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proposed duality, finding agreement. With our matching procedure, the free energy satisfies a

strong version of the F-theorem.

aakhond@yukawa.kyoto-u.ac.jp
bandrea.legramandi@unitn.it
cc.nunez@swansea.ac.uk
dsantilli@tsinghua.edu.cn
e988532@Swansea.ac.uk



Contents

1 Introduction 1

1.1 General idea and organisation of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Part I: Supergravity 4

2.1 Quivers, SCFTs, and rank functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Type IIB backgrounds dual to 5d SCFTs . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Type IIB backgrounds dual to 3d SCFTs . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Holographic central charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 The case of two rank functions: two interacting linear quivers . . . . . . . . . . . . . . . . . 12

2.6 Wilson loops in supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 On the reliability of the supergravity backgrounds . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Matrix models for electrostatic problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Part II: Matrix models 19

3.1 Coulomb branches and mass deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Long quivers and their large N limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Free energies in massive deformations of 5d and 3d SCFTs . . . . . . . . . . . . . . . . . . . 32

3.4 Two interacting linear quivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Holographic match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 On the F-theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Wilson loops in QFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Conclusions 51

A Potentials, harmonic and special functions 53

A.1 Potentials and special functions in odd dimensions . . . . . . . . . . . . . . . . . . . . . . . 55

B Five-dimensional quivers in M-theory 57

C Integrating out massive fields in long quivers 59

C.1 Premise: mass deformation from branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.2 Warm-up example: 3d SQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.3 Massive fields in long quivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

D Proof of the F-theorem 68

D.1 Holographic F-theorem with two rank functions . . . . . . . . . . . . . . . . . . . . . . . . . 68

D.2 F-theorem in mass-deformed SCFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

i



1 Introduction

The cross-fertilisation between AdS/CFT [1] and Matrix Models has a long history. Matrix model

techniques have been instrumental in checking holographic results and suggesting ideas for string

theory calculations. A selection of early papers [2–8] shows various instances in which exact results

in field theory, calculated using matrix models, were matched with calculations in supergravity.

The field experienced a rapid growth with the advent of supersymmetric localisation [9], with an

impressive amount of refined checks of dualities between AdS geometries and CFTs on a sphere

performed in three [10–21], four [22–30] and five dimensions [31–37].

Let us focus on d-dimensional superconformal field theories (SCFTs) preserving eight su-

percharges, whose dual supergravity solutions are geometries containing AdSd+1 factors. The

construction of the ten-dimensional configurations, consisting of a metric, Ramond and Neveu–

Schwarz background fields, has been systematised for the case of eight preserved supercharges for

d = 1 [38–40], d = 2 [41–47], d = 3 [48–57], d = 4 [58–64], d = 5 [65–75] and d = 6 [76–81].

Based on localisation of the path integral [9], for every SCFT of the class mentioned above

which is connected to a gauge theory via Renormalization Group (RG) flow, matrix models have

been developed that accurately calculate various observable quantities that preserve a fraction

of the supersymmetry, most notably the free energy and Wilson loop expectation values. These

matrix models encode exact information in principle, but their intricacies grow with d and with

the complexity of the quiver. Whilst, in various cases, large ranks or long quiver approximations

are needed to solve the matrix model, these usually coincide with the regime of validity of the

dual supergravity background.

Five-dimensional N = 1 SCFTs are inherently strongly coupled [82] and do not admit a

Lagrangian description. They therefore pose a challenge to traditional approaches to calculating

CFT observables. A fruitful strategy to obtain information about their strongly coupled dynamics,

is to deform the theory away from the conformal point, where it may admit a quiver gauge theory

description, and compute their partition functions, possibly decorated with Wilson loops.1 Three-

dimensional N = 4 SCFTs also enjoy many rich properties, chief amongst them the infrared

symmetry enhancement and mirror symmetry [86]. The method just outlined applies to three-

dimensional N = 4 theories as well. These, though, have the advantage that the gauge kinetic

term is Q-exact, thus the S3 partition function can be evaluated directly in the SCFT.

In this paper, we focus on the matrix models and holographic backgrounds for 5d and 3d

SCFTs. Remarkably, on both sides of the holographic duality, the theory is characterized by

a potential function which is the solution of a 2d electrostatic problem. On the supergravity

side, the two-dimensional space is the unconstrained part of the internal space and the Laplace

equation emerges as a consequence of the BPS conditions. On the SCFT side, the electrostatic

problem arises as a saddle point equation of the matrix model. One of the two dimensions has

an immediate interpretation as the direction along the quiver. The second direction is harder

to interpret from the field theory perspective, and it emerges at large N from the spectrum of

eigenvalues of the matrix model, which effectively becomes a continuum.

1Complementary approaches that address directly the conformal point are geometric engineering of the SCFTs

in M-theory [83, 84] or using fivebrane webs in Type IIB string theory [85].
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With this dictionary, the supergravity solution is reliable when the dual SCFT is given by a

long quiver, whose solution was pioneered in [87] for 5d N = 1 SCFTs and in [88, 89] for 3d N = 4

SCFTs. It has been proven for all balanced linear quiver theories [74, 55] that the solution to the

aforementioned electrostatic problem, which is defined in terms of a single charge distribution,

gives rise to the supergravity background dual to these long quivers.

In this paper, we aim to back up the expectation that more general electrostatic problems

provide holographic duals for a very large class of theories. This approach is indeed amenable

to extend the gauge/gravity dictionary away from AdSd+1/CFTd, testing the correspondence at

arbitrary points of RG flows. In particular, our goal is to identify a holographic manifestation

of turning on real mass deformations.2 We will argue that this operation corresponds, in the

electrostatic setup, to introducing a second charge density, separated in the 2d plane from the

original charge density by a finite distance proportional to the mass. Part of the results were

announced in [91].

1.1 General idea and organisation of this paper

In this work, we aim to provide another entry in the holographic dictionary between supergravity

and CFT, with the field theory side expressed via matrix models. We study the situation in

which a long balanced linear quiver is deformed by one or more real mass parameters. Note that

we do not simply give mass to a single matter field, but suitably choose a configuration of masses

involving a large number of fields.

This setup also admits a description in terms of two or more interacting linear quivers, with

an effective interaction term controlled by the mass parameter(s). These d-dimensional (d = 5 or

d = 3 in this paper) supersymmetric field theories describe the full RG flow from a single SCFT,

when the mass is switched off, to a collection of decoupled SCFTs when the mass is very large

compared to the scale set by the inverse of the radius of the sphere Sd on which the theory is

placed. We attempted to capture this information in Figure 1 and Figure 2 for five and three

spacetime dimensions, respectively.

The above mentioned conformal points are well captured by the new supergravity solutions

carefully derived and explained in this work. The matching of the free energy, calculated for the

field theory and in the holographic dual background, gives credit to the proposal we put forward

for the holographic dual of the mass deformation.

The material is organised in two long sections, followed by conclusions and appendices. A

detailed account of the contents is given at the beginning of each section.

Section 2, containing Part I of this work, describes the holographic side of the problem.

A convenient formalism based on a two dimensional Laplace equation is reviewed and a new

holographic situation is analysed. Calculations of the holographic central charge (i.e., the quantity

holographically dual to the free energy) and expectation values of Wilson loops in arbitrary

antisymmetric representations in this new setup are presented. Finally, almost as a curiosity, a

simple matrix model is written that matches the holographic results of some of the systems in

2In 5d, the only supersymmetry-preserving relevant deformations are mass deformations, including the defor-

mations leading to gauge theory phases [90].
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Figure 1: Schematic representation of the conformal and gauge theories involved in our construc-

tion, the corresponding energy scales, and RG flows among them in 5d.

•
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•
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•
SCFT1 ⊕ SCFT2
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Energy d = 3

Figure 2: Schematic representation of the conformal and gauge theories involved in our construc-

tion, the corresponding energy scales, and RG flows among them in 3d.

Part I.

In Section 3, containing Part II of this work, we initiate the field theory study of linear quivers

deformed by a special choice of real mass. The theories are equivalently presented as interacting

quivers. The two complementary viewpoints are explained in great detail using the matrix models

derived from localisation: as the one-matrix model of a single quiver deformed by one (or more)

real massive parameters, or as the multi-matrix model of two (or more) linear quivers with an

interaction term (see [92] for related manipulations). The free energy is calculated and found to

match with the supergravity results of Part I, up to adding a local counterterm for background

fields in d = 5. The matching gives support to our proposal for the holographic duals of a mass

deformation in a given quiver CFT. To add more credit to this, the field theoretical calculation

of Wilson loops in antisymmetric representations is performed using the associated matrix model

and nicely reproduce the result of Part I. As a byproduct of our analysis, the F-theorem is shown

to hold in these types of RG flows.

Conclusions and prospects for future developments are collected in Section 4. The technically

intensive Appendices A and C-D complement the presentation of Sections 2 and 3, respectively,

while Appendix B establishes the dictionary between our methods in d = 5 and the M-theory
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engineering of the SCFTs.

We aim at a clear and pedagogical presentation, thus detail many steps of the computations.

2 Part I: Supergravity

In this section, we discuss the supergravity solutions used in this paper. We summarise the

backgrounds preserving eight supercharges, i.e. N = 1 supersymmetry in five dimensions and

N = 4 in three dimensions. Supersymmetry is preserved subject to a linear PDE being satisfied.

We solve the PDE and briefly comment on the quantised charges and the associated dual CFTs.

To make the section self-contained, we give a detailed account of its contents. In Subsection 2.1

we present generalities about the problem under study: the type of quivers (linear and balanced),

the rank function formalism and how it is used to calculate the relevant numbers of the quiver. In

Subsection 2.2, an infinite family of type IIB supergravity backgrounds dual to 5d linear quivers

with eight supercharges is presented. The problem of finding these backgrounds boils down to

the resolution of a two-dimensional Laplace equation with suitable boundary conditions. The

charges associated with NS5 branes, D5 (colour) branes and D7 (flavour) branes are calculated.

Subsection 2.3 presents an analogous discussion for the case of 3d balanced quivers with eight

supercharges. The holographic problem is reduced to the same Laplace equation as in the 5d case.

The analogies between the descriptions go along the rest of the paper. The two dimensions in

which the Laplace problem is set are denoted by (σ, η). Interestingly, the same Laplace problem

arises in the matrix model treatment of Part II.

Subsection 2.4 discusses, for the backgrounds of the previous subsections, an observable called

the holographic central charge. This coincides with the free energy of the dual CFTs. We present

exact expressions for this observable, in 5d and 3d.

Subsection 2.5 poses a generalisation in the context of our Laplace-based formalism. Namely,

we consider the problem that consists of two (or more) rank functions. We calculate the holo-

graphic central charge in this case, providing exact expressions. This problem motivates some of

the developments in Part II of this work. Indeed, whilst there is a clean holographic interpretation

of the η-direction, the field theoretical significance of the σ-direction is more elusive. This is one

of the problems addressed in the Part II of this work, building on the material in this section.

Subsection 2.6 studies the novel calculation of the vacuum expectation value of Wilson loops

in antisymmetric representations of a given gauge node, for the system with two rank functions.

Exact expressions are again given, and will be recovered in Part II with a calculation in field

theory. This gives support to the field theoretical interpretation we present.

To close Part I of this work, Subsection 2.8 presents a very simple matrix model matching the

Laplace problem of Subsections 2.2-2.3 and their holographic central charge found in Subsection

2.4. An extensive investigation of the analogous matrix models for the new systems of Subsection

2.5 is left for the future.

2.1 Quivers, SCFTs, and rank functions

Let us begin by presenting the problem from the perspective of Quantum Field Theory (QFT).

Consider field theories in five and three spacetime dimensions preserving eight Poincaré super-
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charges. We restrict our attention to the class of field theories whose dynamics will be encoded

in framed linear quivers, drawn in Figure 3.

N1 N2 . . . NP−1NP−2

F1 F2

. . .

FP−1FP−2

Figure 3: Linear quiver of length P − 1 with gauge nodes U(Nj) in 3d or SU(Nj) in 5d, and

flavour nodes Fj . The quiver is balanced if Fj = 2Nj −Nj−1 −Nj+1.

In five spacetime dimensions, there is by now a wealth of evidence that there exist strongly

coupled conformal fixed points which, when deformed by suitable relevant operators, flow to

these gauge theories. The conformal fixed point is commonly referred to as UV SCFT, meaning

that it sits at a higher energy scale, compared with the scale set by 1/g2YM. Different quivers

are encountered, in principle, along RG flows connected to different UV CFTs, although a given

CFT typically admits several gauge theory deformations. A necessary condition for the five-

dimensional gauge theories in Figure 3 to admit a UV completion, is Fj ≤ 2Nj − Nj−1 − Nj+1

[83], possibly augmented up to Fj ≤ 2Nj −Nj−1 −Nj+1 + 4 at certain gauge nodes [93, 94].

Instead, if we work in three spacetime dimensions, the proposal is that each member of the

infinite family of field theories described by Figure 3 which is ugly or good in the Gaiotto–Witten

classification [95] flows at low energies (compared with the scale set by 1/g2YM) to a strongly

coupled conformal fixed point. Different quivers typically give rise to distinct CFTs, although

there exist dualities, most notably 3d mirror symmetry [86], that relate distinct quivers flowing

to the same CFT. In this work, we aim to pursue a unified description of the linear quivers in

five and three dimensions. We will restrict the flavour ranks Fj to

Fj = 2Nj −Nj+1 −Nj−1 (2.1)

from now on. In other words, the quiver is balanced [95].

In what follows, we present the holographic description of the infinite families of conformal

fixed points. We rely on previous work [74, 55], that we summarise below. An important ingre-

dient that we take from the field theoretical description is the presence of a rank function. For

the quiver in Figure 3, this rank function is a convex, piecewise linear and continuous function

given by

R(η) =


N1η 0 ≤ η ≤ 1

Nj + (Nj+1 −Nj)(η − j) j ≤ η ≤ j + 1, j = 1, ...., P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P.

(2.2)

The rank function evaluated at integer values of the coordinate η gives the ranks of each of the
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gauge groups,3 that is, R(j) = Nj . The second derivative of the rank function,

R′′(η) =

P−1∑
j=1

Fjδ(η − j), (2.3)

with Fj as in (2.1), gives the ranks of the flavour groups that make the quiver balanced. The

convexity of the rank function guarantees that the ranks of the flavour groups are non-negative.

We emphasise that R′′(η) in (2.3) really means derivative from the right, i.e.

R′′(η) = lim
ε→0+

1

ε

[
∂ηR|η− ε

2
− ∂ηR|η+ ε

2

]
.

The ordinary derivative together with the balancing condition (2.1) would give the opposite sign.

This difference in the minus sign convention between supergravity and QFT will resurface later

on.

If the function R(η) is taken to satisfy R(η = 0) = R(η = P ) = 0, we refer to this as a

situation without offsets. Otherwise, if R(η) is non-zero at either η = 0 or η = P we refer to it as

a situation with offsets. We discuss the case with offsets in Subsection 2.4.

Below, we summarise the supergravity backgrounds in Type IIB string theory which provide a

holographic description of the SCFTs associated with these quivers in five and three dimensions.

This approach to the problem serves to emphasise that the rank function encoding the kinematic

data of the QFT (ranks of the gauge and flavour groups), is common to five and three dimensions.

Next, we show that the rank function serves as initial condition to a boundary value problem

encoding the supergravity description.

2.2 The Type IIB backgrounds dual to 5d SCFTs

We present an infinite family of supergravity backgrounds in Type IIB string theory preserving

eight Poincaré supersymmetries with an AdS6 factor. The space also contains a two-sphere

parametrised by coordinates (θ, φ). The isometries of this manifold are in correspondence with

the SO(2, 5) × SU(2)R bosonic subalgebra of the superconformal algebra of the dual N = 1

five-dimensional SCFTs.

The full configuration consists of a metric, dilaton, B2-field in the Neveu–Schwarz sector and

C2 and C0 fields in the Ramond sector. The configuration is written in terms of a potential

function V5(σ, η) that solves the linear partial differential equation

∂σ
(
σ2∂σV5

)
+ σ2∂2

ηV5 = 0. (2.4)

The type IIB background in string frame is [74],

ds210,st = f1(σ, η)
[
ds2(AdS6) + f2(σ, η)ds

2(S2) + f3(σ, η)(dσ
2 + dη2)

]
, (2.5a)

with fields

e−2Φ = f6(σ, η), B2 = f4(σ, η)Vol(S
2), C2 = f5(σ, η)Vol(S

2), C0 = f7(σ, η), (2.5b)

3To avoid verbosity, we slightly abuse of nomenclature and refer to Nj as the “rank” of both U(Nj) and SU(Nj).
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σ

η

0 P
R(η)

Figure 4: The electrostatic problem for Ŵ5. The two conducting planes at η = 0, P have zero

potential, while at σ = 0 we have a charge distribution equal to R(η).

and warp factors

f1 =
3π

2

√
σ2 +

3σ∂σV5

∂2
ηV5

, f2 =
∂σV5∂

2
ηV5

3Λ
, f3 =

∂2
ηV5

3σ∂σV5
,

f4 =
π

2

(
η − (σ∂σV5)(∂σ∂ηV5)

Λ

)
,

f5 =
π

2

(
V5 −

σ∂σV5

Λ
(∂ηV5(∂σ∂ηV5)− 3(∂2

ηV5)(∂σV5))

)
,

f6 = 12
σ2∂σV5∂

2
ηV5

(3∂σV5 + σ∂2
ηV5)2

Λ, f7 = 2

(
∂ηV5 +

(3σ∂σV5)(∂σ∂ηV5)

3∂σV5 + σ∂2
ηV5

)
,

Λ = σ(∂σ∂ηV5)
2 + (∂σV5 − σ∂2

σV5)∂
2
ηV5.

(2.5c)

The paper [74] proves that this infinite family of backgrounds is in exact correspondence with

the solutions discussed in [67–70, 96, 97].

Let us briefly summarise the study of [74] for the PDE, with boundary conditions leading to

a proper interpretation of the solutions, with quantised Page charges and avoiding badly-singular

behaviours.

2.2.1 Resolution of the PDE and quantisation of charges

We make the change V5(σ, η) =
Ŵ5(σ,η)

σ , which implies that the PDE in (2.4) reads like a Laplace

equation in flat space,

∂2
σŴ5 + ∂2

ηŴ5 = 0. (2.6)

We choose the variable η to be bounded in the interval [0, P ] and σ to range over the real axis

−∞ < σ < ∞. We impose the boundary conditions,

Ŵ5(σ → ±∞, η) = 0, Ŵ5(σ, η = 0) = Ŵ5(σ, η = P ) = 0,

lim
ϵ→0

(
∂σŴ5(σ = +ϵ, η)− ∂σŴ5(σ = −ϵ, η)

)
= −R(η). (2.7)

These can be interpreted as the boundary conditions for the electrostatic problem of two conduct-

ing planes (at zero electrostatic potential) as depicted in Figure 4. The conducting planes extend
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over the σ-direction and are placed at η = 0 and η = P . We also have a charge density R(η) at

σ = 0, extended along 0 ≤ η ≤ P , as indicated by the difference of the normal components of the

electric field in (2.7).

The solution is found by separating variables, see [74] for the details. It is convenient to

Fourier expand the function R(η) as

R(η) =
∞∑
k=1

Rk sin

(
kπ

P
η

)
, Rk =

2

P

∫ P

0
R(η) sin

(
kπη

P

)
dη. (2.8)

Following [74], the solution reads,

Ŵ5(σ, η) =
∞∑
k=1

ak sin

(
kπ

P
η

)
e−

kπ
P

|σ|, ak =
P

2πk
Rk. (2.9)

The potentials in (2.9) solve the equation (2.6) subject to the conditions (2.7). Another way

to encode the boundary condition at σ = 0 is through a source term that transforms the Laplace

equation into a Poisson equation. Indeed, the potential Ŵ5(σ, η) in (2.9) satisfies

∂2
ηŴ5 + ∂2

σŴ5 = −R(η)δ(σ) , σ ∈ R , η ∈ [0, P ] . (2.10)

Imposing the quantisation of the conserved Page charges of the background (2.5), the authors

of [74] found that the function R(η) must be a convex piecewise linear function. If the rank

function has no offsets R(0) = R(P ) = 0, it takes the form (2.2). In this case, the authors of [74]

computed the values of the quantised brane charges in each interval η ∈ [j, j + 1]

QD7[j, j + 1] = R′′(j) = (2Nj −Nj+1 −Nj−1), (2.11a)

QD5[j, j + 1] = R(η)−R′(η)(η − j) = Nj (2.11b)

(the second summand in (2.11b) can be thought of as coming from a large gauge transformation

of the B2 field) and in the whole system,4

Qtotal
NS5 = P, Qtotal

D7 = (N1 +NP−1) =

∫ P

0
R′′(η)dη, Qtotal

D5 =

∫ P

0
R(η)dη. (2.11c)

For the generic rank function R(η) quoted in (2.2), the supergravity background is proposed

to be dual to the strongly coupled fixed point in the UV of the quiver in Figure 3, with Fi =

2Ni −Ni+1 −Ni−1. In other words, the quiver is balanced.

2.3 The Type IIB backgrounds dual to 3d SCFTs

We now discuss the Type IIB backgrounds dual to three dimensional SCFTs preserving eight

supercharges. The formalism is very much analogous to the five dimensional one, hence we will

be more sketchy. All the details can be found in [55].

We are after solutions dual to 3d N = 4 superconformal field theories. To match the N = 4

superconformal symmetry of the field theory, the background must have isometries SO(2, 3) ×
4In this paper we define the ′-derivative R′ as a derivative from the right — see below (2.3). This flips the sign

in front of the rank functions in the differential equation, compared to [74]. The integration domains in the Page

charges are chosen accordingly.
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SU(2)C×SU(2)H and preserve eight Poincaré supercharges. Hence, our geometries must contain

an AdS4 factor and a pair of two-spheres S2
1(θ1, φ1) and S2

2(θ2, φ2). There are two extra directions

labelled by (σ, η). The requirement of an isometry group that contains SO(2, 3) × SU(2)C ×
SU(2)H allows for warp factors that depend only on (σ, η). The Ramond and Neveu–Schwarz

fields must also respect these isometries.

The preservation of eight Poincaré supersymmetries implies that the generic type IIB back-

ground can be cast in terms of a function V3(σ, η). In string frame the solution reads [55],

ds210,st = f1(σ, η)
[
ds2(AdS4) + f2(σ, η)ds

2(S2
1) + f3(σ, η)ds

2(S2
2) + f4(σ, η)(dσ

2 + dη2)
]
, (2.12a)

with
e−2Φ = f5(σ, η), B2 = f6(σ, η)Vol(S

2
1),

C2 = f7(σ, η)Vol(S
2
2), C̃4 = f8(σ, η)Vol(AdS4),

(2.12b)

and

f1 =
π

2

√
σ3∂2

ησV3

∂σ(σ∂ηV3)
, f2 = −∂ηV3∂σ(σ∂ηV3)

σΛ
, f3 =

∂σ(σ∂ηV3)

σ∂2
ησV3

,

f4 = −∂σ(σ∂ηV3)

σ2∂ηV3
, f5 = −16

Λ∂ηV3

∂2
ησV3

, f6 =
π

2

(
η −

σ∂ηV3∂
2
ηV3

Λ

)
,

f7 = −2π

(
∂σ(σV3)−

σ∂ηV3∂
2
ηV3

∂2
ησV3

)
, f8 = −π2σ2

(
3∂σV3 +

σ∂ηV3∂
2
ηV3

∂σ(σ∂ηV3)

)
,

Λ = ∂ηV3∂
2
ησV3 + σ

(
(∂2

ησV3)
2 + (∂2

ηV3)
2
)
.

