fact that we demand P and Q to preserve the charge e. For e 6= e′

we get a consistency equation on the R-symbols which can be solved in terms of R. When e = e′ we get a
definition for the P and Q symbols in terms of the R-symbols we solved for.

For the trijunction with three particles, no extra equations need to be added. For systems with four particles,
there are four new simple braid generators σ(1,2,1,2)

3 ,σ(2,1,1,2)
3 ,σ(1,1,1,2)

3 , and σ(2,2,1,2)
3 for which we use the

symbols A, B, X , Y respectively.
In the following, we will work with the following convention for fusion labels for four particles

a× b = f , a× c = n, a× d = m, a× b× c = g, a× b× d = j,

b× c = h, b× d = y, c × d = l, a× c × d = r, b× c × d = k.
(59)

First of all, we need to take into account the fact that both X and Y can be expressed in terms of P and Q
after a change of basis. Equation (18), together with its counterpart for Y , can be rewritten as

X bacd
f ge δg g ′ =

∑

l

�

F f cd
e

�

gl P bal
f e

�

(F f cd
e )−1

�

l g ′ , (60)

Y bacd
f ge δg g ′ =

∑

l

�

F f cd
e

�

gl Qbal
f e

�

(F f cd
e )−1

�

l g ′ . (61)

Second, there is the pseudocommutative relation (21) which can be rewritten as the following demand

Abadc
f je δ j j′ =

∑

l,g,l ′

�

F f dc
e

�

jl Rdc
l

�

(F f cd
e )−1

�

l g Bbacd
f ge

�

F f cd
e

�

gl ′ (R
dc
l ′ )
−1
�

(F f dc
e )−1

�

l ′ j′ . (62)
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Last, we need to take account of equations (23). Although there are four equations in total, three of these
are satisfied once we demand that equations (60), (61), (62) together with the N = 3 P- and Q-hexagons hold.
The only independent equation that remains is then

δnn′δg g ′B
cabd
nge =

∑

f ,h,k

�

F cab
g

�

nf
Qc f d

ge

�

F abc
g

�

f h

�

F ahd
e

�

gk (Q
cbd
hk )

−1
�

(F ahd
e )−1

�

kg ′

�

(F acb
g ′ )

−1
�

hn′
. (63)

Just like for the P and Q symbols some of these equations can be used as defining equations and others
as consistency requirements. Interestingly, once the R, P, and Q symbols are known, no equations need to be
solved since all the new equations have a right-hand side that is completely determined by the values of R, P,
and Q. Since there are now multiple equations that define the same symbols one should also check that the
definitions are consistent with one another.

For the lollipop graph, extra constraints on the P and R-symbols (34) together with equations (29) for
the D-symbols, need to be added. The equations for the D-symbols can be solved separately. If there is no
gauge freedom left after fixing the F -symbols then the solutions to the lollipop equations consist of all possible
combinations of solutions to the circle equations (29) with solutions to equations (13), (14), and (34). Of all the
anyon models we investigated there is only one model which has gauge freedom left after fixing the F -symbols:
Z2×Z2. The method with which we constructed solutions to the lollipop equations for Z2×Z2 is described in
H.3. Once the lollipop equations were solved we checked the planarity of the solutions by checking whether
Rab

e ≡ Pabc
ed ≡Qabc

ed and Dab
e ≡ Rab

e D1b
b .

Normally, before solving the equations, it is beneficial to break gauge symmetry. As explained in Section
(2), given a solution for the graph braid equations one can create an infinite set of other solutions by acting
with a gauge transformation. Breaking such symmetry greatly reduces computation time as the number of
variables, equations, and solutions decreases. Apart from the F -symbols, all symbols correspond to exchanging
and therefore transform in the same way:

S′ =
uab

x

uba
x

S. (64)

Since the F -symbols are given a priori we do have the extra demand that the F -symbols are invariant under such
transforms. Interestingly, for all sets of F -symbols we considered with the exception of Z2 × Z2, demanding
gauge invariance results in removing all gauge freedom in the remaining symbols. For Z2 ×Z2 the remaining
gauge transforms form a Z2 group and we removed this symmetry after solving the equations.

Solving systems of monomial equations can be done using linear algebra. Indeed, because none of the
variables appearing in the graph braid equations are allowed to be 0, one can take a logarithm of the monomial
equations to convert them to a set of linear equations with integer coefficients. Each equation only holds modulo
an integer times 2πi due to the multivaluedness of the logarithm. Solving a system of linear equations modulo a
discrete subspace can be done by computing a Smith normal form [56]. Once the linear system has been solved
one can exponentiate the solutions, which typically contain some continuous freedom, and substitute them back
in the original equations. The system of equations then reduces to a smaller system which might contain new
monomial equations. If so, one only needs to repeat the above procedure until no monomial equations are left.
To solve the remaining equations the built-in Solve command from Mathematica was used.

