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In this paper, we propose using the nonlinear sigma model (NLSM) with the Wess-Zumino-

Witten (WZW) term as a general description of deconfined quantum critical points that

separate two spontaneously symmetry-breaking (SSB) phases in arbitrary dimensions. In

particular, we discuss the suitable choice of the target space of the NLSM, which is in

general the homogeneous space G/K, where G is the UV symmetry and K is generated by

k = h1 ∩ h2, and hi is the Lie algebra of the unbroken symmetry in each SSB phase. With

this specific target space, the symmetry defects in both SSB phases are on equal footing, and

their intertwinement is captured by the WZW term. The DQCP transition is then tuned by

proliferating the symmetry defects. By coupling the G/K NLSM with the WZW term to the

background gauge field, the ’t Hooft anomaly of this theory can be determined. The bulk

symmetry-protected topological (SPT) phase that cancels the anomaly is described by the

relative Chern-Simons term in odd spacetime dimensions or mixed θ term in even dimensions.

We construct and discuss a series of models with Grassmannian symmetry defects in 3+1d.

We also provide the fermionic model that reproduces the G/K NLSM with the WZW term.

I. INTRODUCTION

The continuous symmetry-breaking transitions are well described within the Landau-Ginzburg-

Wilson (LGW) paradigm, the local order parameter acquires a non-zero expectation value in the

spontaneous symmetry breaking (SSB) phase, and vanishes continuously when approaching the

transition point. However, within the LGW paradigm, two SSB phases cannot be joined by a

continuous transition but only first order or level crossing. Quantum effects open the possibility to

have a such continuous transition, and the first explicit example is the deconfined quantum critical

point (DQCP) between the VBS phase and Néel phase in 2+1d quantum magnet [1–4].

The ordinary symmetry breaking transition can be alternatively understood by proliferating

the symmetry defects in the SSB phase to arrive at the disordered phase. This point of view is

particularly useful to understand the DQCP - the symmetry defect in the VBS phase is decorated

with the quantum number of the spin SU(2) symmetry, proliferating which will restore the lattice

rotation symmetry but break the spin symmetry, and arrive at the Néel phase [5]. Decorated
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FIG. 1: G is the UV symmetry and K is generated by the Lie algebra k = h1 ∩ h2, where h1, h2 are the Lie

algebras of unbroken symmetries H1, H2 of SSB phases. The different SSB phases are obtained by condensing order

parameters Φi as in the left graph. Alternatively, the right graph emphasizes using the symmetry defects in the

homogeneous space G/K where the bosonic field lives in. Proliferating symmetry defects Di will drive the

transition from one SSB phase to the other due to the additional charges assigned by WZW term.

symmetry defects are also studied in other beyond LGW quantum transitions [6–8].

Intertwinement of symmetry defects in different SSB phases, i.e. the symmetry defect in one

SSB phase carries the quantum number of the broken symmetry of the other SSB phase, is the

prominent and ubiquitous feature of the DQCP theories. To properly describe the symmetry defects

and their intertwinement, we consider the following generic symmetry breaking pattern of DQCP

theory as shown in Fig. 1. Once condensing the order parameter Φi, one arrives at different SSB

phases with unbroken symmetry Hi. Further condensing the other order parameter, one arrives

at the minimal symmetry K. We will show that the symmetry defects in G/K incorporate all

the symmetry defects in both SSB phases Sec.V. The reason is based on that the codimension-

(q + 1) symmetry defect in each SSB phase is classified by πq(G/Hi) [9], and π⋆(G/K) contains

roughly the generators of these homotopy groups. Moreover, the generators of the homotopy group

are related to the differential forms via the Hurewicz theorem, then these symmetry defects are

described by the differential form in the Lagrangian, and this term corresponds to the charge

operator of symmetry defect. Technically, we use de Rham cohomology to find the generators of

the cohomology group of G/K. The intertwinement of symmetry defects is essentially captured by

the linking number of their corresponding charge operators, and the Wess-Zumino-Witten term in

the action assigns phase to the linking number. Therefore, we propose using the nonlinear sigma

model (NLSM) with the target space G/K to describe the DQCP between two SSB phases with

unbroken symmetry H1, H2, and the intertwinement of symmetry defects is described by the Wess-

Zumino-Witten (WZW) term. We also use G/K NLSM in short. The DQCP transition is driven

by proliferating symmetry defects Di in G/K along the red arrows in the right graph of Fig. 1. We

will provide details and examples in the Sec.V.

Intertwinement of symmetry defects in different SSB phases is also the manifestation of the
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(mixed) ’t Hooft anomaly of the global symmetry. When global symmetry has ’t Hooft anomaly, the

theory is still well-defined unless the symmetry is gauged. The ’t Hooft anomaly of global symmetry

constrains the infrared phases not being trivial gapped phases but either SSB phase, gapless or

topological order. The phase diagram of DQCP theory, namely two SSB phases connected by

a gapless phase, agrees with the consequence of the ’t Hooft anomaly. The anomaly of 1+1d,

2+1d DQCP theories have been carefully analyzed in [10–12]. However, previous anomaly analysis

is based on gauge theories, we focus on the anomaly analysis of NLSM description in terms of

coupling the theory to background gauge fields. Since G is anomalous but K is non-anomalous,

the NLSM with target space G/K saturates the anomaly of G. We provide a detailed calculation of

coupling the WZW term to the background gauge field and show the gauged WZW term gives the

’t Hooft anomaly [13–15]. By anomaly inflow, the ’t Hooft anomaly in even spacetime dimensions

is canceled by one higher dimensional bulk (relative) Chern-Simons term [16–18] and discussed

in Sec. IV, while in odd spacetime dimension, the ’t Hooft anomaly is canceled by bulk mixed θ

term [13–15]. The lattice models that describe DQCP do not need additional higher dimensional

bulk, it is because some of the global symmetries are acting in the non-onsite way, when it flows

to IR, the field theory description requires these symmetries to be internal but with the ’t Hooft

anomaly [19, 20]. We should point out that the NLSM has long been used to describe the Goldstone

mode in the SSB phase [21–23], and the additional Wess-Zumino-Witten term is used to match the

anomaly in the ultraviolet [24]. Recently, the gauge theory and its dual NLSM with Stiefel manifold

or Grassmannian manifold as the target space have been studied in the context of spin liquid and

quantum critical point beyond the LGW paradigm [25–27]. In current paper, we present a general

construction of NLSM with WZW that describes any given DQCP with continuous symmetry

breaking. In the following, we explore its connection to the mixed ’t Hooft anomaly, relative

Chern-Simons term, and the intertwinement of different symmetry defects.

Inspired by recent work on deconfined quantum criticality (which can be critical point or

critical phase depending on the model details) among grand unified theories [28–30], we apply

our framework to construct the theory of 3+1d deconfined quantum critical phase (DQCPh)

with global symmetry G = SO(2n) that separates two SSB phases with unbroken symmetries

H1 = U(n), H2 = SO(2n − 2m) × SO(2m), and K = SU(n − m) × U(1) × SU(m) × U(1). The

symmetry defects are then described by π2(G/K) = ker (π1(K) → π1(G)) = Z ⊕ Z. This is par-

ticularly interesting since the symmetry defect in the SSB phase with unbroken symmetry H2 is

Grassmannian manifold and has topological charge π2(G/H2) = Z2, which cannot be captured by

de Rham cohomology, but once embedding into the larger space G/K, the topological charge be-
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comes integer, and it has corresponding differential form via de Rham cohomology. This manifests

the similar way that the non-perturbative SU(2) anomaly (due to π4(SU(2)) = Z2) can be pertur-

batively found by embedding SU(2) ↪→ SU(3) [24, 31, 32], and here we embed G/H2 ↪→ G/K. This

series of 3+1d DQCPh theories has “new SU(2) anomaly” of the global symmetry SO(2n) [33],

and it is matched by symmetry-protected topological phase in 5d bulk described by w2w3(SO(2n))

[28–30]. The mixed anomaly is obtained by pull-back via the embedding map of the subgroup into

G. Recently, this embedding procedure is rigorously analyzed using bordism theory [34, 35].

We then present the alternative fermionic model that reproduces the G/K NLSM with WZW

term. The fermions are coupled to the fluctuating bosonic fields which live in the homogeneous

space, the bosonic fields parameterize the mass manifold of the fermions. We dub such fermionic

construction of the nonlinear sigma model as fermionic sigma model [36]. When integrating out

the massive fermions, the effective action is the nonlinear sigma model with level-1 WZW term

[36, 37]. For generic homogeneous space G/K, the fermion mass manifold needs to be properly

chosen. This fermionic model also implies that the nonlinear sigma model with level-1 WZW term

needs a spin structure which is used to define the parallel transport of spinor fields, though the

Goldstone boson fields are bosonic [38]. We then construct the fermionic sigma model of the 4d

DQCPh theories and explicitly show the charge operators of two symmetry defects in different SSB

phases link together.

The paper is structured as follows, we review the essential ingredients of the nonlinear sigma

model and Wess-Zumino-Witten term as well as Lie group cohomology in Sec. II. Then we review

the ’t Hooft anomaly and anomaly matching by WZW term in Sec. III. Readers who are familiar

with these can safely skip Sec. II and Sec. III but skimming through the notations would be helpful.

We present the gauged WZW term and its anomaly matching with the bulk (relative) Chern-Simons

term for generic spontaneously symmetry breaking in Sec. IV. We construct specific DQCP theories

in Sec.V and present the fermionic sigma model description in Sec.VI. We summarize our results

and list further directions in Sec.VII. Finally, there are two appendices about de Rham cohomology

of Lie group in Appendix.A and Cartan homotopy method in Appendix. B that are used to derive

an explicit formula for the various WZW terms and Chern-Simons terms.
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II. REVIEW OF NONLINEAR SIGMA MODEL AND WESS-ZUMINO-WITTEN TERM

FOR GENERAL HOMOGENEOUS SPACE G/H

A. The Lagrangian of NLSM and WZW term

Supposing the UV theory has global symmetry G, which can contain spacetime symmetry as

well as internal symmetry. In the IR, the symmetry is spontaneously broken down to H, then the

IR theory contains the part with unbroken global symmetry H and the gapless Goldstone mode

lives on the coset G/H. For example, the 3+1d Nf flavors fermion couples to SU(n) gauge field,

the global symmetry SU(N)L × SU(Nf )R is spontaneously broken down to SU(N)diag, the coset

where the Goldstone boson lives in is simply the Lie group SU(N) [24]. Or the Heisenberg spin

in 2+1d, the spin rotation symmetry SO(3)S is spontaneously broken down to SO(2)S , and the

Goldstone mode lives in the coset S2S = SO(3)S
SO(2)S

[39]. Before parametrizing the coset G/H, let’s take

the Goldstone boson lives in an arbitrary closed manifold M .

The Goldstone bosons are described by the nonlinear sigma model, where the scalar field takes

value in the target manifoldM . The field configuration is represented by a map from d-dimensional

spacetime manifold X to the target manifold M ,

U(xµ) : X →M, (II.1)

where xµ is the coordinate of X and U lives in M . The kinetic term is,

S0 =
1

2

∫
X
ddx tr(U−1∂µUU

−1∂µU). (II.2)

where repeated indices mean summation. Besides the kinetic term, one can define the WZW term

by pull-back the closed form Γ(d+1) on M . It seems the WZW term depends on the additional

dimension, however, since the variation of the closed (d+1)-form yields the exact form, δΓ(d+1) =

dη(d), according to the Stokes’ theorem, the equation of motion is indeed in d-dimension and does

not rely on the fictitious extra dimension. We may view the spacetime manifold X as the boundary

of a certain bulk manifold Y , such that ∂Y = X, and extend the map Ũ : Y → M , the WZW

action is,

SWZW = 2πki

∫
Y
Ũ∗(Γ(d+1)), (II.3)

where Ũ∗ is the pull-back map, k is the quantized level which is important for the theory to be

well-defined and not depend on an extension to the bulk Y . Suppose we have another extension

Ȳ which is the orientation reverse of Y , and Y ∪ Ȳ is a closed manifold, then the integral over
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this combined manifold should be 2kπi, k ∈ Z, such that the WZW term does not depend on

the extension, otherwise, there is a phase ambiguity for different extensions. Γ(d+1) is actually the

generator of integral cohomology of M , Γ(d+1) ∈ H(d+1)(M,Z). If the closed form is also exact,

then the WZW term is a term expressed in the d-dimensional spacetime.

Apart from the closed (d + 1)-form which can be used to define the WZW term, other closed

q-form with q < d can be used to represent the charge operators of the possible topological defects.