(2.12c)

As usual, the fluxes are defined from the potentials as

F1 = 0, H3 = dB2 F3 = dC2, F5 = dC̃4 + ∗dC̃4.

The configuration in (2.12) is solution to the Type IIB equations of motion, if the function V3(σ, η)

satisfies

∂σ
(
σ2∂σV3

)
+ σ2∂2

ηV3 = 0. (2.13)

As proven in [55], this infinite family of solutions is equivalent to the backgrounds described by

D’Hoker, Estes and Gutperle in [49].

2.3.1 Resolution of the PDE and quantisation of charges

Following [55], define V3(σ, η) =
V̂3(σ,η)

σ and V̂3(σ, η) = ∂ηŴ3(σ, η). Consider the coordinates to

range in 0 ≤ η ≤ P and −∞ < σ < ∞. The differential equation (2.13) must be supplemented

by boundary and initial conditions. In terms of Ŵ3(σ, η) the problem reads

∂2
σŴ3(σ, η) + ∂2

ηŴ3(σ, η) = 0, (almost everywhere)

Ŵ3(σ → ±∞, η) = 0, Ŵ3(σ, η = 0) = Ŵ3(σ, η = P ) = 0.

lim
ϵ→0

(
∂σŴ3(σ = +ϵ, η)− ∂σŴ3(σ = −ϵ, η)

)
= −R(η).

(2.14)

In the current conventions, we have ensured that Ŵ3 satisfies the same electrostatic problem as

Ŵ5 in the five dimensional case above — see eqs. (2.6)-(2.7). The function R(η) is an input.
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Using a Fourier decomposition for the rank function R(η) as in the five-dimensional case, cf.

(2.8), the solution to the problem in (2.14) is

Ŵ3(σ, η) =
∞∑
k=1

ak sin

(
kπη

P

)
e−

kπ|σ|
P , ak =

P

2kπ
Rk . (2.15)

The reader can check that

∂2
ηŴ3 + ∂2

σŴ3 = −R(η)δ(σ).

The study of the quantised charges for NS5 branes enforces the size of the interval P to be

an integer, consistently with the boundary conditions in (2.14), exactly as it occurs in the five

dimensional system. Also in analogy with the 5d case, to have quantised numbers of D3 and D5

branes, the rank function must be a piecewise linear and continuous function of the exact same

form as in the five dimensional case — see (2.2).

Let us again consider the piecewise linear, convex and continuous function (2.2) without

offsets. For such a rank function, the number of D3 (colour) branes and D5 (flavour) branes in

the interval [j, j + 1] and the total number of branes are given by

QD3[j, j + 1] = Nj , QD5[j, j + 1] = 2Nj −Nj+1 −Nj−1, (2.16)

Qtotal
D3 =

∫ P

0
R(η)dη, Qtotal

D5 = R′(0)−R′(P ), Qtotal
NS5 = P.

As we emphasised, the supergravity backgrounds we have obtained, holographically dual to

five and three dimensional systems, have different dynamics, but at their core are described by a

function Ŵ5(σ, η) or Ŵ3(σ, η) solving the same Poisson equation. This translates into analogies

between the quivers in different odd dimensions.

We start by calculating the holographic central charge. To add to the already existent bibli-

ography, we study this observable in the case in which the rank function has offsets.

2.4 Holographic central charge

In this subsection, we will compute the holographic central charges in the AdS6×S2 and AdS4×
S2 × S2 cases. This can be done in a slightly more general context in which we allow the rank

function to have offsets. That means we consider a rank function

R(η) = Nj + (Nj+1 −Nj)(η − j) j ≤ η ≤ j + 1, j = 0, ...., P − 1 , (2.17)

which satisfies R(j) = Nj for integers j, including j = 0, P . In the case N0 = NP = 0, the

rank function (2.17) reduces to the one quoted in eq. (2.2). This more general rank function was

already considered in the 3d case in [55]. We shall now present it in the 5d case. We calculate

the Fourier coefficient of the rank function (2.17):

Rk =
2

kπ

(
N0 + (−1)k+1NP

)
+

2P

π2k2

P−1∑
j=1

Fj sin

(
kπj

P

)
. (2.18)

They are found by first computing the integrals

R
(ℓ)
k :=

2

P

∫ ℓ+1

ℓ
R(η) sin

(
kπη

P

)
dη =

2

πk

[
Nℓ cos

(
πkℓ

P

)
−Nℓ+1 cos

(
πk(ℓ+ 1)

P

)]
+

2P

π2k2
(Nℓ −Nℓ+1)

[
sin

(
πkℓ

P

)
− sin

(
πk(ℓ+ 1)

P

)]
,
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and then summing the results Rk =
∑P−1

ℓ=0 R
(ℓ)
k . The terms with cosines vanish in the “bulk” but

survive on the boundaries ℓ = 0, P − 1, whereas the terms with sines give the terms with flavour

groups.

Notice that in the case N0 = NP = 0 in (2.18), the ranks for boundary flavour groups were

given by F1 = 2N1 −N2 and FP−1 = 2NP−1 −NP−2. In (2.18), we have extended the definition

Fj = 2Nj−Nj−1−Nj+1 to include j = 0, P , which now incorporates N0 and NP into F1 and FP−1

respectively. Hence, N0 and NP give additional flavour symmetry to make the quiver balanced.

This effect is clear from the Hanany–Witten brane configurations: stretching Dd colour branes

to infinity on the left or on the right gives additional flavour symmetry, exactly as if we let them

end on D(d+2) flavour branes. We postpone a thorough analysis of the supergravity background

needed to accurately interpret the situation.

In the AdS6 geometry, the holographic central charge of the theory can be computed as the

volume of an internal manifold [74] which works out as

chol =
2

3π5

∫ ∞

−∞
dσ

∫ P

0
dη σ3(∂σV5)(∂

2
ηV5) (2.19a)

=
2

3π5

∫ ∞

−∞
dσ

∫ P

0
dη ∂2

ηŴ5

(
σ∂σŴ5 − Ŵ5

)
, (2.19b)

where V5 = Ŵ5
σ and Ŵ5 is given by (2.9). The integration over η can be performed using the

orthogonality of sine functions, which collapses the double summation into a single summation.

After the σ-integral is performed, one finds

chol =
1

2π4

∞∑
k=1

ka2k =
P 2

8π6

∞∑
k=1

1

k
R2

k . (2.20)

Plugging in the Fourier coefficients (2.17) gives

chol =
P 2

4π8
(2N2

0 + 2N2
P + 3N0NP )ζ(3)

+
P 3

π9

P−1∑
l=1

Fl[N0Im(Li4(e
ilπ
P )) +NP Im(Li4(e

i(P−l)π
P ))]

− P 4

4π10

P−1∑
l=1

P−1∑
k=1

FlFk Re
(
Li5

(
ei

π(k+l)
P

)
− Li5

(
ei

π(k−l)
P

))
.

(2.21)

The first, second and third line of this expression stem from 1
k3
, 1
k4

and 1
k5

contributions respec-

tively. This result precisely matches the free energy of the 5d SCFT as was obtained by using

matrix model techniques [87, Eq.(3.17)] (see also Subsection 3.3).

In the AdS4 geometry dual to the three-dimensional case, a similar formula holds [55]

chol = −1

2

∫ ∞

−∞
dσ

∫ P

0
dη σ2(∂ηV3)∂σ(σ∂ηV3) (2.22a)

= −1

2

∫ ∞

−∞
dσ

∫ P

0
dη
(
σ∂2

ηŴ3

)(
∂2
η∂σŴ3

)
. (2.22b)
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In this case we use V3 = V̂3
σ and V̂3 = ∂ηŴ3 before employing the solution (2.15). We follow the

same approach and use the orthogonality of sine functions to arrive at

chol =
π

32

∞∑
k=1

kR2
k . (2.23)

To compute this series with offset we need to regularise the sums

∞∑
k=1

1

k

reg.︷︸︸︷
= γE ,

∞∑
k=1

(−1)k

k

reg.︷︸︸︷
= − log 2, (2.24)

with γE the Euler–Mascheroni constant and the symbol

reg.︷︸︸︷
= meaning ζ-function regularization.

The result is

chol =
1

8π
(N2

0 +N2
P )γE +

1

8π
N0NP log(2)

+
P

4π2

P−1∑
l=1

Fl[N0Im(Li2(e
ilπ
P )) +NP Im(Li2(e

i(P−l)π
P ))]

− P 2

16π3

P−1∑
l=1

P−1∑
k=1

FlFk Re
(
Li3

(
ei

π(k+l)
P

)
− Li3

(
ei

π(k−l)
P

))
.

(2.25)

This formula is, broadly speaking, analogous to (2.21) with a polylogarithm of 2 degrees lower.

Also in this case we find agreement with the computation of the free energy of the 3d SCFT [89,

Eq.(36)].5

2.5 The case of two rank functions: two interacting linear quivers

In this section, we consider a natural extension of the Poisson problem (2.10). We will study this

problem in both backgrounds dual to the 5d and the 3d quivers. As we mentioned, the differential

equations are identical, hence we can study the solution simultaneously. We introduce a second

rank function R2 that places a new charge density at a line σ = σ0. The Poisson equation of such

a problem is

∂2
ηŴ (σ, η) + ∂2

σŴ (σ, η) +R2(η)δ(σ0 − σ) +R1(η)δ(σ) = 0, (2.26)

with boundary conditions

Ŵ (σ → ±∞) = Ŵ (η = 0) = Ŵ (η = P ) = 0 . (2.27)

The electrostatic problem is depicted in Figure 5. The PDE is still linear, which allows us a

simple way to write a solution. We notice that if Ŵ [R1](σ, η) is a solution to the electrostatic

problem with a source R1 at σ = 0, this already solves half of the source term in eq. (2.26). We

need to add to this a solution which takes care of the source R2 at σ = σ0. This is easily done

by simply shifting a solution to the problem with a source R2 at σ = 0. The resulting solution is

Ŵ [R1,R2](σ, η) =

∞∑
k=1

P

2kπ
sin

(
kπη

P

)[
R1,ke

− kπ
P

|σ| +R2,ke
− kπ

P
|σ−σ0|

]
, (2.28)

5The offset terms are not given in [89], but are easily computed as in the 5d case [87], and follow more generally

from Subsection 3.3.
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σ

η

σ0

0 P
R1(η)

R2(η)

Figure 5: The electrostatic problem for Ŵ in the two rank functions setup. We have a charge

distribution equal to R1(η) at σ = 0 and a second charge distribution R2(η) at σ = σ0.

with the Fourier coefficients of the two rank functions given by

Rα(η) =
∞∑
k=1

Rα,k sin

(
kπη

P

)
, α = 1, 2. (2.29)

In the AdS6 geometry, we compute the integral (2.19) with the potential in (2.28) and sub-

stitute V5(σ, η) =
Ŵ [R1,R2](σ,η)

σ . We find

chol|d=5 [R1,R2] =
P 2

8π6

∞∑
k=1

1

k

[
R2

1,k +R2
2,k + 2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
. (2.30)

In the AdS4 case, the analogous integral to find the holographic central charge is (2.22). Using

the potential (2.28) and substituting V3(σ, η) =
∂ηŴ [R1,R2](σ,η)

σ , we find

chol|d=3 [R1,R2] =
π

32

∞∑
k=1

k

[
R2

1,k +R2
2,k + 2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
. (2.31)

We observe that, in both cases, the holographic central charge consists of terms R2
α,k, which are

familiar from the single rank function setups. In addition to that, we have an “interaction” term

that is controlled by R1,kR2,k. Explicitly,

chol[R1,R2]− (chol[R1] + chol[R2]) ∝ 2
∞∑
k=1

k4−dR1,kR2,ke
− kπσ0

P

(
1 +

kπσ0
P

)
,

where the symbol ∝ here means up to a d-dependent but otherwise universal numerical coefficient.

It is interesting to study the limiting cases as we move the charge densities very close to, or

very far away from each other. The proper parameter for these limiting procedures is σ0
P . If

we take |σ0|
P ≫ 1, the exponential term suppresses the interaction and we are left over with two

copies of the holographic central charges from the single rank function setup:

chol[R1,R2] = chol[R1] + chol[R2] ,
σ0
P

→ ∞ . (2.32)
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Instead, when the charge densities get very close together, 0 ≤ |σ0|
P ≪ 1, we have

chol[R1,R2] = chol[R1 +R2] ,
σ0
P

→ 0 . (2.33)

In the spirit of a holographic version of the F-theorem [98, 99], we argue in Appendix D that

both in d = 5 and d = 3, chol satisfies

lim
σ0→0

chol > lim
σ0→∞

chol

∂σ0chol ≤ 0 ∀0 ≤ σ0 < ∞.

It is then tempting to think of this as a relevant deformation of a QFT with a rank function

R1 + R2 that in a large σ0
P limit factorises the theory into non-interacting theories with rank

functions R1 and R2. In Section 3 we motivate this claim further, in the context of matrix model

computations.

2.6 Wilson loops in supergravity

The holographic expectation value for a Wilson loop in the rank-ℓ antisymmetric representation ∧ℓ

of SU(Nj) (respectively U(Nj)) in long quivers of the type depicted in Figure 3, were investigated

in [100–102]. In the usual Hanany–Witten brane setups associated with the 5d (resp. 3d) quiver

theories of our interest, insertion of a Wilson loop in the ∧ℓ representation corresponds to a

configuration of ℓ fundamental strings stretched between a probe D3 (resp. D5′) brane and the

stack of Nj colour D5 (resp. D3) branes, in a manner consistent with the s-rule. The Wilson loop

vev is calculated by evaluating the on-shell action of the probe D3 (resp. D5′) brane on which

the ℓ fundamental strings end.6

The result can be written in terms of the potentials that appear in the electrostatic problem

ln ⟨W∧ℓ⟩ = (d− 2)π
(
σ∂σŴ (σ, η)− Ŵ (σ, η)

)
(σ∗,η∗)

, (2.35)

where η∗ denotes the position in the interval η ∈ [0, P ] at which the loop operator is inserted,

and σ∗ fixes the representation via the relation

ℓ =
[
∂σŴ (σ, η)

]
(σ∗,η∗)

, (2.36)

which is the expression for the number of fundamental strings that end on the probe mentioned

above. Namely, on the left-hand side of (2.36) we write the number ℓ of fundamental strings by

definition, and we equate it with the evaluation of the same number in terms of the supergravity

function Ŵ (σ, η). The right-hand side of (2.36) is obtained from a computation very similar to

(but slightly more involved than) the one that led (2.11), see in particular [102, Eq.s(3.2)-(3.3)].

Recall that Ŵ depends linearly on the Fourier coefficients Rk, which grow linearly in N , and

the same is valid for ℓ, so that the latter equality is understood by dividing both sides by N and

equating the finite results. This parallels the field theory analysis of Subsection 3.7. The large N

limit at fixed ℓ is recovered as a particular case of this procedure.

6Taking the probe brane limit has a nice correspondence with the matrix model calculation, where the insertion

of the Wilson loop does not modify the saddle point equations.

14



In order to evaluate (2.35), we use (2.28) to obtain

σ∂σŴ (σ, η) = −1

2

∞∑
k=1

sin

(
kπη

P

)[
|σ|R1,ke

− kπ
P

|σ| + σsign(σ − σ0)R2,ke
− kπ

P
|σ−σ0|

]
. (2.37)

Next we use (2.18), setting N0 = NP = 0, inside (2.37) and (2.28), and substitute into (2.35) to

obtain

ln ⟨W∧ℓ⟩
d− 2

=
P 2

2π2

P−1∑
j=1

F1,jRe
[
Li3

(
e−

π
P
[|σ∗|+i(η∗+j)]

)
− Li3

(
e−

π
P
[|σ∗|+i(η∗−j)]

)
+
π

P
|σ∗|

(
Li2

(
e−

π
P
[|σ∗|+i(η∗+j)]

)
− Li2

(
e−

π
P
[|σ∗|+i(η∗−j)]

))]
+

P 2

2π2

P−1∑
j=1

F2,jRe
[
Li3

(
e−

π
P
[|σ∗−σ0|+i(η∗+j)]

)
− Li3

(
e−

π
P
[|σ∗−σ0|+i(η∗−j)]

)
+
π

P
σ∗sign(σ∗ − σ0)

(
Li2

(
e−

π
P
[|σ∗−σ0|+i(η∗+j)]

)
− Li2

(
e−

π
P
[|σ∗−σ0|+i(η∗−j)]

))]
(2.38)

We note here that the Wilson loop expectation values are factorised; each of the above two

summands depends explicitly on one of the two rank functions in our setup. This is unlike the

expression for the holographic central charges (2.30)-(2.31), which also include an interaction term

between the Fourier coefficients of the two rank functions. The reason is that, in the electrostatic

picture, the holographic central charge accounts for the interaction between the two density of

charges, hence the quadratic dependence on R(η). On the contrary, a Wilson loop is a probe

that interacts with the two densities of charges individually, thus bearing a linear dependence on

R(η).

To study the situation in which the two rank functions are far away from each other, we must

send σ0
P → ∞. There are two ways of doing so: either directly, in which case we are left with the

Wilson loop in the supergravity background dictated by R1(η), or by keeping σ̃
P = σ−σ0

P fixed.

This second limit zooms in near R2(η), and we are left with the Wilson loop in the corresponding

supergravity background.

The cautious reader might question the representation carried by the Wilson loops after the

factorisation. It is slightly premature to answer this question at this stage, seeing as we have not

yet identified the field theory interpretation of the double rank function setup. We will clarify

this issue in Subsection 3.7, when we reproduce (2.38) from the gauge theory side.

2.7 On the reliability of the supergravity backgrounds

2.7.1 Validity of the AdS ansatz

In the case of one rank function, the backgrounds in (2.5) and (2.12) contain certain singularities.

These singularities are localised around the sources (flavour branes), becoming sharply localised

in the limit of long quivers with large ranks. In this case, the backgrounds are reliable in most

of the spacetime. Closer to the sources, the description should be supplemented by the inclusion

of the open string sector (realised on the sources). In other words, the string-sigma model must

include the presence of boundaries.
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Figure 6: Plot of e−2Φ at various values of σ in the AdS4 background. Here we set P = 15 and

σ0 = 6. The two quivers are given by two triangular rank functions (see [55, Sec.4.1]), R1 has

a flavour group at η = 6 while R2 at η = 9. The presence of flavour branes is signaled by one

bump below (σ = −2) and one bump above (σ = 7) the locations of the two rank functions in

the σ-axis. In the region between them, the dilaton is not well-defined since its exponential can

be negative.

The case of two (or more) rank functions separated by a distance σ0 is qualitatively different.

It can be noticed (see Figure 6 for an example in AdS4) that the dilaton is singular in the

region 0 < |σ| < |σ0|, indicating that the background is not reliable there. This situation

ameliorates, when either |σ0| → 0 or |σ0| → ∞. The singularities are a consequence of the

function Λ(σ, η) defined in equations (2.5c) and (2.12c) vanishing. Hence, it is not only the

dilaton that is problematic, but the whole background.

This behaviour can be interpreted in the following way: spaces like the ones studied here,

containing an AdSd factor, are not reliable when the parameter σ0 is switched on. The case of

very large σ0
P on the other hand, improves the behaviour, keeping only the singularities localised

on the sources for σ0
P → ∞.

We speculate that this is the reflection that the isometries of AdSd+1 are too stringent for

systems with finite σ0
P . In other words, the conformal symmetry of the dual field theory must be

broken in this case. In Section 3, we discuss the field theoretical interpretation of the deformation

by a finite σ0, finding that an RG flow must take place, recovering the conformal symmetry when
σ0
P → ∞.

Some natural questions arise: what is the value of calculations done with backgrounds for

which σ0
P is finite? Are the holographic central charge or the Wilson loops vev calculations

meaningful?

It has been observed that for holographic systems with singular behaviour, certain observables

become independent of the singularities. Indeed, the warp factors and fields in the background

conspire to produce a finite (and physically meaningful) quantity. This is one of the hallmarks

of the “good singularities”, using the definitions developed in [103, 104]. This is the case for the

holographic central charge computed in Subsection 2.4 and the Wilson loop vev of Subsection 2.5,
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whose results are reproduced by field theory computations in Section 3. We emphasise that there

should exist probes of the backgrounds with two rank functions that will display the singular

behaviour in the case of finite σ0
P .

Of course, it would be very interesting to find new backgrounds that interpolate between the

conformal field theories for very large and vanishing values of σ0
P . This is a difficult problem that

we leave for future investigation.

2.7.2 Factorisation

Our claim is that the solution factorises in the holographic dual of two decoupled SCFTs at

|σ0| → ∞. In this limit, the supergravity background will be described by a single metric (2.5),

which, depending on the precise way the limit is taken, is either the metric specified by the rank

function R1 or the one specified by the rank function R2. Namely, sending σ0 → ∞ directly, one

is left with the AdSd+1 metric fixed by the rank function R1, as in [74, 55]. However, first shifting

σ̃ = σ − σ0 and then sending σ0 → ∞, the AdSd+1 metric that remains is determined by the

rank function R2, located at σ̃ = 0. In this way, the AdSd+1 background, which we is reliable as

σ0 → ∞, detects the two decoupled SCFTs. This behaviour indeed matches holographically with

the choice of vacuum of the SCFT, namely whether the singularity at the tip of the Coulomb

branch of the gauge theory given by the rank function R1 or the one given by R2.

In conclusion, the electrostatic setup, which requires an AdSd+1 ansatz, cannot be an accurate

description at finite σ0, which breaks conformal symmetry. It is nonetheless a valuable device

that captures several key features of the RG flow of the dual field theory and, thanks to the

cancellations explained above, it reliably computes physical observables such as chol.

2.8 Matrix models for electrostatic problems

In this subsection, we set up a simple electrostatic problem whose large P limit directly matches

the holographic central charge of the geometry containing the AdS6 factor. The derivation is

based on constructing a unitary matrix model for the electrostatic problem, as explained in

[105, Sec.2.7], without any knowledge of AdS/CFT. This model is distinct from, and enormously

simpler than, the matrix model obtained from localization on Sd.