For the rings of type SU(2)k and PSU(2)k, we did not have access to all solutions to the pentagon equations
and made do with a single solution, obtained using the methods in [7]. Moreover, the specific form of the
solutions for k an odd number were too complicated to derive the solutions symbolically. Eventually, we did
find symbolic solutions by solving the systems numerically and reverting the numeric solutions to roots of
polynomial equations. All solutions obtained this way were found to be correct with an accuracy of 1000
decimal digits, and an infinite precision (meaning the computer used as many internal extra digits as needed to
ensure all 1000 digits are correct).

F Graph braiding obstruction for Tambara-Yamagami models

In this section we will describe the obstruction to a solution of the d valent star graph braiding hexagon equa-
tions for Tambara Yamagami over G, unless G is Z2 to some power. We will focus on d = 3, a trijunction,
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however, the analysis in [18], shows that this is true for any valence. We will examine the expressions for
Pσσσgσ to deduce that χ(g1, g2) = χ(g1, g2). This then implies that χ(g2

1 , g2) = 1 for all g1, g2 ∈ G and since
χ is a non-degenerate bi-character we must have that g2

1 is the group unit for all g1. We begin with (14) and
a = b = c = d = σ

Pσσσgσ κτ−1χ(g, f )Rσσf = κ2τ−2
∑

e

χ(g, e)Rσe
σ χ(e, f ). (65)

The values for g, f and e are group elements since they come from the multiplication of two σ particles, we
denote them as g1, g2 and g3 respectively. Additionally, the only label that will matter for Pσσσg1σ

is g1 so we
will write Pσσσg1σ

:= P(g1). The equation for P using this notation and configuration of anyons is given by

P(g1) = κτ
−1χ(g1, g2) Rσσg2

∑

g3

χ(g1 g2, g3) Rσg3
σ , ∀g2 ∈ G. (66)

Now substitute g1h for g1 and h−1 g2 for g2, where h is an arbitrary element of G. Then we get that,

P(g1h) = κτ−1χ(g1h, h−1 g2)Rσσh−1 g2

∑

g3

χ(g1 g2, g3) Rσg3
σ , ∀h, g2 ∈ G. (67)

All of the left-hand-sides and right-hand-sides of expressions (66) and (67) are non zero complex numbers
so we can perform the quotient. Since both have the same terms in the sum over g3, we get the following
expression,

P(g1)
P(g1h)

=
χ(g1, g2)Rσσg2

χ(g1h, h−1 g2)Rσσh−1 g2

(68)

=
χ(g1, g2)Rσσg2

χ(g1, g2)χ(g, h−1)χ(h, h−1)χ(h, g2)Rσσh−1 g2

(69)

= Rσσh−1 g2
Rσσg2

χ(g1hg−1
2 , h−1), ∀h, g2 ∈ G. (70)

where we have used the fact that χ is a symmetric bicharacter to expand, and then simplify, the denominator.
Furthermore, since h is arbitrary, we can fix h= g−1

1 to get

P(g1)
P(1)

= Rσσg1 g2
Rσσg2

χ(g−1
2 , g1), ∀g2 ∈ G. (71)

In particular for g2 = 1, the vacuum charge, this expression simplifies to,

P(g1)
P(1)

= Rσσg1
Rσσ1 . (72)

We can combine equation (71) with (72) to get the following equation

Rσσg1 g2
Rσσg2

χ(g−1
2 , g1) = Rσσg1

Rσσ1 , ∀g2 ∈ G. (73)

Using the fact that χ is a symmetric bicharacter, we can rearrange this equation to get

Rσσg1 g2
=

Rσσg1
Rσσg2

Rσσ1 χ(g1, g2)
. (74)

Since the expressions for Qσσσg1σ
in equation (13) have inverse F - symbols, if we follow the same steps we get,

Rσσg1 g2
=

Rσσg1
Rσσg2

Rσσ1 χ(g1, g2)
(75)

But both of these expressions must be simultaneously true so we can equate them to deduce;

χ(g1, g2) = χ(g1, g2). (76)

Therefore there are only solutions for the graph braiding hexagon equations for the Tambara-Yamagami fusion
category if G is Z2 to some power.
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G Solutions for the Ising model

The Ising fusion ring has 3 particles, 1,ψ,σ subject to the multiplication rules

1× a = a× 1= a, ∀ a ∈ {1,ψ,σ}, (77)

ψ×ψ= 1, σ×ψ=ψ×σ = σ, σ×σ = 1+ψ. (78)

In the following section we will list the solutions to various equations for the Ising model. To save space we
omit any well-defined symbol equal to 1. By well-defined we mean that the fusion tree corresponding to the
symbol exists.