The topological defects are classified by the homotopy group [9], and the qth homotopy group

of M is isomorphic to the homology group of M via the Hurewicz theorem if M is (q − 1)-

connected. Therefore, the charge operator of possible codimension-(q + 1) topological defect is

given by the generator of Hq(M,Z). This charge operator is like a counter, if the defect matches,

then yield 1, and 0 otherwise. For example, the baryon in 4d SU(N) gauge theory is classified by

π3(SU(Nf )) = Z, the charge operator or the baryon number current is Γ(3) ∈ H3(SU(Nf ),Z), and

it couples to the U(1) background gauge field A as,

exp

(
i

∫
X4

A ∧ Γ(3)

)
(II.4)

This reproduces the Goldstone-Wilczek current [40, 41].

To sum up, the WZW term and the charge operators of the topological defects in SSB phases

are given by the generators of the integer coefficient cohomology group of the target space with a

certain degree. In the following, we are using de Rham cohomology to find these generators. Since

the coefficient of de Rham cohomology is R, one needs to normalize these generators such that the

integral on the generator of the corresponding homotopy group yields 1 [38]. After normalization,

this gives the generators of the cohomology group with Z coefficient and can be used to define the

WZW term and charge operators of the topological defects.

B. Construction of the coset

The Goldstone boson field U lives in the coset G/H, meaning that the Goldstone boson fields

are equivalent under the right multiplication of the elements in H, U ∼ U ′h, h ∈ H. We need the

following parametrization of the coset G/H [21]. We denote the generators of compact Lie group G

as TA, A = 1, ...,dimG, and the subgroup H has generators Tα, α = dimG− dimH +1, ...,dimG.

The orthogonal part of the h in g is f = g − h, denoted as T a, a = 1, ...,dimG − dimH (capital

letters are for generators in g, greek letters are for those in h and lower case letters are for f). We

have grouped the indices such that g = f ⊕ h. These generators in general satisfy the algebraic
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relation [h, h] ⊂ h, [h, f] ⊂ f, [f, f] ⊂ g. We often encounter that the coset G/H is a symmetric

space, in this case, the relation is, [h, h] ⊂ h, [h, f] ⊂ f, [f, f] ⊂ h. For h = ∅, the coset is simply

G. The Goldstone boson field U(π(x)) is parametrized by the Nambu-Goldstone boson πa(x) as

[22, 23, 42],

U(π) = eiπ
a(x)Ta

, T a ∈ f. (II.5)

A general element g in G acting on the coset U(π) gives,

g−1U(π) = eiπ
′a(π,g)Ta

eiλα(π,g)T
α
= U(π′)h−1(π, g) (II.6)

the group transformation is equivalent to g : U(π) → U(π′) = g−1U(π)h(π, g), where h(π, g) as well

as π depend on the spacetime coordinate. π(x) is in general transformed in a complicated nonlinear

way. But when restricted to H, one can always choose the Goldstone boson π(x) transformed in a

linear way.

C. Cohomology of the homogeneous space

The generators of the cohomology group are particularly relevant to the terms that describe the

symmetry defects and the WZW term. The cohomology of homogeneous space G/H is given by

the closed G-invariant forms on G/H modulo exact G-invariant forms. We first discuss differential

forms on G and then restrict them on G/H. These differential forms are constructed by the basis

of left-invariant 1-forms, the Maurer–Cartan 1-form on G 1,

θ ≡ U−1(π)dU(π) = θATA. (II.7)

where TA is the Lie algebra generator and θA is the component. The Maurer-Cartan 1-form is

Lie-algebra valued 1-form on G, and its component satisfies the Maurer-Cartan equations,

dθC = −1

2
fABCθA ∧ θB, (II.8)

where fABC is the structure constant of the Lie group. Then the general left-invariant n-form on

G is given by, Ω
(n)
G = 1

n!(ΩG)A1,...,Anθ
A1 ∧ ... ∧ θAn . If the left-invariant n-form on G is closed,

dΩ
(n)
G = 0, but non-exact, Ω

(n)
G ̸= dη

(n−1)
G , then it gives the generator of the cohomology groups of

G.

1 The Maurer–Cartan 1-form is on G instead of G/H, additional conditions need specifying as discussed later. More

details can be found in, for example, [14]
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On the other hand, the invariant n-form on G/H should satisfy, a) the indices vanish on h, and

b) invariant under the adjoint action of h. These two conditions can be explicitly expressed using

the component of Maurer-Cartan 1-form, namely,

Ω(n) =
1

n!
Ωa1,...,anθ

a1 ∧ ... ∧ θan , (II.9)

LαΩ(n) = −
n∑
i=1

1

n!
Ωa1,...,anf

bj ,α,ajθa1 ∧ ... ∧ θbj ∧ ... ∧ θan = 0. (II.10)

Then the cohomology of G/H is given by,

H∗(G/H,R) =
invariant closed n-form on G/H

invariant exact n-form on G/H
. (II.11)

Note that the de Rham cohomology of G/H is isomorphic to the relative Lie algebra cohomology,

H∗(G/H,R) = H∗(g, h;R), therefore, we use de Rham cohomology of G/H and relative Lie algebra

cohomology interchangeably.

It is convenient to decompose the g-valued 1-form θ into h-valued and f-valued parts,

θ = U−1dU = (U−1dU)|f + (U−1dU)|h ≡ ϕ+ V, (II.12)

and in the component form, θ = θATA = θaT a + θαTα = ϕ + V . The above conditions can be

intuitively understood by doing the group action on the 1-forms according to Eq. (II.6),

θ → h−1θh+ h−1dh, (II.13)

V → h−1V h+ h−1dh, ϕ→ h−1ϕh, (II.14)

therefore, ϕ = θaT a transforms under the adjoint action of h, while V = θαTα transforms as the

h-valued connection. The invariant n-form on G/H is then given by the combination of ϕ and

curvature W = dV + V ∧ V or using the component form under the condition Eq. (II.9).

D. Generators of cohomology group on G/H

Among these invariant n-forms on G/H, the cohomology on G/H is obtained by closed in-

variant n-form modulo invariant exact n-form. We postpone the detailed algorithm that finds the

generators of the cohomology group to Appendix.A. For physical relevance, we are interested in

the generator with a degree less than 6, for example, the degree 5 generator may correspond to the

4d WZW term, and the degree 3 generator corresponds to 2d WZW term.
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a. Compact Lie group G For H = ∅, the cohomology group of G has degree 3 generator for

all compact Lie group (SU, SO,Sp), and degree 5 generator only for SU group [43]. The generators

are given by,

x(3) =
1

3
tr(U−1dU)3 =

1

3
trθ3, x(5) =

1

10
tr(U−1dU)5 =

1

10
trθ5. (II.15)

These generators are of cohomology group with R coefficient, and they need to be normalized

such that the integral over the generator of π3(G) = Z, π5(SU) = Z equal to 1 [38, 44]. The

normalized forms are the generators of H3(G,Z), H5(SU,Z). These generators can be written in

the component form as,

x(3) =
1

6
fABCθ

A ∧ θB ∧ θC , (II.16)

x(5) =
1

40
dA1BCfBA2A3fCA4A5θ

A1 ∧ θA2 ∧ θA3 ∧ θA4 ∧ θA5 (II.17)

where fABC = tr(TA[TB, TC ]) is the structure constant, dABC = tr(TA{TB, TC}) is the totally

symmetric rank 3 tensor. The totally symmetric rank 3 tensors are non-zero for SU(N) group with

N > 2.

b. Homogeneous space G/H The cohomology of homogeneous space is much richer, the gen-

erators in general should satisfy Eq. (II.9). Before case-by-case discussion of the homogeneous

spaces, the non-trivial generators of H3(G/H,Z), H5(G/H,Z) that may correspond to 2d and 4d

WZW terms or codimension-4, 6 symmetry defects are given by,

y(3) =
1

3
tr(3ϕW + ϕ3), y(5) =

1

5
tr(ϕ5 +

10

3
Wϕ3 + 5ϕW 2), (II.18)

where W = dV + V ∧ V is the curvature of V . Since V transforms as h-valued connection based

on Eq. (II.13), its curvature will transform as adjoint action under H as well as ϕ. The generators

y(3), y(5) are invariant under G. One can express these generators in terms of Goldstone boson

field by ϕ = (U−1dU)|f, V = (U−1dU)|h. We postpone the derivation of these generators to the

discussion of its corresponding anomaly.

Similarly, we can express these generators in terms of components,

y(3) =
1

6
(dadfdbcθ

a ∧ θb ∧ θc − 2daβfβbc)θ
a ∧ θb ∧ θc (II.19)

y(5) =
1

60
(3da1bcfba2a3fca4a5 − 4da1bγfba2a3fγa4a5

+ 8da1βγfβa2a3fγa4a5)θ
a1 ∧ θa2 ∧ θa3 ∧ θa4 ∧ θa5 (II.20)

where the lower case letters are for f part, and the Greek letters are for h part. dab = tr({T a, T b})

is the totally symmetric rank-2 tensor, which is proportional to Kronecker delta for the most cases.
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The 5th cohomology groups are non-vanishing for SU(n)/SO(n), n ≥ 3 and SU(2n)/Sp(n), n ≥ 2

which are relevant to the spontaneous symmetry breaking of QCD with SO gauge group and Sp

gauge group. More details can be found in Appendix.A 3.

Besides the generators that correspond to WZW terms, there are low degree cohomology gener-

ators corresponding to the charge operators of topological defects. The second cohomology group

is of particular interest in the following specific models since the generators of it correspond to the

charge operators of codimension 3 topological defects, they are particle-like in 3d and string-like

in 4d. The second cohomology on G/H is related to the first Chern class, evaluated on h-valued

gauge field on G/H [14]. In terms of the 1-forms, the generator of y(2) = H2(G/H,R) is given by,

y(2) = mα0W
α0 =

1

2
mα0f

α0bcθb ∧ θc (II.21)

where α0 is the index for the U(1) factor in h, if h has the decomposition h = h1 + ...+ u(1) + ....

The elements in hi vanish similar to that the first Chern class of non-abelian gauge field vanishes.

We will demonstrate this explicitly in the following specific models.

The 4th cohomology is constructed in a similar way by using the symmetric tensor mα,β that

is invariant under the adjoint transformation of H,

y(4) = mα,βW
α ∧W β (II.22)

The non-vanishing 2nd and 4th cohomology of some homogeneous spaces G/H are listed in the

Appendix.A 3 [43].

III. REVIEW OF ’T HOOFT ANOMALY AND ANOMALY MATCHING BY WZW

TERM

A. ’t Hooft anomaly and anomaly inflow

The theory with global symmetry that has ’t Hooft anomaly is still well-defined but the anoma-

lous symmetry cannot be gauged, otherwise, the anomaly is lifted to gauge anomaly and the

theory is inconsistent. Recent understanding of symmetry-protected topological (SPT) phases

gives a general picture of anomaly matching, the anomalous theory in d-dimension can be viewed

as the boundary of d+1-dimension SPT (or invertible phase), and the anomaly is canceled by the

bulk, therefore, the bulk-boundary combined system is non-anomalous [17, 45, 46].

The ’t Hooft anomaly for global symmetry G of a quantum field theory constrains the infrared

phases to be
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• gapless with G symmetry

• spontaneously symmetry breaking

• topological order

but never a trivial gapped phase. The theory with ’t Hooft anomaly is dubbed as “anomalous

theory T ”. The ’t Hooft anomaly of the global symmetry in a theory can be found by coupling

the theory to the background gauge field associated with its global symmetry. When performing

a gauge transformation on the background gauge field, the partition function of the anomalous

theory on spacetime manifold X instead of being invariant becomes,

ZT [A+ δλA] → ZT [A]e
i
∫
X α(λ,A). (III.1)

where λ is some gauge parameter. The partition function suffered from the ambiguity that different

regularization yields different results. Some ambiguity can be cured by adding local counterterms,

but for anomalous theory, the phase remains.

However, one can eliminate the ambiguity by viewing the anomalous theory T as the boundary

of certain SPT phase I. We can extend the background gauge field to the bulk Y , ∂Y = X, the

partition function of the SPT phase under the gauge transformation is,

ZI [A] = e−i
∫
Y ω(A) → ZI [A+ δλA] = e−i

∫
Y ω(A)−i

∫
X α(λ,A). (III.2)

Therefore, the bulk-boundary combined system is invariant under the gauge transformation,

ZT [A]ZI [A] → ZT [A+ δλA]ZI [A+ δλA] = ZT [A]ZI [A] (III.3)

The pictorial description is shown in Fig. 2. Using the bulk SPT to cancel the ’t Hooft anomaly of

the boundary theory is called anomaly inflow. On the other hand, the bulk SPT determines the ’t

Hooft anomaly of the boundary theory.

