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Abstract

One of the unique features of non-Hermitian (NH) systems is the appearance of NH
degeneracies known as exceptional points (EPs). The extensively studied defective EPs
occur when the Hamiltonian becomes non-diagonalizable. Aside from this degeneracy,
we show that NH systems may host two further types of non-defective degeneracies,
namely, non-defective EPs and ordinary (Hermitian) nodal points. The non-defective
EPs manifest themselves by i) the diagonalizability of the NH Hamiltonian at these
points and ii) the non-diagonalizability of the Hamiltonian along certain intersections
of these points, resulting in instabilities in the Jordan decomposition when approaching
the points from certain directions. We demonstrate that certain discrete symmetries,
namely parity-time, parity-particle-hole, and pseudo-Hermitian symmetry, guarantee
the occurrence of both defective and non-defective EPs. We extend this list of symme-
tries by including the NH time-reversal symmetry in two-band systems. Two-band and
four-band models exemplify our findings. Through an example, we further reveal that
ordinary nodal points may coexist with defective EPs in NH models when the above
symmetries are relaxed.
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1 Introduction

Despite violating the axioms of quantum mechanics, non-Hermitian (NH) Hamiltonians offer
compelling descriptions for numerous interacting/open systems in various fields of physics [1–7].
The underlying physics of these effective Hamiltonians goes beyond the realm of Hermitian
physics and has been immensely studied lately [8–23]. Aside from unraveling rich physics, the
properties of NH systems are well-reflected in abstract mathematical frameworks, including ho-
motopy theory [24–28] and K-theory [29–31]. These frameworks provide a reliable toolbox to
understand the exotic properties of NH systems and distinguish their behavior from Hermitian
physics.

One notable distinction between NH Hamiltonians and their Hermitian counterparts is the ap-
pearance of exceptional points (EPs) as NH degeneracies. While one generally should satisfy
n − 1 complex constraints to realize EPs of order n (EPns), at which the Hamiltonian casts a
Jordan block, recent studies have shown that the presence of certain discrete symmetries, such
as parity-time (PT ), parity-particle-hole (CP), or pseudo-Hermiticity (psH) symmetry, reduces
the total number of constraints [32–43]. Although these studies mainly focused on characteriz-
ing symmetry-induced restrictions on defective EPs, drawing a link between discrete symmetries
and non-defective degeneracies associated with the NH Hamiltonian beyond case studies has re-
ceived little attention. Furthermore, while there is a near consensus on calling defective degenera-
cies [44, 45] defective EPs, non-defective degeneracies in NH systems are referred to as diabolic
points [46–49], Fermi points [50], Dirac points and vortex points [51].1 These non-defective de-
generacies are different in nature. While both Dirac points and vertex points might appear in the
vicinity of defective EPs, diabolic points and Fermi points are similar to (Hermitian) ordinary
nodal points (ONPs).

Recalling their mathematical origin, EPs were introduced by Kato as isolated singularities of
systems depending on one complex variable [52], and they were recently classified into type I
EPs and type II EPs [2]. EPs of type I are degeneracies with or without algebraic singularities
reminiscent of defective EPs and ONPs. In contrast, type II EPs are defined as points in the
complex plane where the Jordan normal form is unstable, i.e., the eigenprojectors have a pole.
While the appearance and existence of degeneracies reminiscent of type I EPs have been studied
extensively, type II EPs have hitherto been overlooked in the literature.

In this work, we introduce a natural extension of type II EPs to higher dimensions, dubbed
non-defective EPs. We present that the correct criterion for detecting non-defective EPs is the
form of the Hamiltonian matrix in the vicinity of these degenerate points: Non-defective EPs
are surrounded by defective EPs in certain intersections such that the Hamiltonian matrix casts a
Jordan block along directions where defective EPs reside. Furthermore, we show that the Jordan
decomposition is singular at these points when approaching the points from certain directions,
emphasizing that non-defective EPs indeed are reminiscent of the type II EPs in Ref. [2]. To
characterize the role of symmetries in witnessing NH degeneracies, we study the coexistence of
defective and non-defective EPns in two-, three- and four-band models in the presence of psH,
PT or CP symmetry. Additionally, we show that symmetry-protected non-defective EP2s may
also appear in models with non-Hermitian time-reversal symmetry. We include a two- and four-

1An exception is considered in Ref. [51] where ‘hybrid points’ have also been introduced based on the asymptotic
dispersion relations close to defective degeneracies. Note that branch cuts do not terminate at hybrid points [50].
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Figure 1: Schematic illustration of three different degeneracies in non-Hermitian systems. For
each degeneracy, we list the required constraints for the occurrence of degeneracies, an intuitive
way to identify them, and an example of the dispersion relation of such degeneracies in two-level
systems. Here, n denotes the order of the degeneracy.

band example to highlight our findings. Finally, we find that defective EPs may coexist with ONPs
instead of non-defective EPs when lifting symmetry constraints. We illustrate this finding with a
fine-tuned example. Our findings are summarized in Fig. 1.