G.1 Solutions to the pentagon equations

There are two solutions to the pentagon equations for the Ising fusion ring. Both solutions share the same
values for the following F symbols

[Fψσψσ ]σσ = [F
σψσ
1 ]σσ = [F

σσψ
1 ]ψσ = [F

σσψ

ψ
]1σ = −1, (79)

but have a different sign for the F -matrix

�

Fσσσσ

�

= ±
1
p

2





1 −1

1 1



 . (80)

We will denote these solutions by Fκ where κ = ±1. Note that some of the F -symbols in these solutions are
gauge dependent and so they may differ from those in other works. In, e.g. [51, 58] and [73], a gauge is used
such that

�

Fσσσσ

�

= ±
1
p

2





1 1

1 −1



 . (81)

G.2 Solutions to the planar hexagon equations

Each set of F -symbols allows four solutions to the planar hexagon equations. They can be parameterized as
follows:

Rψψ1 = −1, Rψσσ = Rσψσ = ε1i, Rσσ1 =
�κε1

i

�
1+κ

2 iε2+1e−ε1
iπ
8 , Rσσ1 =

�κε1
i

�
1−κ

2 iε2+1e−ε1
iπ
8 ,

where εi ∈ {−1, 1}.

G.3 Solutions to the trijunction equations

G.3.1 Three particles

For three particles each solution to the pentagon equation gives rise to two classes of solutions to the trijunction
equations. Each class of solutions are parameterized by two complex phases z1, z2. To save space we will not
denote the symbols Pab1

ed ≡ Qab1
ed since these are equal to the R-symbols Rab

e . The four combinations of F -and
R-symbols have the following form

Pψψψ1ψ = 1
z1

, Pψψσ1σ = −1, Pψσψσσ = −εiz1
, Pψσσσ1 = −εiz1, Pψσσ

σψ
= εi, Pσψψσσ = εi,

Pσψσσ1 = εi, Pσψσ
σψ

= εi, Pσσψ1ψ = z2, Pσσψ
ψ1 = εiz2, Pσσσ1σ = κ

z2
e−

εiπ
4 , Pσσσ

ψσ
= κ

z2
e
εiπ
4 ,

Qψψψ1ψ = 1
z1

, Qψψσ1σ = −1, Qψσψσσ = εi, Qψσσσ1 = εi, Qψσσ
σψ

= εi, Qσψψσσ = −εiz1
,

Qσψσσ1 = −εiz1, Qσψσ
σψ

= εi, Qσσψ1ψ = z2, Qσσψ
ψ1 = εiz2, Qσσσ1σ = κ

z2
e−

εiπ
4 , Qσσσ

ψσ
= κ

z2
e
εiπ
4 ,

Rψψ1 = z1, Rψσσ = εi, Rσψσ = εi, Rσσ1 = z2, Rσσ
ψ
= εiz2,

where ε ∈ {−1, 1}. We will label each solution by T (3)κ,ε .
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G.3.2 Four particles

For four particles, the trijunction equations can only be satisfied if z1 = −1 (which implies Rψψ1 = −1) and
therefore the solutions have the property that P ≡ Q. Note that this does not necessarily imply that P ≡ R, i.e.
that the solutions are planar. The solutions are then described by adding to the T (3)κ,ε the respective values of the
A, B, X , and Y symbols which we will describe here. All symbols with a 1 as the third or fourth top label are P,
Q, or R symbols and will therefore not be listed.

For the Ising model, it turns out that all symbols with the same labels are equal to each other. We can thus
write the solutions in terms of the symbol M , where M could be any of A, B, X , Y . The solutions then read

Mψψcd
f ge ≡ −1 (82)

Mσψcd
f ge ≡ Mψσcd

f ge ≡ εi (83)

Mσσcd
f ge =



















z2 if c = d and f = 1

εiz2 if c = d and f =ψ
κ
z2

exp
�−εiπ

4

�

if c 6= d and f = 1
κ
z2

exp
�

εiπ
4

�

if c 6= d and f =ψ

(84)

where c, d ∈ {ψ,σ}, f , g, e ∈ {1,ψ,σ}, and the value of κ and ε are fixed by the choice of T (3)κ,ε .

G.4 Solutions to the lollipop equations

G.4.1 Lollipop trijunction

For the Ising model on the trijunction, on the lollipop, the demand that Pabc
ed ≡ Rab

e implies that the solutions
must be planar. In particular, the solutions are the four solutions for the planar hexagon equations with the
addition of the P-and Q symbols, which obey Pabc

ed ≡Qabc
ed ≡ Rab

e .

