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Abstract

We present an alternative to reweighting techniques for modifying distributions to ac-
count for a desired change in an underlying conditional distribution, as is often needed
to correct for mis-modelling in a simulated sample. We employ conditional normalizing
flows to learn the full conditional probability distribution from which we sample new
events for conditional values drawn from the target distribution to produce the desired,
altered distribution. In contrast to common reweighting techniques, this procedure is
independent of binning choice and does not rely on an estimate of the density ratio
between two distributions.

In several toy examples we show that normalizing flows outperform reweighting ap-
proaches to match the distribution of the target. We demonstrate that the corrected dis-
tribution closes well with the ground truth, and a statistical uncertainty on the training
dataset can be ascertained with bootstrapping. In our examples, this leads to a statisti-
cal precision up to three times greater than using reweighting techniques with identical
sample sizes for the source and target distributions. We also explore an application in
the context of high energy particle physics.
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1 Introduction

In many areas of science, simulations are used to depict the behaviors of real world sys-
tems. However, due to lack of knowledge or approximations applied to make the simula-
tion tractable, predicted distributions often deviate from observations at some level of preci-
sion. For accurate tests of theoretical predictions using data collected from experiments, it is
therefore necessary to correct the simulated data and adjust the distributions to better match
observed data. Correcting observed mis-modelling is particularly important in high energy
particle physics (HEP), in which Monte Carlo simulation (MC) of complex processes form the
bedrock of tests of the Standard Model of particle physics (SM); for example see Refs. [1-3].

One way of improving a multi-dimensional density p is to alter the initial marginal densi-
ties of some quantities p(c) to better reflect a target g(c); g(c) may represent an observation
or ground truth of some control variable, for example. Quantities of interest, x, will have sim-
ulated and true conditional densities on ¢, respectively p(x|c) and g(x|c). A new joint density
can be constructed from the conditional density of p together with the marginal density over
c of g: p’(c,x) = p(x|c)q(c). Following the nomenclature of Cover and Thomas, the relative
entropy between any two joint densities f and g is given by

D(f (c,x) Il g(c,x)) =D(f(c) |l g(c)) + D(f (xle) I| g(xlc)),

proven as Theorem 2.5.3 in Ref. [4]. From this is it clear that

D(p'(c,x) |l q(c,x)) < D(p(c,x) Il g(c, x)), @)

since Vf,g. D(f || g) = 0, while D(p’(c) = q(c) || g(c)) = 0. In other words, the divergence
between p’(c, x) and q(c, x) comes entirely from any residual difference in their conditional
densities, D(p(x|c) || g(x]|c)).

The standard approach in HEP to correct or alter a distribution is to derive the density
ratio estimates (DRESs) between the initial and target distributions in some space. The density
ratio at a point c is defined as g(c)/p(c), where q and p are the two densities being compared.
These DREs can be applied as weights to samples of the predicted density p to improve the
matching of the simulated distribution to the some other distribution g — the observed data,
for example. Alternatively, the DREs can be used to down-sample the initial distribution to
match the target. Histograms or classifiers are commonly used to estimate the density ratios
and derive weights for each event.

In this work we explore the use of conditional Normalizing Flows (cNFs) [5-10] to adjust
the distributions of samples drawn from a simulator. We demonstrate that using cNFs, we can
achieve better closure than both binned and unbinned reweighting approaches on a non-trivial
toy example, and demonstrate its further possible applications to a HEP example, correcting
the kinematics of top quark pairs produced at the LHC.
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2 Method

2.1 Reweighting

In HEB the standard approach to match distributions over ¢ and propagate to other distribu-
tions over quantities of interest x is to derive the DREs as a function of ¢ (R(c) = q(c)/p(c)
for an initial distribution p and a target distribution q). The values R(c) are applied to sam-
ples drawn from the initial distribution c,x ~ p(c, x) as weights, such that the relative en-
tropy between the altered probability distribution matches p’(c, x) = p(x|c)q(c). As shown in
Equation 1, p’(c, x) is guaranteed to have a lower relative entropy with respect to the target
distribution g(c, x) than is observed between the initial distribution p(c, x) and g(c, x). Given
the target distribution g(c, x) has values ¢ ~ g(c), it follows that with weights calculated as

R(c)= ©)

p(c)’

and starting from the definition of the joint distributions

Pe~p(e)(€, X) = p(x]c)p(c), )

it can straightforwardly be shown that

p(e, IR(E) = p(x|e)p(IRCC),
(e, OR(E) = plxlIp(©) X,

p(c)
p(e, OR(E) = p'(c, ).