2 Symmetry-stabilized (non-)defective EPs

A generic n-band Hamiltonian can be decomposed as

H = dµΥµ, (1)

where µ ∈ {0, · · · , n2 − 1}, dµ are continuously differentiable complex-valued functions of the
lattice momentum k, Υ0 denotes the identity matrix of order n and Υ is the basis of the SU(n)
group, which consists of three Pauli matrices when n = 2, eight Gell-Mann matrices when n = 3,
and fifteen generalized Gell-Mann matrices when n = 4, see Appendix A. The Hamiltonian
H displays PT symmetry with generator PT , CP symmetry with generator CP , or psH with
generator ς , if it satisfies one of the following relations, namely,

PT : H(k) = (PT )H∗(k)(PT )−1, (2)

CP : H(k) = −(CP)H∗(k)(CP)−1, (3)

psH : H(k) = ςH†(k)ς−1. (4)

These symmetry considerations reduce the number of non-zero dµ values. To be precise, for each
basis matrix Υµ, only either the real or imaginary part of dµ remains non-zero. This means only
one real-valued function dµ survives for each dimension of Υµ [42]. Trivial band touching points
occur when the traceless part of H becomes a Null matrix ([0]n×n), i.e., all of the non-zero dµ
values for µ > 0 must vanish, which means that one needs to satisfy n2 − 1 real constraints. For
n = 2, 3, 4, we have collected these dµ’s for each symmetry operation alongside a choice for its
generator in Tables 1, 2, and 3, respectively.

It was shown in Ref. [42] that the n − 1 complex constraints to find defective EPns could be
expressed in terms of the traces and the determinant of H, which for two-, three-, and four-band
models, respectively, read

n = 2 : η2b = tr[H]2 − 4 det[H], (5)

n = 3 :

{
η3b = 1

2

(
tr[H]2 − 3 tr[H2]

)
,

ν3b = 1
2

(
54 det[H]− 5 tr[H]3 + 9 tr[H] tr[H2]

)
,

(6)
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n = 4 :


η4b = −3ac+ b2 + 12d,

ν4b = 27a2d− 9abc+ 2b3 − 72bd+ 27c2,

κ4b = a3 − 4ab+ 8c,

(7)

where

a = tr[H], (8)

b =
(tr[H])2 − tr[H2]

2
, (9)

c =
tr[H]3 − 3 tr[H] tr[H2] + 2 tr[H3]

6
, (10)

d = det[H]. (11)

We refer to Appendix B for details on how to derive these expressions.
In the presence of PT , CP , or psH symmetry, some of these constraints are automatically

satisfied, leaving us with exactly n − 1 real constraints, cf. Tables 1, 2 and 3 [42]. It is notable
that at trivial solutions (d = 0), all traces and the determinant of H acquire zero values, and
subsequently, the constraints in Eqs. (5)-(7) are also satisfied. The trivial solutions mark non-
defective EPns with the binding signature thatH is diagonalizable at these points.2 Perturbing the
system away from these non-defective points along intersections at which the constraints vanish
brings the Hamiltonian into a non-diagonalizable structure. We set this behavior as a criterion to
detect non-defective EPs. We note that this is opposed to the situation in which trivial solutions are
isolated, and thus, band touching points behave similarly to Hermitian degeneracies, i.e., ONPs.

In summary, we thus notice that NH systems may exhibit three different eigenvalue degenera-
cies, schematically depicted in Fig. 1. Formally, the different degeneracies are defined as follows:

• Defective EPs: Eigenvalue degeneracies appearing for non-zero d at which also eigenvec-
tors coalesce, making the Hamiltonian cast a Jordan block form.

• ONPs: Eigenvalue degeneracies appearing for trivial d = 0, which are isolated from de-
fective EPs. The Hamiltonian is diagonalizable at ONPs and remains diagonalizable in any
infinitesimally small but finite neighborhood around the region d = 0.

• Non-Defective EPs: Eigenvalue degeneracies appearing for trivial d = 0 located in the di-
rect vicinity of defective EPs, usually comprising intersections of defective EPs. The Hamil-
tonian is diagonalizable at non-defective EPs but casts a Jordan block in certain directions
away from, yet arbitrarily close to, the non-defective EPs. Consequently, when approach-
ing the non-defective EP along any non-diagonalizable direction, the Jordan decomposition
becomes singular.

The diagonalizability of the Hamiltonian at non-defective EPs enables us to map our NH
Hamiltonians into their Hermitian counterparts with nodal points. In addition, having n2− 1 non-
zero dµ’s as in Hermitian systems enforces non-defective EPs to always appear in pairs in the
Brillouin zone. This statement originates from the Poincaré-Hopf theorem [53], as the number
of non-zero dµ functions equals the dimension of the vector space (n2 − 1), cf. last columns in
Tables 1, 2, and 3 [54]. Consequently, these non-defective EPs are topological in the same sense
as, e.g., Weyl points in Hermitian systems, and can be classified by Chern numbers.