G.4.2 Circle solutions

There are sixteen solutions to the circle equations for each set of F -symbols. They can be written as

D1ψ
ψ
= −1, D1σ

σ = exp
�

iπ
−2− ν1 + 4ν2 − 2κ

8

�

, Dψσσ = −ν1 exp
�

iπ
2− ν1 + 4ν2 − 2κ

8

�

,

Dσψσ = ν1i, Dσσ1 = ν3, Dσσψ = ν4i,

where the νi ∈ {−1, 1} and κ is fixed by the choice of F -symbols. In particular we find that, per set of F -
symbols, there are four possible values for the generalized topological spins. These coincide with the values of
the topological spins for planar Ising anyons.

G.4.3 Full lollipop solutions

There are 32 solutions to the full lollipop equations per set of F -symbols. Because there is no gauge freedom
left after fixing a set of F -symbols, for a given set of F -symbols any solution can be found by combining a
solution to the lollipop trijunction equations with matching label κ with a solution to the circle equations with
matching label κ.

H Solutions for the quantum double of Z2

The quantum double of Z2 is a model with four anyons 1, e, m,ε that follow the fusion rules of Z2 × Z2 (via,
e.g., the identification 1 = (0, 0), e = (1,0), m = (0,1),ε = (1, 1)) and for which [F abc

d ]e f ≡ 1 for each
well-defined F -symbol. This model arises as the excitations in the Toric code model with gauge group Z2 [40].
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H.1 Solutions to the planar hexagon equations

There are eight gauge-independent planar hexagon solutions:

Rεε1 = ν1, Rεem = ν2, Rεme = ν1ν2, Ree
1 = ν3, Rem

ε = ν3, Rmε
e = ν1, Rme

ε = ν2ν3, Rmm
1 = ν1ν2ν3,

where νi ∈ {−1,1}.

H.2 Solutions to the trijunction equations

The trijunction equations that impose constraints on any of the R-symbols are trivially satisfied. Therefore, we
find that all non-trivial R-symbols are free parameters

Rεε1 = z1, Rεem = z2, Rεme = z3, Reε
m = z4, Ree

1 = z5, Rem
ε = z6, Rmε

e = z7, Rme
ε = z8, Rmm

1 = z9,

and all other symbols can be expressed in terms of these free parameters. To save space we will omit the
symbols Pab1

ed ≡Qab1
ed since these are equal to the R-symbols Rab

e . The P-and Q symbols are the following

Pεεε1ε =
1
z1

, P eεε
me =

1
z4

, Pmεε
em = 1

z7
, Qεεε1ε =

1
z1

, Qeεε
me =

z7
z1

, Qmεε
em = z4

z1
,

Pεεe1e =
z3
z2

, P eεe
mε =

z6
z5

, Pmεe
e1 = z9

z8
, Qεεe1e =

z7
z4

, Qeεe
mε =

1
z4

, Qmεe
e1 = z1

z4
,

Pεεm1m = z2
z3

, P eεm
m1 =

z5
z6

, Pmεm
eε = z8

z9
, Qεεm1m =

z4
z7

, Qeεm
m1 =

z1
z7

, Qmεm
eε = 1

z7
,

Pεeεme =
z3
z1

, P eeε
1ε =

z6
z4

, Pmeε
ε1 = z9

z7
, Qεeεme =

1
z2

, Qeeε
1ε =

z8
z2

, Qmeε
ε1 =

z5
z2

,

Pεee
mε =

1
z2

, P eee
1e =

1
z5

, Pmee
εm = 1

z8
, Qεee

mε =
z8
z5

, Qeee
1e =

1
z5

, Qmee
εm =

z2
z5

,

Pεem
m1 =

z1
z3

, P eem
1m = z4

z6
, Pmem

εe = z7
z9

, Qεem
m1 =

z5
z8

, Qeem
1m =

z2
z8

, Qmem
εe = 1

z8
,

Pεmεem = z2
z1

, P emε
ε1 = z5

z4
, Pmmε

1ε = z8
z7

, Qεmεem = 1
z3

, Qemε
ε1 =

z9
z3

, Qmmε
1ε = z6

z3
,

Pεme
e1 = z1

z2
, P eme

εm = z4
z5

, Pmme
1e = z7

z8
, Qεme

e1 = z9
z6

, Qeme
εm =

1
z6

, Qmme
1e = z3

z6
,

Pεmm
eε = 1

z3
, P emm

εe = 1
z6

, Pmmm
1m = 1

z9
, Qεmm

eε = z6
z9

, Qemm
εe = z3

z9
, Qmmm

1m = 1
z9

.