We begin with the simplest setting: consider the strip

{(η, σ) : 0 ≤ η ≤ P, −∞ < σ < ∞} = [0, P ]× R

and place P − 1 unit charges on the interior points of the integral lattice along the compact η-

direction at σ = 0. That is to say, the jth particle is placed at position (ηj , 0), with ηj describing

fluctuations centered at ηj = j, ∀j = 1, . . . , P − 1. The electrostatic potential Wel is subject to

the boundary conditions

Wel(η, σ → ∞) = 0 = Wel(η, σ → −∞),

Wel(0, σ) = 0 = Wel(P, σ). (2.39)
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Using that the Coulomb potential is logarithmic in 1d, the Boltzmann factor e−βE due to the

interaction among the P − 1 charges confined at σ = 0 is determined by

E(η1, . . . , ηP−1) = −
∑

1≤j ̸=ℓ≤P−1

ln

(∣∣∣ei2πηj/P − ei2πηℓ/P
∣∣∣ P
2π

)
. (2.40)

Furthermore, we introduce a background charge distribution, to compensate the repulsion among

the charges. Without this neutralising background charge density, on an unbounded domain the

particles would repel each other to ηj → ±∞. The presence of boundaries prevents this scenario,

but the equilibrium would simply be given by the charges being equi-spaced. To allow more

interesting configurations, we add the background charge. The resulting potential energy of a

charge at position (η, 0) is generically written in Fourier expansions as

Vel(z) =
∞∑
k=1

ak sin

(
kπη

P

)
.

The canonical partition function for this system is obtained as a mild generalization of [105,

Sec.2.7]. In units such that β = 2, it reads

exp
(
FDir
el

)
=

1

(P − 1)!

∫
[0,P ]P−1

∏
1≤j<ℓ≤P−1

∣∣∣(ei2πηj/P − ei2πηℓ/P
)∣∣∣2 P−1∏

j=1

e−2V (zj)

(
2π

P

)
dηj .

(2.41)

We have expressed the partition function directly in terms of the free energy FDir
el , and dropped

an η-independent overall factor, that can be cancelled by a suitable choice of background charge.

The integral (2.41) is a unitary matrix model, equivalent to integration over the unitary group

with Haar measure,

exp
(
FDir
el

)
=

∫
U(P−1)

dU exp
{
TrV (U + U †)

}
. (2.42)

The large P limit of (2.42) is calculated by Szegő’s theorem [106]:

lim
P→∞

FDir
el =

∞∑
k=1

ka2k,

which appears to be proportional to the holographic central charge (2.20).

The relation with chol is only formal at this stage, because we have not specified the Fourier

coefficients ak. First, let us notice that, in the large P limit, the P−1 discrete charges are replaced

by an inhomogeneous density of charge Rel(η), which grows linearly in P . The electrostatic

potential solves a continuous version of the previous problem, in which the large number of

discrete charges is replaced by the continuous density. This leads to the Poisson equation

∂2
ηWel + ∂2

ηWel +
2π

P
Rel(η)δ(σ) = 0,

which is precisely (2.10), upon identification

R(η) =
2π

P
Rel(η). (2.43)

Then, we determine the coefficients ak by requiring that, at equilibrium, the electrostatic force

on the position (η, 0) due to the density of charges Rel is compensated by the interaction with
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the background. The electrostatic potential on the position η generated by the distribution of

charges at all positions η̃ ̸= η, in this continuous version, is:

Φ(η) =
1

P

∫ P

0
dη̃ ln sin

( π
P
|η − η̃|

)
Rel(η̃).

The corresponding Coulomb force is ∂ηΦ(η). Equating it with the force ∂ηVel(η) results in:

1

P

∫ P

0
dη̃ cot

( π
P

(η − η̃)
)
Rel(η̃) = −2

∞∑
k=1

kak cos

(
kπη

P

)
.

Expanding the left-hand side of the equilibrium condition in Fourier modes, with the identification

(2.43), integrating over η̃ and imposing the equality, we get

kak =
P

2π
Rk.

Thus, the coefficients ak we seek are exactly the ones defined in (2.9). This completes the match

with the single rank function supergravity setup, concretely (2.10) and (2.20):

lim
P→∞

FDir
el =

∞∑
k=1

ka2k = 2π4chol.

This purely electrostatic matrix model predicts the correct holographic central charge in the

case of a single rank function. One may set up the analogous problem in the two rank functions

case. Two sets of charges are placed along the η-direction at σ = 0 and σ = σ0. We call their

positions ηj , η̂j , respectively. The Boltzmann factor e−βE is given by

E = E(η1, . . . , ηP−1) + E(η̂1, . . . , η̂P−1) + Eint(η1, . . . , ηP−1, η̂1, . . . , η̂P−1;σ0)

where the first two pieces are as in (2.40) and [105, Eq.(2.72)]

Eint = −
P−1∑
j=1

P−1∑
ℓ=1

ln

[
P

π

∣∣∣sin( π
P
(ηj − η̂ℓ + iσ0)

)∣∣∣] .
At σ0 → 0 the two pairs of eigenvalues coalesce and we get a larger matrix, containing the two

sets of charges. At σ0 → ∞, the interaction term is exponentially suppressed and the matrix

model breaks into two copies of (2.41). The two limiting pictures agree with the supergravity

problem.

The purely electrostatic problem and the associated unitary matrix model allow for several

generalizations. An immediate one is to have distinct number of charges at σ = 0 and σ = σ0. An

exhaustive exploration of the implications of these matrix models in holography is a mathematical

problem that we leave for future work.

3 Part II: Matrix models

In this section, we discuss the large N limit of the free energy on the QFT side. The field theories

we are interested in are encoded in framed AP−1 quivers, that is, linear quivers with P − 1 gauge
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and flavour nodes, as in Figure 3. The supergravity solution is reliable in the regime P ≫ 1, that

we will consider below. Moreover, we focus on quivers that are balanced.

The long quiver limit of linear quivers was first solved by Uhlemann for 5d SCFTs [87] and later

extended to 3d in [88, 89]. Here we reformulate these results in a unified notation and rederive

them in a formalism consistent with Section 2. More importantly, we extend the derivation away

from the superconformal fixed point, allowing mass deformations. Along the way, we refine the

notion of strong coupling limit for five-dimensional long quivers, in a way that is invariant under

fibre/base duality in M-theory.

On a technical level, the main results are the reformulation of [87], uniform in d, and its

extension along RG flows triggered by real masses. We compute the free energies, identify the

physical meaning of the results and discuss related subtleties. The outcome is used to substantiate

the AdS/CFT correspondence and to identify the deformation holographically dual to the problem

studied in Subsection 2.5.

The outline of this section is as follows. Subsection 3.1 contains an elementary presentation of

the RG flows we consider, from the perspective of the Coulomb branch of the QFT. In Subsection

3.2 we detail the general procedure, following and extending [87–89]. The free energies in 5d and

3d are derived in Subsection 3.3 in this more general setting. The case of two rank functions is

discussed explicitly in Subsection 3.4, where we propose an alternative derivation. In Subsection

3.5 we discuss the implications of the RG flow on the QFT side, define an effective free energy and

show the agreement between the supergravity calculations and the matrix model. The effective

free energies satisfy the F-theorem, as detailed in Subsection 3.6. Wilson loops in antisymmetric

representations are studied in Subsection 3.7.

The main results of this section are: the deformed free energies of long quivers in 5d and 3d

(3.21) and (3.22), respectively; the explicit match with the holographic central charges in (3.32)

and (3.33); the match of the Wilson loop vev in (3.41); the discussion on the effective free energy

in Subsection 3.5.3; and finally the F-theorem in Subsection 3.6.

3.1 Coulomb branches and mass deformations

In this section, we study mass deformations of five- and three-dimensional linear quivers by

evaluating their sphere partition functions in the long quiver and large N limit. We begin with

an overview of the mass deformations and how they resolve the singularity of the Coulomb branch

of the SCFT. For definiteness, and only during the current subsection, we frame the discussion

in the 5d setting. It can be readily exported to the 3d N = 4 case, as we spell out in Subsection

3.1.3.

The goal of the current subsection is to recast known facts in the framework of the present

work. This proves useful to shed light on the setup discussed holographically in Section 2, but the

experienced reader may safely skip this subsection and refer to Figure 8 for a schematic summary.

3.1.1 Mass parameter space

The moduli space of massive deformations, called the parameter space of the theory, is spanned

by the vacuum expectation value (vev) of the real scalars in the background vector multiplets for
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the global symmetry.

The fundamental hypermultiplets acquire a real mass by coupling them to a background vector

multiplet for the flavour symmetry. A non-vanishing vev for the background vector multiplet thus

activates an RG flow. The flows holographically dual to the ones proposed in Subsection 2.5 are

controlled by a single mass parameter m: at every node j = 1, . . . , P − 1, the scalar in the

background vector multiplet for the flavour symmetry algebra u(Fj) is given a vev

diag(0, . . . , 0︸ ︷︷ ︸
F1,j

,m, . . . ,m︸ ︷︷ ︸
F2,j

).

This is usually referred to as leaving F1,j of the hypermultiplets massless, and giving a mass m to

the remaining F2,j hypermultiplets. As we will show in Subsections 3.2-3.3, the argument extends

to a larger number of mass parameters without any conceptual difference.

In both 5d and 3d, the global symmetry of the SCFT contains the torus

TG =
P−1∏
j=1

[
U(1)

Fj

f × U(1)I

]
/U(1)

(5−d)/2
diag ,

where the U(1)f factors come from the maximal torus of the flavour symmetry, and U(1)I acting

on the instantons in 5d, or on the monopoles in 3d. There is always one such U(1)I per gauge

node. Finally, U(1)diag acts diagonally on the flavour symmetry, and the quotient by U(1)
(5−d)/2
diag

conveniently encodes that the center of the flavour symmetry is gauged in 3d, where the gauge

groups are unitary, but not in 5d.

The vevs of the scalars in the vector multiplets for the U(1)f are the standard mass parameters,

while the vevs of the scalar in the U(1)I are, respectively, the inverse gauge couplings 1/g2
YM,j in

5d and the FI parameters in 3d. For later reference, notice that, as opposed to four-dimensional

Yang–Mills theory, the gauge couplings of 5d N = 1 theories pertain to the mass parameter space,

and shall be dealt with accordingly in our analysis, as opposed to most of the existing large N

studies.

3.1.2 Coulomb branch geometry

Consider a five-dimensional linear quiver as in Figure 3, denoted by Q. The zero-mode of the real

scalar σ⃗ ∈ R|N⃗ | in the |N⃗ |-dimensional Cartan subalgebra of the gauge group parametrises the

Coulomb branch of Q, CB[Q] for short. CB[Q] is fibered over the mass parameter space of the

theory [107]. At the origin of the parameter space, CB[Q] has a conical singularity at its origin,

σ⃗ = 0. Moving on the parameter space, the singularity is fully resolved at generic points, and

partially resolved at positive-codimensional loci in the parameter space.

As explained above, we are mainly interested in the scenario in which one activates vevs for

the background scalars controlled by a unique parameter m. The hypermultiplets are grouped

in two families, becoming massless at separate points on CB[Q], whose distance increases along

the RG flow triggered by m. We are thus resolving the singularity of CB[Q] in a minimal and

controlled way, by moving along a one-real dimensional locus on the parameter space. This idea

is illustrated in Figure 7.
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Figure 7: Schematic view of the Coulomb branch fibered over the mass parameter space. Moving

along the RG flow triggered by the selected mass deformation (orange) resolves the Coulomb

branch singularity. It breaks in two disjoint cones at the limiting point m = ∞.

CB[Q] is expected to break in two smaller singularities at the end of the RG flow, which we

will identify with the Coulomb branches of two quivers Q1,Q2 with smaller gauge and flavour

ranks. Both CB[Q1] and CB[Q2] have a singularity at their origin and another one at the point

at infinity. The hypermultiplets that would become massless at infinity are effectively decoupled

from the gauge theory.

Besides the geometry, another clear way to see the appearance of decoupled modes is from

the realization of the quiver theories using brane webs [85]. Our choice of mass deformation

corresponds to splitting the colour branes (D5 in 5d, D3 in 3d) into two separate stacks. The

strings that connect branes within the αth stack give rise to the modes in Qα, α = 1, 2, whilst

the strings stretched between branes belonging to different stacks give rise to heavy modes, that

eventually decouple.

Before moving on to the actual computation, we emphasise that the RG flow activated by the

mass deformation we introduce is independent of the RG flows that deform the 5d SCFTs onto

their gauge theory phases, as represented in Figure 8. In the language of Subsection 3.1.1, the

two deformations correspond to moving along different directions in the mass parameter space,

and can be dealt with independently.

SCFT[Q]

SCFT[Q1]⊕SCFT[Q2]

⊕ decoupled

m→∞

Gauge theory [Q]

Gauge theory [Q1] ⊕ Gauge theory [Q2]

⊕ decoupled

{
1/gYM

j

}

{
1/gYM

1,j

}
∪
{
1/gYM

2,j

}

Figure 8: Illustration of the massive deformations and associated RG flows in our 5d setup.

The diagonal arrow labelled by m is the flow that matches with supergravity. Vertical arrows

indicate RG flows from a SCFT to a gauge theory, the relevant operator triggering it being the

supersymmetric Yang–Mills kinetic term.
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3.1.3 Mass deformation in 3d N = 4 theories

The discussion above, albeit phrased suitably for 5d N = 1 quiver theories, applies to 3d N = 4

quivers Q as well, with minor adjustments. In the three-dimensional setup the Coulomb branch

CB[Q] is a hyperKähler variety. The scalars in the vector multiplets, both gauge and background,

form a triplet under the SU(2) which rotates the complex structure of CB[Q]. Fixing a given

complex structure corresponds to select an N = 2 subalgebra of the full N = 4 supersymmetry

and, under such choice, each N = 4 vector multiplet decomposes into an N = 2 vector multiplet,

carrying a real scalar, and an N = 2 chiral multiplet in the adjoint representation, carrying a

complex scalar. Fixing an N = 2 subalgebra is necessary for localisation, and only the real scalar

enters the localisation expression, whilst the complex scalars are set to zero at the localisation

locus. Consistently, the superpotential vanishes on the localization locus. See [108] for a detailed

review.

The mass deformation we consider corresponds to couple a collection of hypermultiplets to

an N = 4 background vector multiplet in a way that preserves the full supersymmetry, exactly

as they are coupled to the dynamical gauge vector multiplet. Upon localisation, only the real

component of the triplet of background scalars enters the localised expressions, and we refer to

it as the real mass. Of course, our choice would be rotated by a SU(2) transformation on CB[Q],

but it would do so in exactly the same way as the dynamical scalars. In other words, the precise

analogue of the 5d procedure is to activate a full N = 4 background vector multiplet with its

SU(2)-triplet of scalar fields, and we give a specifically chosen vev to it.

Finally let us mention that in d = 3 we may consider a deformation given by a triplet of scalars

in a twisted vector multiplet, corresponding to an FI term. Such deformation would partially

resolve the Higgs branch and lift the Coulomb branch, obstructing the mass deformation we are

interested in. While in 3d N = 4 there should exists one such deformation that mirrors the mass

deformation we consider, we do not pursue it here, and focus solely on mass deformations, that

geometrically resolve the Coulomb branch.

3.1.4 Summary of the mass deformation prescription

We have introduced the mass parameter space, reviewed the realisation of mass deformations via

coupling to background vector multiplets, and the effect on the Coulomb branch geometry. We

are now ready to distil our prescription into a pragmatic recipe.

(1) At every node j, select an arbitrary splitting of the number of flavours Fj =
∑F

α=1 Fα,j .
7

(2) At every j, couple the hypermultiplets to a background vector multiplet that gives a mass

mα (independent of j) to the collection Fα,j .

(3) Impose a splitting of the gauge ranks Nj =
∑F

α=1Nα,j by requiring the balancing condition

for the reduced collection {Nα,j , Fα,j}j=1,...,P−1 at every α.

This prescription has a neat interpretation in Type IIB string theory, which we comment on in

Appendix C.1.

7The number F must be independent of j, but this results in no loss of generality, because one may always split

Fj into a smaller number of summands by setting some of the Fα,j to zero.
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Technically, we do not get to choose the Higgsing pattern, rather it is a consequence of how

the Coulomb branch has been resolved. The third point of the recipe should be

(3′) Determine the splitting of the gauge ranks Nj =
∑F

α=1Nα,j consistent with the Coulomb

branch that survives at the end of the flow.

We claim that (3) and (3′) are equivalent. For the sake of completeness, we elaborate further on

this facet below, in Subsection 3.4.3 and in Appendix C.2.3.

3.2 Long quivers and their large N limit

3.2.1 Notation

We denote the gauge ranks N1, . . . , NP−1 and the flavour ranks F1, . . . , FP−1. We use a label

j = 1, . . . , P − 1 running over the nodes of the quiver, and labels a, b = 1, . . . , Nj running over

the indices in the Cartan of the gauge algebra u(Nj) at the node j.

Following [74, 55] and Section 2, we define a rank function R(η), for a continuous index

0 ≤ η ≤ P , such that R(η = j) = Nj . Its Fourier expansion is

R(η) =

∞∑
k=1

Rk sin

(
kπη

P

)
.

In the following, we fix N ∈ N. We will assume N ≫ 1 later on. It is convenient to introduce a

continuous label 0 ≤ z ≤ 1,

z =
η

P

and write

ν(z) :=
1

N
R(Pz),

so that Nj = Nν(z). The Fourier expansion of the scaled rank function ν(z) is

ν(z) =
∞∑
k=1

ak sin (kπz) ,

with coefficients ak related to ak defined in (2.15) through ak = Rk
N = 2πk

NP ak.

To set up the Veneziano limit, the flavour ranks must scale with N , so that Fj = Nζj , with ζj

held fixed in the large N limit. The flavour ranks are collected into a flavour rank function ζ(z).

We work in units in which the radius of Sd is set to one. The sphere free energy F is defined

as [99]

F = (−1)
d−1
2 lnZSd . (3.1)

3.2.2 Mass deformations

Throughout this section, the fundamental hypermultiplets are grouped into F families of equal

mass, such that Fα,j hypermultiplets have the same massmα, ∀α = 1, . . . ,F . This corresponds to

turning on the same mass for a fraction ζα(z) of ζ(z), at every 0 ≤ z ≤ 1. Clearly, for consistency

we have
F∑

α=1

ζα(z) = ζ(z).
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Let us stress that there are F different mass scales

{mα : α = 1, . . . ,F}

with a variable number of hypermultiplets with each mass at each node. Hypermultiplets in the

αth family at every node have the same mass mα. Previously, we demanded that ζα(z) remains

finite in the large N limit. In particular, F is held fixed. The large F limit might be interesting

for future investigation.

Recall that we are dealing with balanced quivers, and that the balancing condition reads (see

[87, 109] for the proof)8

ζ(z) = − 1

P 2

∂2

∂z2
ν(z)

=
π2

P 2

∞∑
k=1

akk
2 sin (kπz) .

Because the function ζ(z) splits into the sum of ζα(z), we define the corresponding Fourier

coefficients aα,k, such that

ζα(z) =
π2

P 2

∞∑
k=1

aα,kk
2 sin (kπz) , ∀α = 1, . . . ,F . (3.2)

The corresponding “reduced” rank functions are

να(z) =

∞∑
k=1

aα,k sin (kπz) , ∀α = 1, . . . ,F . (3.3)

3.2.3 Sphere partition functions

To unify the 5d and 3d notation, we work on the round d-dimensional sphere Sd, d ∈ {3, 5}. The
d-sphere partition function of a linear quiver with 8 supercharges is [110–114]

ZSd =

∫
R|N⃗|

dσ⃗ Zcl(σ⃗)Z
vec
1-loop(σ⃗)Z

hyp
1-loop(σ⃗, m⃗)Znon-pert. (3.4)

Here σ⃗ is the zero-mode of the real scalar in the vector multiplet, at the localization locus. We

have used the shorthand notation |N⃗ | :=
∑P

j=1Nj and9

dσ⃗ :=
P−1∏
j=1

Nj∏
a=1

dσa,j ×

P−1∏
j=1

δ

 Nj∑
a=1

σa,j

(d−3)/2

is the Lebesgue measure on the Cartan of the gauge algebra, isomorphic to R|N⃗ | in 3d and to

R|N⃗ |−P+1 in 5d. The term in square bracket enforces that the gauge nodes in 5d are SU(Nj),

while they are U(Nj) in 3d. The integrand of (3.4) comprises the following terms:

8Recall the discussion below (2.3) about sign conventions in the ∂2
zν versus R′′ derivative.

9For ease of notation, we combine the Vandermonde factors coming from diagonalising the scalar zero-mode σ⃗

with the contribution of the vector multiplet.
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• The classical contribution Zcl = e−SYM−SCS−SFI , includes the Yang–Mills (YM), Chern–

Simons (CS) and Fayet–Iliopoulos (FI) terms, evaluated at the localization locus. Hereafter

we set the Chern–Simons couplings to zero, while

SYM =

0 d = 3∑P−1
j=1

∑Nj

a=1
(2π)3

g2YM,j
σ2
a,j d = 5.

In flat space, the inverse 5d Yang–Mills coupling has the dimension of a mass parameter.

For later convenience, we define the corresponding mass parameter at the node j as

mYM
j =

(2π)3

g2
YM,j

and collect all of them in the function mYM(z) = mYM
zP .

In d = 3 the gauge groups U(Nj) have non-trivial fundamental group, and admit FI cou-

plings. This possibility is precluded in d = 5, for the gauge group being simply connected.

Therefore, we may contemplate the additional term

SFI = δd,3

P−1∑
j=1

Nj∑
a=1

2πiξjσa,j ,

with ξj ∈ R the FI parameter associated to the jth gauge node. For simplicity, we set SFI

to zero, but we claim that having a finite FI parameter would not change our results. We

substantiate this claim at the end of Subsection 3.3.3.

• The one-loop contribution of the vector multiplet, Zvec
1-loop. It takes the form

Zvec
1-loop(σ⃗) =

P−1∏
j=1

∏
1≤a̸=b≤Nj

exp {−v(σa,j − σb,j)} ,

where v is a real-valued function of a single variable

v(s) =

− ln (2 sinh(πs)) d = 3

− ln (2 sinh(πs))− 1
2f(is) d = 5.

The function f(is) in 5d is a real even function of s [111, 112]:

f(is)

reg.︷︸︸︷
=

∞∑
n=1

n2 ln

(
1 +

s2

n2

)
⇒ f(is) =

π

3
s3 − s2 ln

(
1− e−2πs

)
+

s

π
Li2
(
e−2πs

)
+

1

2π2
Li3
(
e−2πs

)
− ζ(3)

2π2
,

the first line meaning that f(is) is defined to be the ζ-function regularization of the divergent

right-hand side, explicitly given in the second line.

• The one-loop contribution of the hypermultiplets. For the quivers we consider, the hy-

permultiplets are of two types: fundamental and bifundamental. The integrand factorises

accordingly:

Zhyp
1-loop(σ⃗, m⃗) = Z fund(σ⃗,m)Zbif(σ⃗).
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With the assumption above on the masses, we have

Z fund(σ⃗, m⃗) =
P−1∏
j=1

Nj∏
a=1

F∏
α=1

exp {−Fα,jh(σa,j −mα)} ,

Zbif(σ⃗) =

P−2∏
j=1

Nj∏
a=1

Nj+1∏
b=1

exp {−h(σa,j − σb,j+1)} ,

where h is a real-valued function of a single variable

h(s) =

ln (2 cosh(πs)) d = 3

− ln (2 cosh(πs)) + 1
4

[
f
(
1
2 + is

)
+ f

(
1
2 − is

)]
d = 5.