Aside from PT , CP , and psH symmetries, a particular non-Hermitian time-reversal sym-
metry, known as TRS†, in two-band systems may also give rise to realizing non-defective EPs.
To evidently see this behavior, we recall that respecting TRS† symmetry imposes H(−k) =

2We note that in the absence of PT , CP , or psH symmetry, trivial solutions describe one of the non-defective
degeneracies, i.e., non-defective EPns or ordinary nodal points.
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Table 1: Summarized symmetries, their generators, and their associated constraints to find defec-
tive and non-defective EP2s in two-band systems.

Symm. Generator Constr. def. EP2s Constr. non-def. EP2s
PT 1 η2bR = 0 dxR = dyI = dzR = 0
CP 1 η2bR = 0 dxI = dyR = dzI = 0
psH adiag[1, 1] η2bR = 0 dxR = dyI = dzI = 0
TRS† adiag[1,−1] η2bR = η2bI = 0 dxa = dya = dza = 0

Here we use either dj = djR + idjI or dj = djs + dja, where djs(dja) is (anti-)symmetric with
respect to k→ −k. η2b is given in Eq. (5) with η2b = η2bR + iη2bI .

Table 2: Summarized symmetries, their generators, and their associated constraints to find defec-
tive and non-defective EP3s in three-band systems.

Symm. Generator Constr. def. EP3s Constr. non-def. EP3s

PT diag[1,−1, 1] η3bR = ν3bR = 0
d1R = d2I = d3R = d4I = 0
d5R = d6I = d7R = d8R = 0

CP diag[1,−1, 1] η3bR = ν3bI = 0
d1I = d2R = d3I = d4R = 0
d5I = d6R = d7I = d8I = 0

psH diag[1,−1, 1] η3bR = ν3bR = 0
d1I = d2R = d3I = d4I = 0
d5R = d6I = d7R = d8R = 0

Here we use dj = djR + idjI . Complex valued η3b and ν3b constraints are given in Eq. (6) with
α3b = α3b

R + iα3b
I for α ∈ {η, ν}.

C+HT(k)C†+ [31]. This non-(momentum)-local transformation does not reduce the number of
non-vanishing (real/imaginary) parts of dµ. However, when C+C

∗
+ = −1, e.g., C+ = iσy, it

enforces all symmetric parts of dµ to become zero. We further know that at the time-reversal
invariant momenta (TRIM), functions that are anti-symmetric with respect to k vanish. There-
fore, at kTRIM, both real and imaginary parts of anti-symmetric dµ functions become zero, which
gives rise to the observation of non-defective EPs in the spectra of the two-band TRS†-symmetric
Hamiltonian H in 3D, cf. Table 1. The non-defective EPs protected by TRS† are also topological
in the sense that there exist non-trivial loops around them. Yet, they are different from those aris-
ing in, e.g., PT -symmetric systems, as the TRIM are fixed points. Hence, non-defective EPs are
stationary in momentum space, and a non-defective EP cannot be annihilated by merging together
with a non-defective EP of opposite topological charge. This means that there does not exist a
unified notion of topological invariants for non-defective EPs, but the classification depends on
the present symmetry.

Before moving on to examples, we note that the different number of constraints that need to
be satisfied to find symmetry-protected defective and non-defective EPns also result in a different
codimension of these EPs. Here, the codimension is given by the difference between the total
dimension of the system and the dimension of the exceptional feature. Equivalently, the codi-
mension corresponds precisely to the number of non-vanishing constraints. In particular, while
the presence of PT , CP and psH symmetries reduces the number of real constraints for finding
defective EPns to n− 1, the number of real constraints to detect non-defective EPns is n2− 1. As
a consequence, in the case of n = 2, defective EP2s have codimension one, whereas non-defective
EP2s have codimension three. Therefore, the latter appear as points in three-dimensional systems,
whereas defective EP2s appear as two-dimensional surfaces. For the TRS† invariant two-band
model, the codimension is two, and hence the defective EP2s are curves connected at the TRIMs.
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Table 3: Summarized symmetries, their generators, and their associated constraints to find defec-
tive and non-defective EP4s in four-band systems.