We can observe some interesting features in this table, namely when all of the particles are of the same type we
find Paaa =Qaaa.
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H.2.1 Four particles

For four particles we have the following solutions.

Value of M Value of M Value of M

A B X Y A B X Y A B X Y

Mεεεε
1ε1 z1 z1 z1 z1 M eεεε

mem
z1
z7

z1
z7

z4 z4 M mεεε
eme

z1
z4

z1
z4

z7 z7

Mεεεe
1εm

z2
z3

z4
z7

z2
z3

z4
z7

M eεεe
me1

z2z9
z3z8

z4
z5
z6

z1
z7

M mεεe
emε

z2z6
z3z5

z4
z1

z8
z9

1
z7

Mεεεm
1εe

z3
z2

z7
z4

z3
z2

z7
z4

M eεεm
meε

z3z8
z2z9

z7
z1

z6
z5

1
z4

M mεεm
em1

z3z5
z2z6

z7
z9
z8

z1
z4

Mεεeε
1em

z4
z7

z2
z3

z2
z3

z4
z7

M eεeε
mε1 z4

z2z9
z3z8

z5
z6

z1
z7

M mεeε
e1ε

z4
z1

z2z6
z3z5

z8
z9

1
z7

Mεεee
1e1

z5z9
z6z8

z5z9
z6z8

z1 z1 M eεee
mεm

z5
z6

z5
z6

z4 z4 M mεee
e1e

z3z5
z2z6

z3z5
z2z6

z7 z7

Mεεem
1eε

z6z8
z5z9

z6z8
z5z9

1
z1

1
z1

M eεem
mεe

z6
z5

z3z8
z2z9

1
z4

z7
z1

M mεem
e1m

z2z6
z3z5

z8
z9

1
z7

z4
z1

Mεεmε
1me

z7
z4

z3
z2

z3
z2

z7
z4

M eεmε
m1ε

z7
z1

z3z8
z2z9

z6
z5

1
z4

M mεmε
eε1 z7

z3z5
z2z6

z9
z8

z1
z4

Mεεme
1mε

z6z8
z5z9

z6z8
z5z9

1
z1

1
z1

M eεme
m1e

z3z8
z2z9

z6
z5

1
z4

z7
z1

M mεme
eεm

z8
z9

z2z6
z3z5

1
z7

z4
z1

Mεεmm
1m1

z5z9
z6z8

z5z9
z6z8

z1 z1 M eεmm
m1m

z2z9
z3z8

z2z9
z3z8

z4 z4 M mεmm
eεe

z9
z8

z9
z8

z7 z7

Mεeεε
mem

z1
z3

z1
z3

z2 z2 M eeεε
1ε1

z1z9
z3z7

z1z9
z3z7

z5 z5 M meεε
ε1ε

z1z6
z3z4

z1z6
z3z4

z8 z8

Mεeεe
me1 z2

z4z9
z6z7

z1
z3

z5
z8

M eeεe
1εm

z2
z8

z4
z6

z4
z6

z2
z8

M meεe
ε1e

z2
z5

z3z4
z1z6

z7
z9

1
z8

Mεeεm
meε

z3
z1

z6z7
z4z9

1
z2

z8
z5

M eeεm
1εe

z3z7
z1z9

z3z7
z1z9

1
z5

1
z5

M meεm
ε1m

z3z4
z1z6

z7
z9

1
z8

z2
z5

Mεeeε
mε1

z4z9
z6z7

z2
z1
z3

z5
z8

M eeeε
1em

z4
z6

z2
z8

z4
z6

z2
z8

M meeε
εme

z3z4
z1z6

z2
z5

z7
z9

1
z8

Mεeee
mεm

z5
z8

z5
z8

z2 z2 M eeee
1e1 z5 z5 z5 z5 M meee

εmε
z5
z2

z5
z2

z8 z8

Mεeem
mεe

z6z7
z4z9

z8
z5

z3
z1

1
z2

M eeem
1eε

z6
z4

z8
z2

z6
z4

z8
z2

M meem
εm1

z1z6
z3z4

z8
z9
z7

z5
z2

Mεemε
m1ε

z6z7
z4z9

z3
z1

1
z2

z8
z5

M eemε
1me

z3z7
z1z9

z3z7
z1z9

1
z5

1
z5

M memε
εem

z7
z9

z3z4
z1z6

1
z8

z2
z5

Mεeme
m1e

z8
z5

z6z7
z4z9

z3
z1

1
z2

M eeme
1mε

z8
z2

z6
z4

z6
z4

z8
z2

M meme
εe1 z8

z1z6
z3z4

z9
z7

z5
z2

Mεemm
m1m

z4z9
z6z7

z4z9
z6z7

z2 z2 M eemm
1m1

z1z9
z3z7

z1z9
z3z7

z5 z5 M memm
εeε

z9
z7

z9
z7