• The non-perturbative contribution Znon-pert is identically 1 in 3d [110], and accounts for

codimension-4 field configurations in 5d [111, 112]. The mass of 5d instantons is ∝ 1/g2YM,

thus they are non-perturbatively suppressed away from the superconformal point, but can

become massless in the conformal limit. As argued below, we will enforce a procedure such

that, schematically,

Znon-pert = 1 + e−P (··· ),

where the dots are a strictly positive number as long as g2
YM,j > 0. In the following, we will

work with finite gauge coupling in 5d, so that the SCFT flows to a gauge theory and the

picture described so far applies. Then, Znon-pert is safely neglected in the regime P ≫ 1.

The strong coupling limit is taken at the end of the computation.

Convergence of the perturbative Sd partition function, i.e. setting Znon-pert → 1, imposes

Fj ≥ 2Nj −Nj−1−Nj+1 in d = 3 and Fj ≤ 2Nj −Nj−1−Nj+1 in d = 5, making balanced quivers

a preferred choice.

Before taking the large N limit, a remark is in order. Turning on massive deformations of

large N field theories, there can be phase transitions (typically of third order) when such mass

parameters cross a given threshold. It was proven in [109] that balanced linear quivers do not

have such phase transitions.

3.2.4 Setting up the large N limit

The first step to take the large N limit is to rewrite the partition function in the form

ZSd =

∫
R|N⃗|

dσ⃗ e−Seff(σ⃗,m⃗)Znon-pert,

where, with the above notation,

Seff =
P−1∑
j=1

Nj∑
a=1

[
δd,5m

YM
j σ2

a,j +

F∑
α=1

Fα,jh(σa,j −mα)

]
(3.5)

+
P−1∑
j=1

Nj∑
a=1

∑
b̸=a

v(σa,j − σb,j)

+

Nj+1∑
b=1

h(σa,j − σb,j+1)

+B.

27



The last term B generically includes terms from the boundary of the quiver. Here we are over-

counting the contribution from a bifundamental hypermultiplet at the last node, thus B serves

to correct this extra counting. It follows from power counting, and is shown explicitly in [87],

that it is subleading in the large P limit, thus we refrain from writing down its explicit form.

It is customary to introduce the eigenvalue density at the jth node:

ρj(σ) =
1

N

Nj∑
a=1

δ(σa,j − σ).

Two caveats: first, notice that now σ is a continuous real variable, related to, but different from

the |N⃗ |-dimensional real scalar σ⃗. Second, we are normalising all the densities ρj with a unique

(and so far, arbitrary) integer N . This implies∫
R
dσρj(σ) =

Nj

N

With the above definitions at hand, the sums over j and a can be replaced by integrals:

Nj∑
a=1

f(σa,j) ⇝ N

∫
dσρj(σ)f(σ) ;

P−1∑
j=1

fj ⇝ P

∫ 1

0
dzf(z) .

for arbitrary expressions fj . This allows to pack the eigenvalue densities at each node into a

single function of two variables

ρ(z, σ) : [0, 1]× R → R≥0,

normalised as ∫
R
dσρ(z, σ) = ν(z), ∀0 ≤ z ≤ 1.

Putting all together, (3.5) becomes

Seff = PN2

∫ 1

0
dz

∫
dσρ(z, σ)

[
δd,5

mYM(z)

N
σ2 +

F∑
α=1

ζα(z)h(σ −mα) (3.6a)

+

∫
ϕ ̸=σ

dϕρ(z, ϕ)v(σ − ϕ) (3.6b)

+
1

2

∫
dϕ (ρ(z + δz, ϕ) + ρ(z − δz, ϕ)) h(σ − ϕ)

]
+B. (3.6c)

In the last line, we have used the symmetry of the last term to slightly rewrite it [87], with the

understanding that, if z = j
P , then z ± δz = j±1

P . The boundary piece B now contains half term

from j = P − 1 and half from j = 0.

3.2.5 Long quiver limit

The long quiver limit, P ≫ 1, was pioneered in [87]. Here we briefly sketch their derivation, with

a few variations to deal with mass deformations as well as to treat mYM(z) in accordance with its

geometric engineering.
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First, we add and subtract ρ(z, ϕ)h(σ − ϕ) in (3.6c):

1

2
(ρ(z + δz, ϕ) + ρ(z − δz, ϕ)) h(σ − ϕ)

=
1

2
[(ρ(z + δz, ϕ)− ρ(z, ϕ))− (ρ(z, ϕ)− ρ(z − δz, ϕ))] h(σ − ϕ) + ρ(z, ϕ)h(σ − ϕ).

We combine the last summand with (3.6b) and define

F0(s) := [v(s) · 11s ̸=0 + h(s)] /(d− 2)2

where 11s ̸=0 vanishes at s = 0 and is 1 otherwise. Then, we observe that, in the large P limit [87]

(ρ(z + δz, ϕ)− ρ(z, ϕ))− (ρ(z, ϕ)− ρ(z − δz, ϕ)) → 1

P 2

∂

∂z2
ρ(z, ϕ). (3.7)

Second, we assume that σ grows with P . Since the mass parameters are realised as background

fields for the flavour symmetry, it is natural to put them on an equal footing and assume the

same scaling with P :

σ = (d− 2)Pχx, mα = (d− 2)Pχµα,

with x, µ independent of P . The exponent χ > 0 is determined momentarily by self-consistency

of the large P limit. If we were to find χ ≤ 0, we would have to reconsider our scaling ansatz.

The corresponding rescaled eigenvalue density is

ϱ(z, x)dx = ρ(z, σ)dσ.

Recall from Subsection 3.1.1 that, in 5d, the inverse gauge coupling has the dimensions of a mass

parameter. It corresponds to the vev of the background scalar for the U(1)I global symmetry.

Thus, we study the scaling

mYM(z) = Pχκ(z),

for some fixed function κ(z). Let us emphasise this point: we do not consider a ’t Hooft scaling.

Instead, we treat all the real scalars (dynamical and background) equally. In 5d, this is the most

natural standpoint, as explained in Subsection 3.1.1. Moreover, on the Coulomb branch, the

one-loop corrected gauge coupling is shifted proportionally to |σ|, which further advocates for

scaling mYM precisely as σ does.

This choice of scaling, distinct from the ’t Hooft one, is also consistent with the M-theory

realization of the quivers. Indeed, vevs of the scalars, regardless of dynamical or background, all

are computed from the volumes of certain two-cycles inside a Calabi–Yau threefold [83]. The only

difference between the inverse gauge couplings and the mass parameters, is that the two-cycles

giving rise to the former live in the base of a fibration, while the two-cycles for the latter live

in the fibre. With our prescription, as opposed to the ’t Hooft limit considered in the existing

literature, the volumes of all the two-cycles scale equally.10 In particular, our procedure preserves

the fibre/base duality [115, 107, 116, 117], whenever the fibration mentioned in the M-theory

setup enjoys such duality.

In this approach, the Yang–Mills term is subleading in N but dominant in P . The two limits

do not commute, and their order of limits is thus relevant (as already pointed out in [109]).

10LSa thanks Michele Del Zotto for suggestions on this point.
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i) We first take the large N limit at fixed gauge coupling. The Yang–Mills term is subleading

in the effective action. Non-perturbative contributions cannot be neglected at this stage.

ii) The large P limit is taken afterwards. This suppresses the non-perturbative contributions,

and also treats all massive fields and parameters democratically.

Introducing the functions [87, 88]

f0(x) =

π
4 δ(x) d = 3

−27π
8 |x| d = 5

fh(x) =

π|x| d = 3

−9π
2 |x|3 d = 5

(3.8)

the large argument behaviour of F0 and h is

F0(P
χx) ≈ Pχ(d−4)f0(x), h(Pχx) ≈ Pχ(d−2)fh(x).

These definitions, together with (3.7), allow us to rewrite the effective action (3.6) as:

Seff = P 1+χ(d−4)N2

∫ 1

0
dz

∫
dxϱ(z, x)

[
P 2χ

F∑
α=1

ζα(z)fh(x− µ) (3.9)

+

∫
dy

(
ϱ(z, y)f0(x− y) + P 2χ−2 1

2
∂2
zϱ(z, y)fh(x− y)

)]
.

Subleading contributions in N and P have been neglected. In the first line, recall from (3.2) that

ζα(z) involves a factor 1/P 2. In order to reach an equilibrium configuration, at least two of the

terms in (3.9) must be of the same order in P and compete. This requirement imposes

2χ− 2 = 0 =⇒ χ = 1.

Therefore Seff, and hence F , bear overall factors N2P d−3.

3.2.6 Saddle point equation

At leading order in N and P ,

lnZSd ≈ ln

∫
dσe−Seff .

From (3.9), the integrand is suppressed both in N and P , meaning that the leading order contri-

bution comes from the saddle point configuration of Seff. We thus need to minimise it over the

space of probability densities ϱ(z, x).

Taking the saddle point equation for (3.9) and acting onto it with
(
∂
∂x

)d−2
, we finally get

1

4
∂2
xϱ(z, x) + ∂2

zϱ(z, x) +
F∑

α=1

P 2ζα(z)δ(x− µα) = 0, (3.10)

both in 3d and 5d. The saddle point equation (3.10) is a Poisson equation, and it is a modification

of [87, Eq.(2.36)] by

ζ(z)δ(x) ⇝
F∑

α=1

ζα(z)δ(x− µα),

meaning that inserting mass deformations has a controlled effect on the long quiver limit.
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By linearity, (3.10) admits a solution

ϱ(z, x) =

F∑
α=1

ϱα(z, x), (3.11)

and, generalizing [74, 55], we get

ϱα(z, x) = π

∞∑
k=1

kaα,k sin(kπz)e
−2πk|x−µα|. (3.12)

3.2.7 Match with the supergravity solution

We emphasise that the saddle point equation (3.10) agrees precisely with the Poisson equation

(2.10) derived in supergravity. To show this, we start with the case of vanishing masses. We

make the identifications

z = η/P, x = σ/(2P ) (3.13)

(here σ is the holographic variable). It is convenient to switch to the normalisation of [87],

by introducing an eigenvalue density ϱ̂(η, σ) = Nϱ(z, x) normalised to N . Analogously, denote

F (η) = Nζ(Pz) the flavour rank function without Veneziano normalisation. Then, (3.10) becomes

∂2
η ϱ̂+ ∂2

σϱ̂+ 2PF (η)δ(σ) = 0.

Recall that F (η) = R′′(η), in the conventions of (2.3) for the ′-derivative, which yields opposite

sign with respect to the ∂z-derivative. Dividing by 2P we get

∂2
η

(
ϱ̂

2P

)
+ ∂2

σ

(
ϱ̂

2P

)
− ∂2

ηR(η)δ(σ) = 0.

Acting with the ′-derivative twice on the supergravity equation (2.10) and identifying

Ŵ ′′ =
ϱ̂

2P
, (3.14)

where the differentiation only involves the η-dependence, we find perfect agreement with the

saddle point equation derived in QFT.

The argument extends immediately away from the superconformal case. The presence of

masses simply splits the flavour and gauge rank functions, and we identify the positions σα in

supergravity with 2Pµα in QFT. For instance, for F = 2, µ1 = 0, µ2 = µ, the identifications

above yield the supergravity equation (2.26) from the saddle point equation (3.10).

It is instructive to rewrite the QFT effective action (3.9) in the supergravity language, sub-

stituting (3.13)-(3.14). One finds:

Seff = Pχ(d−4)N

∫ P

0
dη

∫ +∞

−∞
dσ∂2

ηŴ (σ, η)

{
−P 2χ

F∑
α=1

∂2
ηR(η)

fh(σ − σα)

(2P )χ(d−2)

+N

∫ +∞

−∞
dσ̃

[
∂2
ηŴ (σ̃, η)

f0(σ − σ̃)

(2P )χ(d−4)
+ P 2χ 1

2
∂4
ηŴ (σ̃, η)

fh(x− y)

(2P )χ(d−2)

]}
.
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The powers of P cancel out in this expression, regardless of the value of χ, while each power of

N accompanies a σ-integral. Simplifying the expression, one arrives at

Seff =
N

2χ(d−4)

∫ P

0
dη

∫ +∞

−∞
dσ∂2

ηŴ (σ, η) · ∂2
η

{
−

F∑
α=1

R(η) · 1

22χ
fh(σ − σα)

+N

∫ +∞

−∞
dσ̃

[
Ŵ (σ̃, η)f0(σ − σ̃) + ∂2

ηŴ (σ̃, η) · 1

22χ+1
fh(x− y)

]}
.

3.3 Free energies in massive deformations of 5d and 3d SCFTs

In this subsection, we compute the free energy for arbitrary F and present the general solution

in 5d and 3d. The SCFT result of [87, 89] is recovered upon setting all masses to zero.

3.3.1 Free energies in 5d and 3d

The free energy F is defined in (3.1). It is computed at leading order in N,P plugging our

solution (3.11)-(3.12) into Seff and evaluating it on-shell.

The derivation is identical to [87, Sec.3] and [89, Sec.3], upon adjusting to our conventions

and replacing

ϱ(z, x) ⇝
F∑

α=1

ϱα(z, x)

ζ(z)fh(x) ⇝
F∑

α=1

ζα(z)fh(x− µα).

Using this and (3.9), we arrive at the result

F =
(−1)

d−3
2

2
N2P d−3

∫ 1

0
dz

∫ +∞

−∞
dx

(
F∑

α=1

ϱα(z, x)

)P 2
F∑
β=1

ζβ(z)fh(x− µβ)


=

(−1)
d−3
2

2
N2P d−3

F∑
α,β=1

∫ 1

0
dzP 2ζβ(z)

∫ +∞

−∞
dxϱα(z, x)fh(x− µβ). (3.15)

Importantly, by a straightforward generalization of the derivation in [87, Sec.3] and denoting

Sfund the contribution of the fundamental hypermultiplets to the action, we arrive at the identity

Seff

∣∣∣
on shell

=
1

2
Sfund

∣∣∣∣
on shell

,

which is in fact a general property of matrix models in the planar limit, following from the

equilibrium equation (see e.g. [118]).

Formula (3.15) yields the leading contribution to the free energy. One may also use the

eigenvalue densities (3.12) to evaluate the subleading contributions, such as the boundary terms

B|on shell.

Separating the cases α = β and α ̸= β, and shifting variables, we rewrite (3.15) in the form

F =
F∑

α=1

Fα +
∑
α ̸=β

F int
α,β. (3.16)
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Here Fα is the free energy of a 5d or 3d balanced, linear quiver Qα with reduced gauge rank

function να(z) and flavour rank function ζα(z). From the explicit form of ϱα in (3.12) and ζα in

(3.2), each individual contribution reads

(−1)
d−3
2

N2P d−3
Fα =

1

2

∫ 1

0
dz

(
π2

∞∑
ℓ=1

aα,ℓℓ
2 sin (ℓπz)

)
(3.17a)

∫ +∞

−∞
dx

(
π

∞∑
k=1

aα,kk sin(kπz)e
−2πk|x−µα|

)
fh(x− µα)

=
π3

2

∞∑
ℓ,k=1

aβ,ℓaα,kkℓ
2

∫ 1

0
dz sin (ℓπz) sin(kπz)

∫ +∞

−∞
dxe−2πk|x|fh(x) (3.17b)

=
π3

4

∞∑
k=1

a2α,kk
3

∫ +∞

−∞
dxe−2πk|x|fh(x). (3.17c)

The terms in the second sum in (3.16) encode the pairwise coupling of the quivers Qα and

Qβ. Its appearance encapsulates the main technical novelty of the present analysis. Note that the

quivers Qα only interact pairwise, and the free energy configuration may be drawn as a complete

graph of F vertices, with vertex set {Qα}. For example:

Q1

Q2

Q3 Q4

Q5

QαFα = F int
α,α :

Qα QβF int
α,β :

From the Type IIB string theory viewpoint, the arrows in this picture encode the free energy of

strings stretched between stacks of Dd colour branes. When the stacks are pairwise separated,

the string excitations become massive. An example is provided in Figure 11 in Appendix C.2.

To evaluate F int
α,β, exploiting again (3.12) and (3.2), we have

(−1)
d−3
2

N2P d−3
F int
α,β =

1

2

∫ 1

0
dz

(
π2

∞∑
ℓ=1

aβ,ℓℓ
2 sin (ℓπz)

)
(3.18a)

∫ +∞

−∞
dx

(
π

∞∑
k=1

aα,kk sin(kπz)e
−2πk|x−µα|

)
fh(x− µβ)

=
π3

2

∞∑
ℓ,k=1

aβ,ℓaα,kkℓ
2

∫ 1

0
dz sin (ℓπz) sin(kπz)

∫ +∞

−∞
dxe−2πk|x|fh(x− µβα) (3.18b)

=
π3

4

∞∑
k=1

aα,kaβ,kk
3In(µβα). (3.18c)
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In (3.18b) we have introduced the notation µβα := µβ − µα, and we have defined

Ik(µ) :=
∫ +∞

−∞
dx e−2πk|x|fh(x− µ) (3.19)

in (3.18c), whose explicit form differs in 5d and 3d.

From (3.16)-(3.18c) we already learn an important lesson: because the coefficients ak grow

linearly in P , we predict the scaling:

F ∝ (−1)
d−1
2 N2P d−1,

which interpolates between and agrees with the scaling found in 5d [87] and 3d [89]. This, however,

will be the behaviour of a quiver with a generic distribution of flavour ranks. Concrete examples,

as for instance the TN theory, will show different scaling — see also Appendix B.

3.3.2 Free energy in 5d

To determine the free energy in 5d, it only remains to evaluate the integral (3.19). Plugging

fh(x)|d=5 from (3.8), we get

Ik(µ)|d=5 = −9π

2

∫ +∞

−∞
dxe−2πk|x||x− µ|3

= − 27

8π3k4

(
e−2πk|µ| + 2πk|µ|+ 4

3
(πk|µ|)3

)
. (3.20)

Inserting this expression in the general formula (3.15) yields the final result

F|d=5 =
F∑

α=1

27

32
N2P 2

∞∑
k=1

1

k
a2α,k︸ ︷︷ ︸

Fα|d=5

(3.21)

+ 2
∑

1≤α<β≤F

27

32
N2P 2

∞∑
k=1

1

k
aα,kaβ,k

(
e−2πk|µβα| + 2πk|µβα|+

4

3
(πk|µβα|)3

)
︸ ︷︷ ︸

F int
α,β|d=5

.

3.3.3 Free energy in 3d

In 3d, the integral (3.19) is simpler. Recall from (3.8) that fh(x) = π|x|. Then

Ik(µ)|d=3 = π

∫ +∞

−∞
dxe−2πk|x||x− µ|

=
1

2πk2

(
e−2πk|µ| + 2πk|µ|

)
.

Plugging this expression in formula (3.15) we find the general result

F|d=3 =

F∑
α=1

π2

8
N2

∞∑
k=1

ka2α,k︸ ︷︷ ︸
Fα|d=3

(3.22)

+ 2
∑

1≤α<β≤F

π2

8
N2

∞∑
k=1

kaα,kaβ,k

(
e−2πk|µβα| + 2πk|µβα|

)
︸ ︷︷ ︸

F int
α,β|d=3

.
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At d = 3, it is worth commenting on the possibility of introducing FI parameters ξj , which,

in the long quiver limit, would give rise to a function ξ(z). Remember that they would introduce

a linear dependence on σ in the effective action. These contributions would be subleading in N

and drop out in the large N limit. One may retain the dependence on the FI parameters by

imposing a ’t Hooft scaling on them, but this would artificially break the symmetric role between

FI parameters and mass parameters in 3d N = 4.

In conclusion, turning on FI parameters and treating them consistently with 3d N = 4 mirror

symmetry in the long quiver limit explained in Subsection 3.2.5 does not alter the eigenvalue

density nor the free energy, at leading order in N . Imposing a scaling on the FI parameters to

keep track of them, even if inconsistent with mirror symmetry, would not change the eigenvalue

density ϱ(z, x), but may give an extra contribution to the free energy at leading order. Denoting

ξ̂(z) the scaled version of ξ(z), this additional contribution is the first moment of the measure

ϱ(z, x)dx,

SFI

∣∣∣
on shell

= N2

∫ 1

0
dzξ̂(z)

∫ +∞

−∞
xϱ(z, x)dx = 0,

which vanishes because ϱ(z, x) is an even function of x for every 0 < z < 1. Therefore, the FI

parameter does not change the leading order value of F in the long quiver limit of balanced 3d

N = 4 quivers. This is not inconsistent with mirror symmetry, since the mirror of a balanced

linear quiver is not balanced (unless there is only one flavour node) [55], and our proof the

vanishing of the FI contribution only holds for long and balanced quivers.11

3.3.4 Holographic match in 5d and 3d SCFTs

Let us take the SCFT limit of our result, with µα → 0, and show the agreement with the

supergravity result of Section 2.4. We do it first in 5d, by setting all masses to vanish in (3.21).

The polynomial terms in |µ| vanish, and the exponential dependence disappears. Altogether, we

have:

lim
µ⃗→0

F|d=5 =
27

32
N2P 2

 F∑
α=1

∞∑
k=1

1

k
a2α,k +

∑
1≤α<β≤F

∞∑
k=1

2

k
aα,kaβ,k


=

27

32
N2P 2

∞∑
k=1

1

k

(
F∑

α=1

aα,k

)2

=
27

32
N2P 2

∞∑
k=1

1

k
a2k

which is the free energy of the quiver with “reduced” rank function is ν(z), whose Fourier coeffi-

cients are ak = 1
NRk. Comparing with (2.20), we obtain the relation:

d = 5 : F =
27π6

4
chol, (3.23)

11The only exception to this statement is the T [SU(N)] theory. In that case, P and N are not independent and

the whole scaling argument must me revisited, see [13, 88]. Using that the mirror map gives ξj as a difference of

the mass parameters, the mirror of the mass deformation we consider would correspond to a single ξj ̸= 0 which

grows linearly in N .
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We find agreement between the free energy and the holographic central charge, up to an arbitrary

numerical factor in the definition of chol. The overall coefficient of 27 is recurring in 5d, see for

instance [119, Eq.(5.11)], and appears to be due to the universal relation F = ω3Funiv.. Here ω

is related to the equivariant parameters on a squashed S5, with ω = 3 on the round sphere.12

In 3d, turning off all mass deformations in (3.22), the linear terms in F int
α,β vanish, and the

exponential terms go to 1. We get:

lim
µ⃗→0

F|d=3 =
π2

8
N2

 F∑
α=1

∞∑
k=1

ka2α,k +
∑

1≤α<β≤F

∞∑
k=1

2kaα,kaβ,k


=

π2

8
N2

∞∑
k=1

k

(
F∑

α=1

aα,k

)2

=
π2

8
N2

∞∑
k=1

ka2k,

thus recovering the reduced rank function ν(z), akin to the 5d case. Comparing with (2.23), we

find:

d = 3 : F =
4

π
chol, (3.24)

so that the free energy matches the holographic central charge, up to an overall normalisation.