Symm. Generator Constr. def. EP4s Constr. non-def. EP4s

PT diag[1,−1, 1,−1] η4bR = ν4bR = κ4bR = 0

d1R = d2I = d3R = d4R = 0
d5I = d6R = d7I = d8R = 0
d9I = d10I = d11R = d12I = 0
d13R = d14R = d15R = 0

CP diag[1,−1, 1,−1] η4bR = ν4bR = κ4bI = 0

d1I = d2R = d3I = d4I = 0
d5R = d6I = d7R = d8I = 0

d9R = d10R = d11I = d12R = 0
d13I = d14I = d15I = 0

psH diag[1,−1, 1,−1] η4bR = ν4bR = κ4bR = 0

d1I = d2R = d3I = d4I = 0
d5R = d6I = d7I = d8R = 0
d9I = d10I = d11R = d12I = 0
d13R = d14R = d15R = 0

Here we use dj = djR + idjI . Complex valued η4b, ν4b and κ4b constraints are given in Eq. (7)
with α4b = α4b

R + iα4b
I for α ∈ {η, ν, κ}.

-5

0

5

(a) (b) η2b
R = 0

dyI = 0dzR = 0

(c)

Figure 2: Real (a) and imaginary (b) parts of spectra for Eq. (12) along kx = ky with kz = π/2.
Red points indicate non-defective EPs. Panel (c) displays solutions of dyI = 0 (orange), dzR =
0 (gray), and η2bR = 0 (dashed blue) at kx = 0, which is a solution to dxR = 0. Red points at
k = (0, 0,±π/2) indicate the intersection between solutions to η2bR = dyI = dzR = 0, and are
non-defective EPs. Here we set t = V = 1, and λ0 = 0.

Examples for the coexistence of defective and non-defective EPs.

We start with introducing a two-band PT -symmetric Weyl-like tight-binding model described by

H2b
PT = d0Υ

0 + dxRΥ1 + idyIΥ
2 + dzRΥ3

= 2λ0 sin (kx)Υ0 + 2t sin (kx)Υ1 + 2t sin (ky)Υ
3

+ i {2t cos (kz) + 2V [2− cos (kx)− cos (ky)]}Υ2. (12)

Here λ0, t and V are real-valued parameters. The real and imaginary parts of the band structure are
shown in Figs. 2(a) and (b), respectively. Non-defective EPs appear when all components of the
Hamiltonian, except d0, vanish. More specifically, these degeneracies emerge when the solutions
of dxR = 0 (at kx = nπ with n ∈ Z), dyI = 0 (orange curves in Fig. 2(c)), and dzR = 0 (grey
line) intersect. Red points at k = (0, 0,±π/2) in Fig. 2(c) exemplify such solutions. Note that
the criterion for detecting non-defective EPs is satisfied for the red points in Fig. 2(c) as they are
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surrounded by defective EPs (dashed blue curves), residing on η2bR = 0, where η2bR is the real part
of η2b in Eq. (5).

Let us now investigate how the dispersion and eigenvectors ofH2b
PT behave at the non-defective

EP. Around k = (0, 0, π/2) := kNDEP, the corresponding eigensystem reads,

ε2b,±PT = 2

[
λ0k̃x ±

√
t2
(
k̃2x + k̃2y − k̃2z

)]
, (13)

ψ2b,±
PT =

 tk̃y±
√
t2(k̃2x+k̃2y−k̃2z)
k̃x+k̃z

1

 , (14)

where we set k̃ = k − kNDEP. First, we note that the dispersion is linear in momentum, evident
in Fig. 3. We further note the special behavior in the directions of the defective EPs, indicated
by flat lines along k̃x = ±k̃z in Fig. 3(c). This differs significantly from the dispersion behavior
around defective EPs, which is always fractional in momentum in two-band models. Second,
we interestingly observe that the coalescence of the eigenvectors depends on which direction we
approach the non-defective EP. Approaching the non-defective EP along the defective EPs, defined
by d2xR + d2zR = d2yI , yields,

lim
k̃x→0

lim
k̃y→
√
k̃2z−k̃2x

ψ2b,±
PT =

(√
k̃2z
k̃z
1

)
. (15)

When finally going to the non-defective EP, corresponding to further take the limit k̃z → 0, we can
conclude that the eigenvectors seem to coalesce at the non-defective EP. Thus, when approached
along the defective EPs, the origin of momentum space seems to comprise a defective point. If we
instead approach the non-defective EP as, e.g.,

lim
k̃y→0

lim
k̃z→0

ψ2b,±
PT =

(
±
√
−t2k̃2x
tk̃x
1

)
, (16)

we obtain two linearly independent eigenvectors even when taking the final limit k̃x → 0. This
behavior is also reflected in the Jordan decomposition of H2b