z8 z8

Mεmεε
eme

z1
z2

z1
z2

z3 z3 M emεε
ε1ε

z1z8
z2z7

z1z8
z2z7

z6 z6 M mmεε
1ε1

z1z5
z2z4

z1z5
z2z4

z9 z9

Mεmεe
emε

z2
z1

z4z8
z5z7

1
z3

z6
z9

M emεe
ε1e

z2z7
z1z8

z4
z5

1
z6

z3
z9

M mmεe
1εm

z2z4
z1z5

z2z4
z1z5

1
z9

1
z9

Mεmεm
em1 z3

z5z7
z4z8

z1
z2

z9
z6

M emεm
ε1m

z3
z9

z2z7
z1z8

z4
z5

1
z6

M mmεm
1εe

z3
z6

z7
z8

z7
z8

z3
z6

Mεmeε
e1ε

z4z8
z5z7

z2
z1

1
z3

z6
z9

M emeε
εme

z4
z5

z2z7
z1z8

1
z6

z3
z9

M mmeε
1em

z2z4
z1z5

z2z4
z1z5

1
z9

1
z9

Mεmee
e1e

z5z7
z4z8

z5z7
z4z8

z3 z3 M emee
εmε

z5
z4

z5
z4

z6 z6 M mmee
1e1

z1z5
z2z4

z1z5
z2z4

z9 z9

Mεmem
e1m

z6
z9

z4z8
z5z7

z2
z1

1
z3

M emem
εm1 z6

z1z8
z2z7

z5
z4

z9
z3

M mmem
1eε

z6
z3

z8
z7

z8
z7

z6
z3

Mεmmε
eε1

z5z7
z4z8

z3
z1
z2

z9
z6

M emmε
εem

z2z7
z1z8

z3
z9

z4
z5

1
z6

M mmmε
1me

z7
z8

z3
z6

z7
z8

z3
z6

Mεmme
eεm

z4z8
z5z7

z6
z9

z2
z1

1
z3

M emme
εe1

z1z8
z2z7

z6
z5
z4

z9
z3

M mmme
1mε

z8
z7

z6
z3

z8
z7

z6
z3

Mεmmm
eεe

z9
z6

z9
z6

z3 z3 M emmm
εeε

z9
z3

z9
z3

z6 z6 M mmmm
1m1 z9 z9 z9 z9

We can notice here again, when all of the particles are the same type the graph braid symbols are equal, i.e.
X aaaa = Y aaaa = Aaaaa = Baaaa.

H.3 Solutions to the lollipop equations
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H.3.1 Lollipop trijunction solutions

In contrast to the Ising model, demanding that Pabc
ed ≡ Rab

e does not necessarily imply that the solutions must
be planar. There are 32 solutions in total which can be presented as follows:

R22
1 = ν1, R23

4 = ν2, R24
3 = ν1ν2, R32

4 = ν3, R33
1 = ν4, R34

2 = ν3ν4, R42
3 = −1, R43

2 = ν5, R44
1 = −ν5

and
Value of M Value of M Value of M

P Q P Q P Q

Mεεε
1ε ν1 ν1 M eεε

me ν3 −ν1 M mεε
em −1 ν1ν3

Mεεe
1e ν1 −ν3 M eεe

mε ν3 ν3 M mεe
e1 −1 ν1ν3

Mεεm
1m ν1 −ν3 M eεm

m1 ν3 −ν1 M mεm
eε −1 −1

Mεeε
me ν2 ν2 M eeε

1ε ν4 ν2ν5 M meε
ε1 ν5 ν2ν4

Mεee
mε ν2 ν4ν5 M eee

1e ν4 ν4 M mee
εm ν5 ν2ν4

Mεem
m1 ν2 ν4ν5 M eem

1m ν4 ν2ν5 M mem
εe ν5 ν5

Mεmε
em ν1ν2 ν1ν2 M emε

ε1 ν3ν4 −ν1ν2ν5 M mmε
1ε −ν5 ν1ν2ν3ν4

Mεme
e1 ν1ν2 −ν3ν4ν5 M eme

εm ν3ν4 ν3ν4 M mme
1e −ν5 ν1ν2ν3ν4

Mεmm
eε ν1ν2 −ν3ν4ν5 M emm

εe ν3ν4 −ν1ν2ν5 M mmm
1m −ν5 −ν5

(85)

where νi ∈ {−1,1}. Demanding planarity then comes down to demanding that ν1 = −ν3 and ν2 = ν4ν5.
The loss of two binary degrees of freedom thus implies that only one out of four solutions are planar. We find
here again Paaa =Qaaa.