3.4 Two interacting linear quivers

In this subsection we discuss the case F = 2 and relate it to the holographic result of Subsection

2.5. Without loss of generality, we set m1 = 0,m2 = m.

The final result for the free energy can be read off from the general procedure of Subsection

3.2. However, we will rederive it using a different approach. We will reformulate the large N

limit in a way which probes the two singularities of the Coulomb branch of Q. The analysis of

Subsection 3.1, and especially the factorisation of the Coulomb branch into two reduced branches

plus decoupled massive zero-modes, will be manifest in the ensuing procedure.

Despite detailing it only for the case of two ranks functions, the procedure we show below

extends to an arbitrary number F of mass scales and rank functions.

3.4.1 Change of variables to probe the singularities

The data of the problem include the flavour rank functions

ζα(z) =
π2

P 2

∞∑
k=1

aα,kk
2 sin(kπz), α = 1, 2,

from which one extracts the reduced gauge rank functions να(z), as in (3.3). We then define

the gauge ranks Nα,j = Nνα(j/P ), α = 1, 2. By construction, N1,j + N2,j = Nj . To probe the

Coulomb branch singularities at 0 and m, we leave the variables

σa,j , j = 1, . . . , P − 1, a = 1, . . . , N1,j

12F in (3.1) equals Fω⃗ of [87, Eq.(2.23)]. In [74], chol was compared with Funiv. = 3−3Fω⃗ read off from of [87].

Accounting for the factor ω3 = 27, our eq. (3.23) agrees with [74, Eq.(3.9)].
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untouched, and define the new variables

ϕȧ,j = σȧ+N1,j ,j −m, j = 1, . . . , P − 1, ȧ = 1, . . . , N2,j .

Undotted indices run over the gauge ranks N1,j while dotted indices run over the gauge ranks

N2,j . With these new variables, the contributions to the sphere partition function become:

• from the vector multiplet,

Zvec
1-loop =

P−1∏
j=1

 ∏
1≤a̸=b≤N1,j

exp {−v(σa,j − σb,j)}

×

 ∏
1≤ȧ̸=ḃ≤N2,j

exp
{
−v(ϕȧ,j − ϕḃ,j)

}
×

 Nj∏
a=1

Nj∏
ḃ=1

exp
{
−v(σa,j − ϕḃ,j +m)

} ;

• from the fundamental hypermultiplets

Z fund =

P−1∏
j=1

N1,j∏
a=1

exp {−F1,jh(σa,j)}

×

N2,j∏
ȧ=1

exp {−F2,jh(ϕȧ,j)}


×

N1,j∏
a=1

exp {−F2,jh(σa,j −m)}

×

N2,j∏
ȧ=1

exp {−F1,jh(ϕȧ,j +m)}

 ;

and from the bifundamental hypermultiplets,

Zbif =
P−2∏
j=1

N1,j∏
a=1

N1,j+1∏
b=1

exp {−h(σa,j − σb,j+1)}

×

N2,j∏
ȧ=1

N2,j+1∏
ḃ=1

exp
{
−h(ϕȧ,j − ϕḃ,j+1)

}
×

N1,j∏
a=1

N2,j+1∏
ḃ=1

exp
{
−h(σa,j − ϕḃ,j+1 +m)

}×

N2,j∏
ȧ=1

N1,j+1∏
b=1

exp {−h(ϕȧ,j − σb,j+1 −m)}

 .

In the new variables, we readily find that the effective action splits according to:

Seff = Seff,1 + Seff,2 + Sint(m),

with Seff,α the effective action for the superconformal quiver Qα. Each such effective action does

not depend on the mass and is of the form analyzed in [87, 89]. The dependence on m is entirely

captured by the interaction among the two quivers in Sint.

The Hanany–Witten brane setup is easily read off from the sphere partition in the adjusted

variables. Examples are drawn in Figure 10 in Appendix C.1 and in Figure 11 in Appendix C.2.

3.4.2 Change of variables, Coulomb branches and holography

The variables σ⃗, ϕ⃗ are adjusted coordinates for the Coulomb branches

σ⃗ : CB[Q1] of the quiver Q1, with reduced gauge and flavour rank functions ν1 and ζ1, and

ϕ⃗ : CB[Q2] of the quiver Q2, with reduced gauge and flavour rank functions ν2 and ζ2.
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In particular, the singularity expected at the origin of the Coulomb branch of Q2 is indeed located

at ϕ⃗ = 0. See [92] for related analysis.

This identification however is not exact at finite m. We have learnt from Subsection 3.1.2

that there is a region, between the two conical singularities of CB[Q1] and CB[Q2], in which a

more complicated geometry arises. The matrix model neatly sees this effect after the change

of variables. For σa,j < 0 and ϕȧ,j > 0 there are no massless modes and the approximate

description as two disjoint Coulomb branches is accurate. However, in the region 0 < σa,j < m

and −m < ϕȧ,j < 0 there are additional massless states. These are read off from the zeros of

the argument in the functions v, h. In the limits m → 0 and m → ∞ we recover the conformal

situation, with massless states only at the origin.

This matrix model analysis is in perfect agreement with the supergravity discussion of Subsec-

tion 2.7. It was noted there that the region where the AdSd+1 solution is not reliable is precisely

0 < σ < σ0.

3.4.3 Change of variables, Coulomb branch singularities and balanced quivers

The change of variables provides an insightful rewriting of the integrand in the sphere partition

function, as it corresponds to zoom in close to a region of CB[Q]. However, being just a change

of variables, it yields the same value for every choice of N2,j . The point we want to make is that,

among all possible ways to rewrite the integrand, i.e. all possible choices of the integers N2,j , one

will be suited to describe the quivers that survive at the end of the RG flow. Similar methods

have been employed in [92].

The idea is to zoom in close to all possible Coulomb branch singularities and compare their

suppression factor as a function on m. The least suppressed one will dominate in the IR limit

m → ∞. Schematically, let us denote by

Fα [{N2,j}] , α = 1, 2

the free energies of the two quivers read off from the change of variables, namely Q1 with Coulomb

branch parameter σ⃗ and Q2 with Coulomb branch parameter ϕ⃗, for a concrete choice of gauge

ranks {N2,j}. We have seen that these two terms are independent of m. Besides, let us denote

Fdec. [{N2,j}] (m) the free energy coming from the mass dependent contributions. We then have

F = Fdec. [{N2,j}] (m) +
2∑

α=1

Fα [{N2,j}] .

The quantity Fdec. is carefully computed below, but for the moment, it suffices to notice that

it will damp the sphere partition function, proportionally to the number of fields that acquire a

large mass along the RG flow. In a nutshell, as |m| → ∞,

(−1)
d−1
2 Fdec. [{N2,j}] (m) ≈ −|fh(m)| (# of massive modes for the given {N2,j}) .

We signs and absolute values in this formula serve to emphasise that this factor suppressed ZSd .

We conclude that, in order to isolate and read off the quivers Qα that appear in the IR, the

choice of collection {N2,j} is determined by minimizing such number. This statement resonates

with [92, Sec.5].
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Thanks to the fact that the quiver we begin with is balanced, we can prove by a counting

argument that the minimum is precisely given by the collection {N2,j} such that the IR quivers

Qα are balanced. We report the explicit calculation in Appendix C.2.3 for the simplest example

of SQCD, but the argument holds for every balanced quiver.

We stress that this counting argument is general, but to find the explicit solution we have

relied on the fact that the UV quiver is balanced. Without a relation between gauge and flavour

ranks, it would be harder in practice to figure out the correct splitting of the quiver.

3.4.4 Long quiver limit after change of variables

We now apply the large N and large P limits to the quiver, after the change of variables. We

define the eigenvalue densities

ρ1,j(σ) =
1

N

N1,j∑
a=1

δ(σ − σa,j)

ρ2,j(ϕ) =
1

N

N2,j∑
ȧ=1

δ(ϕ− ϕȧ,j),

corresponding to the two quivers Q1 and Q2, whose adjusted variables are σ and ϕ respectively.

From the reasoning of Subsection 3.2, we introduce the scaled variables

σ = (d− 2)Px, ϕ = (d− 2)Py, m = (d− 2)Pµ

and the scaled eigenvalue densities ϱ1(z, x), ϱ2(z, y). Mimicking the long quiver limit of Subsec-

tion 3.2, now with two distinct eigenvalue densities, the terms Seff,α are standard, while for the

interaction term we find

Sint = S0 + Sder + Sfund,1 + Sfund,2, (3.25)

where

S0 = 2P (d−3)N2

∫ 1

0
dz

∫
dxϱ1(z, x)

∫
dyϱ2(z, y)f0(x− y − µ)

Sder =
1

2
P (d−3)N2

∫ 1

0
dz

∫
dx

∫
dy
[
ϱ1(z, x)∂

2
zϱ2(z, y) + ϱ2(z, y)∂

2
zϱ1(z, x)

]
fh(x− y − µ)

Sfund,1 = N2P (d−1)

∫ 1

0
dzζ2(z)

∫
dxϱ1(z, x)fh(x− µ)

Sfund,2 = N2P (d−1)

∫ 1

0
dzζ1(z)

∫
dyϱ2(z, y)fh(y + µ).

To solve the equilibrium problem, we must minimise the resulting effective action, now with

respect to the two sets of variables σ⃗ and ϕ⃗. We first minimise and then act on the two resulting

equations with ∂d−2

∂xd−2 and ∂d−2

∂yd−2 , respectively. In this way, we arrive at the pair of saddle point

equations:

1

4
∂2
xϱ1(z, x) + ∂2

zϱ1(z, x) + P 2ζ1(z)δ(x) +
1

4
∂2
xϱ2(z, x− µ) + ∂2

zϱ2(z, x− µ) + P 2ζ2(z)δ(x− µ) = 0,

(3.26a)

1

4
∂2
yϱ1(z, y) + ∂2

zϱ1(z, y) + P 2ζ2(z)δ(y) +
1

4
∂2
xϱ1(z, y + µ) + ∂2

zϱ1(z, y + µ) + P 2ζ1(z)δ(y + µ) = 0.

(3.26b)
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The pair of saddle point equations (3.26) has several expected properties. First, (3.26a) and

(3.26b) are related through exchanging the labels 1 ↔ 2 and replacing x = y − µ. Second, if we

define the eigenvalue density ϱ(z, x) = ϱ1(z, x) + ϱ2(z, x − µ), (3.26a) becomes the saddle point

equation (3.10) derived without change of variables. Third, (3.26a) is the sum of a term which

would yield the saddle point equation for Q1 alone, plus an extra term coming from Sint and

involving ϱ2(z, x − µ), in which the µ-dependence is entirely contained (and likewise for (3.26b)

and Q2).

The solution to (3.26) is again given by (3.12).

3.4.5 Free energy for two interacting linear quivers

Equipped with the eigenvalue densities ϱ1(z, x), ϱ2(z, y) we can compute the free energy at leading

order in N and P through

F = (−1)
d−3
2 (Seff,1 + Seff,2 + Sint)

∣∣∣
on shell

.

The terms Seff,α simply contribute a factor ±Fα, that is, the free energy for the linear quiver Qα.

The novel contributions are:

Sint

∣∣∣
on shell

= (S0 + Sder + Sfund,1 + Sfund,2)
∣∣∣
on shell

=: (−1)
d−3
2 [F0 + Fder + Ffund,1 + Ffund,2] ,

with the first equality due to (3.25). The fundamental hypermultiplets contribute:

(−1)
d−3
2

N2P (d−3)
Ffund,1 =

∫ 1

0
dzP 2ζ2(z)dxϱ1(z, x)fh(x− µ)

=

∫ 1

0
dz

(
π2

∞∑
k=1

a2,kk
2 sin(kπz)

)∫
dx

(
π

∞∑
ℓ=1

a1,ℓℓ sin(ℓπz)e
−2πℓ|x|

)
fh(x− µ)

=
π3

2

∞∑
k=1

a1,ka2,kk
3Ik(µ),

with the integral Ik(µ) defined in (3.19). The contribution from Ffund,2 is identical, due to the

symmetries 1 ↔ 2 and µ ↔ −µ in the last line. Therefore

(−1)
d−3
2

2∑
α=1

Ffund,α = N2P (d−3)π3
∞∑
k=1

a1,ka2,kk
3Ik(µ).

The next contribution is

(−1)
d−3
2

N2P (d−3)
F0 = 2

∫ 1

0
dz

∫
dxϱ1(z, x)

∫
dyϱ2(z, y)f0(x− y − µ)

= 2

∫ 1

0
dz

∫
dx

(
π

∞∑
k=1

a1,kk sin(kπz)e
−2πk|x|

)

×
∫

dy

(
π

∞∑
ℓ=1

a2,ℓℓ sin(ℓπz)e
−2πℓ|y|

)
f0(x− y − µ)

= π2
∞∑
k=1

a1,ka2,kk
2Î(0)

k (µ),
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where in the last line we have defined

Î(0)
k (µ) :=

∫ +∞

−∞
dx

∫ +∞

−∞
dy e−2πk(|x|+|y|)f0(x− y − µ). (3.27)

Likewise, for the last contribution to the free energy we get

(−1)
d−3
2

N2P (d−3)
Fder =

1

2

∫ 1

0
dz

∫
dx

∫
dy
[
ϱ1(z, x)∂

2
zϱ2(z, y) + ϱ2(z, y)∂

2
zϱ1(z, x)

]
fh(x− y − µ)

=
π2

2

∫ 1

0
dz

∫
dx

∫
dy

∞∑
k=1

a1,kk sin(kπz)e
−2πk|x|

×
∞∑
ℓ=1

a2,ℓℓ sin(ℓπz)e
−2πℓ|y| [−π2ℓ2 − π2k2

]
fh(x− y − µ)

= −π4

2

∞∑
k=1

a1,ka2,kk
4Î(der)

k (µ),

with

Î(der)
k (µ) :=

∫ +∞

−∞
dx

∫ +∞

−∞
dy e−2πk(|x|+|y|)fh(x− y − µ). (3.28)

The final answer for the free energy is obtained solving the integrals (3.19), (3.27) and (3.28),

whose explicit form depends on the dimension d, through the functions (3.8).

3.4.6 Free energy for two interacting linear quivers in 5d

Ik(µ) in 5d has already been computed in (3.20):

Ik(µ)|d=5 = − 27

8π3k4

(
e−2πk|µ| + 2πk|µ|+ 1

6
(2πk|µ|)3

)
.

Using (3.8) at d = 5, the integrals Î(0)
k (µ), Î(der)

k (µ) are evaluated as:

Î(0)
k (µ) = −27

8
π

∫ +∞

−∞
dx

∫ +∞

−∞
dy e−2πk(|x|+|y|)|x− y − µ|

= − 27

32π2k3

[
3e−2πk|µ| + (2πk|µ|)

(
2 + e−2πk|µ|

)]
and

Î(der)
k (µ) = −9

2
π

∫ +∞

−∞
dx

∫ +∞

−∞
dy e−2πk(|x|+|y|)|x− y − µ|3

= − 27

16π4k5

[
5e−2πk|µ| + (2πk|µ|)

(
4 + e−2πk|µ|

)
+

1

3
· (2πk|µ|)3

]
.

Plugging these expressions in the formula for F , we observe from direct computation that they

satisfy

Ffund,1 + Ffund,2 + F0 + Fder = −1

2
[Ffund,1 + Ffund,2] .
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The latter is indeed a generic property, proved relying on the saddle point condition, which was

utilised in (3.15). We thus compute

[Ffund,1 + Ffund,2]|d=5 = −π3N2P 2
∞∑
k=1

a1,ka2,kk
3Ik(µ)

∣∣∣∣∣
d=5

=
27

8
N2P 2

∞∑
k=1

1

k
a1,ka2,k

(
e−2πk|µ| + 2πk|µ|+ 4

3
(πk|µ|)3

)
.

The final expression for the free energy is

F = F1 + F2 +
27

16
N2P 2

∞∑
k=1

1

k
a1,ka2,k

(
e−2πk|µ| + 2πk|µ|+ 4

3
(πk|µ|)3

)
, (3.29)

in agreement with (3.21). At µ → 0 we recover the UV free energy, whereas at |µ| → ∞ we find

the factorized expression F1 + F2 for the free energy of a pair of quivers, plus the (divergent)

contribution of massive decoupled fields, that is removed by local, supersymmetric counterterms

in the usual way. We discuss the IR behaviour of F in more detail in Subsections 3.5.3-3.6.

3.4.7 Free energy for two interacting linear quivers in 3d

In 3d, we have

Ik(µ)|d=3 =
1

2πk2

(
e−2πk|µ| + 2πk|µ|

)
and

Î(0)
k (µ)

∣∣∣
d=3

=

∫ +∞

−∞
dx e−2πk|x|

∫ +∞

−∞
dy e−2πk|y|π

4
δ(x− y − µ)

=
π

4

∫ +∞

−∞
dx e−2πk(|x|+|x−µ|)

=
e−2πk|µ|

8k
(1 + 2πk|µ|) .

The last integral we need is

Î(der)
k (µ)

∣∣∣
d=3

=

∫ +∞

−∞
dx

∫ +∞

−∞
dy e−2πk(|x|+|y|)π|x− y − µ|

= − 2

27
Î(0)
k (µ)

∣∣∣
d=5

=
1

8π3k3

[
3e−2πk|µ| + (2πk|µ|)

(
2 + e−2πk|µ|

)]
.

Therefore, in 3d we have the contributions

2∑
α=1

Ffund,α =
1

2
N2π2

∞∑
k=1

a1,ka2,kk
(
e−2πk|µ| + 2πk|µ|

)
F0 =

1

8
N2π2

∞∑
k=1

a1,ka2,kk
(
e−2πk|µ| + e−2πk|µ|2πk|µ|

)
Fder = −1

8
N2π2

∞∑
k=1

a1,ka2,kk
[
e−2πk|µ| (3 + 2πk|µ|) + 2 (2πk|µ|)

]
.
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Summing all of them together we arrive at

F = F1 + F2 +
π2

4
N2

∞∑
k=1

a1,ka2,kk
[
e−2πk|µ| + 2πk|µ|

]
. (3.30)

This expression agrees with the derivation without change of variables, eq. (3.22). Again, at

|µ| we isolate the contribution F1 + F2 of a pair of decoupled linear quivers, plus the contri-

bution of massive, decoupled free fields. The latter is scheme-dependent and is cancelled by a

supersymmetric counterterm [99], see Subsection 3.6.

3.5 Holographic match

Let us discuss the match of the free energy, computed in QFT, with the holographic central charge

computed in supergravity. Clearly, the free energy (3.30) does not agree with the holographic

central charge (2.31). But this was to be expected, as we now explain.

The holographic flows we considered in Subsection 2.5 describe flows between two SCFTs: a

UV CFT at |µ| = 0 and an IR CFT at |µ| = ∞,13 see Figure 8. Here, UV and IR refer to the

parameter µ, not to a gauge coupling. More precisely, µ appears in the coefficient of a relevant

operator in the long quiver. By conformal invariance, the radius r of Sd does not enter the SCFT

computation, but enters in the combination rµ when µ ̸= 0, effectively introducing a Wilsonian

cutoff ∝ 1/r. We have made the customary redefinition rµ → µ in the matrix model, with µ

being dimensionless. Moving µ in the range 0 ≤ µ ≤ ∞ describes the RG flow between two

SCFTs, with UV and IR referring to the Wilsonian approach just mentioned.

The QFT picture, however, is slightly richer than the flow just sketched, and this fact is

captured by F , as we now proceed to explain.

The free energy and holographic central charge agree at the UV fixed point µ = 0, see

Subsection 3.3.4. However, for 0 < |µ| < ∞, the free energy computes a deformation of the UV

SCFT, which includes more fields than the IR SCFT. This comes about because the breaking of

gauge and flavour groups, represented in Figure 9, has a twofold effect:

(i) to reduce the number of hypermultiplet modes at each node from (N1,j +N2,j)(F1,j +F2,j)

to N1,jF1,j +N2,jF2,j ;

(ii) to lift the Higgsed W-bosons.

In addition, for a linear quiver,

(iii) the Higgsing procedure also lifts the bifundamental hypermultiplets of U(N1,j)×U(N2,j±1).

The fields involved in these three effects are massive and decouple in the |µ| → ∞ limit (that

is, at the very end of the RG flow, they become free fields at infinite distance from the interacting

IR CFT). Therefore, the correct statement is that, when the mass deformation of interest is

turned on, the UV SCFT flows to the pair of factorised SCFTs, stacked with decoupled heavy

fields. Schematically:

Q
UV:

Q1 ⊔Q2 ⊔ decoupled.

IR:
|µ|→∞

13For balanced quivers we find that the endpoints µ = ±∞ of the RG flow coincide.
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N1 +N2F1 F2 N1F1 N2 F2

Figure 9: The mass deformation breaks the flavour group (square node) explicitly, and modifies

the Coulomb branch geometry, which eventually splits in two cones (cf. Subsection 3.1.2). With

our highly non-generic choice of deformation, this induces a Higgsing of the gauge group (circular

node) U(N1 + N2) → U(N1) × U(N2). The process, indicated by the arrow, is explained in

Subsection 3.4.3.

In conclusion, the holographic central charge is computed in supergravity and only captures

the features of the interacting SCFT at the end of the RG flow. In contrast, the free energy is

computed from a UV perspective. In order to compare these two quantities, we must subtract

the contributions elucidated in the points (i) to (iii).

Let Fdec. denote the contributions of fields that decouple at the end of the RG flow, properly

defined in Appendix C. Enforcing the subtraction, hence discarding Fdec., we define the effective

free energy

FEFT = F − Fdec.. (3.31)

Intriguingly, we find that the effective free energy matches with the holographic central charge,

possibly up to a local counterterm involving only the background vector multiplets. Furthermore,

(3.31) interpolates precisely between its UV value and the free energy of two decoupled quivers

Q1,Q2. Namely:

lim
|µ|→0

FEFT = F [Q] , lim
|µ|→∞

FEFT = F [Q1] + F [Q2] ,

which is the precise QFT analogue of the behaviour (2.32)-(2.33) of the holographic central charge.

In summary, along the flow parametrised by µ, we adopt an effective field theory (EFT)

approach, in which we separate the contributions of the fields that would decouple in the IR

limit µ → ∞. This EFT method, embodied in the definition (3.31) and in the computations in

Appendix C, leads to the perfect holographic match all along the RG flow, up to a background

Chern–Simons counterterm in 5d. We elaborate on this last point in Subsection 3.5.3.

As a byproduct of our analysis, we show in Subsection 3.6 that the quantity (3.31) satisfies a

strong version of the F-theorem, both in 3d and 5d.

3.5.1 Matching the effective free energy in 5d

The computation of the contribution Fdec. from the massive fields outlined in points (i), (ii), (iii)

is performed in Appendix C.

In 5d, the analysis of the regions of the 5d Coulomb branch onto which fundamental hyper-

multiplets and W-bosons acquire a large mass and the resolution of the ensuing integral leads to

expression (C.9). The effective free energy (3.31) is then readily evaluated by subtracting (C.9)
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from the 5d F in eq. (3.29). The result is:

FEFT

∣∣∣
d=5

= F1 + F2 +
27

16
N2P 2

∞∑
k=1

a1,ka2,k
1

k
e−2πk|µ|

(
1 + 2πk|µ|+ 4

3
(πk|µ|)3

)
. (3.32)

This answer almost agrees with the holographic central charge (2.30), except for the extra cubic

dependence on µ. This term is an effective Chern–Simons coupling for the background vector

multiplet, and can be removed by adding a local counterterm only involving background fields.