FIG. 2: Bulk-boundary combined system is invariant under the gauge transformation.
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B. Anomaly matching by Wess-Zumino-Witten term

The ’t Hooft anomaly is a property of the Hilbert space, therefore, it should be matched in the

ultraviolet and the infrared theory. From UV to IR, a common scenario is that the theory has

spontaneously symmetry breaking. Suppose the UV theory TUV has the global symmetry G, and it

is spontaneously broken down to H in the IR, the IR theory contains the TIR with the unbroken H

symmetry and Goldstone bosons U lives in the coset G/H. If the UV theory TUV has an anomaly,

then the IR theory TIR together with the Goldstone boson U should match the anomaly in TUV .

We can break the sufficient symmetry such that TIR does not suffer from the anomaly and all the

UV anomaly is matched by the Goldstone boson that lives in the homogeneous space G/H.

The chiral anomaly is an example that the local (perturbative) anomaly which can be seen from

the triangle diagram is known to be matched by the Goldstone boson with WZW term [47, 48].

However, the global (non-perturbative) anomaly is more subtle and needs a proper definition for the

WZW term [38, 49, 50]. In some cases, the non-perturbative anomaly can be found perturbatively

by embedding the group into a larger group [24].

Coupling the WZW term to gauge field and constructing gauge invariant gauged WZW term

has been extensively studied over the three decades [13, 51–53], and it has very rich mathematical

structures [54–56]. The gauged WZW term for general coset was studied in Ref. [15, 57].

In the following, we discuss a bulk-boundary combined construction of the gauged WZW term

that could match general ’t Hooft anomaly [18]. More specifically, assuming the d-dimensional UV

theory has an anomaly described by d+ 1-dimension SPT phase I, and the anomalous symmetry

G is spontaneously broken down to (anomalous or not) H in the IR. Ref. [18] defines the general

WZW term associated with I so that the anomalies of UV and IR are matched.

As presented in Sec. II B, the Goldstone boson lives in the coset G/H, where G can contain

both spacetime and internal symmetries. Another view of the coset G/H is that the Goldstone

boson locally takes value in G and has gauge symmetry H, or cover of H. The Goldstone boson

transforms under G as Eq. (II.6). Consider the connection A on the principal G-bundle, A is the

background gauge field associated with the global symmetry G, the gauge transformation of A is

given by,

A→ Ag = g−1Ag + g−1dg. (III.4)

We can use the Goldstone boson field as the transition function to define the new connection,

AU ≡ U−1AU + U−1dU (III.5)
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which transforms as H connection under G action according to Eq. (II.6),

AU → h−1AUh+ h−1dh. (III.6)

Therefore, AU is the connection of the principal H-bundle. Note that the Lie algebra valued 1-form

θ = U−1dU is precisely AU |A=0. Similarly, we can decompose the connection into h and f part,

they transform under G action as,

AU = AUh +AUf → (h−1AUh h+ h−1dh) + (h−1AUf h) (III.7)

where AUh is the connection of H-bundle and AUf transforms under the adjoint action of H. Since

AU and AUh are the connections of the same bundle, we can consider the interpolation of these

connections,

AU (t) = AUh + (1− t)AUf =


AU t = 0

AUh t = 1

(III.8)

As shown in Fig. 3, one can imagine a cylinder where the leftmost is the connection AU , and

the rightmost is the connection AUh . The leftmost gauge field AU is extended to the bulk SPT

with anomalous symmetry G via the transition function U , while the rightmost gauge field AUh is

extended to the bulk with anomalous symmetry H (if H is non-anomalous, then the extension is

not needed).

FIG. 3: Pictorial description of the construction of WZW term. The left manifold Y describes the SPT with

symmetry G whose connection is the background gauge field A. With the transition function U , the left manifold

Y can be glued with the middle cylinder [0, 1]×X, where the WZW term lives in. The path [0, 1] connects the

connection AU and AU
h , where the background gauge field AU

h can be extended to the right manifold Ȳ with global

symmetry H. The WZW term on the cylinder then describes the Goldstone boson in the symmetry breaking phase

with G → H.

The general gaugedWZW term in [18] is defined by taking the partition function of the invertible

theory on the total manifold Ytotal = Y ∪ (X× [0, 1])∪ Ȳ0. The resulting partition function is gauge

invariant. The Goldstone boson field U is defined on the cylinder X × [0, 1], therefore, the WZW

term actually only depends on the dynamics of U on d-dimensional manifold X. The connection
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AU at the left-most of the cylinder is extended to Y by transition function U , AUh is extended to

Ȳ0.

However, this construction is slightly different from the ordinary understanding of the WZW

term, namely the WZW term only depends on the spacetime manifold X, though it is written

in one higher dimension. In the following section, we provide an alternative construction of the

gauged WZW term that is in accordance with the pictorial understanding of anomaly inflow in

Fig. 2

IV. (RELATIVE) CHERN-SIMONS FUNCTIONAL, GAUGED WZW TERM AND ITS

ANOMALY

We first recall the setup of our system - given an anomalous UV global symmetry G, and it

is spontaneously broken down to anomalous or not symmetry H in the IR, then the UV anomaly

is matched by the Goldstone boson in G/H and IR theory with unbroken symmetry H. Instead

of the construction in Sec. III B, we give an alternative construction of gauged WZW term that

agrees with the anomaly inflow picture in Fig. 2, however, as shown in Fig. 4, the price is that the

bulk SPT is described by the more complicated relative Chern-Simons functional (for H = ∅, the

relative Chern-Simons term reduces to the Chern-Simons term) in the odd spacetime dimensions.

For the even spacetime dimensional bulk, the bulk SPT is described by the mixed θ term, i.e. wedge

product of various curvature tensor, and the gauged WZW term can be written as the derivative

of a lower degree form [13–15]. For our purpose, we will only consider odd spacetime dimensional

bulk in the following, which is relevant to the DQCP of GUTs in Sec.VB, and mention the even

dimensional case in Sec.VA.

For two connections A,A′ on the principle H-bundle, and a path of connection that interpolates

these two, the relative Chern-Simons term is defined by the form that trivializes the difference

between the curvature characteristic forms of different connections [16],

dCS(2n+1)(A,A′) = ch(2n+2)(A)− ch(2n+2)(A′) (IV.1)

where ch(2n)(A) = 1
n!tr(iF/(2π))

n, F = dA+A∧A is the curvature of the connection A. The Chern-

Simons form is then the special case of the relative Chern-Simons form with A′ = 0, dCS(2n+1)(A) =

ch(2n+2)(A).

As reviewed in the previous section, the theory with the ’t Hooft anomaly needs to be matched

with bulk SPT. The SPT I with U or SU symmetry can be expressed as Chern-Simons functional,
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FIG. 4: Instead of defining WZW term on a cylinder as discussed in Fig. 3, we bend the cylinder such that the

anomaly matching agrees with the gauge invariant bulk-boundary combined system in Fig. 2, and the WZW term

only depends on spacetime manifold X = ∂Y . However, the bulk SPT is now described by relative Chern-Simons

term in odd spacetime dimensions and mixed θ term in even spacetime dimensions.

and many other SPTs can be obtained by higgsing the gauge field, for example, discrete gauge

theories can be obtained from the Chern-Simons functional [58, 59]. We take the SPT I to be

described by the Chern-Simons functional or more general the relative Chern-Simons functional

[18, 60],

ZI [A] = exp

(
ik

∫
Y
CS(A)

)
, ZI [A,A

′] = exp

(
ik

∫
Y
CS(A,A′)

)
. (IV.2)

where k ∈ Z is the level, k = 1 for SPTs. The anomaly associated with these SPTs is matched by

the gauged WZW term in the following form,

¯
Γ(d+1)(U,A,Ah) ≡ CS(AU , AUh )− CS(A,Ah) = Γ(d+1)(U) + dα(d)(U,A,Ah), (IV.3)

where α(d)(U,A,Ah) is a d-form, and it is clear that the gauged WZW term does not depend on

the extra dimension, since the first term is a closed (d + 1) form whose variation depends on the

d-dimensional boundary X and the second term only depends on the boundary X by the Stokes’

theorem. The relative Chern-Simons form CS(A,A′) manifests the gauge invariance under H

transformation, and the gauged WZW term is invariant under U → Uh without any counterterms.

If h = ∅, then the gauged WZW term is given by the Chern-Simons form,

¯
Γ(d+1)(U,A) ≡ CS(AU )− CS(A) = Γ(d+1)(U) + dα(d)(U,A). (IV.4)

We note that the gaugedWZW term in Eq. (IV.3) indeed reproduces the ’t Hooft anomaly under the

global symmetry G. Let’s first focus on the case when h = ∅, the connection A→ g−1Ag+ g−1dg

and Goldstone boson field U → g−1U under the G transformation. AU is then invariant under this
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transformation, therefore, the first term CS(AU ) is invariant under the gauge transformation of G.

However, the second term −CS(A) contributes to the anomalous phase under the transformation

of G by the descent equation argument.

For the case when h ̸= ∅, under the G transformation, the connection transforms as A →

g−1Ag + g−1dg and Goldstone boson goes as U → g−1Uh, both AU and AUh transform as the

connection on H according to Eq. (III.7). The CS(2n+1)(AU , AUh ) is invariant under the gauge

transformation, this can be explicitly checked. But the second term −CS(2n+1)(A,Ah) part will

give the anomaly associated with the symmetry G and H which needs to be canceled by the SPT

in the bulk, this mechanism is called anomaly inflow [61], and the bulk boundary combined system

is non-anomalous. In short, the gauged WZW term Eq. (IV.3) has the anomaly associated with

the bulk SPT which is described by CS(2n+1)(A,Ah). If we assume there is no anomaly associated

to the symmetry H, then the gauged WZW term matches with the anomaly of the bulk SPT

described by CS(2n+1)(A,Ah) and dCS
(2n+1)(A,Ah) = ch(2n+2)(A).

We summarize the anomaly matching by WZW term in the following, given the WZW term

Γ(d+1)(U) with field U lives in G/H, couple it to the background gauge fields A,A′ associated with

global symmetry G,H and get
¯
Γ(d+1)(U,A,A′). Under the gauge transformation, the anomalous

phase of the gauged WZW term is canceled by the bulk SPT described by the (relative) Chern-

Simons term.

Another way to see the necessity of relative Chern-Simons term is as follows, supposing the UV

symmetry G has ’t Hooft anomaly and it is matched by CS(2n+1)(A), the IR symmetry H also has

the ’t Hooft anomaly and matched by CS(2n+1)(Ah). The gauged WZW term together with the IR

anomaly should match the UV anomaly, in other word, the gauged WZW term should yields the

same anomalous phase as CS(2n+1)(A)− CS(2n+1)(Ah) which is roughly the relative Chern-Simons

term CS(2n+1)(A,Ah) = CS(2n+1)(A) − CS(2n+1)(Ah) + dβ(2n)(A,Ah), where β
(2n)(A,Ah) is some

2n-form depending on A,Ah.

In the following, we will use the Cartan homotopy method to find the explicit form of

CS(AU , AUh ), α
(d)(U,A,Ah), and compare them with the simple case when h = ∅.

A. Cartan’s homotopy method and relative Chern-Simons term

We postpone the detailed review of Cartan’s homotopy method to Appendix. B [62]. For any

invariant polynomial S(A,F ) of connection A and curvature F = dA+A∧A, (dA can be substituted
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by F −A2 and dF is substituted by −[A,F ]), we have the following formula,

(dℓt + ℓtd)S(At, Ft) = δt
∂

∂t
S(At, Ft), (IV.5)

where the operator ℓt is an anti-derivative operator,

ℓt(η
(p) ∧ ω(q)) = (ℓtη

(p)) ∧ ω(q) + (−1)pη(p) ∧ (ℓtω
(q)). (IV.6)

If A0, A1 both are connections on the same bundle, one can define a one-parameter family, At =

A0 + t(A1 −A0), and the curvature is given by Ft = dAt +At ∧At. The operator ℓt acts on At, Ft

as,

ℓtAt = 0, ℓtFt = δt(A1 −A0). (IV.7)

Integrating over t from 0 to 1 on both sides of Eq. (IV.5), we have,

S(A1, F1)− S(A0, F0) =

(
d

∫
t
ℓt +

∫
t
ℓtd

)
S(At, Ft). (IV.8)

1. Relative Chern-Simons form

Since the Chern class is even degree closed form ch(2n) = 1
n!tr(

iF
2π )

n, it can be locally written as

an exact form, ch(2n+2)(F ) = dCS(2n+1)(A). But this is not globally true, if true then the integral

of Chern class on any closed manifold would yield 0. From Eq. (IV.2), the difference of two Chern

classes with curvature F, F ′ can be written as the relative Chern-Simons term. And according to

Cartan’s homotopy formula,

ch(2n+2)(F )−ch(2n+2)(Fh) =

(
d

∫
t
ℓt +

∫
t
ℓtd

)
ch(2n+2)(Ft) = d

∫
t
ℓtch

(2n+2)(Ft) ≡ dCS(2n+1)(A,Ah),

(IV.9)

where Ft = dAt+A
2
t , and At = Ah+tAf as discussed around Eq. (III.8). The relative Chern-Simons

term is given by,

CS(2n+1)(A,Ah) =

∫
t
ℓtch

(2n+2)(Ft) =
1

n!