In deriving the weights R(c), one needs access only to the marginal distributions p(c) and q(c),
which can for instance be calculated from the samples drawn from the two distributions.

Two methods are commonly used used to extract R(c) in HEP Perhaps the simplest is to
build the ratio from two binned histograms, with the benefit that they are straightforward
to calculate. Problems arise when the true R(c) changes on a scale smaller than the width
of the histogram bins; in large-dimensional spaces with a finite number of samples from the
initial and target distributions, one is often forced to choose between small bin sizes with
an imprecise DRE estimate in each or large bins over which R(c) may change substantially.
This may be mitigated somewhat through sequential application of weights calculated in each
dimension separately, but this procedure correctly produces the target distribution only in the
limit that the joint densities factorize into a product of marginals.

A second approach is to approximate R(c) using neural networks. As presented in Ref. [11],
it is possible to train a classifier fy(c), by minimizing over the classifier parameters ¢, to
discriminate between samples drawn from the distributions p(c) and g(c), from which the
resulting classifier output can be converted into a weight with

f¢(C)
1 —f¢(C)'

This has advantages over the binned approach in that it is fully continuous and can correlate
weights at the required length scales in order to build the distribution p’(c, x).

However, both approaches based on DREs share the same drawback: they rely on building
an approximate ratio of two probability distributions rather than simply approximating p(x/|c)
and altering the density over c. If there is little overlap between the support of the two distri-
butions this leads to either very large or very small values of R(c), resulting in an effective loss
of the sample size once reweighting is applied. This can have a large impact on the statistical
precision of g(c, x).

R(c) = (3)
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2.2 Conditional normalizing flows

Normalizing flows are a family of generative models which in recent years have gained traction
due to their ability to map the probability distribution of a complex distribution from a simpler
distribution of the same dimensionality. They learn the density of the complex distribution
under a series of invertible transformations fy, a family of functions parameterized by 0, by
minimizing the loss function

log (px (x)) = log (pz(f; ' (x))) —log |det (T (f5 (x)))]

with respect to 8, where J ( fo 1(x)) is the Jacobian of the transformation f,” 1(x), which maps
the complex distribution py to the chosen base distribution p,. Conditional normalizing flows
similarly follow from the change of variables formula, with the probabilities and transforma-
tion conditional on some additional properties c

log (px (x|c)) = log (pz (f5 ' (x|c))) — log |det (T (f5 " (xc))] C))

Due to their ability to learn the conditional probability distribution p(x|c) from samples
drawn from p(c,x), we demonstrate normalizing flows can be used directly with Eq. 2 to
perform the same role as reweighting. Instead of learning or approximating the density ratio,
one needs only to sample from the normalizing flow but with the target distribution g(c) to
produce the desired distribution g(c, x).

There are several advantages to this approach over constructing DREs and reweighting.
The statistical precision of regions of probability space are no longer constrained by the derived
DREs, as all sampled events have a weight of unity. Instead, the statistical uncertainty comes
only from the statistical precision of the learned conditional density p(x/|c), as it is possible to
sample any number of events from it for each c. Where necessary, the statistical uncertainty
on the sampled distribution can be estimated through bootstrapping [12].

In our tests, the normalizing flows are able to learn a more precise approximation of the
conditional probability distribution p(x|c) at low probability values for ¢ than is possible when
considering only data with those values c. This is a result of the normalizing flow learning
the correlations in the underlying probability distribution function. Similar behaviour is ob-
served when training neural networks to approximating the DRE in comparison to binned
approaches.

3 Related work

Modifying distributions to account for mis-modelling or to follow some other underlying dis-
tribution is often performed with event weights or resampling.

In the case of reweighting, machine learning approaches based on density ratio estimation
have had a large amount of success, in particular in the field of high energy physics. The CARL
method, introduced in Ref. [11], uses neural networks to learn the likelihood ratio which can
be used for covariate shift and importance sampling of distributions. In Ref. [13], boosted
decision trees are employed to derive event weights for reweighting. In Ref. [14], neural
networks are used to reweight the full phase space of events generated with two different MC
generators, and extended to the conditional case in Ref. [15].

Instead of reweighting events, it is also possible to learn a mapping between the initial
and target distributions. In Ref. [16] partially input convex neural networks [17] are used to
calibrate distributions from MC simulation to match those observed in data. In Refs. [18,19]
normalizing flows are trained to transport events from MC to data domain to another, and in
Ref. [20] they are used to move to data to different conditional values on the same distribution.