H.3.2 Circle solutions

There are 128 solutions to the circle equations. They can be presented as follows:

D1ε
ε = µ1, D1e

e = µ2, D1m
m = µ3, Dεε1 = µ4, Dεem = µ5, Dεme = µ6,

Deε
m = µ3µ5, Dee

1 = µ7, Dem
ε = −µ1, Dmε

e = µ2µ6, Dme
ε = −1, Dmm

1 = µ4µ7,
(86)

where µi ∈ {−1,1}. The twist factors are the same as in the planar case.

H.3.3 Full lollipop solutions

In contrast to the Ising model, after fixing the F -symbols, there is a discrete Z2 gauge symmetry left that has
the following form:

Mεe
m 7→ −Mεe

m , Mεm
e 7→ −Mεm

e , M eε
m 7→ −M eε

m ,

M em
ε 7→ −M em

ε , M mε
e 7→ −M mε

e , M me
ε 7→ −M me

ε ,

for M = R and M = D, and

Mεec
md 7→ −Mεec

md , Mεmc
ed 7→ −Mεmc

ed , M eεc
md 7→ −M eεc

md ,

M emc
εd 7→ −M emc

εd , M mεc
ed 7→ −M mεc

ed , M mec
εd 7→ −M mec

εd ,

for M = P and M =Q. For the solutions to the lollipop trijunction equations and the circle equations, described
in sections H.3.1 and H.3.2, this gauge symmetry has been removed. To construct the full solution set to the
lollipop equations one should therefore re-introduce these gauge equivalent solutions, construct all products
between solutions to the trijunction lollipop equations and circle equations, and finally remove this gauge
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symmetry again. This set has twice the size of the product set of gauge-inequivalent solutions. It can easily
be constructed by taking the product of the lollipop trijunction solutions and the following set of non-reduced
solutions to the circle equations

D1ε
ε = µ1, D1e

e = µ2, D1m
m = µ3, Dεε1 = µ4, Dεem = σµ5, Dεme = σµ6,

Deε
m = σµ3µ5, Dee

1 = µ7, Dem
ε = −σµ1, Dmε

e = σµ2µ6, Dme
ε = −σ, Dmm

1 = µ4µ7,
(87)

where σ ∈ {−1,1} reintroduces the Z2 gauge freedom.

I Solutions for the TY(Z3)model

The TY(Z3) fusion ring has 4 particles, 1,ψ1,ψ2,σ, where {1,ψ1,ψ2} form a Z3 subgroup, and

1× a = a× 1= a, ∀a ∈ {1,ψ1,ψ2,σ}, (88)

σ× b = b×σ = σ, ∀a ∈ {1,ψ1,ψ2}, (89)

σ×σ = 1+ψ1 +ψ2. (90)

In the following sections we will list the solutions to the pentagon equations as well as the circle equations. All
other equations admit no solutions. We omit any well-defined symbol equal to 1.

I.1 Solutions to the pentagon equations

There are four solutions to the pentagon equations which can be presented as follows:

[Fσσψ1
ψ1

]1σ = κ1, [Fσσψ2
ψ2

]1σ = κ1, [Fσψ1σ

ψ1
]σσ = e−

2
3 iπκ1κ2 , [Fσψ1σ

ψ2
]σσ = e

2
3 iπκ1κ2 ,

[Fσψ1ψ2
σ ]σ1 = κ1, [Fσψ2σ

ψ1
]σσ = e

2
3 iπκ1κ2 , [Fσψ2σ

ψ2
]σσ = e−

2
3 iπκ1κ2 , [Fσψ2ψ1

σ ]σ1 = κ1,

[Fψ1σσ

ψ1
]σ1 = κ1, [Fψ1σψ1

σ ]σσ = e−
2
3 iπκ1κ2 , [Fψ1σψ2

σ ]σσ = e
2
3 iπκ1κ2 , [Fψ1ψ1ψ2

ψ1
]ψ21 = κ1,

[Fψ1ψ2σ
σ ]1σ = κ1, [Fψ1ψ2ψ2

ψ2
]1ψ1

= κ1, [Fψ2σσ

ψ2
]σ1 = κ1, [Fψ2σψ1

σ ]σσ = e
2
3 iπκ1κ2 ,

[Fψ2σψ2
σ ]σσ = e−

2
3 iπκ1κ2 , [Fψ2ψ1σ

σ ]1σ = κ1, [Fψ2ψ1ψ1
ψ1

]1ψ2
= κ1, [Fψ2ψ2ψ1

ψ2
]ψ11 = κ1,

�

Fσσσσ

�

=
1
p

3









κ1 1 1

1 eiπ( κ1
6 +

1
2)κ2 e−iπ( κ1

6 +
1
2)κ2

1 e−iπ( κ1
6 +

1
2)κ2 eiπ( κ1

6 +
1
2)κ2









,

where κ1,κ2 ∈ {−1, 1} and the matrix indices of
�

Fσσσσ

�

range over (1,ψ1,ψ2).