(
i

2π

)n+1 ∫
dt tr(AfF

n
t ). (IV.10)

More explicitly, we have

CS(2n+1)(A,Ah) =
1

n!

(
i

2π

)n+1 ∫
dt tr(Af(Fh + tDhAf + t2Af)

n), (IV.11)
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where Dh is the covariant derivative with respect to h-connection, DhAf = dAf + {Ah, Af}. The

relative Chern-Simons terms with degrees 3 and 5 are,

CS(3)(A,Ah) = − 1

4π2
tr

(
AfFh +

1

2
AfDhAf +

1

3
AfAfAf

)
, (IV.12)

CS(5)(A,Ah) = − i

16π3
tr

(
AfF

2
h +

1

2
Af{Fh,DhAf}+

2

3
FhA

3
f

+
1

3
Af(DhAf)

2 +
1

2
A3

fDhAf +
1

5
A5

f

)
. (IV.13)

Since Af, the curvature of Ah and the covariant derivative with respect to Ah are all transformed

under adjoint action of H, the relative Chern-Simons term is manifestly invariant under the H

transformation as well as G transformation. If H = ∅, Af is identified with the G-connection A,

the curvature Fh = 0 and DhAf = dA, then,

CS(3)(A) = − 1

8π2
tr

(
AdA+

2

3
A3

)
, (IV.14)

CS(5)(A) = − i

48π3
tr

(
A(dA)2 +

3

2
A3dA+

3

5
A5

)
, (IV.15)

which reproduce the Chern-Simons forms with only the background field associated with the global

symmetry G.

2. Explicit form of gauged WZW term

According to the definition of gauged WZW term
¯
Γ(d+1)(U,A,Ah) in Eq. (IV.3), the gauged

WZW term is obtained by the difference of relative Chern-Simons terms with connection AU and

A which result in a closed d+1-form Γ(d+1)(U) only depending on the Goldstone boson configuration

U and an exact d+ 1-form expressed as dα(d)(U,A) which depends on the configuration U as well

as the gauge field A. We will use Cartan’s homotopy formula to obtain the explicit form of the

d-form α(d) and give the explicit form of the gauged WZW term.

The closed d + 1-form Γ(d+1)(U) is easily obtained by turning off the background gauge field

A in the relative Chern-Simons forms Eq. (IV.12) and Eq. (IV.13). The connection AU defined in

Eq. (III.5) and Eq. (III.7) can be decomposed as,

AU = AUh +AUf = (U−1AhU + V ) + (U−1AfU + ϕ). (IV.16)

Once turning off the background gauge field, AUh = V,AUf = ϕ and the curvature of Ah becomes
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W = dV + V 2, then Γ(d+1)(U) becomes,

Γ(3)(U) = CS(3)(θ, V ) =− 1

4π2
tr

(
ϕW +

1

2
ϕDV ϕ+

1

3
ϕ3
)

∈ H3(G/H,R), (IV.17)

Γ(5)(U) = CS(5)(θ, V ) =− i

16π3
tr

(
ϕW 2 +

1

2
ϕ{W,DV ϕ}+

2

3
Wϕ3

+
1

3
ϕ(DV ϕ)

2 +
1

2
ϕ3DV ϕ+

1

5
ϕ5

)
∈ H5(G/H,R), (IV.18)

where DV ϕ = dϕ + {V, ϕ} = 0. One can check when H = ∅, ϕ is identified with θ, the curvature

W vanishes and the covariant derivative DV ϕ = dθ = −θ ∧ θ, the WZW terms become,

Γ
(3)
G (U) = − 1

24π3
trθ3 = − 1

24π3
tr(U−1dU)3 ∈ H3(G,R), (IV.19)

Γ
(5)
G (U) = − i

480π3
trθ5 = − i

480π3
tr(U−1dU)5 ∈ H5(G,R). (IV.20)

These match with the standard WZW term for WZW conformal field theory in 2d and chiral

symmetry breaking in 4d. The WZW terms for G and G/H obtained by the Cartan homotopy

method reproduce those in Sec. II.

The gauged WZW defined in Eq. (IV.3) can be obtained by considering the interpolation At =

tU−1AU + θ,Ah,t = tU−1AhU + V , in this case the Cartan homotopy formula becomes,

CS(2n+1)(AU , AUh )− CS(2n+1)(θ, V ) =

(
d

∫
t
ℓt +

∫
t
ℓtd

)
CS(2n+1)(At, Ah,t)

= dα(2n) +

∫
t
ℓt(ch

(2n+2)(Ft)− ch(2n+2)(Fth)) = dβ(2n) + CS(2n+1)(A)− CS(2n+1)(Ah). (IV.21)

Since there is no anomaly for H, the Chern-Simons term for gauge field Ah vanishes. The Chern-

Simons term CS(2n+1)(A) differs from the relative Chern-Simons term CS(2n+1)(A,Ah) by a total

derivative dβ(2n), therefore, the gauged WZW term is,

¯
Γ(2n+1)(U,A) ≡ CS(2n+1)(AU , AUh )− CS(2n+1)(A,Ah) = Γ(2n+1)(U) + d(α(2n) + β(2n)), (IV.22)

where the 2n-form α depends on U,A,Ah while β depends only on the background gauge fields.

For example, β(2) = tr(A ∧Ah), α
(2) = tr(ϕU−1(A+Ah)U). If H = ∅, β(2n) vanishes, and α(2n) is

obtained by, ∫
t
ℓttr(CS

(2n+1)(tA+ dUU−1)). (IV.23)

This gives, for example, α(2) = 1
2tr(dUU

−1A). More details can be found in Appendix. B.
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V. NONLINEAR SIGMA MODEL OF DQCP THEORIES

With the gears presented in the previous sections, we will show that the WZW term captures the

intertwinement of the topological defects and matches with the ’t Hooft anomaly in the anomalous

theory. We use the charge operators of topological defects to construct the WZW term and use

the gauged WZW term to match the mixed anomaly in the theory.

We are interested in the critical points or phases between spontaneously symmetry-breaking

phases in the presence of the ’t Hooft anomaly, and the manifestation of the ’t Hooft anomaly

in different symmetry-breaking phases. This situation is along with many deconfined quantum

critical point theories. We begin by revisiting the intertwinement in the DQCP theory of the 3d

quantum magnet [10, 12], and then construct a series of 4d DQCP theories which is motivated

by recent work on DQCP among grand unified theories [28–30]. The new set of 4d deconfined

quantum criticality theories is the higher dimensional generalization of 3d DQCP theories, and the

new 4d DQCP (DQCPh) theories are governed by ’t Hooft anomaly of global SO(2n) symmetry

which turns out to be a variation of the new SU(2) anomaly [28–30, 33].

A. Revisiting deconfined quantum critical point in 3d quantum magnet

As mentioned in the introduction, the continuous global symmetry of the 3d quantum magnet

is G = SO(3)S×SO(2)R, which corresponds to spin and lattice rotation symmetry. The Néel phase

in this system is the antiferromagnetic phase, with spins pointing up or down. This phase has

HNéel = SO(2)S × SO(2)R symmetry, broken by the easy-axis spin configuration. The Goldstone

boson in the Néel phase lives in the cosetG/HNéel
∼= SO(3)S/SO(2)S ∼= S2S . The possible topological

defect is classified by π2(S2S) = Z, corresponding to codimension 3 integer-valued defect, which is

the hedgehog defect in the Néel phase. On the other hand, the lattice rotation symmetry is

broken in the VBS phase, HVBS = SO(3)S . The corresponding Goldstone boson lives in the coset

G/HVBS = SO(2)R ∼= S1R. The possible topological defect is classified by π1(S1R) = Z, which

corresponds to codimension 2 integer-valued defects, this is the vortex line in the VBS phase.

It is very interesting that the vortex core in the VBS phase carries spin-12 degree of freedom [5].

When proliferating the vortices in the VBS phase, the defects will destroy the VBS ordered phase,

but due to the additional spin-12 degree of freedom at the vortex core, the system will become

the ordered Néel phase. In other words, the disorder operator of lattice rotation symmetry carries

the symmetry charge of the spin rotation symmetry, which is reminiscent of the mixed ’t Hooft
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anomaly of these two symmetries.

The ’t Hooft anomaly should match along the renormalization group flow, meaning that all

possible phases should have such an anomaly. In the ordered phases, although some defects may

be suppressed by energy, their intertwined feature should manifest thanks to the anomaly. We

can deform the theory by tuning the relevant operators such that the theory flow to the IR phase

with the smallest symmetry K and there is no anomaly with K, hence, the anomaly in the UV is

matched by the Goldstone boson in the coset G/K.

Theories with the same symmetry properties and anomaly will be dual to each other, in the sense

that they describe the same IR phase with different UV details [63]. We consider the deformation

of the theory to the spontaneous symmetry breaking phase with unbroken symmetry K = HNéel ∩

HVBS = SO(2)S . Then the gapless theory of the Goldstone boson living in the coset G/K = S2S×S1R
with WZW term would be a suitable dual description of the DQCP theory. Indeed, we will show

this construction is related to the O(5) nonlinear sigma model that served as the dual theory of

various gauge theory descriptions of 3d DQCP [12]. Both topological defects in Néel and VBS

phase are present in this Goldstone boson theory, since πk(S2S × S1R) = πk(S2S) × πk(S1R). The

symmetry-breaking routes are summarized as follows,

G = SO(3)S × SO(2)R

HNéel = SO(2)S × SO(2)R HVBS = SO(3)S

K = HNéel ∩HVBS = SO(2)S

⟨ΦN ⟩≠0 ⟨ΦV ⟩≠0

⟨ΦV ⟩̸=0 ⟨ΦN ⟩≠0

(V.1)

We denote the generators of SO(3)S as {T 1, T 2, T 3} and SO(2)R as {T 4}. Supposing the gen-

erators of HNéel are {T 3, T 4}, then the charge operators of the topological defects in the Néel and

VBS phase are represented by,

η̃(1) = θ4 ∈ H1(G/HVBS,R), ξ̃
(2)

= θ1 ∧ θ2 ∈ H2(G/HNéel,R). (V.2)

In the ordered phase with global symmetry K = HNéel ∩HVBS = SO(2)S , the generator is {T 3},

and the cohomology generators are,

η(1) = θ4 ∈ H1(G/K,R), ξ(2) = θ1 ∧ θ2 ∈ H2(G/K,R). (V.3)

In this case, η̃(1) = η(1) and ξ̃
(2)

= ξ(2) since the global symmetry G is the tensor product of two

subgroups. Wedge product of the two generators yields a generator of the higher degree cohomology

group, η(1) ∧ ξ(2) = θ4 ∧ θ1 ∧ θ2 ∈ H3(G/K,R).
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The WZW term in the 2+1d DQCP assigns a phase to the linking between the VBS vortex and

hedgehog defect or the linking between S2S and S1R in S4 [64]. The way to define the linking is to

find the surface D2
R that is bounded by the circle S1R and the intersection with S2S gives the linking

number. The form on D2
R is denoted by η̂(1) and the WZW term is,

Γ(4) = ξ(2) ∧ dη̂(1). (V.4)

More explicitly, we can parameterize S2S and S1R by 3-component unit-vector nS and 2-component

unit-vector nR, then ξ
(2) = ϵabcn

a
Sdn

b
S ∧ dncS , η(1) = n1Rdn

2
R. The 1-form is closed when restricting

on the circle, but not closed on the disk, dη̂(1) = dn1Rdn
2
R. Therefore, the WZW term is given by

Γ(4) = ϵabcden
a
Sdn

b
Sdn

c
Sdn

d
Rdn

e
R, which appears in the SO(5) NLSM of DQCP [12, 65–68].