Similar background Chern–Simons terms allow the match of the rank-N En theories with its

holographic dual [36]. A more thorough discussion is deferred to Subsection 3.5.3.

The actual relation between (3.32) and (2.30) is

d = 5 : FEFT =
27π6

4
chol,

up to the background Chern–Simons counterterm. This is exactly the relation (3.23) found in

the UV SCFT, and FEFT satisfies it for all µ.

3.5.2 Matching the effective free energy in 3d

In 3d, Fdec. is given in (C.10). Combining it with (3.30), we obtain

FEFT

∣∣∣
d=3

= F1 + F2 +
π2

4
N2

∞∑
k=1

a1,ka2,kke
−2πk|µ| (1 + 2πk|µ|) . (3.33)

In particular, it is manifest from (3.33) that FEFT has a finite |µ| → ∞ limit, describing a pair

of factorised linear quivers. Moreover, recalling the identification of parameters σ0 = 2Pµ and

Nak = Rk, one can compare with (2.31) and find

d = 3 : FEFT =
4

π
chol ,

which is exactly the relation (3.24) found in the UV SCFT. No counterterm is needed in 3d

N = 4, in perfect agreement with the lack of admissible such background couplings that preserve

the amount of supersymmetry.

3.5.3 Chern–Simons terms for background vector multiplets

The main lesson of the present subsection is that, to match with the holographic central charge,

we need to adopt an EFT approach and define an effective free energy (3.31). This is the free

energy to which we subtract all the fields that will eventually decouple at |µ| → ∞, which one

expects not to be captured by the holographic central charge.

The outcome of our analysis is a perfect match in 3d N = 4, but a mismatching term, cubic

in the background scalar µ, appears in 5d N = 1. The term in F that leads to a mismatch in

FEFT is

δF =
9

4
π3µ3N2P 2

∞∑
k=1

k2a1,ka2,k (3.34a)

=
π

3
m3

P−1∑
j=1

1

2
R1(j)F2,j . (3.34b)

45



To pass to the second line, we have used Naα,k = Rα,k, m
3 = (3Pµ)3 and the identities

2P

P−1∑
j=1

R1(j)F2,j = 2P

∫ P

0
dηR1(η)R′′

2(η)

=
2

P

∫ P

0
dη

∞∑
k=1

R1,k sin

(
πkη

P

) ∞∑
ℓ=1

π2ℓ2R2,k sin

(
πℓη

P

)

= π2
∞∑
k=1

k2R1,kR2,k.

At this point, we recall the basic feature of our setup: at every j, the corresponding scalar in the

background vector multiplet is given a vev Mj = (0, . . . , 0︸ ︷︷ ︸
F1,j

,m, . . . ,m︸ ︷︷ ︸
F2,j

). Therefore (3.34b) is

δF =

P−1∑
j=1

π

3
kefff,j Tr[diag(0, . . . , 0︸ ︷︷ ︸

F1,j

,m, . . . ,m︸ ︷︷ ︸
F2,j

)3] , (3.35)

with kefff,j read off from (3.34b). For each flavour group U(Fj) it is

kefff,j =
1

2
R1(j)sgn(µ),

using the fact that relaxing the assumption µ > 0 simply amounts to replace µ3 with |µ3|. Written

in the form (3.35), it is manifest that δF can be cancelled by a local counterterm only involving

background fields. The counterterm is a supersymmetric Chern–Simons term for the background

vector multiplets of the flavour groups U(Fj).

To see this, remember that a 5d supersymmetric Chern–Simons term with coupling k, involv-

ing a gauge field A with curvature FA, has the schematic form

SCS|d=5 =
k

24π2

∫
S5

TrA ∧ FA ∧ FA + SUSY completion.

We are interested in the case in which A is a background gauge field for the flavour symmetry,

thus it is valued in u(Fj). Let Mj be the scalar field in the u(Fj) background vector multiplet.

Using localisation, such Chern–Simons term reduces to [111, 112]

FCS,f,j =
kf,j
24π2

Tr (2πMj)
3 =

π

3
kf,jTr

(
M3

j

)
where we use the subscript f to emphasize that it involves the flavour symmetry group, not

a gauge group. Specifying Mj = (0, . . . , 0︸ ︷︷ ︸
F1,j

,m, . . . ,m︸ ︷︷ ︸
F2,j

), we prove the claim that (3.35) can be

cancelled by a local, supersymmetric Chern–Simons term for background vector multiplets. The

effective Chern–Simons couplings needed are kf,j = −kefff,j . The conclusions depend on which of

the two scenarios holds:

• R1(j) = 0 mod 2 ∀j, which means kefff,j ∈ Z ∀j;

• R1(j) ̸= 0 mod 2, for which kefff,j ∈
1
2 + Z.
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WhenR1(j) = 0 mod 2, we can remove the jth summand in δF , as per (3.34b), by introducing

a Chern–Simons term for the background vector multiplet, with coefficient kf,j = −kefff,j ∈ Z.

If this can be done ∀j = 1, . . . , P − 1, in other words, when R1(j) = 0 mod 2 ∀j, FEFT|d=5

matches with chol|d=5 upon specifying a local, unitary, supersymmetric counterterm only involving

background fields, which moreover is invariant under large background gauge transformations.

As explained in [120] for the similar case of 3d N = 2 theories, we have the freedom to add such

terms to the action. In fact, in 3d it is sometimes necessary to specify such counterterms in order

to match the sphere partition functions of dual theories [120]. The exact same argument holds

here, except that our duality is AdS/CFT, instead of a duality of QFTs.

When R1(j) ̸= 0 mod 2, however, kefff,j is fractional. We can remove its integer part by a

Chern–Simons counterterm with integer level, as just described. Nevertheless, the fractional part

κf3 , defined as

kefff,j = κf3 + Z, κf3 =
1

2
,

is physical, which is to say, it cannot be removed preserving all the symmetries of the system

(including conformal and supersymmetry) and also gauge invariance under background gauge

transformations [120].

These fractional background Chern–Simons terms have first been observed and studied in 5d

SCFTs in [121]. As explained therein, κf3 equals the coefficient of a contact term in the flavour

current three-point function. It is the analogue of the well-known mixed gauge-parity anomaly

in odd dimensions [122, 123], with the difference that the present anomaly only involves flavour

symmetries.

We may introduce a Chern–Simons term for the background vector multiplet, with fractional

coefficient κf3 . This counterterm cancels δF , as well as the contact terms in the flavour current

three-point functions, at the expense of invariance under background gauge transformations. We

choose to do so, and note that this regularisation agrees with [107]. A background Chern–Simons

term, similar to the one we add here, is needed to match holographically the rank-N En theories

[36].

3.6 On the F-theorem

Let us say a few words about how our results support the F-theorem [98, 99]. To begin, let us be

precise with the statement of the conjecture. Usually, it is written as

F|UV > F|IR, (3.36)

but this inequality must be supplemented by the condition that F is stationary at the fixed

points. Still, (3.36) would be false if F is taken at its face value, namely from the matrix model

in a theory which is not conformal. Elementary counterexamples are given in [99, App.] and in

Appendix C.2.5.

Let us elaborate on this fact. On odd-dimensional spheres of radius r, the partition function

has the form [99, 124]

(−1)(d−1)/2 lnZSd =

(d−1)/2∑
n=0

Cnr
2n+1 + F⋆,
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for some coefficients Cn. The quantity F⋆, independent of massive parameters, is free from

ambiguities. The coefficients Cn in the polynomial in odd powers of r, however, can be shifted by

local gravitational counterterms, only involving the metric and the curvature.14 For this reason,

the quantity that must enter the F-theorem is F⋆.

In the present context, the radius r, which we set to 1, enters F through the combination µr.

Subtracting the ambiguous µ-dependent pieces from (3.29) and (3.30) we show the validity of the

F-theorem in d = 5 and d = 3, respectively, for the RG flows considered.

We will now argue for a stronger version of the F-theorem. We want to modify the matrix

model free energy F in such a way that the result (i) decreases along an RG flow between two

CFTs, (ii) interpolates between the UV and IR values of F⋆, and (iii) is stationary at the CFT

points. One main lesson of the present section is that decoupled fields must be carefully taken

into account, because F will keep track of them. From the matrix model quantity F at arbitrary

µ, we subtract the contribution of the heavy fields, cf. the example in Appendix C.2.5. It turns

out that this subtraction regulates F so that the remaining part is the universal constant F⋆. It

is worthwhile to mention that our technique is consistent with the reguralisation procedure for

sphere partition functions of non-conformal theories discussed in [99].

The effective free energy thus obtained is an intrinsic observable of the IR interacting CFT,

blind to the decoupled massive fields. This quantity satisfies the strong version of the F-theorem,

as shown in Appendix D. In conclusion, considering FEFT to quantitatively explore the RG flows

is further motivated by the F-theorem.

3.7 Wilson loops in QFT

In this subsection, we compute the expectation value of a Wilson loop operator using the matrix

model formalism discussed above and compare the result with the holographic computation of

Subsection 2.6.

The vev of a 1
2 -BPS Wilson loop in a representation R of the jth∗ gauge node in a quiver gauge

theory of the type in Figure 3 is given by〈
W(j∗)

R

〉
=

1

ZSd

∫
dσ⃗e−Seff

1

dimR
trR e2πσj∗ .

Note that j∗ here corresponds precisely to η∗ of Subsection 2.6.

For all those representations such that the insertion of the loop operator yields a subleading

contribution at large N , its expectation value is obtained by evaluating its classical expression on

the saddle point solution. Before starting any computation, we observe that the large N Wilson

loop vev is linear in the eigenvalue density ϱ(z, x), as opposed to F , which is quadratic. This

means that the Wilson loop vev in Q splits from the onset into a sum of Wilson loops in the

quivers Qα.

We are primarily interested in Wilson loops in the rank-ℓ antisymmetric representation of the

gauge group, which satisfies the subleading assumption. These supersymmetric Wilson loops in

14Another way to put it, is that F⋆ is obtained in a regularisation scheme that cancels divergences and preserves

conformal invariance. The non-conformal terms are scheme-dependent [124, 121].
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long quivers were studied previously in [125, 100, 101].15 To this end we introduce the parameter

κ =
ℓ

Nj∗
, (3.37)

which is an effectively continuous parameter 0 ≤ κ < 1 in the large N limit. Following Uhlemann

[100], we also need an auxiliary function b(κ, z) such that

κ =

∫ ∞

b(κ,z)
dxϱ(z, x). (3.38)

In other words, b(κ, z) is a point in the support of ϱ(z, ·) such that a fraction κ of the eigenvalues

lies on its right and 1− κ on its left.

The expectation value of the Wilson loop is then obtained by evaluating the integral

ln ⟨W∧ℓ⟩ = 2π(d− 2)PN

∫ κ

0
dκ̃b(κ̃, z∗),

with z∗ = j∗/P on the right-hand side. In practice, it is convenient to invert the relation (3.38)

and express κ(b) as a function of a free parameter b(z), with z fixed from the beginning of the

computation. Using b(0, z) = ∞, we have

ln ⟨W∧(b)⟩ = 2π(d− 2)PN

∫ ∞

b(z)
κ′(b)bdb . (3.39)

Let us evaluate (3.38) on the solution (3.12), which gives us the function κ(b):

κ(b) = π
F∑

α=1

∞∑
k=1

kaα,k sin(πkz∗)

∫ ∞

b
e−2πk|x−µα|dx (3.40a)

=
1

2

F∑
α=1

∞∑
k=1

aα,k sin(πkz∗) e
−2πk|b−µα| (3.40b)

=
1

2π2

P

N

F∑
α=1

P−1∑
j=1

Fα,jRe
[
Li2

(
e−2π|b−µα|+iπ(zj−z∗)

)
− Li2

(
e−2π|b−µα|+iπ(zj+z∗)

)]
, (3.40c)

with zj = j/(P − 1) and Li2 the polylogarithm of order 2. The equality between (3.40b) and

(3.40c) stems from the dilogarithm identity Li2(u) =
∑∞

n=1
un

n2 and

P

N

P−1∑
j=1

Fα,jRe
[
Li2

(
e−2π|b−µα|+iπ(zj−z∗)

)
− Li2

(
e−2π|b−µα|+iπ(zj+z∗)

)]
=

∫ 1

0
dzP 2ζα(z)

∞∑
n=1

e−2πn|b−µα|

n2
[cos(π(z − z∗))− cos(π(z − z∗))]

= π2

∫ 1

0
dz

[ ∞∑
k=1

aα,kk
2 sin(πkz)

][ ∞∑
n=1

e−2πn|b−µα|

n2
2 sin(πz∗) sin(πz)

]

= π2
∞∑
k=1

aα,k sin(kπz∗)e
−2πk|b−µα|,

15See [126, 127, 109] for the single-node case.
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where in the second step we have used (3.2).

A word of caution is due about (3.40b), which requires a small technical detour. The reader

interested in the final result can safely skip the next paragraph.

To get (3.40b) we have assumed that b ≥ maxα µα. This seems a meaningless assumption

if we are willing to explore the full RG flow. At the conformal point, this amounts to require

b ≥ 0. The converse regime b < 0 is recovered by replacing κ 7→ 1 − κ everywhere, which has

the physical meaning of acting with charge conjugation on the Wilson loop. The corresponding

term in (3.40b) would have e−2π|b| replaced by −2 + e−2π|b|. More generally, the mass scales µα

partition the b-parameter space into chambers. Whenever b crosses an interface separating the

chamber b > µα from b < µα, the corresponding integral in (3.40b) jumps e−2π|b| 7→ −2+ e−2π|b|.

However, formula (3.39) only depends on κ′(b), thus the difference between the distinct chambers

drops out of the computation of the Wilson loop vev. That is, the jumps across the interfaces

affect κ(b) but not the Wilson loop vev. With this caveat in mind, we can safely fix a chamber

arbitrarily and evaluate κ(b) as in (3.40b). It would be interesting to understand better if this

mechanism of jumps across the interfaces has any physical implications, potentially related to

how the screening of the loop operator by massive BPS particles varies with κ.

Back to the Wilson loop computation. Finally, plugging (3.40c) into (3.39) leads us to

ln ⟨W∧(b)⟩
(d− 2)

=
P 2

2π2

F∑
α=1

P−1∑
j=1

Fα,jRe
[
Li3

(
e−2π|b−µα|+iπ(zj−z∗)

)
− Li3

(
e−2π|b−µα|+iπ(zj+z∗)

)
+2πbsign(b− µα)

(
Li2

(
e−2π|b−µα|+iπ(zj−z∗)

)
− Li2

(
e−2π|b−µα|+iπ(zj+z∗)

))]
.

(3.41)

Recall that z∗ is fixed by the choice of where to insert the Wilson loop along the quiver, and Pz∗

equals η∗ of Subsection 2.6. The specialization of expression (3.41) to F = 2, with µ1 = 0, µ2 =
σ0
2P

is in perfect agreement with the holographic computation (2.38). We regard the match of the

holographic and QFT computation of the Wilson loop expectation value as strong evidence of

the interpretation of the holographic setup with two ranks functions as a mass deformation in

the dual CFT.

We close this section by returning to a puzzle that we encountered at the end of Subsection 2.6.

In the supergravity analysis, it was unclear which representation of the gauge group the factorised

Wilson loops transform in. The matrix model perspective automatically resolves this issue in the

following way. The factorised form of the expression for the eigenvalue density ϱ(z, x) in (3.11),

suggests that we can take κ in the left hand side of (3.38) to have a similar decomposition, namely

that

κ =
F∑

α=1

κα , (3.42)

which in turn leads to

ℓ =

F∑
α=1

ℓα , ℓα = 0, 1, . . . , Nα,j − 1, (3.43)

by virtue of (3.37). This is to be interpreted as follows. One starts with an insertion of a Wilson

loop in the ∧ℓ representation of the jth gauge node. Next, we turn on the mass deformations, and

zoom in on the point in the Coulomb branch where the gauge group is broken to a product of F
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factors. The original Wilson loop is now factorised into F daughter loops, each transforming in

the ∧ℓα of the jth gauge group of the αth resulting quiver.

The Wilson loop vev splits into the sum of F terms, and we have F different ways to take

the IR limit. Fixing an index β, we set µβ = 0 and send |µα|∞ for all α ̸= β. This is equivalent

to send |µα − b|∞ for all α ̸= β but keeping |µβ − b|∞ fixed. All the contributions to (3.41)

are exponentially suppressed except for the term α = β in the sum, leading to the Wilson loop

vev corresponding to the quiver with rank function Rβ. This parallels the behaviour found in

supergravity.

4 Conclusions

Let us start with a brief summary of the contents of this work.

In Part I, Section 2 of this paper we studied the holographic set-up. The duals to 5d N = 1

SCFTs contain a geometry of the form AdS6×S2×Σ, with warp factors that only depend on the

coordinates (σ, η) on Σ. The Ramond and Neveu–Schwarz fields respect these isometries, which

in turn are identified with the SO(2, 5)× SU(2) bosonic part of the superconformal group of 5d

N = 1 SCFTs. A very analogous picture is displayed by the AdS4 × S2
1 × S2

2 × Σ backgrounds

dual to N = 4 SCFTs in 3d.

The problem of finding the warp factors and other functions in the infinite families of back-

grounds is reduced to a Laplace equation for a suitably defined potential function, together with

adequate boundary conditions. This is the same Laplace equation in both 5d and 3d cases.

Charges associated to NS5 branes, colour and flavour branes are calculated. They can be put in

correspondence with Hanany–Witten setups associated with the field theories.

The picture provided by the Laplace problem, namely a density of charge in between con-

ducting planes, see Figure 4, suggests various generalisations. The one studied in this paper is

that for which the charge density, corresponding to a gauge rank function in the field theory, is

split into two new rank functions. This new electrostatic problem was studied, the free energy

(referred here as holographic central charge) and Wilson loops in antisymmetric representations

were calculated using the holographic perspective.

In Part II, Section 3 of this paper, we discussed the matrix models associated with the field

theory duals to the AdS backgrounds of Part I. The free energy of the matrix model coincides,

after a careful regularisation procedure, with the holographic result of Part I. The matrix model

calculation of the antisymmetric Wilson loop expectation value agrees with the holographic cal-

culation as well. We also showed that the holographic Laplace problem is reproduced in the

matrix model, the saddle point equation being the second derivative of the Poisson equation for

the same electrostatic problem. Full details of every calculation are provided, either in the main

body of the paper or in dedicated appendices. These results put the holographic correspondence

proposed in this work on a firm basis.

The matrix model study of the situation leading to the modified holographic Laplace equation

gives a clean picture of its field theory interpretation. Namely, a mass deformation for a large

number of matter fields. This leads to many linear quivers with interactions between them. A

pictorial representation of these RG flows, controlled by a single mass parameter, was given in
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the introduction in Figures 1 and 2.

One advantage of our rank function-based formalism is that the dependence on the specific

gauge theory realisation of a CFT is eventually washed away from the supersymmetric physical

observables. The final answer is invariant under field theory dualities. Along the way, we in-

troduced a large N limit distinct from the ’t Hooft limit, which preserves the properties of the

geometric engineering of the 5d theories. That is, in d = 5, we do not scale the inverse gauge

coupling with N , as in the usual ’t Hooft large N limit, but rather treat it in the same way as the

masses and Coulomb branch parameters. Given that 5d field theory dualities and their M-theory

realisations often exchange masses and inverse gauge couplings, our way of taking the large N

limit is the most natural in this context.

One perhaps unsatisfactory aspect is that, to match with the computation in supergravity

away from the superconformal points, we had to adopt an effective field theory approach. This

was motivated both from the point of view of holography and of the F-theorem. This step,

however, relied on a technical examination of the integration domain for the fields that become

heavy and eventually decouple. A derivation more robust against lack of information on the UV

theory would be desirable, and we leave it as an open problem.

The sphere free energy in odd dimensions is a candidate c-function [98, 99]. That is, it is

expected to be stationary at the RG fixed points, with its value in the IR lower than its value

in the UV. One important open question for 5d SCFTs, is a field theoretic derivation of the 5d

F-theorem, see [121, 128, 109] for evidence in that direction. We have evaluated the sphere free

energy for a wide class of 5d SCFTs, in the long quiver limit. One important outcome of our

analysis, which will be useful for future investigations, is that the 5d F-theorem must be stated

and tested using the effective free energy we introduced.

The findings of this paper suggest several generalisations and avenues for future research.

One immediate application would be to study similar mass deformations from the holographic

perspective in the AdS5 and AdS3 backgrounds with eight supercharges, where the techniques in

Section 2.5 carry over.

Moreover, it would be very interesting to construct reliable backgrounds that can follow the

QFT along the RG flow, from vanishing masses µ → 0 to very large masses. Such backgrounds

should contain two ‘throats’ consisting of AdSd and spheres to suitably realise the R-symmetry.

Away from the throats, we expect a factor R1,d−2 and a nonlinear combination of the (r, η, σ)-

directions. It seems natural to speculate with backgrounds of this type, as one should be able to

zoom-in different regions, known to be reliable. Probably this would look like a generalisation of

the many stack-brane solutions, out of the near horizon. This more involved family of backgrounds

should be non-singular and provide expressions for the holographic central charge analogous to

(2.30)-(2.31).

Another interesting application of our formalism is to explore different setups for the electro-

static problem. Indeed, it not only gives an immediate way of identifying holographically dual

theories, but it also provides an intuitive description of the SCFT. For example, by imposing

periodic boundary conditions one might be able to describe circular linear quivers, while more

sophisticated charge distributions may give rise to star-shaped quivers. Another open problem is

the construction of a holographic dual of unbalanced quivers. It would be interesting to explore
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our holographic proposal in these scenarios.

The last open question we want to mention is the study of vortex loops in the 3d theories, in

the Veneziano limit. Mirror symmetry maps a Wilson loop to a vortex loop [129] and the results

of Subsection 3.7 will serve as a benchmark for such a prospect study. In this paper we have

considered mass deformations, without FI parameters, leaving the study of the mirror quivers

with only FI deformations turned on for future work. Moreover, the localisation of the ellipsoid

partition function for 3d gauge theories with vortex loop insertions was recently considered in

[130], which could be relevant to pursue this direction.
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A Potentials, harmonic and special functions

In this appendix we give a concrete formula for the potential

Ŵ (σ, η) =

∞∑
k=1

ak sin

(
kπη

P

)
e−

kπ|σ|
P , ak =

P

2kπ
Rk ,

where the Fourier coefficients Rk were calculated in (2.18) and take the form

Rk =
2

kπ

(
N0 + (−1)k+1NP

)
+

2P

π2k2

P−1∑
j=1

Fj sin

(
kπj

P

)
.

To efficiently write the potential, let us introduce some machinery. Define the following functions

Gc
s, G

s
s of two variables for positive integers s:

Gc
s(σ, η) =

∞∑
k=1

1

ks
cos (πkη) e−πkσ ,

Gs
s(σ, η) =

∞∑
k=1

1

ks
sin (πkη) e−πkσ .