4
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In our work we use normalizing flows to learn the conditional probability distribution
of the initial data, from which events following a different conditional distribution can be
sampled. This is similar to the approach used in Ref. [21]. Here, a normalizing flow is trained
to learn the conditional density on side-band data and apply it to a blinded signal region.
These data are used to train a classifier, and no treatment is required or derived to account
for the statistical uncertainty on the relating distribution. Concurrent with our work, Ref. [22]
presents an examination of similar methods applied for estimating backgrounds in blinded
signal regions, including estimation of the statistical uncertainty.

4 Application to a toy example

To show the benefit of cNFs in comparison to traditional reweighting approaches, we use a toy
example from which any number of data can be sampled for any chosen change of conditions.
As shown in Ref. [23], sampling more data points from a generative model than are available
in the initial dataset can lead to higher statistical precision in the output of trained models.

We define a two dimensional probability distribution f (c) solely dependent on two condi-
tional variables ¢ = (¢, ¢;), with marginals f;, i €0, 1

/ C/

rooy_ S 1 . o ‘o 20,0y
folcg,c1) = o Cllz) o cé)z) with o> €1 _N((cl)’ (co,cl/Z)) (5)
/ AV [
fl(c(/)’c:/l): (C0+C1) (CO (f;) Wlth Cé))cj/[ :N((CO)’(CO:C]/Z)) (6)

(1+c(’)—|-ci)_(1+c0 c1 )\ co,€1/2

from which samples x are drawn. Here c; and c] are distributions defined by ¢, and c;.

For the initial probability distribution, we choose a 2D standard normal distribution for
p(c), ¢ ~ N (0,1). Figure 1 shows the 1D marginals of x, and x; for samples drawn from
f(c). For target distributions we change the distribution from which ¢ is sampled. Here we
use a skewed Gaussian distribution, with

¢ ~SN(1.5,1.5,-2.5) and ¢y ~SN(1.5,1.5,2.5),
where the three parameters to SA are the location, scale, and shape, respectively. We also
test a symmetric smooth box distribution defined by
1 1
1+exp(—10(x +1)) 1+exp(—10(x—1))

C12 ™ q(x)=

Each target distribution has a sample size of 107, such that the statistical uncertainty on the
target distribution does not impact the performance of the three methods.

We train a conditional normalizing flow on the initial samples, learning the conditional
density p(x|c) from samples x ~ f(c). To produce the target distributions with different
conditions, we sample once from the cNF for all 107 values of ¢ from the target conditions to
generate the target distribution under new conditions.

We compare the cNF approach to two reweighting references. For DRE (binned) we take
a ratio of the initial and target distributions over ¢ in two dimensions, and for DRE (NN) we
train a classifier following the procedure in Ref. [11] with ¢ as an input. The distributions of
f(¢) for the three scenarios are shown in Fig. 1.

4.1 Configuration

We construct our conditional normalizing flows using 5 stacks of rational quadratic splines [ 24]
with autoregressive transformations for each layer. The cNFs are implemented using the
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Figure 1: The ground truth distributions of the conditional quantities ¢, and ¢; (upper
panels) as well as the marginals of the quantities of interest, f, and f; (lower pan-
els), for three choices of distribution over ¢y and ¢;: a standard multivariate normal
Gaussian distribution, a skewed Gaussian, and a uniform distribution over [—1,1]
for each choice of ;.

nflows [25] package with PyTorch [26]. The networks are trained for 500 epochs with a co-
sine annealing learning rate [27], with an initial value of 10~* using the Adam optimiser [28]
and a batch size of 512.

For both of the reweighting approaches, event weights are calculated for each target dis-
tribution. For DRE (binned), the weights are calculated by taking the ratio of the target and
initial histograms, defined using a uniform grid with 100 bins between [-4,4] on each axis in c.
For DRE (NN), the classifier trained on ¢ from the target and initial distribution comprises four
layers of 64 nodes, with ReLU activations in the hidden layers and a sigmoid activation on the
output. It is trained with a flat learning rate of 10~* for 50 epochs using the Adam optimiser.
Event weights are defined using Eq. 3 with the classifier output.