When coupled to the background gauge field the anomaly of the gauged WZW term comes from

the mixed θ term in 4d which matches the anomaly in the bulk SPT phase with global symmetry

SO(3)S×SO(2)R. We can further embed SO(3)S×SO(2)R ↪→ SO(5), the corresponding anomaly is

described by 1
2w4 ∈ H4(BSO(5), U(1)), upon pull-back to SO(3)S×SO(2)R, the anomaly becomes,

1

2
w4(AS ⊕AR) =

1

2
w2(AS)w2(AR) =

1

2

FR
2π
w2(AS), (V.5)

where FR = dAR and w2 is the second Stiefel Whitney class of SO(3) bundle. This anomaly also

matches with that in 3d CP 1 model in [10, 11]. The same anomaly in WZW theory and 3d CP 1

model is also a check of the infrared duality of the different theories [12, 63]. Recent works on

quantum spin liquid have examined related gauge theories and their corresponding NLSM with

WZW term, and the target spaces of the NLSM are Stiefel manifold or Grassmannian manifold

[25–27]. It would also be interesting to construct other 2+1d DQCP theories that saturate the

anomaly discussed in [69, 70]. Similar construction and anomaly matching can be applied to 1+1d

system [7, 71–74].

B. Deconfined quantum critical point and intertwinement of topological defects in 4d

In contrast to the extensive theoretical and numerical studies of deconfined quantum critical

points in 2d and 3d, the 4d generalization of DQCP is rarely explored. One difficulty is that the

gauge fields tend to be deconfined in higher dimensions and many gauge theories then describe the

deconfined quantum critical phases instead of critical points. Nevertheless, previous works focus

on the gauge theory description and find interesting examples of deconfined quantum critical point

with mixed ’t Hooft anomaly that implies the intertwinement of symmetries [75].
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Regardless of the specific models and their critical behaviors, it is interesting to study the

intertwinement of topological defects in 4d which manifests the ’t Hooft anomaly in the UV theory,

since there are more types of topological defects in higher dimensions. This also offers a way to

understand the higher dimensional SPTs, since the WZW term essentially describes the linking

between extended operators in the bulk where the SPT lives in.

We construct the nonlinear sigma model with WZW term to describe this phenomenon in the

following subsections and construct the corresponding fermionic parton theories in Sec.VI. Our

construction turns out to describe the deconfined quantum critical phase (DQCPh), since the

minimal fermionic parton theory contains U(1) gauge field, which is deconfined in the 3+1d [28–

30]. Because the inputs of our construction are the global symmetries and corresponding mixed

’t Hooft anomaly, it may have different gauge theory descriptions with the same global symmetry

and anomaly. It is interesting to find specific gauge theory description that realizes the deconfined

quantum critical point.

From the previous discussion, the DQCP theory is anomalous and can be thought of as the

boundary of one higher dimensional SPT. The 4d DQCPh theory can serve as the boundary of

5d SPT. The 5d SPT with only ZT2 symmetry is Z2 classified, this SPT is described by
∫
Y 5 w2w3

[76, 77] and recently studied in [78–80], where wi ∈ H i(Y 5,Z2) is the i
th Stiefel-Whitney class. In

the presence of symmetry, similar topological terms are possible for the all-fermion electrodynamics

[81] and the new SU(2) anomaly [33]. Hence, it is possible to have an anomalous theory at the

boundary of the nontrivial SPT with the anomaly described in the above mentioned examples. In

the following, we will discuss a series of models with the new SU(2) anomaly, these models describe

the gapless theories between two spontaneously symmetry-breaking phases.

1. Symmetry breaking and topological defects

Recent work shows that the DQCP (or DQCPh, depending on the model details) can present

among the Grand Unified Theories (GUTs) in which the standard model with global symmetry gen-

erated by kSM = su(3)⊕su(2)L⊕u(1)Y ⊕u(1)X can be embedded, the three GUTs are SO(10) GUT

with gSO(10) = so(10), Pati-Salam (PS) model with hPS = so(6)⊕ so(4) = su(4)⊕ su(2)L ⊕ su(2)R

and Georgi-Glashow (GG) model with hGG = su(5)⊕ u(1)X [28–30]. The gauge symmetry is “un-

gauging” such that they can be viewed as global symmetries. In other words, the dynamical gauge

fields in the original theories are background gauge fields in these alternative theories. Therefore,

the Higgs phases and transitions become symmetry-breaking phases and transitions. When con-
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densing the symmetric Φ54 or antisymmetric Φ45 scalar fields charged under SO(10) in the SO(10)

GUT described in [30], one can get the symmetry breaking phases with unbroken symmetry hPS or

hGG respectively, these symmetries can be further broken down to kSM . The symmetry-breaking

pattern is summarized as follows.

gSO(10)

hPS hGG

kSM = hPS ∩ hGG

⟨Φ54⟩̸=0 ⟨Φ45⟩≠0

⟨Φ45⟩≠0 ⟨Φ54⟩≠0

(V.6)

where Φ45,Φ54 are traceless symmetric and antisymmetric higgs fields of SO(10). The possible

topological defects in the PS and GG phases are classified by,

π2

(
SO(10)

SO(6)× SO(4)

)
= Z2, π2

(
SO(10)

U(5)

)
= Z. (V.7)

The topological defects in the symmetry breaking phases are codimension 3 defects corresponding

to the line operators in 4d. The topological defects in the PS phase are Grassmannian manifold

and Z2 classified, meaning that two of such defects can be deformed to nothing.

As discussed around Eq. (II.4) and Sec.VA, since the coset SO(2n)/(SO(2m)×SO(2n−2m)) and

SO(2n)/U(n) have vanishing π1 and π0, the 2nd homotopy group is isomorphic to the 2nd homology

group. We can use the corresponding cohomology generators as the charge operators of these

topological defects. However, it is impossible to directly express the charge operator of Z2 classified

topological defect of SO(2n)/(SO(2m) × SO(2n − 2m)) within the de Rham cohomology, more

generally it is impossible for the Zn classified topological defects, since the normalized generator

of de Rham cohomology yields Z-valued closed form. Mathematically, one may consider mod n

reduction of the cohomology group or using the Cech cohomology. But the current situation is

reminiscent of the non-perturbative SU(2) anomaly which is characterized by π4(SU(2)) = Z2 [32],

the way to reproduce the non-perturbative anomaly perturbatively is by embedding SU(2) ↪→

SU(3), and the non-perturbative SU(2) anomaly is seen by the WZW term of SU(3) group [24]. As

in Sec.VA, we attempt to embed the space SO(2n)/(SO(2m)× SO(2n− 2m)) into a larger space,

the natural choice is the Goldstone boson in the SM phase with both order parameters condensed

and the unbroken symmetry is K. Indeed, we find that the embedding into G/K can capture both

topological defects even this Z2 classified topological defects in the PS phase with target space

SO(2n)/(SO(2m)× SO(2n− 2m)).

The above statement can be seen by examining the homotopy group of the target space G/K.

The short exact sequence of the global symmetry G,K and coset is 0 → K → G→ G/K → 0, this
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induces the long exact sequence for the homotopy group, and the relevant part is,

...→ π2(G) → π2(G/K) → π1(K) → π1(G) → π1(G/K) → ... (V.8)

The homotopy groups of G = SO(n) is known, π2(SO(n)) = 0, π1(SO(n)) = Z2, n ≥ 3 and G/K is

contractible π1(G/K) = 0, the long exact sequence becomes,

0 → π2(G/K) → π1(K) → Z2 → 0 (V.9)

Therefore π2(G/K) = π1(K) = π1(SU(3)×SU(2)×U(1)×U(1)) = Z⊕Z quotient by Z2, where the

two Zs correspond to the topological defects in PS and GG phase respectively. This construction

is valid for a series of theories with G = SO(2n), n ≥ 2.

2. Construction of Lie algebras

In this subsection, we describe the embedding of so(2m) ⊕ so(2n − 2m) and u(n) into the

so(2n) Lie algebra. The so(2n) Lie algebra is represented by n(2n − 1) 2n × 2n anitsymmetric

real matrices, which generate the rotation of a 2n-vector. so(2m) ⊕ so(2n − 2m) consists of the

2n × 2n anitsymmetric real matrices that rotate within the first 2m elements, or within the last

2(n−m) elements in the 2n-vector. The u(n) is embedded in the so(2n) by Kronecker producting

the symmetric generators of u(n) with iσ2 and antisymmetric generators of u(n) with iσ0.

In our case, m = 2⌊n/2⌋ in so(2m) ⊕ so(2n − 2m), where m is taking the floor of n/2. The

intersection of u(n) and so(2m) ⊕ so(2n − 2m) is isomorphic to u(m) ⊕ u(n − m) and always

contain two u(1)s, in the upper-left block u(1)+ and lower-right block u(1)− of the original so(2n)

respectively. Hence, u(1)+ + u(1)− ⊂ u(n) rotates the upper and lower block with the same phase,

while u(1)+ − u(1)− ⊂ so(2m)⊕ so(2n− 2m) rotates the upper and lower block with the opposite

phase.

Since the intersection of Lie algebras is u(m)⊕u(n−m), the symmetry K generated by this Lie

algebra contains two U(1) factors, π2(G/K) = π1(K) = Z⊕Z due to Eq. (V.9). We have identified

that one of the U(1) factors is in U(n), the other relates to SO(2m) × SO(2n − 2m). Hence, the

topological defects in G/K correspond to those in symmetry breaking phases with only unbroken

U(n) or SO(2m)× SO(2n− 2m). Since they are Z classified, we can find the de Rham cohomology

expressions of the charge operators corresponding to the topological defects,

η(2) ∈ H2(G/K,R), ξ(2) ∈ H2(G/K,R), (V.10)
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where η(2) = η̃(2) ∈ H2(G/U(n),R) corresponds to the charge operator of topological defect in

G breaking down to HU = U(n) phase, and ξ(2) should relate to ξ̃
(2) ∈ H2(G/SO(2m)SO(2n −

2m),Z2) which corresponds to the charge operator of topological defect in G breaks down to

HSO = SO(2m)× SO(2n− 2m) phase.

For SO(8), these generators of the cohomology group is given by,

η
(2)
U = θ1 ∧ θ7 + θ6 ∧ θ12 + θ2 ∧ θ8 + θ3 ∧ θ9 + θ4 ∧ θ10 + θ5 ∧ θ11 ∈ H2(G/K,R), (V.11)

ξ
(2)
SO = −θ1 ∧ θ7 + θ6 ∧ θ12 + θ14 ∧ θ20 + θ15 ∧ θ21 + θ16 ∧ θ22 + θ17 ∧ θ23 ∈ H2(G/K,R), (V.12)

where the indices 1 ∼ 12 are the generators of the coset so(8)/u(4), while {2, 3, 4, 5, 8, 9, 10, 11, 14, 15,

16, 17, 20, 21, 22, 23} are the generators of the coset so(8)/so(4) ⊕ so(4). The η
(2)
U ∈ H2(G/K,R)

coincides with the nontrivial generator in H2(SO(8)/U(4),R). And it is worth mentioning that

the first two terms in ξ
(2)
SO will cancel each other when pull-back to S2, the remain terms are all in

so(8)/so(4)⊕so(4), this further supports that ξ
(2)
SO relates to the generator inH2(SO(8)/SO(4)SO(4),Z2).

3. Wess-Zumino-Witten term

As illustrated in Sec.VA, one can construct a WZW term by wedge product of the charge

operators,

η
(2)
U ∧ ξ(2)SO ∈ H4(G/K,R). (V.13)

However, to properly include the linking information, an additional degree of freedom should be

included. Intuitively, two 2-spheres can link with each other in S5 but cannot be properly described

in 4-dimension, this is similar to the lower dimension example that the linking of two circles needs

to be embedded in S3 and the linking is essentially the intersection between one circle and the disk

that is bounded by the other circle. Following this procedure, one needs to find the 3-disk D3 that

is bounded by one of the 2-spheres, say corresponding to ξ
(2)
SO, then ξ

(2)
SO is no longer closed, and the

WZW term that encodes the linking of two topological defects is,

Γ(5) = η
(2)
U ∧ dξ(2)SO ∈ H5(Ĝ/K,R), (V.14)

where Ĝ/K is the extension of G/K such that it contains a 3-disk which is bounded by a 2-sphere.