PT on the exceptional surface around

Figure 3: Real (a) and imaginary (b) part of band structure for H2b
PT in Eq. (12) at ky = 0

along kx and kz . Red points indicate non-defective EPs at k = (0, 0,±k0). Panel (c) displays the
linear dependence on the momentum of the absolute value of the eigenvalues at the non-defective
EP k = (0, 0, π/2) in different cuts of momentum space. We notice flat directions along the
defective EP. To contrast this, panel (d) shows the fractional behavior of the absolute value of
the eigenvalues around the defective EP at k = (π/2, 0, π/2) in the same cuts. Here we set
t = V = 1, and λ0 = 0.
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Figure 4: Real (a) and imaginary (b) part of band structure forH4b
psH in Eq. (19) along kx = ky and

kz . Note that along this particular cut, both bands are doubly degenerate. Red points indicate non-
defective EPs at k = (0, 0,±k0). Also here, it is clear that the absolute value of the eigenvalues
depend linearly on the momentum components close to the non-defective EP at k = (0, 0, k0)
[panel (c)], while a fractional behavior is observed around defective EPs, exemplified around
k =

[
π/2, π/2, arccos

(
2−
√

2
)]

in panel (d). Here we set t = tz = λIxx = λIxy = 1,
m′I = −0.27 and k0 = π/2.

kNDEP given byH2b
PT = SJS−1 with

S =

√k̃2z−k̃2xk̃x+k̃z

1
2t(k̃x+k̃z)

1 0

 , (17)

J =

(
2λ0k̃x 1

0 2λ0k̃x

)
. (18)

The second column in the transformation matrix (S) exhibits a singularity when k̃x = −k̃z , along
the defective EPs. Since there is a rotational symmetry on the exceptional surface, we can perform
a coordinate change to move away from this singularity as long as k̃x and k̃z are non-zero. Thus,
apart from k̃x = k̃z = 0, this amounts to a coordinate singularity. Exactly at the non-defective
EP, however, there is a true singularity. Hence, the Jordan decomposition is unstable at the non-
defective EPs.

As a comparison, we note that the band disperses like the square root of the momentum com-
ponents around defective EPs, displayed in Fig. 3(d). Furthermore, the eigenvector coalescence at
these points is not dependent on the direction from which the point is approached. In this sense,
eigenvector coalescence is not a local system property in momentum space. Similar conclusions
were recently made in Ref. [55].

We further note that the defective EPs separate two regions in the real part of the spectrum,
where Re[∆ε] = 0 and Re[∆ε] 6= 0 with ∆ε being the difference between the two energy bands
as shown in Fig. 2(a). Regions where Re[∆ε] = 0 are sometimes referred to as NH bulk real-
Fermi states, which merely appear in NH systems [8]. In Appendix C, we show that besides these
bulk Fermi states, this model also hosts states on the boundary. Therefore, there is a coexistence
between defective and non-defective EPs as well as between bulk Fermi states and boundary states.

Let us now turn to a four-band model. We consider a Dirac-like psH-symmetric model de-
scribed by

H4b
psH = {t [cos (kx) + cos (ky)− 2] + tz [cos (kz)− cos (k0)]}

(
2√
3

Υ14 +

√
2

3
Υ15

)
+ iλIxy sin (ky)(Υ

3 + Υ4) + iλIxx sin (kx)(Υ9 + Υ10)

+ im′I sin (kz) [cos (kx)− cos (ky)]
(
Υ7 −Υ12

)
, (19)

8
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where t, tz , λIxy, λIxx, and m
′
I are real-valued parameters. This model is a pseudo-Hermitian

generalization of the tight-binding model studied in Ref. [56]. The trivial band touching points
for obtaining the null form of the traceless part of H4b

psH in Eq. (19) are located at k = kpsH =
(0, 0,±k0). Right at these points and on lines connecting these points, constraints for realizing
EP4s, summarized in Table 3 and given in Eq. (7), are also satisfied. Hence, points at k = kpsH

in our psH-symmetric model are non-defective EP4s. We present these nodal points (red spheres)
in the band structure of H4b

psH in Fig. 4. The real part of the spectra (a) shows that two arc-shaped
surfaces with (non)zero real (imaginary) parts are terminated by the non-defective EPs as well
as the defective exceptional lines. These surfaces are the aforementioned NH bulk real-Fermi
surfaces. While our model hosts bulk Fermi surfaces, boundary states are unstable, similar to their
Hermitian counterparts [56].

Similar to the case of the two-band model, we investigate the behavior of the dispersion and
eigenvector coalescence near the non-defective EP. Linearizing H4b

psH around k = kpsH yields the
following eigensystem,

ε±psH = ±
√
t2zk̃

2
z − λ2xxk̃2x − λ2xyk̃2y, (20)

ψ1,±
psH =


i

(
−tz k̃z∓

√
t2z k̃

2
z−λ2xxk̃2x−λ2xy k̃2y

)
λxxk̃x+iλxy k̃y

0
0
1

 , (21)

ψ2,±
psH =


0

i

(
−tz k̃z∓

√
t2z k̃

2
z−λ2xxk̃2x−λ2xy k̃2y

)
λxxk̃x+iλxy k̃y

1
0

 , (22)

where k̃ = k− kpsH and we note that in this linearized regime, the eigenvalues are doubly degen-
erate. The dispersion is again linear in the momentum components, as displayed for the respective
absolute values in Fig. 4(c). To contrast this, Fig. 4(d) shows the dispersion around a defective
EP, which is of the square-root type. Approaching the origin along the defective EPs defined by
t2zk̃