I.2 Solutions to the circle equations

In contrast to the planar hexagon equations, we now find there are 48 solutions, per set of F -symbols, to the
circle equations. Let εi ∈ {−1, 1} and ν ∈ {0, 1,2}, then they can be presented as follows.
If (κ1,κ2) = (−1,−1) then

D1σ
σ = ε1e

iπ
12 (7−2ν(ν+1)), D1ψ1

ψ1
= e−

2iπ
3 , D1ψ2

ψ2
= e−

2iπ
3 ,

Dσσ1 = ε2, Dσσ
ψ1
= eiπ( ε32 + 1

6), Dσσ
ψ2
= eiπ( ε42 + 1

6),

Dσψ1
σ = e

2iπ
3 ((ν−1)2ε1−1), Dσψ2

σ = e−
2iπ
3 ((ν−1)2ε1+1), Dψ1σ

σ = e−
iπ
12(2ν2+2ν−9+2ε1(4ν2−8ν+1)),

Dψ1ψ1
ψ2

= e
2iπ
3 , Dψ2σ

σ = e−
iπ
12(2ν2−10ν+3+ε1(4ν2−8ν−2)), Dψ2ψ2

ψ1
= e

2iπ
3 .
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If (κ1,κ2) = (−1, 1) then

D1σ
σ = ε1e

iπ
12 (5+2ν(ν+1)), D1ψ1

ψ1
= e

2iπ
3 , D1ψ2

ψ2
= e

2iπ
3 ,

Dσσ1 = ε2, Dσσ
ψ1
= e−iπ( 1

6−
ε3
2 ), Dσσ

ψ2
= e−iπ( 1

6−
ε4
2 ),

Dσψ1
σ = e

2iπ
3 (3−2ν), Dσψ2

σ = e
2iπ
3 (2ν−1), Dψ1σ

σ = e
iπ
12(2ν2−6ν−1+6ε1),

Dψ1ψ1
ψ2

= e−
2iπ
3 , Dψ2σ

σ = e
iπ
12(2ν2−2ν−5−6ε1(2ν2−4ν+1)), Dψ2ψ2

ψ1
= e−

2iπ
3 .

If (κ1,κ2) = (1,−1) then

D1σ
σ = ε1e−

iπ
12 (−1+2ν(ν+1)), D1ψ1

ψ1
= e−

2iπ
3 , D1ψ2

ψ2
= e−

2iπ
3 ,

Dσσ1 = ε2, Dσσ
ψ1
= eiπ( ε32 + 1

6), Dσσ
ψ2
= eiπ( ε42 + 1

6),

Dσψ1
σ = e

2iπ
3 ((ν−1)2ε1−1), Dσψ2

σ = e
2iπ
3 ((ν−1)2(−ε1)−1), Dψ1σ

σ = e−
iπ
12(2ν2−10ν−3−ε1(4ν2−8ν−2)),

Dψ1ψ1
ψ2

= e
2iπ
3 , Dψ2σ

σ = e−
iπ
12(2ν2+2ν−15−2ε1(4ν2−8ν+1)), Dψ2ψ2

ψ1
= e

2iπ
3 .

If (κ1,κ2) = (1,1) then

D1σ
σ = ε1e

iπ
12 (−1+2ν(ν+1)), D1ψ1

ψ1
= e

2iπ
3 , D1ψ2

ψ2
= e

2iπ
3 ,

Dσσ1 = ε2, Dσσ
ψ1
= e−iπ( 1

6−
ε3
2 ), Dσσ

ψ2
= e−iπ( 1

6−
ε4
2 ),

Dσψ1
σ = e

2iπ
3 (3−2ν), Dσψ2

σ = e
2iπ
3 (2ν−1), Dψ1σ

σ = e
iπ
12(2ν2−6ν+5−6ε1),

Dψ1ψ1
ψ2

= e−
2iπ
3 , Dψ2σ

σ = e
iπ
12(2ν2−2ν+1+6ε1(2ν2−4ν+1)), Dψ2ψ2

ψ1
= e−

2iπ
3 .
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