This term corresponds to ϕW1W2 in Eq. (IV.18). As mentioned in [28], the mixed anomaly of U(n)

and SO(2m)×SO(2n−2m) is contained in SO(2n). The gauged WZW term then matches with the

anomaly from the Chern-Simons term, for the SO(2n) global symmetry, dCS(5) = W3(SO(2n))
2 ∈
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H6(BSO(2n),Z), whose mod 2 reduction is w3(SO(2n))
2 ∈ H6(BSO(2n),Z2) corresponding to

the image of w2w3(SO(2n)) [38]. This model is akin to the Stiefel liquid in 2+1d, where the target

space is Stiefel manifold, and the anomaly is carefully studied in [25, 26].

4. Intertwinement of the topological defects and higher linking number

Since both topological defects are codimension 3 and Z classified, their charge operators are

represented by the generators of the second cohomology ofG/K, H2(G/K,Z) = Z⊕Z. As discussed

previously, the two Zs correspond to the two u(1) factors in K and one is in the u(n), another is in

the so(2m)⊕ so(2n− 2m). To illustrate the intertwinement of the topological defects, we consider

two 2-spheres embedded in the target space G/K,

S2U ⊔ S2SO
f−→ G/K. (V.15)

where ⊔ is the disjoint union of two manifolds. Intuitively, we are considering the mapping that

sends two disjoint 2-spheres into the homogeneous space G/K, such that the second cohomology of

G/K is pull-back via f∗ to the second cohomology of each sphere, f∗η
(2)
U = ω

(2)
U ∈ H2(S2U,R) and

f∗ξ
(2)
SO = ω(2)SO ∈ H2(S2SO,R). The two different topological defects are then simply understood

by these two spheres. The linking of the two spheres is characterized by the degree of the map

that sends the disjoint spheres into S5 [82]. We can further embed S5 h
↪−→ Ĝ/K, then the map is

summarized as,

S2U ⊔ S2SO
g−→ S5 h

↪−→ Ĝ/K. (V.16)

Hence, the WZW term Γ(5) in Eq. (V.14) is pull-back via h∗ to the non-trivial element of H5(S5,R),

and deg(g) = −Lk(S2U, S2SO) is the linking number of S2U and S2SO in S5 [82]. The WZW term on S5

captures the essential intertwinement of the different topological defects in G/K.

5. Explicit construction for G = SO(2n), n ≥ 4

In the following example, we are focusing on global symmetry SO(8), and the subgroups are

HSO = SO(4)× SO(4) and HU = U(4). This construction also applies to G = SO(2n), n ≥ 4.

We first construct the map from S2U ⊔ S2SO → G/K, the two spheres are related to the two u(1)

factors in K. The 2-sphere can be viewed as the homogeneous space S2 = SO(3)
SO(2) , thus, we take the

generators of SO(3) ⊂ G and modulo the subgroup SO(2) ⊂ G. Since the two S2s do not intersect
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with each other, we take two commuting so(3) to construct S2s, the starting point is,

TA = {σ20, σ12, σ32}, T̃A = {σ02, σ21, σ23}. (V.17)

We choose one element of each set as the generator of SO(2), then the Goldstone boson field for

each S2 is given by, for example,

(θ1, ϕ1) ∈ S2U → U1 = ei(θ1 sinϕ1,θ1 cosϕ1)·(T
1,T 2)⊺ ∈ SO(3)/SO(2)

(θ2, ϕ2) ∈ S2SO → U2 = ei(θ2 sinϕ2,θ2 cosϕ2)·(T̃
1,T̃ 2)⊺ ∈ SO(3)/SO(2) (V.18)

It is easy to show that (UidUi)
2 corresponds to the generator of H2(S2i ,R). The Goldstone boson

fields are equivalent under the right multiplication of h ∈ H, therefore, we have

U1 = n1 · (TA)⊺, U2 = n2 · (T̃A)⊺ (V.19)

where ni = (sin θi cosϕi, sin θi sinϕi, cos θi) is the 3-vector on the 2-sphere, and generator of the

second cohomology is given by det(ni, dni, dni). Moreover, one can construct the 6-vector on 5-

sphere by interpolating the ni vector, the 6-vector is given by n = (cosψn1, sinψn2), ψ ∈ (0, π].

The corresponding Goldstone boson field is cosψ(σ1 ⊗ U1) + sinψ(σ3 ⊗ U2). The 5-form is given

by ω(5) = det(n, dn, dn, dn, dn, dn) which is the volume form of S5, when pull back to S2U ⊔ S2SO,

the integral on S5 gives the linking number of S2U and S2SO in S5 [82].

The skeleton theory of the Eq. (V.14) together with the kinetic term is given by the O(6)

nonlinear sigma model with WZW term,∫
X

1

2g
(∂µn)

2 +
2πi

Ω5

∫
Y
ϵabcdefn

adnb ∧ dnc ∧ dnd ∧ dne ∧ dnf (V.20)

where Ω5 = π3 is the area of 5-sphere. Similar action appears in Ref. 83 and previously in Ref. 84.

The Eq. (V.20) can be viewed as the boundary of the bulk SPT with SO(6) symmetry which is

described by the nonlinear sigma model with θ-term [85, 86]. With this skeleton theory Eq. (V.20),

one can see that the charge operators of the topological defects are given by ω
(2)
U = ϵabcn

adnb∧dnc

and ω
(2)
SO = ϵdefn

ddne ∧ dnf where a, b, c are in {1, 2, 3} and d, e, f are in {4, 5, 6}. The WZW term

in Eq. (V.20) calculates the linking number between the two charge operators,

2πi

Ω5

∫
Y
ϵabcdefn

adnb ∧ dnc ∧ dnd ∧ dne ∧ dnf = 2πi

∫
Y
ω
(2)
U ∧ dω(2)

SO = 2πiLk(S2U,S2SO). (V.21)

If fixing the position of one charge operator ω
(2)
U , and move the other charge operator ω

(2)
SO around

the fixed position one ω
(2)
U , then the WZW term describes that the worldsheet of the moving
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monopole ω
(2)
SO detects the flux of ω

(2)
U . And the WZW term assigns phase to their linking number,

this demonstrates essentially the intertwinement of charge operators of topological defects.

Since the nonlinear sigma model with the WZW term can be viewed as the boundary theory of

the bulk SPT, one can instead see the intertwinement in the bulk SPT. Once coupling the charge

operators of the defects to 2-form background gauge fields B(2), C(2), the bulk SPT is described

by, 1
π

∫
Y B

(2) ∧ dC(2). The linking between the surface operators ei
∮
B, ei

∮
C is also given by the

above linking number [87].

These bosonic fields can be further embedded into G/K by embedding the generators TA, T̃A

into the generators of G/K. In the following section Sec.VIC, we will couple these Goldstone

boson fields to the fermionic field and construct the fermionic sigma model. The fermionic sigma

model also shows the intertwinement of the charge operators is related to the higher linking number

of two S2s in S5.

VI. FERMIONIC SIGMA MODEL AND WZW TERM

In this section, we construct the fermion model that reproduces NLSM with WZW for general

homogeneous space G/H. The fermions are coupled to the fluctuating bosonic fields living in

G/H. After integrating out the fermion fields [36, 37], the resulting effective action is the NLSM

with WZW given in Sec.V. We call such models as fermionic sigma model and they provide an

alternative insight into the intertwinement of symmetry defects in higher dimensions.

A. General G-symmetric action and fermionic sigma model

The bosonic fields introduced in Sec. II B transforms nonlinearly under the global symmetry G

as in Eq. (II.6). We can consider a field χ that transforms under G as,

χ
g−→ χ′ = D(h−1(g, π))χ, (VI.1)

with some representation D. The χ field is like a representative point on the coset, and it can be

rotated to the general one by the Goldstone boson field. The χ field can be converted into the field

ψ = U(π)χ that transforms as an ordinary linear transformation under G,

ψ(x)
g−→ ψ′(x) = D(U(π′))χ′(x)

= D(g−1U(π)h(g, π))D(h−1(g, π))χ(x) = D(g−1)D(U(π))χ(x) = D(g−1)ψ(x) (VI.2)
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We can also introduce the covariant derivative, DV χ. Under the G transformation it becomes,

DV χ = (∂µ + V )χ
g−→ ∂µ(h

−1(π, g)χ) + (V + h−1dh)h−1(π, g)χ = h−1(π, g)DV χ. (VI.3)

Meanwhile, as in Eq. (II.13), ϕ
g−→ h−1ϕh. Therefore, the general G invariant action can be con-

structed by χ,DV χ, ϕ, which is also invariant under the unbroken symmetry H [21–23].

To construct the fermionic sigma model, we introduce a mass matrix M0 as a reference point,

and it satisfies,

hM0h
−1 =M0. (VI.4)

For example, M0 = diag(1, .., 1,−1, ...,−1) with n times +1, m times -1, is the matrix that breaks

SO(n+m) → SO(n)× SO(m). The χ̄M0χ is then G-symmetric,

g : χ̄M0χ→ χ̄D(h−1)−1M0D(h−1)χ = χ̄M0χ (VI.5)

Upon rewriting the term in the ψ basis, the G-symmetric action is,

ψ̄iγµ∂µψ + ψ̄U(π)M0U(π)−1ψ. (VI.6)

where ψ is the complex fermion that transforms linearly underG. Eq. (VI.6) is the general fermionic

sigma model where the fermion mass manifold G/H is parameterized by the bosonic field U .

B. Reproducing the WZW term from the fermionic sigma model

We follow the Ref. [36] and recent presentation in Ref. [37] to derive the Wess-Zumino-Witten

term by integrating out the fermion, the partition function of the anomalous theory depends on

the Goldstone boson field is,

ZT [U ] =

∫
Dψ̄Dψe−S[ψ̄,ψ,U ], (VI.7)

S[ψ̄, ψ, U ] =

∫
dnx ψ̄(iγµ∂µ + imU(π)M0U(π)†)ψ

≡
∫
dnx ψ̄(i/∂ + imMU )ψ ≡

∫
dnx ψ̄D̂ψ, (VI.8)

where MU ≡ U(π)M0U(π)−1 and ZT [U ] contains the kinetic term and possible Wess-Zumino-

Witten term of the Goldstone boson. Following the standard derivation, the WZW action is,

SWZW = − 1

2π

1

(4π)d/2
Γ(d2 + 1)

Γ(d+ 1)

∫
Y
dudnx tr

(
n∏
i=1

(γµa∂µaM
U )MU†∂uM

U

)
(VI.9)
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where u is the extra coordinate on Y , ∂Y = X, Γ(z) is the Gamma function Γ(n + 1) = n!

for integer n. Since the WZW term is written locally in 1 higher dimension than the spacetime

manifold, we have extended MU as the map from Y to the mass manifold. After straightforward

calculation, the WZW term for G/H is in general given by,

Γ(d+1)(U) = − 1

2π

2⌊d/2⌋

(4π)d/2
Γ(d2 + 1)

Γ(d+ 2)
tr
(
[M0, U

−1dU ]d+1M †
0

)
(VI.10)

where ⌊x⌋ is the floor function. Recalling that U−1dU can be decomposed into h and f parts,

U−1dU = V + ϕ, and [M0, T
α] = 0, Tα ∈ h, we have,

[M0, U
−1dU ] = [M0, ϕ] = [M0, θ

aT a], a ∈ f (VI.11)

It turns out, for example,

Γ(5) = − 1

480π3
tr
(
[M0, U

−1dU ]5M †
0

)
∈ H5(G/H,R) (VI.12)

= − i

16π3
tr

(
ϕW 2 +

1

2
ϕ{W,DV ϕ}+

2

3
Wϕ3 +

1

3
ϕ(DV ϕ)

2 +
1

2
ϕ3DV ϕ+

1

5
ϕ5

)
(VI.13)

This shows that the fermionic sigma model in Eq. (VI.6) reproduces the WZW term for G/H

homogeneous space.

C. Fermionic sigma model and intertwinement of mass manifolds

In this section, we present the construction of a fermionic sigma model that could reproduce the

WZW term in Sec.VB. There are two types of topological defects in the symmetry breaking phases,

both of them are characterized by the charge operators as the generators of the second cohomology

H2(G/K). We then consider embedding two S2s into G/K, the linking number of these two spheres

is the degree of the mapping from two S2 to S5. More explicitly, to illustrate the intertwinement

of the topological defects, we consider the mapping in Eq. (V.16), S2U ⊔ S2SO
g−→ S5 h

↪−→ Ĝ/K.

We are focusing on the case where the global symmetry is SO(8), the generalization of this

construction to SO(2n) can be obtained by embedding SO(8) ↪→ SO(2n). The embedding of two

disjoint S2s into G/K is obtained by considering two commuting so(3)s and modulo the so(2)

subalgebra.