2
z − λ2xxk̃2x − λ2xyk̃2y , the eigenvectors become

lim
tz k̃z→

√
λ2xxk̃

2
x

lim
k̃y→0

ψ1,±
psH =


− i
√
λ2xxk̃

2
x

λxxk̃x
0
0
1

 , (23)

lim
tz k̃z→

√
λ2xxk̃

2
x

lim
k̃y→0

ψ2,±
psH =


0

− i
√
λ2xxk̃

2
x

λxxk̃x
1
0

 , (24)

making it clear that we only have two linearly independent eigenvectors when approaching the
non-defective EP and that the point looks as if it is defective also when k̃x → 0. Yet again, when
approaching the origin from another direction, e.g.,

lim
k̃y→0

lim
k̃z→0

ψ1,±
psH =


±sign(k̃x)

0
0
1

 , (25)
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Figure 5: Real (a) and imaginary (b) part of band structure for H2b
ONP in Eq. (29) along kz = π.

(c) Solutions of the real (blue spheres) and imaginary (green manifold) parts of η2b in Eq. (5). Red
closed lines in (c) present the intersection of these manifolds and correspond to defective EPs.
Black points in panels (a) and (b) indicate ONPs. For visibility purposes, merely a corner of the
Brillouin zone is shown in panels (a) and (b). Panel (d) displays that the absolute values of the
eigenvalues depend linearly on the momentum components close to the ONP located at the origin.

lim
k̃y→0

lim
k̃z→0

ψ2,±
psH =


0

±sign(k̃x)
1
0

 , (26)

none of the eigenvectors coalesce when k̃x → 0. Just as in the previous case, this is reflected in
the corresponding Jordan decomposition, which along the defective EPs reads

S4b
psH =


−

i
√
λ2xxk̃

2
x+λ

2
xy k̃

2
y

λxxk̃x+iλxy k̃y
− i
λxxk̃x+iλxy k̃y

0 0

0 0 −
√
λ2xxk̃

2
x+λ

2
xy k̃

2
y

λxxk̃x+iλxy k̃y
− i
λxxk̃x+iλxy k̃y

0 0 1 0
1 0 0 0

 , (27)

J4b
psH =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (28)

The matrix S4b
psH has a singularity at the origin, corresponding exactly to the non-defective EP.

Thus, the Jordan decomposition exhibits an instability exactly at the non-defective EP.

3 Searching for the coexistence of ONPs and defective EPs

So far, we have explored how the presence of one of the PT , CP or psH symmetries leads to the
general coexistence of defective and non-defective EPs. Now, we instead address whether ONPs
may also exist in NH spectra. For this purpose, we lift (discrete) symmetry restrictions such that
some (or all) dµ’s have real and imaginary parts. We emphasize that in this situation, in contrast
to the EPs in the previous sections, non-defective band degeneracies are generally unstable to

10
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small perturbations.3 This is because solving d = 0 generally requires satisfying n2 − 1 complex
constraints. Consequently, the appearance of ONPs in NH models is vulnerable to the fine-tuning
of parameters, and therefore, these systems may not exhibit experimental signatures different from
those in generic NH systems. Nevertheless, we show in the following that this setting provides a
platform to observe ONPs.

To illustrate our idea, we introduce a two-band model given by

H2b
ONP = sin(kx) [1/2 + i cos(ky)] Υ1

+ sin(ky) [1/2 + i cos(kz)] Υ2

+ sin(kz) [1/2 + i cos(kx)] Υ3. (29)

Fig. 5 exhibits the real (a) and imaginary (b) part of the energy dispersion of this system along
kz = π. The black points in these panels mark real and imaginary band touching points located
at kONP

x,y,z = ±nπ. Even though at these momenta the traceless part of H2b
ONP becomes a null

matrix, we emphasize that k = kONP indicates the location of ONPs and not non-defective EPs.
The reason for this statement lies in the fact that the criterion for the emergence of non-defective
EPs is not satisfied, i.e., no defective EPs reside close to kONP. This can be seen from Fig. 5(c) in
which we present defective EPs, red curves, as the intersection between Re[η2b] = 0, blue spheres,
and Im[η2b] = 0, green manifold. Fig. 5(c) reveals that defective EPs do not cross k = kONP and
thus the black points at kONP indeed correspond to ONPs. Consequently, H2b

ONP is diagonalizable
at k = kONP and in any small neighborhood surrounding the point; see Fig. 5(d) for a momentum
expansion of eigenvalues, with k̃ = k, around the origin.

Aside from these ONPs in the momentum space, introducing models that host boundary states
connecting ONPs in NH systems is theoretically feasible. We present an example of such a model
in Appendix D.