4.2 Comparison of methods

In Fig. 2 we show the distribution of data drawn from the cNF trained on the initial data,
but following the Skew Gaussian and Smooth box distributions. The statistical uncertainty
is obtained with bootstrapping, trained 12 cNFs on bootstrapped training data. The central
estimation is taken as the mean over all 12 models. We compare this to the closure obtained by
the DRE (binned) and DRE (NN) approaches shown in Figs. 3 and 4 for the skewed Gaussian
and smooth box target conditional distributions respectively. In these figures, we look at not
only the closure between the reweighting method and the target, but also the relative statistical
precision in each bin with respect to the cNE The statistical uncertainty on the reweighting
approaches is calculated from the sum of weights in each bin.

For both target distributions, the agreement of all approaches is reasonable, however we
observe that the cNF is much closer to the true target distribution than the reweighting ap-
proaches. This is most noticeable in the tails of the distribution. In regions of the distribution
with low numbers of events, we observe fluctuations in all three approaches about the true
target distribution. In regions of high yields, we see that the cNF is matching the true target
distribution perfectly whereas the reweighting approaches, although still within the uncertain-
ties of the prediction, show less precise closure. Furthermore, the statistical precision when
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using the cNF is almost always greater than either reweighting approaches.
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Figure 2: The marginals of the cNF trained on the original Gaussian conditional
distributions applied to a skewed Gaussian or uniform conditional distribution com-
pared to the ground truth. Good closure is observed for both marginals. Statistical
uncertainties in the cNF function are estimated using 12 bootstraps.

As a further measure of performance we train additional classifiers on the output of each
of the three approaches to separate them from the target distribution. In the case where the
distributions match perfectly the classifier will not be able to separate the samples, whereas
the worse the closure the easier it will be. All methods result in a much better closure than
the initial distribution, with area under the receiver operator characteristic curve close to 0.5
in all three cases.

As an additional test we want to verify whether the normalizing flow truly learns the condi-
tional probability density from the training samples. In Fig. 5 we draw samples from a narrow
window in ¢ following the original distribution over conditions used to train the normalizing
flow. These data are compared to samples drawn from the initial distribution for the same
values c. Here we can see that samples from the normalizing flow closely match the original
target distribution within statistical uncertainties.

4.3 Validating statistical uncertainties

To verify that the statistical uncertainties associated with the methods are reasonable, we look
at the pulls observed in all bins of the two-dimensional distributions. The pull per bin i is
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Figure 3: Closure of corrected conditional distributions to the ground truth when
using the reweighting methods with a skewed Gaussian distribution over the con-
ditional quantities. The marginal distributions of f, and f; is shown in the upper
panels, the ratio to the ground truth distribution in the middle panels, and the ra-
tio between the statistical uncertainty on the reweight methods and that from the
conditional normalizing flows in the lower panel. The conditional normalizing flows
generally result in strongly reduced statistical uncertainties compared to the reweight
methods.
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Figure 4: Closure of corrected conditional distributions to the ground truth when us-
ing the reweighting methods with a uniform distribution over the conditional quan-
tities. The marginal distributions of f, and f; are shown in the upper panels, the
ratio to the ground truth distribution in the middle panels, and the ratio between the
statistical uncertainty on the reweight methods and that from the conditional nor-
malizing flows in the lower panel. The conditional normalizing flows generally result
in strongly reduced statistical uncertainties compared to the reweight methods.
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Figure 5: Closure in a small window of conditional values cy,c; € (0.9,1.1], for
co>¢1 ~ N(0,1). Samples generated with the normalizing flow (blue) are compared
to data drawn from the original distribution (black).

calculated from the observed deviation from the target

red target
xPred e

pull, =t "t )

o,

given the total statistical uncertainty o; of the predicted and target data. The distribution
over all pulls for the distribution should follow a normal distribution. The pull distributions
are compared for the three approaches in Fig. 6, where in both cases all three follow a normal
distribution. This demonstrates that not only does the cNF result in higher statistical precision,
but also that the uncertainties from bootstrapping correctly estimate the true statistical preci-
sion. In the case of both reweighting approaches, the statistical uncertainties are derived only
from the values of the weights, but the uncertainty on the weights themselves is not included.

Additionally, in practice the target distribution over the conditionals, g(c), is not always
analytically known. The limited statistics of target values therefore introduce an additional
source of statistical uncertainty into the reweighting approaches. For the cNF this would not
change the precision of p(x|c), and the impact on the generated samples for the target distri-
bution would be reduced by sampling multiple times for each ¢ from the base density of the
normalizing flow.