We can rewrite these in terms of polylogarithms:

Gc
s(σ, η) = Re Lis

(
eπ(−σ+iη)

)
,

Gs
s(σ, η) = Im Lis

(
eπ(−σ+iη)

)
.

(A.1)
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They satisfy the following relations:

∂ηG
c
s(σ, η) = −πGs

s−1(σ, η) ,

∂ηG
s
s(σ, η) = πGc

s−1(σ, η) ,

∂σG
c
s(σ, η) = −πGc

s−1(σ, η) ,

∂σG
s
s(σ, η) = −πGs

s−1(σ, η) .

(A.2)

As a consequence, Gc
s and Gc

s are harmonic functions, i.e. they solve the Laplace equation(
∂2
η + ∂2

σ

)
Gc,s

s = 0 ∀s ∈ Z>0.

By construction, Gc
s and Gc

s are, respectively, even and odd periodic function of η. Moreover,

using simple trigonometric identities, we can compute the sum

∞∑
k=1

1

ks
sin (πkn) sin (πkℓ) e−

kπσ
P =

1

2

[
Gc

s

( σ
P
, n− ℓ

)
−Gc

s

( σ
P
, n+ ℓ

)]
. (A.3)

We can now use eq. (A.3) to write down the potential

Ŵ (σ, η) =
P

π2

[
N0G

s
2

(
|σ|
P

,
η

P

)
−NPG

s
2

(
|σ|
P

,
η + P

P

)]
+

P 2

2π3

P−1∑
j=1

Fj

[
Gc

3

(
|σ|
P

,
η − j

P

)
−Gc

3

(
|σ|
P

,
η + j

P

)]
.

(A.4)

By using (A.2) and the boundary condition

lim
ϵ→0

(
∂σŴ (σ = +ϵ, η)− ∂σŴ (σ = −ϵ, η)

)
= −R(η),

we can also write the rank function in this formalism, namely

R(η) =
2

π

[
N0G

s
1

(
0,

η

P

)
−NPG

s
1

(
0,

η + P

P

)]
+

P 2

2π3

P−1∑
j=1

Fj

[
Gc

2

(
0,

η − j

P

)
−Gc

2

(
0,

η + j

P

)]
.

That this function is in fact piecewise linear can be see from the fact that

Gs
1(0, η) = ImLi1(e

iπη) = − Im log(1− eiπη) =
π

2
(1− η) , 0 < η < 2 . (A.5)

In addition, ∀0 < α < 1 we have

1

π2
[Gc

2(0, η − α)−Gc
2(0, η + α)] =


(1− α)η 0 < η < α

(1− η)α α < η < 2− α

(1− α)(η − 2) 2− α < η < 2

because

Gc
2(0, η) =

(π
2

)2
(η − 1)2 − π2

12
0 < η < 2 .
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To see this latter statement, Gc
2(0, η) can be fixed by using ∂ηG

c
2(0, η) = −πGs

1(0, η) and (A.5).

The integration constant is fixed by demanding that Gc
2(0, 0) = Li2(1) = ζ(2) = π2

6 .

With the identifications worked out in Subsection 3.2.7, the unnormalised eigenvalue density

ϱ̂(z, x) in this formalism reads

ϱ̂(z, x) = 2

[
NPG

s
2

(
|σ|
P

,
η

P
+ 1

)
−N0G

s
2

(
|σ|
P

,
η

P

)]
+

P

π2

P−1∑
j=1

Fj

[
Gc

1

(
|σ|
P

,
η + j

P

)
−Gc

1

(
|σ|
P

,
η − j

P

)]
.

As a consistency check, with the substitutions (3.13), ϱ(z, x) it is expressed as

ϱ(z, x) = 2

[
NP

N
Gs

2 (2x, z + 1)− N0

N
Gs

2 (2x, z)

]
+

P 2

π2

∫ 1

0
dz̃ζ(z̃) [Gc

1 (2x, z + z̃)−Gc
1 (2x, z − z̃)] .

Plugging (3.2) in the second line and integrating over z̃, the last formula reproduces (3.12).

It also possible to cast the holographic central charge in this language. Namely eq. (2.21) can

be rewritten as

chol
∣∣
d=5

=
P 2

4π8
(2N2

0 + 2N2
P + 3N0NP )ζ(3)

+
P 3

π9

P−1∑
j=1

Fj

[
N0G

c
4

(
0,

jπ

P

)
+NPG

s
4

(
0,

(P − j)π

P

)]

− P 4

4π10

P−1∑
j=1

P−1∑
k=1

FlFk

[
Gc

5

(
0,

π(k + j)

P

)
−Gc

5

(
0,

π(k − j)

P

)]
,

where we can also understand the origin of the ζ-function as Gc
3(0, 0) = Li3(1) = ζ(3) and

Gc
3(0, π) = Li3(−1) = −3ζ(3)

4 . Likewise, (2.25) is

chol
∣∣
d=3

=
1

8π
(N2

0 +N2
P )γE +

1

8π
N0NP log(2)

+
P

4π2

P−1∑
j=1

Fj

[
N0G

s
2

(
0,

lπ

P

)
+NPG

s
2

(
0,

(P − l)π

P

)]

− P 2

16π3

P−1∑
j=1

P−1∑
k=1

FjFk

[
Gc

3

(
0,

π(k + j)

P

)
−Gc

3

(
0,

π(k − j)

P

)]
.

Here the offset-offset terms can be traced back to Gc
1(0, π) = Li1(−1) = log(2) and a regularisation

of Gc
1(0, 0) = Li1(1) = ζ(1).

A.1 Potentials and special functions in odd dimensions

First, let us rewrite the expressions (A.4) and apply them to the potentials for the AdS6 and

AdS4 geometries separately. We will write in terms of the coordinate ξ = e−
π
P
[|σ|−iη]. For the

supergravity background dual to the 5d QFT,

Ŵ5(σ, η) =
P

π2
Im [N0Li2(ξ)−NPLi2(−ξ)] +

P 2

2π3

P−1∑
j=1

FjRe
[
Li3

(
ξe−

iπJ
P

)
− Li3

(
ξe

iπJ
P

)]
.
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In the background dual to the 3d QFT, we have V̂3(σ, η) given by

V̂3(σ, η) = −N0

2π
log[(1− ξ)(1− ξ̄)] +

NP

2π
log[(1 + ξ)(1 + ξ̄)]

+
P

2π2

P−1∑
j=1

FjIm
[
Li2

(
ξe

iπJ
P

)
− Li2

(
ξe−

iπJ
P

)]
.

Finally for the holographic central charge in the case of two rank functions R1(η) and R2(η) we

found expressions in five dimensions and three dimensions that read,

chol
∣∣
d=5

[R1,R2] =
P 2

8π6

∞∑
k=1

1

k

[
R2

1,k +R2
2,k + 2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
,

chol
∣∣
d=3

[R1,R2] =
π

32

∞∑
k=1

k

[
R2

1,k +R2
2,k + 2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
.

The two rank functions have Fourier coefficients

Rα,k =
2

kπ

(
Nα,0 + (−1)k+1Nα,P

)
+

2P

π2k2

P−1∑
j=1

Fα,j sin

(
kπj

P

)
. (A.6)

The contributions of the squared terms are just two copies the one we have already calculated, see

(2.21) and (2.25) for the 5d and 3d cases, respectively. Obviously, one copy with N1,0, N1,P , F1,j

and another with N2,0, N2,P , F2,j . What interests us is the crossed terms

cinthol

∣∣
d=5

[R1,R2] =
P 2

8π6

∞∑
k=1

1

k

[
2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
.

cinthol

∣∣
d=3

[R1,R2] =
π

32

∞∑
k=1

k

[
2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
.

Using the Fourier expansion in (A.6) we find

cinthol[R1,R2] =
3∑

I=1

TI ,

where in d = 5 we have

T1

∣∣
d=5

=
P 2

8
(N1,0N2,0 +N1,PN2,P )

[
Li3

(
e−

πσ0
P

)
− Li3

(
−e−

πσ0
P

)
+

πσ0
P

Li2

(
e−

πσ0
P

)
− πσ0

P
Li2

(
−e−

πσ0
P

)]
,

T2

∣∣
d=5

=
P 3

π9

P−1∑
j=1

(F2,jN1,0 + F1,jN2,0)Im
[
Li4

(
e−

π(σ0−ij)
P

)
+

πσ0
P

Li3

(
e−

π(σ0−ij)
P

)]

+
P 3

π9

P−1∑
j=1

(F2,jN1,P + F1,jN2,P )Im
[
Li4

(
−e−

π(σ0+ij)
P

)
+

πσ0
P

Li3

(
−e−

π(σ0+ij)
P

)]
,

T3

∣∣
d=5

=
P 4

2π10

P−1∑
j=1

P−1∑
ℓ=1

F1,jF2,ℓRe
[
Li5

(
e−

π(σ0+i(j−ℓ))
P

)
− Li5(e

−π(σ0+i(j+ℓ))
P )

+
πσ0
P

Li4

(
e−

π(σ0+i(j−ℓ))
P

)
− πσ0

P
Li4

(
e−

π(σ0+i(j+ℓ))
P

)]
;

56



and in d = 3 we have

T1

∣∣
d=3

=
1

4π
(N1,0N2,0 +N1,PN2,P )

[
Li1

(
e−

πσ0
P

)
− Li1

(
−e−

πσ0
P

)
+

πσ0
P

Li0

(
e−

πσ0
P

)
− πσ0

P
Li0

(
−e−

πσ0
P

)]
,

T2

∣∣
d=3

=
P

4

P−1∑
j=1

(F2,jN1,0 + F1,jN2,0)Im
[
Li2

(
e−

π(σ0−ij)
P

)
+

πσ0
P

Li1

(
e−

π(σ0−ij)
P

)]

+
P

4

P−1∑
j=1

(F2,jN1,P + F1,jN2,P )Im
[
Li2

(
−e−

π(σ0+ij)
P

)
+

πσ0
P

Li1

(
−e−

π(σ0+ij)
P

)]
,

T3

∣∣
d=3

=
P 2

8π3

P−1∑
j=1

P−1∑
ℓ=1

F1,jF2,ℓRe
[
Li3

(
e−

π(σ0+i(j−ℓ))
P

)
− Li3(e

−π(σ0+i(j+ℓ))
P )

+
πσ0
P

Li2

(
e−

π(σ0+i(j−ℓ))
P

)
− πσ0

P
Li2

(
e−

π(σ0+i(j+ℓ))
P

)]
.

Except for the overall coefficient and the ensuing scaling with P , the terms TI are uniform across

odd dimensions and assume the form ±
[
Lid−3+I(±·) + πσ0

P Lid−4+I(±·)
]
.

B Five-dimensional quivers in M-theory

In this appendix we collect observations comparing our results with the geometric engineering of

the five-dimensional linear quivers in M-theory.

To begin, let us remind that the 5d linear quivers we deal with arise as deformations of 5d

SCFTs. The latter can be engineered in M-theory via compactification on toric Calabi–Yau

threefold (CY3) singularities [83] (see also [131, 84, 107, 116, 132] for a minimal sample of related

works). Prototypical examples are the homogeneous quiver, also known as the +N,P quiver:

N N . . . NN N

P − 1

and the TN quiver:

2 3 . . . N − 12 N

where all the gauge nodes are SU(Nj). The corresponding toric diagrams are:

• • • · · · • •
• • • · · · • •

• • • · · · • •
...

...
...

...
...

P + 1

N + 1
+N,P :

• • · · · • •
• · · · • •

• •
•

...
...

N + 1

N + 1TN :

57



Comparing the M-theory setup with Section 3 gives us the following insights.

• The fact that the rank function R(η) is piecewise linear is reminiscent of tropical geometry,

which famously appears in the study of toric varieties. The precise connection is that the

graph of R(η), closed up along the η-axis, gives the perimeter of the toric polygon of CY3.

The area below the graph of R(η), which computes the total rank of the gauge theory, is a

topological invariant, ∫ P

0
dη [R(η)− 1] =

1

2
χ (CY3) .

This identity stems from the fact that χ (CY3) is twice the area of the toric polygon for

CY3. Recall from (2.11c) that, on the Type IIB string theory side,
∫ P
0 dη [R(η)− 1] is the

total number of D5 branes with the centre of mass removed, i.e. the actual rank of the 5d

gauge theory.

• One effect of S-duality is to rotate the toric diagram of CY3 by 90◦. We have predicted a

scaling of the free energy F ∝ N2P 4, which may not be invariant under this transformation.

Comparing with the explicit results in [74] for +N,P , TN and other theories, we observe in

all examples that

F ∝ [χ (CY3)]
2

is manifestly invariant under rotations of the toric diagram. Therefore, the QFT corrects

the naive scaling and matches with the M-theory expectations.

• Throughout Section 3, we dismissed the distinction between SU(Nj) and U(Nj) gauge nodes

at large N , arguing that it is a subleading contribution (supported by explicit calculations in

[109]). This allowed us to effectively work with unitary gauge groups in 5d. Nevertheless,

5d linear quivers with U(Nj) gauge nodes were geometrically engineered in [133]. One

intriguing outcome of that work is a geometric prescription, valid for the balanced quiver

we study, to decouple the central U(1)j ⊂ U(Nj) factors and recover special unitary gauge

nodes.

From the translation of the M-theory setup to Type IIB string theory, done in [133, Sec.7],

the picture that emerges is very reminiscent of the analysis we have carried out in the main

text. It would be extremely interesting to come up with a refined probe of the large N limit

capable to discern between unitary and special unitary gauge groups. Having such a finer

probe, we may compare the electrostatic problem in Figure 4 and its generalizations with

[133, Sec.7]. In particular, if one could argue that the electrostatic problem gives an AdS6

solution dual to a long quiver with unitary gauge nodes, this may hint at the existence of

an SCFT from which these gauge theories descend.

• Related to the previous item, assuming unitary gauge nodes in the 5d quiver, we can

introduce FI parameters accordingly. Viewing an SU(N) gauge node as a U(N) with a

gauged centre of mass, reducing U(N) → SU(N) dictates to promote the FI parameter to

a dynamical field and integrate over it. At the level of S5 partition function, this statement
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boils down to the Fourier transform identity∫ +∞

−∞
dξ e2πξ

∑
a σa = δ

(∑
a

σa

)
.

This idea was used in [109, App.A2] to show how the matrix model cleanly captures the

M-theoretical mechanism of [133].

C Integrating out massive fields in long quivers

In this appendix we discuss the effect of integrating out massive fields on the sphere free energy.

The idea is that, in the limit m → ∞, F splits into the free energy of a theory will less fields,

plus the contribution of decoupled, heavy fields. The discussion below is a quantitative test of

the analysis in Subsection 3.1, using partition functions.

C.1 Premise: mass deformation from branes

Fj︷ ︸︸ ︷
⊗ · · · ⊗

Fj−1︷ ︸︸ ︷
⊗ · · · ⊗

Fj+1︷ ︸︸ ︷
⊗ · · · ⊗Nj−1 { } Nj+1

F2,j︷ ︸︸ ︷
⊗ · · · ⊗

⊗ · · · ⊗︸ ︷︷ ︸
F1,j

F2,j−1︷ ︸︸ ︷
⊗ · · · ⊗

⊗ · · · ⊗︸ ︷︷ ︸
F1,j−1

F2,j+1︷ ︸︸ ︷
⊗ · · · ⊗

⊗ · · · ⊗︸ ︷︷ ︸
F1,j+1

N2,j−1 {

N1,j−1 {

} N2,j+1

} N1,j+1

· · · · · ·

· · · · · ·

Figure 10: A portion of the Hanany–Witten brane setup for a balanced 3d N = 4 linear quiver.

Black vertical lines represent NS5 branes, horizontal lines are D3 branes, ⊗ are D5 branes. In

the jth interval between two consecutive NS5 branes, there are Nj D3 branes (colour branes) and

Fj D5 branes (flavour branes). The numbers Fj are fixed by the balancing condition. Above, all

the D3 brane segments intersect all the D5 branes in the same interval. Below, we have specified

our mass deformation, as well as a point on the Coulomb branch of the gauge theory. The D5

branes have been split into two stacks, vertically separated, whose distance determines the mass

parameter m. We have also prescribed the numbers N2,j of D3 brane segments that are moved

vertically together with the D5 branes, thus specifying a point on the Coulomb branch of the

theory.

The aim of this appendix is to complement the description of the mass deformation explained

in Subsection 3.1. The choice of mass deformation that corresponds to our prescription is en-

capsulated into a splitting of the rank function R(η) =
∑F

α=1Rα(η), which induces a specific

breaking pattern of flavour and gauge groups.
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The choice of mass deformation is more transparent in the Hanany–Witten brane setup in

Type IIB string theory. For clarity, we formulate the discussion in the case of 3d N = 4 and for

F = 2. A portion of the brane system that leads to a linear quiver is depicted in Figure 10, to

which we refer for detailed description.

A naive mass deformation would consist in sliding F2,j flavour branes, so that they are not

intersected by the colour branes. From the perspective of the 3d gauge theory, that mass defor-

mation would give mass to NjF2,j hypermultiplet modes at each node, leaving all other modes

massless. However, this is not the only brane configuration consistent with sliding F2,j flavour

branes. One can in fact select arbitrary numbers N2,j and demand that N1,jF2,j+N2,jF1,j hyper-

multiplet modes become massive. This corresponds to drag N2,j colour branes vertically together

with the flavour branes, as shown in Figure 10. In this way, the F2,jN2,j hypermultiplet modes

arising from strings stretched between the D3 and D5 branes in the same stack remain massless.

As a consequence, there are strings stretched between D3 branes in the different stacks, that are

vertically separated. In the gauge theory, these D3-D3 strings give rise to massive W-bosons,

reflecting a breaking of the gauge group. All the possible configurations of this type are to be

taken into account, as they describe different points on the Coulomb branch of the theory.

C.2 Warm-up example: 3d SQCD

To present the idea, let us begin with a very simple example: SQCD in 3d with gauge group

U(N) and flavour symmetry algebra su(F ). The balancing condition simply reads F = 2N , but

we need not impose it. Related discussion on this 3d SQCD example is in [134].16

We assume F1 out of the F hypermultiplets have mass m1 and the remaining F2 = F − F1

hypermultiplets have mass m2. The traceless condition on the flavour symmetry imposes F1m1+

F2m2 = 0. We also write N = N1 + N2. To lighten the expressions, we adopt the (by now,

standard) shorthand sh(s) := sinh(πs) and ch(s) := cosh(πs).

The three-sphere partition function of this model is

ZS3 =
1

N !

∫
RN

dσ⃗′
∏

1≤a<b≤N (2sh(σ′
a − σ′

b))
2∏N

a=1 (2ch(σ
′
a −m1))

F1 (2ch(σ′
a −m2))

F2
. (C.1)

We now use the change of variables

σa = σ′
a −m1, a = 1, . . . , N1,

ϕȧ = σ′
ȧ+N1

−m2, ȧ = 1, . . . , N2,

(C.2)

and, defining m := m1 −m2, write

ZS3 =
1

N1!

∫
RN1

dσ⃗

∏
1≤a<b≤N1

(2sh(σa − σb))
2∏N1

a=1 (2ch(σa))
F1

· 1

N2!

∫
RN2

dϕ⃗

∏
1≤ȧ<ḃ≤N2

(
2sh(ϕȧ − ϕḃ)

)2∏N2
ȧ=1 (2ch(ϕȧ))

F2
(C.3a)

×
∏N1

a=1

∏N2

ḃ=1

(
2sh(σa − ϕḃ +m)

)2∏N1
a=1 (2ch(σa +m))F2

∏N2
ȧ=1 (2ch(ϕȧ −m))F1

. (C.3b)

16For useful exact evaluations of the sphere partition function of various theories, see [135–138].
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The breaking of the Weyl group SN → SN1 × SN2 has brought in a factor
(
N1+N2

N2

)
, which

corresponds to the number of permutations that shuffle (C.2) without changing (C.3), leading to

the overall factor
1

(N1 +N2)!

(
N1 +N2

N2

)
=

1

N1!
· 1

N2!
,

which correctly accounts for the permutations of the σa and the ϕȧ separately.

Let us now unpack expression (C.3) (see also [92] for related considerations).

• Keeping only (C.3a), we would get the product of two disconnected, conformal quivers:

— SQCD with gauge group U(N1) and F1 massless hypermultiplets (with adjusted vari-

able σ⃗),

— and SQCD with gauge group U(N2) and F2 massless hypermultiplets (with adjusted

variable ϕ⃗).

• The interaction is entirely in (C.3b), and is m-dependent. In it we recognise:

— the left term in the denominator of (C.3b) is the one-loop determinant of F2 hyper-

multiplets of real mass −m, charged under U(N1);

— the right term in the denominator of (C.3b) the one-loop determinant of F1 hypermul-

tiplets of real mass −m, charged under U(N2);

— the numerator of (C.3b) is the part of the vector multiplet one-loop determinant coming

from the W-bosons associated to the U(N1+N2) roots ±αa,ḃ+N1
. The standard masses

±(σa −ϕḃ) due to the theory being on the Coulomb branch receive an additional shift

±m.

If we require the two resulting theories to be balanced,

F1 = 2N1, F2 = 2N2, (C.4)

this gives us a preferred choice of the integers N1, N2, and the initial quiver is automatically

balanced. We will show below that (C.4) indeed correctly describes the IR theory.

The Hanany–Witten brane system read off from the matrix model (C.3) is drawn in Figure

11. The identifications are as follows:

• The purple strings in the lower part of Figure 11 give rise to the left part of the integrand

in (C.3a), while the purple strings in the upper part of Figure 11 give rise to the right part

of the integrand in (C.3a);

• The gray, curly strings in Figure 11 give rise to (C.3b):

— the gray string in the left part of Figure 11 gives rise to (one of the factors in) the left

term in the denominator of (C.3b);

— the gray string in the right part of Figure 11 gives rise to (one of the factors in) the

right term in the denominator of (C.3b);

— the gray string in the middle of Figure 11 gives rise to the numerator of (C.3b).

Analogous Hanany–Witten setups of NS5, Dd and D(d+2) branes can be read off from the most

general matrix models for linear quivers we discuss in the main text.
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F2︷ ︸︸ ︷
⊗ · · · ⊗

⊗ · · · ⊗︸ ︷︷ ︸
F1

N2 {

N1 {

Figure 11: Hanany–Witten brane setup corresponding to the matrix model (C.3). Black vertical

lines represent NS5 branes, horizontal lines are D3 branes, ⊗ are D5 branes. Purple vertical lines

represent a sample of the strings giving rise to light modes, contributing to (C.3a). Gray, vertical,

curly lines are strings that give rise to heavy modes, contributing to (C.3b). The picture extends

straightforwardly to all the mass-deformed linear quivers considered in the present work. In the

conventions of (3.16), the purple strings contribute to Fα and the gray strings to F int
α,β.