4 Footprints of non-Hermitian degeneracies in experiments and their
plausible physical implications

PT -symmetric models have been extensively realized in various experimental setups, including
superconducting quantum processors [58], optics [59,60], photonics [61–63], acoustics [64], elec-
tronic circuits [65, 66] and flying atoms [60]. While all of these experiments report observing
footprints of PT (un)broken phases in their measurements, experimental constraints, e.g., limited
ranges of parameters, restrict the measurements to be performed close to one EP and usually away
from the non-defective EPs.4 For this reason, most of the above-mentioned experiments do not
confirm the distinct behavior of different types of EPs in their observations.

The quantum setup reported in Ref. [60] is one of the exceptions, where the accessible pa-
rameter space allows for the appearance of the EP pairs. The two-channel model is obtained from
the density matrix formalism upon imposing approximations on different parameters. Aside from
the model, the authors of Ref. [60] also reported the measured transmission spectra and com-
pared those with their theoretical model. Looking at the transmission spectra in Hermitian and
NH systems (see Figs. 2 and 3 in Ref. [60]), we recognize distinct features. They report a two-
peak (single-peak) structure of the transmission spectra in the PT (un)broken phases. The peaks
in the unbroken phase are zero-centered, resembling the zero slope of the intersection connecting
non-defective EPs to defective EPs. In contrast, in the (effective) Hermitian model, transmission
spectra for each channel exhibit single peaks keeping opposite distances from zero. This reflects

3More precisely, twofold degeneracies are protected by composite symmetries consisting of multiple symmetry
operations [57]. Respecting all these symmetry operations might be easily violated upon introducing perturbations.

4Note that in these systems, EPs emerge in pairs; see Sec. 2 for more details.
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the linear dispersion around regular degeneracies. In the PT -broken phase, a two-peak structure
with non-zero centers of the maxima for the transmission spectra is reported. These observations
demonstrate how different types of non-Hermitian degeneracies can give rise to distinct features
in different observables.

The microwave experiments with metallic mesh 3D photonic crystals have also realized PT -
symmetric models [67] with chains of nodal lines. Exceptional chains have recently been observed
in mechanical systems [68], where the intersection of these EP lines represents non-defective EPs.
Sometimes, these non-defective degeneracies are protected by additional mirror symmetries; see
Refs. [69, 70] for details.

In addition to the setup mentioned above, numerous studies on heterostructures report the oc-
currence of exceptional points in these systems [6,71–73]. However, to the best of our knowledge,
no record of non-defective degeneracies is reported in these systems. Nevertheless, further engi-
neering of the structure of these systems to maintain the symmetries discussed here may allow for
the emergence of non-defective degeneracies and the experimental realization of our findings in
these setups.

Aside from realizing NH degeneracies, the occurrence of these degeneracies in the spectrum
may give rise to exotic responses. The NH anomalous currents observed in odd spatial dimen-
sions exemplify these interesting responses. It has been shown that NH (non)interacting systems
with ONPs, when coupled to gauge fields, e.g., electromagnetic fields, exhibit anomalous currents
different from their Hermitian analog [5, 74, 75]. For instance, the NH chiral magnetic effect, in
contrast to its Hermitian counterpart, may find room to emerge in equilibrium in PT -symmetric
systems [74].

5 Conclusion

Despite the intense focus on NH systems in recent studies, the possibility of realizing different
types of EPs has hitherto been overlooked. The present work shows that two different types of EPs,
dubbed defective and non-defective EPs, may coexist in various setups of physical importance. We
show that non-defective EPs are stabilized by certain symmetries, including PT , CP , psH, and
time-reversal symmetry. To resolve the confusion in the current literature, where non-defective
EPs are mixed up with ONPs, we have in this work introduced a clear criterion to distinguish
these concepts. We also highlight this difference in example models.

Our systems, especially PT -symmetric models, are experimentally feasible as they can be
implemented in experimental optical setups with balanced gain and loss [76]. As exploring the
role of EPs in PT -symmetric optical systems has already unraveled many interesting phenom-
ena [61, 77–80], we expect that finding possibilities to detect ONPs and (non-)defective EPs may
also pave the way to advance applications of Hermitian and NH topological properties in various
fields of research.
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A Bases matrices for two-, three-, and four-band systems

Basis matrices for two-band systems

The basis matrices for two-band systems are Pauli matrices, which read

Υ1 =

(
0 1
1 0

)
, Υ2 =

(
0 −i
i 0

)
, Υ3 =

(
1 0
0 −1

)
. (30)

Basis matrices for three-band systems

The basis matrices for three-band systems are the Gell-Mann matrices that span the Lie algebra of
the SU(3) group,

Υ1 =

0 −i 0
i 0 0
0 0 0

 , Υ2 =

0 0 −i
0 0 0
i 0 0

 , (31)