The Goldstone boson fields in Eq. (V.18) can be used to rotate the mass matrix and coupled to

the fermions. Therefore, we can construct the fermionic sigma model that reproduces the WZW

term, or the charge operators of the topological defects. Here we consider the fermions that are
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transformed under vector representation of the global flavor symmetry SO(2n) and the mass matrix

can be an antisymmetric or symmetric representation of SO(2n).

As noted in Sec.VB and [28–30], the higgs fields Φ45,Φ54 which are used to approach GG and

PS phase have different symmetry properties, they are symmetric and antisymmetric respectively.

The mass matrix of the fermion model can be chosen in a way that aligns with the symmetry

properties, once integrating out the fermion fields, the corresponding charge operators of the topo-

logical defects could match with the symmetry constraints of the higgs fields Φ45,Φ54. We are

considering this symmetry constraint also applies to the SO(2n), n ≥ 4 model.

However, the so(3) matrices considering in Eq. (V.17) are all antisymmetric. The way to render

the antisymmetric matrix to a symmetric one is to Kronecker product additional σ2 to the anti-

symmetric matrices, to preserve the antisymmetry, one needs to Kronecker product additional σ0

to the antisymmetric matrices. Due to the symmetry constraint [28–30], we would like to construct

one set with all symmetric matrices and the other set with all antisymmetric matrices.

Sym : {σ220, σ212, σ232}, Asym : {σ002, σ021, σ023}. (VI.14)

Hence, the first set of SU(2) matrices is symmetric, the second set is antisymmetric. The above

matrices are ready to couple to complex fermions. In the Majorana basis, the mass matrix should

be antisymmetric, and the general form of the mass matrices in 4d is,

M = σ21 ⊗ S1 + σ23 ⊗ S2, (VI.15)

where Si are the symmetric matrices, σ21, σ23 are the γ matrices. We need further add indices to

the two sets of matrices and make them symmetric,

Sym : {σ0220, σ0212, σ0232}, Sym : {σ2002, σ2021, σ2023}. (VI.16)

It is convenient to block diagonalize the matrices by doing the unitary transformation ei
π
4
σ1200

,

M → ei
π
4
σ1332

Me−iπ
4
σ1332

: Sym : {σ0220, σ0212, σ0232}, Sym : {σ3202, σ3221, σ3223}. (VI.17)

One can freely choose the representative matrix in each set, and the other matrices can be obtained

by doing the SU(2) transformation,

MSO
0 = σ0220, T a = {σ0012, σ0032}, (VI.18)

MU
0 = σ3202, T̃ a = {σ0021, σ0023}. (VI.19)



33

Since the mass matrices are block-diagonal, one can rotate the upper block or the lower block

separately by

MSO
0 = σ0220, T a± = {σ

0012 ± σ3012

2
,
σ0032 ± σ3032

2
} (VI.20)

MU
0 = σ3202, T̃ a± = {σ

0021 ± σ3021

2
,
σ0023 ± σ3023

2
}. (VI.21)

Hence, we obtain the map from S2 to the SU(2) mass matrices,

(θ1, ϕ1) ∈ S2 →MSO
± = U1M

SO
0 U−1

1 ∈ SU(2), U1 = ei(θ1 sinϕ1,θ1 cosϕ1)·(T
1
±,T

2
±)⊺ (VI.22)

(θ2, ϕ2) ∈ S2 →MU
± = U2M

U
0 U

−1
2 ∈ SU(2), U2 = ei(θ2 sinϕ2,θ2 cosϕ2)·(T̃

1
±,T̃

2
±)⊺ (VI.23)

where MSO
± ,MU

± satisfy [MSO
± ,MU

± ] = 0. We first find that the charge operators of the topological

defects can be reproduced by the fermions coupled to the mass manifolds and evaluated on a

submanifold,

MSO
± dMSO

± dMSO
± = volS2σ200± , MU

±dM
U
±dM

U
± = volS2σ200± (VI.24)

where volS2 = sin θidθidϕi is the volume form of the S2. More interestingly, if we interpolate the

mass matrix in Eq. (VI.15) by,

SU ∋M(u, θ1, ϕ1, θ2, ϕ2) = σ21 ⊗ uMSO + σ23 ⊗
√

1− u2MU, (VI.25)

such that M(0) = σ23 ⊗MU,M(1) = σ21 ⊗MSO. Note that the two mass matrices play different

roles, one is the identity mass, and the other one relates to the chiral mass. When integrating out

the fermion fields, the WZW term is,

SWZW =
2π

960π3

∫
S2×S2×I

tr(M−1dM)5

=
2π

960π3

∫
S2×S2×I

120tr(σ000)u2
√
1− u2 sin θ1 sin θ2dθ1dϕ1dθ1dϕ1du. (VI.26)

When evaluating the WZW term on an interval u ∈ [0, 1],

SWZW =
2π

960π3

∫ 1

0

∫
S2

∫
S2

120tr(σ000)u2
√

1− u2 sin θ1 sin θ2dθ1dϕ1dθ1dϕ1du (VI.27)

=

∫
S2×S2

−i sin θ1 sin θ2
8π

dθ1dϕ1dθ2dϕ2 (VI.28)

= 2πi = 2πiLk(S2, S2), (VI.29)

where Lk(S2,S2) is the linking number of two S2 in S5 [82, 87]. This WZW term corresponds to

ϕW1W2 in the previous section, where W1,W2 are the curvature of the two 2-spheres corresponds

to the generator of H2(G/Hi,R) and ϕ is f-valued 1-form, but interestingly, ϕ relates to the chiral

rotation U(1) in the global symmetry of the fermionic sigma model, which corresponds to the

exchange of two symmetry defects in the G/K NLSM in Eq. (V.14).
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VII. SUMMARY AND COMMENTS

a. Summary We propose the nonlinear sigma model with target space G/K and Wess-

Zumino-Witten term as the general description of deconfined quantum critical point theory, based

on the very important features of the symmetry defects and their intertwinement in the DQCP

theories. We show the topological defects in G/K precisely correspond to the symmetry defects

in each spontaneous symmetry breaking phase in the DQCP phase diagram. The WZW term

decorates the symmetry defects in one SSB phase with the charge of the broken symmetry of the

other SSB phase. By proliferating the symmetry defects, the broken symmetry of one SSB phase

is restored but the additional charge breaks the symmetry, leading to the other SSB phase.

We connect this NLSM description with the ordinary ’t Hooft anomaly matching argument by

explicitly calculating the gauged WZW term and its corresponding bulk SPT. When the anomalous

UV symmetry G is spontaneously broken to non-zero subgroup H (which can be anomalous or non-

anomalous), the odd spacetime dimensional bulk SPT is in general described by relative Chern-

Simons term and mixed θ term for even dimensional bulk. We provide an alternative fermionic

sigma model that reproduces the NLSM with the WZW term. This alternative fermionic model

gives insight into the detailed global symmetry actions.

We apply our framework to several examples - first revisit the ordinary 2+1d DQCP between

Néel and VBS phases. Then motivated by recent works on deconfined quantum criticality among

different grand unified theories [28–30], we studied the deconfined quantum critical theories between

two SSB phases with unbroken symmetries HSO = SO(2m) × SO(2n − 2m) and HU = U(n), and

they come from the theory with G = SO(2n) global symmetry by condensing the order parameters.

Applying the G/K NLSM description (K = U(m) × U(n − m)), we are able to find operators

that correspond to the symmetry defects in both SSB phases, due to π2(
G

U(m)×U(n−m)) = Z ⊕ Z.

It is interesting because the symmetry defect in the SSB phase with unbroken symmetry HSO is

Grassmannian manifold and has Z2 valued topological charge, which does not have a corresponding

de Rham cohomology description. Embedding G/HSO into larger space G/K is reminiscent of

finding non-perturbative SU(2) anomaly by embedding SU(2) ↪→ SU(3), and the non-perturbative

anomaly associated with π4(SU(2)) = Z2 can be seen from SU(3) WZW term via perturbative

calculation. Then we construct the WZW term and examine the corresponding anomaly which

descends from the SO(2n) anomaly [28–30, 33].

Furthermore, the symmetry defects in this complicated homogeneous space can be understood

by examining the embedding S2 × S2 f−→ G/K. Hence, the G/K NLSM becomes the ordinary
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O(6) nonlinear sigma model with the WZW term. The first and last three components of the O(6)

vector describe the 2-spheres corresponding to different symmetry defects. The WZW term then

assigns the phase to the linking of the two 2-spheres in S5.

We provide an alternative fermionic sigma model to reproduce the NLSM. The fermions are

coupled to the fluctuating bosonic fields living in the homogeneous space G/K, when integrating

out the fermions, the resulting effective action is the G/K NLSM with level-1 WZW term. As an

example, we embed the two 3-component unit vectors into G/K and construct the fermionic model

of O(6) NLSM. We should point out that since the SO(6) is explicitly broken down to SO(3)×SO(3),

the chiral U(1) rotation in the fermion model is crucial to get the correct linking between symmetry

defects in different SSB phases. This rotation is in SO(6) but not in SO(3)× SO(3).

b. Comments The G/K NLSM with WZW description discussed in this paper is applicable

to any dimensions and different continuous symmetries of DQCP theory. However, this description

focuses on the kinematics of the DQCP theory, namely the symmetry defects, their intertwinement,

and ’t Hooft anomaly. The dynamics of the DQCP theory is much more complicated - the operator

contents and their scaling dimensions are not universal, and the renormalization group schemes

vary from different dimensions and different models. Nevertheless, the symmetry of the G/K

NLSM would imply infrared duality of gauge theories, for example, the discrete symmetry that

exchanges two types of symmetry defects becomes particle-vortex like duality of gauge theories

[12, 63, 88]. Furthermore, the duality between different quantum field theories relates the operator

contents and set the constraints on the scaling dimensions which reveals information on dynamics

[12, 89, 90].

Despite the difficulty in extracting specific dynamical information, our proposal captures the

essential features for which the DQCP is beyond ordinary symmetry-breaking transition. In this

point of view, the DQCP is not rare, and it can be more ubiquitous if incorporating higher-form

symmetry [91–95], categorical symmetry [96, 97], and loop group symmetry for the system with a

fermi surface [98–100]. The ongoing exploration of non-invertible symmetries should also have their

corresponding DQCP theory provided the symmetries have mixed anomaly [101–103]. One can also

apply the current approach to understand multicritical point joined by several SSB phases. This

formalism can also be used to construct DQCP models involving average symmetries [104–106].
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Appendix A: de Rham cohomology of Lie groups and homogeneous spaces

1. de Rham complex

Let ei denote the basis for the Lie algebra g and θi for the 1-forms for g∗, which is the dual

space of g. The p-forms on g are the alternating multi-linear maps ω : g × ... × g → R. For xa

being the basis for space V , the V -valued p-form on g, ω ∈ Λp(g∗, V ) can be written as,

ω = Aαi1,..,ipxαθ
i1 ∧ ... ∧ θip . (A.1)

For example, the Maurer-Cartan 1-forms are Lie algebra valued 1-forms,

θ = θATA ∈ Λ1(g∗, g). (A.2)

The exterior derivative sends the p-forms to p+1-forms d : Λp(g∗, V ) → Λp+1(g∗, V ) and follows

the rule,

dθi = −1

2
f ijkθ

j ∧ θk, dxα = Bβ
αixβθ

i, (A.3)

where f ijk is the structure factor for the Lie algebra and Bβ
αi is a certain linear map for the V -space.

For h ⊂ g being a subalgebra of g, the relative cochain is given by,

Λp(g∗, h, V ) = {ω ∈ Λp(g∗, V )|iy(ω) = 0 and iy(dω) = 0,∀y ∈ h}. (A.4)

where iy is the interior product, in other words, the forms ωs as well as dωs do not contain θis from

the subalgebra h parts, and the forms are invariant under adjoint action of H. In the following, we

will mainly consider Λp(g∗,R) and Λp(g∗, h,R) which is relevant to the Wess-Zumino-Witten term

for G,G/H and other topological terms in the physical actions, thus, no xα dependence.

The condition to construct relative cochain implies

Lyω = (diy + iyd)ω = 0 (A.5)

where Ly is the Lie derivative with respect to y, the relative cochain is then given by,

Λp(g∗, h,R) = {ω ∈
p∧
(g/h)∗|Lyω = 0, ∀y ∈ h}. (A.6)
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the Lie derivative action is explicitly expressed in terms of the components of the Maurer-Cartan

1-form,

Lyω(n) = −
n∑
i=1

1

n!
ωa1,...,anf

bj ,y,ajθa1 ∧ ... ∧ θbj ∧ ... ∧ θan = 0. (A.7)

The relative cochain can be constructed by first finding the space spanned by
∧p(g/h)∗ and then

using Ly, y ∈ H iteratively to eliminate non-invariant bases.