C.2.1 Large mass: Coulomb branch considerations

The Coulomb branch of SQCD under consideration, with the masses turned on, has two singu-

larities: at m1 and m2. In the presentation (C.1), σ⃗′ is probing such Coulomb branch. The two

singularities are spread apart if m = m1−m2 → ∞. In terms of the adjusted variables σ⃗, ϕ⃗, these

two singularities are mapped to 0 and ∓m. However, there cannot be exact factorisation of the

partition function in the limit m → ∞, as evident from counting Higgs branch dimensions. The

initial theory has (N1+N2)(F1+F2) hypermultiplet zero-modes, but the two disconnected SQCD

theories in (C.3a) only sum up to N1F1+N2F2 hypermultiplet modes. The missing N1F2+N2F1

are precisely the ones appearing in (C.3b).

C.2.2 Large mass: free energy considerations

From the integration in (C.3), we write

ZS3 [N2] =
1

N1!

∫
RN1

dσ⃗ e−Seff,1(σ⃗)
1

N2!

∫
RN2

dϕ⃗ e−Seff,2(ϕ⃗) · e−Sint(σ⃗,ϕ⃗,m), (C.5)

where we use the notation ZS3 [N2] to stress that we are making a specific choice of splitting

N = N1 +N2. The interaction term Sint is the logarithm of (C.3b). We schematically write the

integrals as ∫
RN1

dσ⃗

∫
RN2

dϕ⃗ =

∫
[−m,m]N1

dσ⃗

∫
[−m,m]N2

dϕ⃗ + · · · ,

where the dots include a sum of integrals whose domains involve at least one m < |σa|, |ϕȧ| < ∞.

In the limit m → ∞, the domain [−m,m]N1 × [−m,m]N2 converges to RN1 ×RN2 whereas the

rest has vanishing measure. Approximating Sint at large m in the domain −m < σa < m and

−m < ϕȧ < m, we have

Sint ≈

(
πF2N1m+ πF2

N1∑
a=1

σa

)
+

(
πF1N2m− πF1

N2∑
ȧ=1

ϕȧ

)
−

(
2πN1N2m+ 2πN2

N1∑
a=1

σa − 2πN1

N2∑
ȧ=1

ϕȧ

)
.

The three contributions, grouped in brackets, account for:
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• Integrating out the F2 massive hypermultiplets on the σ⃗-branch;

• Integrating out the F1 massive hypermultiplets on the ϕ⃗-branch;

• Integrating out the massive W-bosons from the Higgsing U(N1 +N2) → U(N1)× U(N2).

We emphasise that integrating out fields produces imaginary FI terms. While the presence of

FI couplings was already noted in [92], it is important to stress that they are imaginary. This

unusual feature is essential to ensure the convergence of the partition function, as it must be if

we start with a good quiver. Furthermore, notice that, assuming the balancing condition (C.4),

these imaginary FI terms cancel out.

C.2.3 Large mass: determining the gauge ranks

What remains to do is to determine which are the correct values of N1 and N2, closely following

[92, Sec.5]. As already anticipated, the answer will be the balanced result (C.4).

From the perspective of the Coulomb branch, the problem can be phrased as follows. The

change of variables from σ⃗′ to (σ⃗, ϕ⃗) probes different subspaces of the Coulomb branch for different

values of N2. We ought to determine which of them survives the RG flow triggered by the mass

deformations, and describes the IR fixed point. Equivalently, from the brane perspective of

Appendix C.1, we ought to determine which one, among all the brane configurations with the

D3 branes split in two different stacks, gives the dominant contribution when the two stacks are

pulled far apart.

The CB vacuum that dominates in the large m limit is determined looking at Sint. In partic-

ular, focusing on the m-dependence and using 2(N1 +N2) = F1 + F2, we immediately obtain

Sint =
π

2
m
[
F1F2 + (F2 − 2N2)

2
]
+ · · ·

where we have written down only the terms which determine the leading behaviour as m → ∞.

In this expression, Fα are input data of the deformation, while N2 is to be determined. Due to

the appearance of e−Sint in the partition function, the choice of CB vacuum that dominates in

the limit corresponds to N2 =
F2
2 . Explicitly, at every finite m we can write

ZS3 =
1

N + 1

N∑
N2=0

ZS3 [N2], (C.6)

where the right-hand side is given in (C.5). This rewriting is obvious, since the terms on the

right-hand side are all related by a change of variables, thus attain the same value. However, the

convenience of the rewriting (C.6) is that only one of the terms ZS3 [N2] will survive in the IR.

This will allow us to directly read off the IR quivers.

We have already obtained that, at large m, expression (C.6) reads

ZS3 =
1

N + 1

N∑
N2=0

e−{
π
2
m[F1F2+(F2−2N2)

2]+···}
2∏

α=1

ZSQCDα

S3 (ξα), (C.7)
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where ZSQCDα

S3 is the sphere partition function of 3d N = 4 U(Nα) gauge theory with Fα funda-

mental hypermultiplets, and imaginary FI parameter ξα given by

ξ1 = i

(
F2

2
−N2

)
, ξ2 = −i

(
F1

2
−N1

)
.

Sending m → ∞, the least suppressed term in (C.7) yields the leading contribution. We conclude

that, at the end of the flow triggered by the mass deformation, we obtained the balancing condition

(C.4). This result agrees with [92, Sec.5] and generalises it to the case F2 ≥ 2.

C.2.4 Take-home lesson

To sum up, the lesson from this example is that, for a balanced theory with two mass scales for

the hypermultiplets,

lim
|m1−m2|→∞

[F − Fdec.] = F1 + F2.

Here F is the free energy of the theory we started with, namely U(N1+N2) with F1+F2 flavours

in this example, and Fα is the free energy of the quiver Qα, with gauge and flavour ranks Nα and

Fα respectively. Finally, Fdec. is the contribution from the heavy fields, that will decouple at the

end of the RG flow. In this SQCD example:

Fdec. = πm(F1N2 + F2N1)︸ ︷︷ ︸
hypermultiplets

−2πmN1N2︸ ︷︷ ︸
W-bosons

.

C.2.5 A remark on the F-theorem

We have reviewed in Subsection 3.6 that the F-theorem requires to discard the contributions to

F which are polynomial in the mass parameters [99]. Let us exemplify this in SQED with F

flavours. Giving opposite masses ±m to two hypermultiplets, we have

F = − ln

[∫ ∞

−∞

dσ

(2ch(σ))F−2 · 2ch(σ +m) · 2ch(σ −m)

]
.

Ranging 0 ≤ m < ∞ describes the RG flow from SQED with F flavours to SQED with F − 2

flavours, plus two decoupled hypermultiplets with large mass ±m. As argued above, we consider

FEFT = F − 2π|m|. This quantity is plotted in Figure 12, and clearly interpolates monotonically

between the free energies of the two SCFTs.

C.3 Massive fields in long quivers

We now apply the above discussion to long quivers. We work in the setup of Subsection 3.4: we

consider a long linear quiver with F = 2 mass scales, m1 = 0 and m2 = m. In Subsection 3.4 we

used the long quiver analogue of the change of variables (C.2). It was also shown therein that, in

perfect analogy with the SQCD example, the effective action splits into

Seff = Seff,1(σ⃗) + Seff,2(ϕ⃗) + Sint(σ⃗, ϕ⃗,m).

Again, as in the toy example, the mass dependence is entirely encoded in the interaction term,

whereas the two terms Seff,α describe superconformal quivers Qα.
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Figure 12: RG flow in d = 3 from SQED with F flavours in the UV to SQED with F − 2 flavours

in the IR. FEFT interpolates monotonically between the free energy FUV of the UV CFT and

that of the FIR IR CFT. Left: F = 5. Right: F = 8.

From (3.25), we have that Sint splits into four terms:

Sint = Sfund,1 + Sfund,2︸ ︷︷ ︸
fund. hypers

+ S0 + Sder︸ ︷︷ ︸
W-bosons + bifund. hypers

(C.8)

where the contributions of Higgsed W-bosons and of bifundamental hypermultiplets have been

combined together and rewritten in the form S0 + Sder. The details are in Subsections 3.2-3.4.

Here we evaluate (C.8) in the large µ limit, in 5d and 3d. We adopt the notation and normalisation

Fdec.
• = (−1)

d−3
2 S•|on-shell,m→∞ .

For instance, the sphere free energy of free massive hypermultiplets is

Fdec.
fund = (−1)

d−3
2 P (d−2)fh(µ) · (# fund. hypermultiplets) .

In our long quivers, the number of fundamental hypermultiplets that eventually decouple is

# fund. hypermultiplets =

P−1∑
j=1

(N1,jF2,j +N2,jF1,j) .

In the long quiver limit, this becomes

# fund. hypermultiplets = PN2

∫ 1

0
dz [ν1(z)ζ2(z) + ν2(z)ζ1(z)] .

Recalling the normalisation condition
∫
dxϱ(z, x) = ν(z), we get:

Fdec.
fund,1 + Fdec.

fund,2 = (−1)
d−3
2 N2P (d−1)fh(µ)

∫ 1

0
dz

∫ |µ|

−|µ|
[ϱ1(z, x)ζ2(z) + ϱ2(z, x)ζ1(z)] .

Crucially, we are working in an EFT description, in which we cut off the modes larger than

|µ|. This effective description becomes exact in the IR limit, |µ| → ∞. However, to compute

the contribution from the background fields at intermediate mass scales, we assume that only the

modes −|µ| < x < |µ| remain dynamical (i.e. have not been integrated out), and hence contribute

to the eigenvalue density.
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While the integration range may appear counter-intuitive at first sight, we stress that we are

focusing on the modes that will eventually decouple. Their free energy must vanish at |µ| → 0

and must become that of free massive fields at |µ| → ∞, which is precisely accounted for by our

choice of integration range.

The computations that follow in this appendix are similar to those in Section 3.4, but rely

on a careful analysis of the integration domain, to identify the regions corresponding to heavy

modes that decouple in the IR.

C.3.1 The contribution of massive fields in 5d

We compute the contribution of massive fields in 5d using the EFT approach just outlined. We

utilise the definitions (3.8). For the contribution of the massive fundamental hypermultiplets, we

find

1

N2P 2
Fdec.
fund,1 =

9π

2
|µ|3

∫ 1

0
dzP 2ζ2(z)

∫ +|µ|

−|µ|
dxϱ1(z, x)

=
9π4

2
|µ|3

∞∑
k,ℓ=1

a1,ka2,ℓkℓ
2

∫ 1

0
dz sin(kπz) sin(ℓπz)

∫ +|µ|

−|µ|
dx e−2πℓ|x|

=
9π3

4
|µ|3

∞∑
k=1

a1,ka2,kk
2
(
1− e−2πk|µ|

)
.

Fdec.
fund,2 is evaluated switching the labels 1 ↔ 2, but the final expression is invariant under this

operation. Therefore

Fdec.
fund,1 + Fdec.

fund,2 =
9π3

2
|µ|3

∞∑
k=1

a1,ka2,kk
2
(
1− e−2πk|µ|

)
.

The next term we need is Fdec.
der . The integration domain this time involves two variables x, y.

Let us assume µ ≫ 0 for clarity. Restricting |x| ≤ µ, any y > 0 is allowed, so that |x − y − µ|3

and µ3 have the same sign. On the other hand, restricting |y| ≤ µ, the integral ranges over all

x < 0. The total contribution is the sum of these two expressions, which contribute equally. We

thus find:

1

N2P 2
Fdec.
der = 2 · 9π

2
|µ|3

∫ 1

0
dz

∫ |µ|

−|µ|
dx

∫ ∞

0
dy

[
ϱ1(z, x)∂

2
zϱ2(z, y) + ϱ2(z, y)∂

2
zϱ1(z, x)

2

]
= 9π3|µ|3

∞∑
k,ℓ=1

a1,ka2,ℓkℓ

∫ 1

0
dz

[
−(πℓ)2 − (πk)2

2

]
sin(kπz) sin(ℓπz)

×
∫ |µ|

−|µ|
dx e−2πk|x|

∫ ∞

0
dy e−2πℓ|y|

= −9π5

2
|µ|3

∞∑
k=1

a1,ka2,k · k4 ·
∫ |µ|

−|µ|
dx e−2πk|x|

∫ ∞

0
dy e−2πℓ|y|

= −9π3

4
|µ|3

∞∑
k=1

a1,ka2,kk
2
(
1− e−2πk|µ|

)
.
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Finally, for Fdec.
0 we use f0(µ)|d=5 = 27π

8 |µ| from (3.8) and repeat the analysis of the integration

range identically as for the companion term Fdec.
der . Indeed, the contribution have the same origin

in the matrix model and moreover sgn((µ+ y − x)3) = sgn(µ+ y − x). We get

1

N2P 2
Fdec.
0 = −2 ·

(
−27π

8
|µ|
)
· 2
∫ 1

0
dz

∫ |µ|

−|µ|
dx

∫ ∞

0
dyϱ2(z, y)

=
27π3

2
|µ|

∞∑
k,ℓ=1

a1,ka2,ℓkℓ

∫ 1

0
dz sin(kπz) sin(ℓπz)

∫ |µ|

−|µ|
dx e−2πk|x|

∫ ∞

0
dy e−2πk|y|

=
27π3

4
|µ|

∞∑
k=1

a1,ka2,k · k2 ·
∫ |µ|

−|µ|
dx e−2πk|x|

∫ ∞

0
dy e−2πk|y|

=
27π3

8
|µ|

∞∑
k=1

a1,ka2,k

(
1− e−2πk|µ|

)
.

Summing all three contributions, we finally arrive at:

Fdec.|d=5 =
9

8
N2P 2

∞∑
k=1

a1,ka2,k ·
1

k
·
(
1− e−2πk|µ|

)
·
(
2(πk|µ|)3 + 3(πk|µ|)

)
. (C.9)

In particular, the leading order term in the large µ limit is:

9π3

4
N2P 2µ3

∞∑
k=1

k2a1,ka2,k.

C.3.2 The contribution of massive fields in 3d

Let us now deal with the 3d case. The integrals involved are analogous to but simpler than the

5d case. In particular, we adopt the same integration domain for the EFT approach.

Starting with the fundamental hypermultiplets, we get

1

N2
Fdec.
fund,1 = π|µ|

∫ 1

0
dzP 2ζ2(z)

∫ +|µ|

−|µ|
dxϱ1(z, x)

=
π2

4

∞∑
k=1

a1,ka2,kk · (2πk|µ|) ·
(
1− e−2πk|µ|

)
,

and Fdec.
fund,2 = Fdec.

fund,1 due to the invariance under exchange of the label 1 ↔ 2.

For the other two contributions, we analyse the range of the eigenvalues for which the W-

bosons are massive. Let us assume µ ≫ 0 without loss of generality. A reasoning akin to the 5d

case yields

1

N2
Fdec.
der = 2 · π|µ|

∫ 1

0
dz

∫ +|µ|

−|µ|
dx

∫ ∞

0
dy

[
ϱ1(z, x)∂

2
zϱ2(z, y) + ϱ1(z, y)∂

2
zϱ2(z, x)

2

]
= −π5|µ|

∞∑
k=1

a1,ka2,kk
4

∫ |µ|

−|µ|
dxe−2πk|x|

∫ ∞

0
dye−2πk|y|

= −π2

4

∞∑
k=1

a1,ka2,kk · (2πk|µ|) ·
(
2− e−2πk|µ|

)
.
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For Fdec.
0 , when −µ ≤ x ≤ µ, the value y = x − µ < 0 is not consistent with the region y > 0,

and likewise for the other contribution. Therefore, Fdec.
0

∣∣
d=3

= 0.

Summing all the contributions we find

Fdec.|d=3 =
π2

4
N2

∞∑
k=1

a1,ka2,kk · 2πk|µ| ·
(
1− e−2πk|µ|

)
. (C.10)

In particular, the leading order term in the large µ limit is:

π3

2
N2|µ|

∞∑
k=1

a1,ka2,kk
2.

Along the way, we notice that these background contributions in 3d satisfy the analogue of the

equilibrium condition:

Fdec.
0 + Fdec.

der = −1

2

2∑
α=1

Fdec.
fund,α.

D Proof of the F-theorem

In this appendix we provide the details of the proof of the stronger version of the F-theorem,

for the RG flows we consider in the main text — the ones sketched in Figures 1 and 2 in the

introduction. In Appendix D.1 we give a holographic proof of the F-theorem by studying the

monotonicity of chol as a function of σ0/P . In Appendix D.2 we give an independent derivation

of the same result from the field theory point of view.

D.1 Holographic F-theorem with two rank functions

Let us consider the two quantities in (2.30) and (2.31). Generically we write

chol[R1,R2] = γ
∞∑
k=1

k4−d

[
R2

1,k +R2
2,k + 2R1,kR2,ke

− kπσ0
P

(
1 +

kπσ0
P

)]
. (D.1)

Here γ > 0 is a dimension-dependent positive number, not important in what follows. We define

the two quantities,

K1 = lim
σ0→0

chol[R1,R2]− lim
σ0→∞

chol[R1,R2] = 2γ
∞∑
k=1

k4−dR1,kR2,k, (D.2)

K2 =
∂

∂σ0
chol[R1,R2] = −2

γπ2σ0
P 2

∞∑
k=1

k6−dR1,kR2,ke
− kπσ0

P . (D.3)

We want to show that K1 ≥ 0 and K2 ≤ 0. To do this, we use the expressions for the Fourier

transform of the rank functions without offsets (N0 = NP = 0), derived in (2.18),

Rα,k =
2P

π2k2

P−1∑
j=1

Fα,j sin

(
kπj

P

)
, α = 1, 2 . (D.4)
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We rewrite K1 and K2 in D.2 and D.3, using the special functions in Appendix A, as

K1 = −γP 2

π2

P−1∑
j=1

P−1∑
ℓ=1

F1,jF2,ℓ

[
Gc

d

(
0,

π

P
(j + ℓ)

)
−Gc

d

(
0,

π

P
(j − ℓ)

)]
, (D.5)

K2 = γσ0

P−1∑
j=1

P−1∑
ℓ=1

F1,jF1,ℓ

[
Gc

d−2

(σ0
P

,
π

P
(j + ℓ)

)
−Gc

d−2

(σ0
P

,
π

P
(j − ℓ)

)]
. (D.6)

To show that K1 is positive and K2 is negative, it is thus sufficient to show that the function

Gdif
d (σ, v, w) := Gc

d(σ, v + w)−Gc
d(σ, v − w) . (D.7)

is negative for v, w ∈ (0, 1) and σ > 0. If v + w < 1 we can show this by first using that

v + w > v − w and then using that Gc
d(σ, η) is a decreasing function in the second argument on

(0, 1), because ∂ηG
c
d(σ, η) = −πGs

d−1(σ, η) and Gs
d−1(σ, η) is a positive function for η ∈ (0, 1). If

v + w > 1, we first use the the periodicity and even property of Gc
d to write

Gdif
d (σ, v, w) = Gc

d(σ, 2− v − w)−Gc
d(σ, v − w) . (D.8)

Because v < 1, we know 2 − v − w = (2 − 2v) + (v + w) > v + w, and we can use the same

argument that Gc
d(σ, η) is decreasing on η ∈ (0, 1). As a side remark, a corollary of the negativity

of Gdif
d (σ, v, w) is that the potential Ŵ (σ, η) of eq. (A.4), without offsets, is also negative.

D.2 F-theorem in mass-deformed SCFTs

Our starting point is the definition (3.31), which we recall:

FEFT = F − Fdec..

For F we use expression (3.15), and we refer to Appendix C for a proper definition of the

contribution Fdec. from the fields that decouple at the end of the RG flow. Without loss of

generality, we also assume µ > 0.

As explained in Subsection 3.5, for an RG flows that splits the quiver Q → Q1 ⊔ Q2, this

effective free energy satisfies

lim
µ→0

FEFT = F [Q], lim
µ→∞

FEFT = F [Q1] + F [Q2].

The part of FEFT we are interested in is the one carrying the mass dependence, namely F int
EFT =

FEFT −F [Q1]−F [Q2]. We have

F int
EFT =

(−1)
d−3
2

2
N2P d−3

∫ 1

0
dzζ2(z)

[∫ +∞

−∞
dx ϱ1(z, x)fh(x− µ)−

∫ +µ

−µ
dx ϱ1(z, x)fh(µ)

]
+ (1 ↔ 2),

The two contributions with subscripts 1 and 2 swapped are equal, hence we trade the (1 ↔ 2)

term for a factor of 2. Next, we use (3.8) written in the form

fh(x− µ) = C(−1)
d−3
2 π|x− µ|d−3, C =

1 d = 3,

9
2 d = 5.
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Then, to simplify the absolute values, we use the elementary rewriting
∫ +∞
−∞ dx =

∫ µ
−∞ dx+

∫∞
µ dx

and
∫ +µ
−µ dx =

∫ µ
−∞ dx−

∫ −µ
−∞ dx. These manipulations give

F int
EFT

CN2P d−3
= π

∫ 1

0
dzζ2(z)

[∫ +∞

−∞
dx ϱ1(z, x)|x− µ|d−3 − |µ|d−3

∫ +µ

−µ
dx ϱ2(z, x)

]
= π

∫ 1

0
dzζ2(z)

(∫ µ

−∞
dx ϱ1(z, x)

[
(µ− x)d−2 − µd−2

]
+

∫ ∞

µ
dx ϱ1(z, x)

[
(x− µ)d−2 + µd−2

])
,

where in the second line we have used ϱ1(z,−x) = ϱ1(z, x).

Focusing now on d = 3, we obtain

F int
EFT

N2

∣∣∣∣
d=3

= π

∫ 1

0
dzζ2(z)

[
−
∫ µ

−∞
dx xϱ1(z, x) +

∫ ∞

µ
dx xϱ1(z, x)

]
. (D.9)

Setting µ = 0 we have

F int
EFT

N2

∣∣∣∣
d=3

= π

∫ 1

0
dzζ2(z)

∫ +∞

−∞
|x|ϱ1(z, x)dx > 0,

which is the integral of positive definite quantities. This immediately implies F [Q] > F [Q1] +

F [Q2]. Moreover, differentiating (D.9) we find

∂µ
F int
EFT

CN2

∣∣∣∣
d=3

= π

∫ 1

0
dzζ2(z) [−2µϱ1(z, µ)] ≤ 0.

The last function is negative semi-definite: there is a factor −2 multiplying the integral of non-

negative quantities. Besides,

lim
µ→0

µϱ1(z, µ) = 0, lim
µ→∞

µϱ1(z, µ) = 0,

which directly implies ∂µFEFT = 0 at the CFT points, proving that FEFT is stationary there.

Let us now consider d = 5. By similar rewriting of the integration domain, we find

F int
EFT

N2P 2

∣∣∣∣
d=5

=
9π

2

∫ 1

0
dzζ2(z)

[
−2

∫ µ

0
dx ϱ1(z, x)

(
x3 − 3µx2 + 3µ3x

)]
. (D.10)

As above, at µ = 0 we obtain a positive quantity, thus F [Q] > F [Q1] + F [Q2]. Differentiating

with respect to µ, we find

∂µ
F int
EFT

N2P 2

∣∣∣∣
d=3

= −9π

∫ 1

0
dzζ2(z)

[
µ3ϱ1(z, µ) + 3

∫ µ

0
x(2µ− x)ϱ1(z, µ)

]
≤ 0,

again with a negative overall coefficient multiplying a non-negative integral.
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