Υ3 =

0 0 0
0 0 −i
0 i 0

 , Υ4 =

0 1 0
1 0 0
0 0 0

 , (32)

Υ5 =

0 0 1
0 0 0
1 0 0

 , Υ6 =

0 0 0
0 0 1
0 1 0

 , (33)

Υ7 =

1 0 0
0 −1 0
0 0 0

 , Υ8 =


1√
3

0 0

0 1√
3

0

0 0 − 2√
3

 . (34)

Basis matrices for four-band systems

The basis matrices for four-band systems are the generalized Gell-Mann matrices that span the Lie
algebra of the SU(4) group,

Υ1 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , Υ2 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , (35)

Υ3 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , Υ4 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , (36)

Υ5 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 , Υ6 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , (37)

Υ7 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , Υ8 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , (38)
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(a) (b)

Figure S1: Real (a) and imaginary (b) part of spectra for Eq. (12) with open boundary condition
in the y direction and kx = 0. Red lines present boundary states. Here we set t = V = λ0 = 1.0.

Υ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , Υ10 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , (39)

Υ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , Υ12 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , (40)

Υ13 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , Υ14 =


1√
3

0 0 0

0 1√
3

0 0

0 0 − 2√
3

0

0 0 0 0

 , (41)

Υ15 =


1√
6

0 0 0

0 1√
6

0 0

0 0 1√
6

0

0 0 0 −
√

3
2

 . (42)

B Derivation of constraints to find EPns

Here we briefly summarize how to derive Eqs. (5, 6, 7) in the main text, where these constraints
were originally derived in Ref. [42]. There, it was shown that the characteristic polynomial of an
n-band NH matrix could be expressed in terms of its determinant and traces. Indeed, for two-,
three- and four-band matrices, these polynomials read

F 2b(λ) = λ2 − tr[H]λ+ det[H] = 0, (43)

F 3b(λ) = λ3 − tr[H]λ2 +
tr[H]2 − tr[H2]

2
λ− det[H] = 0, (44)

F 4b(λ) = λ4 − aλ3 + bλ2 − cλ+ d = 0, (45)

where

a = tr[H], b =
tr[H]2 − tr[H2]

2
, d = det[H], (46)
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(a) (b)

Figure S2: Real (a) and imaginary (b) part of spectra for Eq. (51) with open boundary condition
in the y direction and at kz = 0. Red lines present boundary states. Black points mark ONPs.
Here we set t = V = 1.0, λ0 = 2.3.

c =
tr[H]3 − 3 tr[H] tr[H2] + 2 tr[H3]

6
, (47)

and λ are the eigenvalues ofH.
To find degeneracies, the discriminant D[H] of these characteristic polynomials should be set

to zero. The discriminants read

D[H2b] = tr[H]2 − 4 det[H], (48)

D[H3b] = − 1

27
[4(η3b)3 + (ν3b)2], (49)

D[H4b] =
1

27
[4(η4b)3 − (ν4b)2], (50)

where η3b and ν3b, and η4b and ν4b are given in Eqs. (6) and (7) in the main text, respectively.
From here, we immediately see that setting the discriminants in Eqs. (48) and (49) to zero gives
us the constraints in Eqs. (6) and (7) in the main text, respectively. In the case of the four-band
model, we note that for all roots of the discriminant to coincide, not only η4b = 0 and ν4b = 0
need to be satisfied but also κ4b = 0, where κ4b is defined in Eq. (7) in the main text. We refer to
Ref. [42] for a more detailed discussion on this point.

C Spectra of the two-band model with open boundary condition

In addition to the properties of momentum-dependent spectra for H2b
PT in Fig. 2, we present the

real (a) and imaginary (b) part of the energy dispersion with open boundary condition in the y
direction plotted in Fig. S1. The figure exhibits boundary states, red lines, well-separated from the
bulk states (blue lines) when |kz| > π/2.

D Realizing Hermitian boundary states in non-Hermitian systems

Here, we present a non-Hermitian tight-binding model hosting Hermitian boundary states, which
connects ONPs with zero imaginary parts.

Our two-band model Hamiltonian reads

H2b
edg =λ0 cos(kx)Υ0 − iV [1− cos(kz)] Υ1
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+ [2V cos(ky)− 2t cos(kx)] Υ1

− 2t sin(ky)Υ
2 − 2t sin(kz)Υ

3, (51)

where λ0, t and V are real-valued coupling constants. Along kz = 0, the above Hamiltonian is
fully Hermitian. As a result, nodal points, which live on the (kx, ky) plane, are band-touching
points with zero imaginary parts. For instance, these ordinary nodal points appear at kONPs =
(±nπ,±nπ, 0) with n ∈ Z when t = V . Considering the open boundary condition along the
y axis and at kz = 0 results in mid-gap boundary states, red lines in Fig. S2(a), which connects
kONPs.
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