2. Cohomology

A p-form ω ∈ Λp(g∗, h,R) is closed, if dω = 0; and exact if it can be expressed by a (p−1)-form

η by ω = dη. Since d2 = 0 for any differential forms ω, the exact forms are necessarily closed but

the closed forms can be non-exact.

The cohomology H∗(G,R) and H∗(G/H,R) measures the closed forms not being exact. Con-

sequently, the p-forms cannot be expressed locally in p− 1 dimension by Stokes theorem.

We explicitly calculate the cohomology group using the basis of the general p-form generated

by the exterior product of the 1-form components θis. For example, the basis for the 2-forms in

Λ2(g∗,R) are,

{θ1 ∧ θ2, θ1 ∧ θ3, ..., θdim(G)−1 ∧ θdim(G)}. (A.8)

The exterior derivative can therefore be expressed as a matrix d̃ab,

d{(θi)∧p}a = d̃pab{(θ
i)∧(p+1)}b (A.9)

The matrix d̃pab is a
(

dim(G)
p

)
×
(

dim(G)
p+1

)
matrix. The subspace of the closed p-forms Cp is the

null-space or the kernel of the matrix (d̃pab)
T ,

subspace of the closed p-forms: Cp = ker (d̃pab)
⊺ (A.10)

The subspace of the exact p-forms Zp is the the orthogonal complement of the kernel of (d̃p−1
ab ),

subspace of the exact p-forms: Zp = (ker d̃p−1
ab )⊥ (A.11)

This can be obtained by Gaussian elimination of the matrix d̃p−1
ab . Therefore, the cohomology is

the quotient,

Hp =
ker (d̃pab)

⊺

(ker d̃p−1
ab )⊥

(A.12)
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Algorithmically, we denoted the space of closed p-form as Cp and exact p-form as Zp, they are

both matrices, and the cohomology is,

[ker Cp · (Zp)⊺ · Zp · (Cp)⊺] · Cp (A.13)

For the relative cochain, one needs to further impose the constraint in Eq. (A.6). This constraint

corresponds to dropping the basis which contains indices corresponding to that in h and invariant

under the adjoint transformation of H. One can start with the basis constructed by wedge product

of θas, where a ∈ g/h, and then use the Lie derivative for each h ∈ H to eliminate non-zero bases.

3. Examples

Using the de Rham cohomology, we are able to calculate the following examples. And we

compare our results with the general results which are cited from [43] if not citing others.

SU(4): Our calculation gives,

H3(SU(4),R) = R, H5(SU(4),R) = R. (A.14)

In general, H∗(SU(n)) = Λ(e3, e5, ..., e2n−1), where ei ∈ H i(SU(n),R), the cohomology ring is

generated by wedge product.

SO(6)/(SO(4)× SO(2)), dim = 15− 7 = 8 even dimensional: Our calculation gives,

H2

(
SO(6)

SO(4)× SO(2)
,R
)

= R, H4

(
SO(6)

SO(4)× SO(2)
,R
)

= R⊕ R. (A.15)

In general,

H∗(SO(2n+ 2)/(SO(2n)× SO(2))) = (1 + t2n)(1 + t2 + t4 + ...+ t2n) (A.16)

For n = 2, H∗(SO(6)/(SO(4)× SO(2))) = 1+ t2 +2t4 + t6 + t8, where tn corresponds to the degree

n generator, 2t4 means 2 independent degree 4 generators. In general, the Poincare polynomial for

H∗( SO(2n)
SO(2k)×SO(2n−2k)) is in [107],

H∗( SO(8)
SO(4)×SO(4)) 1 + 3t4 + 4t8 + ...

H∗( SO(10)
SO(4)×SO(6)) 1 + 2t4 + t6 + 3t8...

(A.17)

also,

H∗( SO(8)
SO(2)4

) 1 + 4t2 + 9t4 + ...

H∗(SO(10)
SO(2)5

) 1 + 5t2 + 14t4...
(A.18)
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Our explicit calculation of cohomology up to 4 degree agrees with the general results.

SO(6)/U(3): Our calculation gives,

H2

(
SO(6)

U(3)
,R
)

= R, H4

(
SO(6)

U(3)
,R
)

= R. (A.19)

In general, H∗(SO(2n)/U(n)) = ∆(e2, e4, ..., e2n−2).

Our calculation of other cohomology of cosets with G = SO,

SO(8)
SO(4)×SO(4) SO(8)/U(4) SO(10)

SO(4)×SO(6) SO(10)/U(5)

H2(G/H,R) ∅(Z2) R ∅(Z2) R
(A.20)

The torsion Z2 of H2( SO(8)
SO(4)×SO(4)) cannot be detected by de Rham cohomology.

a. Cohomology of G/K The cohomology of G/K is relevant to the symmetry defects in

spontaneously symmetry-breaking phases. The Lie group K is generated by the Lie algebra k =

h1 ∩ h2, and our cohomology calculation gives,

SO(6)
SOSO∩U

SO(8)
SOSO∩U

SO(10)
SOSO∩U

H2(G/H,R) R⊕ R R⊕ R R⊕ R
(A.21)

where R ⊕ R in H2(SO(6)/(SOSO ∩ U)) are the same generators of H2(G/H1), H
2(G/H2). For

SO(8), SO(10), one is the same generator of SO/U, another is the new from both SO/U and SO/SO

parts.

b. Other cosets SU(4)/SO(4): Our calculation shows,

H4

(
SU(4)

SO(4)
,R
)

= R, H5

(
SU(4)

SO(4)
,R
)

= R (A.22)

In general,

H∗
(
SU(n)

SO(n)
,R
)

=


Λ(e5, ..., e4m+1) n = 2m+ 1

Λ(e5, ..., e4m−2)⊗∆(e2m) n = 2m

(A.23)

SO(6)/(SO(3)× SO(3)), dim = 15− 6 = 9 odd dimensional: Our calculation shows,

H4

(
SO(6)

SO(3)× SO(3)
,R
)

= R, H5

(
SO(6)

SO(3)× SO(3)
,R
)

= R (A.24)

Appendix B: Cartan homotopy formula

1. Review of Cartan homotopy method

If two connections are of the same bundle, one can consider the interpolation [62],

At = A0 + t(A1 −A0), Ft ≡ dAt +A2
t (B.1)
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Another useful formula,

DAη = dη + [A, η], (B.2)

[η(p), ω(q)] = η(p) ∧ ω(q) − (−1)pqω(q) ∧ η(p) (B.3)

Define the anti-deriviative operator ℓt,

ℓtAt = 0, ℓtFt = δt(A1 −A0), (B.4)

ℓt(η
(p)ω(q)) = (ℓtη

(p))ω(q) + (−1)pη(p)(ℓtω
(q)) (B.5)

we have,

(dℓt + ℓtd)At = δt
∂At

∂t
(B.6)

(dℓt + ℓtd)Ft = δt
∂Ft
∂t

(B.7)

This shows that for any polynomial S(A,F), we have

(dℓt + ℓtd)S(At,Ft) = δt
∂

∂t
S(At,Ft) (B.8)

this yields,

S(A1,F1)− S(A0,F0) = (dk01 + k01d)S(At,Ft) (B.9)

where

k01S(At,Ft) ≡
∫ 1

0
δtℓtS(At,Ft) (B.10)

2. Details of gauged WZW term

We would like to use the Carton homotopy method to derive the additional exact form in

the gauged WZW term. As discussed around Eq. (IV.3), the general gauged WZW for symmetry

breaking of G→ H has the form,

¯
Γ(d+1)(U,A,Ah) ≡ CS(AU , AUh )− CS(A,Ah) = Γ(d+1)(U) + dα(d)(U,A,Ah). (B.11)

For h = ∅, the gauged WZW term is given by the Chern-Simons form,

¯
Γ(d+1)(U,A) ≡ CS(AU )− CS(A) = Γ(d+1)(U) + dα(d)(U,A). (B.12)

For presentation simplicity, we focus on d = 2 and first calculate the case when h = ∅, then h ̸= ∅.
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a. The case when h = ∅ Consider the path of interpolation, At = tU−1AU + U−1dU =

tU−1AU + θ, such that A1 = AU , A0 = θ. The difference between Chern-Simons forms is then,

CS(3)(AU )− CS(3)(θ) = d

∫
t
ℓtCS

(3)(At) +

∫
t
ℓtdCS

(3)(At). (B.13)

The last term on the right-hand side (RHS) gives CS(3)(A), while the first term in the RHS gives,

d

∫
t
ℓt(AtFt −

1

3
A3
t ) = −d

∫
t
(AtA) = d(−dUU−1A), (B.14)

since ℓtFt = U−1AU, ℓtAt = 0. Therefore, α(2) = −dUU−1A. In short,

CS(3)(AU )− CS(3)(θ) = CS(3)(A)− d(dUU−1A). (B.15)

Hence, the gauged WZW term in d = 2 is,

¯
Γ(3)(U,A) = Γ

(3)
G (U) + d(dUU−1A), (B.16)

where Γ
(3)
G (U) is given in Eq. (IV.19). This indeed shows that the gauge field only supports on

d-dimensional manifold.

b. The case when h ̸= ∅ Consider the path of interpolation, At = tU−1AU + θ,Ah,t =

tU−1AhU + V , the difference of the relative Chern-Simons form is,

CS(3)(AU , AUh )− CS(3)(θ, V ) = d

∫
t
ℓtCS

(3)(At, Ah,t) +

∫
t
ℓtdCS

(3)(At, Ah,t). (B.17)

Similarly, the last term in the RHS gives CS(3)(A,Ah), the first term in RHS is,

d

∫
t
ℓttr

(
(At −Ah,t)Ft + (At −Ah,t)Fh,t + ...

)
(B.18)

=d

∫
t
tr(tU−1AfU + ϕ)U−1(A+Ah)U (B.19)

=dtr(UϕU−1(A+Ah)) (B.20)

where ℓtFt,i = Ai, ℓtAi = 0, and ... is the polynomial A2
t − AtA

2
h,t −

1
3(A

3
t − A3

h,t) which vanishes

under ℓt. Then the gauged WZW term is given by,

¯
Γ(3)(U,A,Ah) = CS(AU , AUh )− CS(A,Ah) = Γ(3)(U) + dtr(UϕU−1(A+Ah)) (B.21)

where Γ(3)(U) is given in Eq. (IV.17).
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Physical Review B 70 (2004), no. 22 220403. 1, 20

[6] S. Ryu, C. Mudry, C.-Y. Hou, and C. Chamon, “Masses in graphenelike two-dimensional electronic

systems: Topological defects in order parameters and their fractional exchange statistics,” Physical

Review B 80 (2009), no. 20 205319. 2

[7] C. Mudry, A. Furusaki, T. Morimoto, and T. Hikihara, “Quantum phase transitions beyond

Landau-Ginzburg theory in one-dimensional space revisited,” Physical Review B 99 (2019), no. 20

205153. 22

[8] X.-Y. Song and Y.-H. Zhang, “Deconfined criticalities and dualities between chiral spin liquid,

topological superconductor and charge density wave Chern insulator,” arXiv preprint

arXiv:2206.08939 (2022). 2

[9] N. D. Mermin, “The topological theory of defects in ordered media,” Reviews of Modern Physics 51

(1979), no. 3 591. 2, 6

[10] M. A. Metlitski and R. Thorngren, “Intrinsic and emergent anomalies at deconfined critical points,”

Physical Review B 98 (2018), no. 8 085140. 3, 20, 22

[11] Z. Komargodski, A. Sharon, R. Thorngren, and X. Zhou, “Comments on Abelian Higgs models and

persistent order,” SciPost Physics 6 (2019), no. 1 003. 22

[12] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil, “Deconfined quantum critical points:

symmetries and dualities,” Physical Review X 7 (2017), no. 3 031051. 3, 20, 21, 22, 35

[13] C. Hull and B. Spence, “The geometry of the gauged sigma-model with Wess-Zumino term,” Nuclear

Physics B 353 (1991), no. 2 379–426. 3, 12, 14

[14] E. D’Hoker, “Invariant effective actions, cohomology of homogeneous spaces and anomalies,” Nuclear

Physics B 451 (1995), no. 3 725–748. 7, 10
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