One area in which all three approaches lose precision is the case where the target distri-
bution q(c) does not fully overlap with p(c) (V¢’ ~ q(c) where p(c’) = 0). For these cases the
density ratios R(c) are infinite, however as there are no corresponding data in p(x, ¢) to apply
the weights to, the probability density p’(x,c) = 0. For the conditional flow p’(x,c) can have
non zero probability density for these target values ¢, however this depends strongly on the
transformations used and whether it is an interpolation or extrapolation region [29]. In the
case of interpolation, many neural network architectures are well behaved and the resulting
distributions can be expected to be covered by the statistical uncertainty obtained through
bootstrapping. However, for extrapolated values of ¢ the exact behaviour depends strongly
on the transformations used in the normalizing flow, and on any regularisation used. It is not
expected that the flow will perform well far away from the training region.

10



SciPost Physics Submission

3501 Skew Gaussian 350 Smooth box
— WN(0,1) u=0.0, 0=1.0 — WN(0,1) p=0.0, 0=1.0
DRE (binned) u=-0.128, 0=1.152 DRE (binned) p=-0.157, 0=1.402
3001 DRE (NN) u=-0.082, 0=1.144 300 DRE (NN) u=-0.162, 0=1.767
Flow u=-0.021, 0=1.024 Flow u=-0.058, 0=1.097
250+ 250
(%] %]
2200 2200
€ e
w w
150+ 150
100 100
50+ 50
0 T 0
4 4
(a) Skew Gaussian (b) Smooth box

Figure 6: Comparisons are shown of pull distributions over the 2D probability density
p(fo, f1), approximated using 2D histograms, for the various strategies for correcting
distributions over the conditional quantities. The normal distribution is shown for
reference in black. Despite resulting in substantially smaller statistical uncertainties
on the corrected p(f;, f1) prediction, the cNFs maintain appropriate behaviour in the
pull distribution, indicating a correct estimate of the statistical uncertainty is obtained
via bootstraps.

5 Further applications

5.1 High energy physics

In many cases, disagreements are observed between the data collected by experiments and
predictions; these predictions are often produced via MC sampling generators, such as Her-
wig [30], Pythia [31], and Sherpa [32]. For example, there is a long-standing discrepancy
between various MC generator predictions and LHC collision data in the differential cross sec-
tions of pairs of top-quarks as a function of their momenta transverse to the incoming proton
beams (py). Top-quark pair production is ubiquitous in analyses of LHC data due to its rela-
tively high cross-section and striking experimental signature; as such, it has been the subject
of intense scrutiny at the LHC. Both the ATLAS and CMS Collaborations have produced de-
tailed measurements of this process and have compared these measurement to state-of-the-art
predictions [33-38]. Both experiments have reported differences between data and MC gen-
erator simulations. Analyses of the LHC data for which top-quark pair production is a large
background often resort to a binned reweighting strategy to account for this discrepancy (see,
for example, Refs. [39,40]). By doing so, they hope to mitigate any mis-modeling of this
background process and it impact on their primary analysis target.

In this example we use apply conditional normalizing flow approach to resample tf events
from simulation according to the measured distributions from data in one kinematic distribu-
tion and observe the impact on other measured kinematic distributions. The measured kine-
matic observables are described in Table 1, and are chosen following a recent measurement of
differential tt production cross section performed by the ATLAS collaboration [41].

For this study we choose to correct the modelling of the transverse momentum of the top
quark p%had to match that in data. However, in principle the method can be used for any com-
bination of the chosen observables, with the impact observed on the remaining distributions.

Top-quark pair production cross sections were predicted with Pythia v8.3 [31] using the
Monash tuned set of parameters [42] to simulate tt production at the LHC, corresponding
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Table 1: Kinematic observables at the particle level for events in top quark pair pro-
duction in the single lepton channel.

Observable | Description

pfr’had Transverse momentum of the hadronically decaying top quark
m't Invariant mass of the top quark pair
py Transverse momentum of the top quark pair

to leading order (LO) + parton shower (PS) accuracy. The NNPDF2.3 QCD+QED LO proton
parton distribution set was used [43]. Fiducial requirements were imposed using the Rivet

toolkit [44]. The conditional distribution p(p%t,m”lp%had) was learned via a normalizing

thad, the cNF was trained using 200 000 ttevents.

flow conditioned on p;;
Once p(pif, m"|py"“?) is approximated using the Pythia predictions, this is applied to the

t,had

pdata(pfr’had) observed in data to predict the joint p(py’, m"") distribution by feeding samples

of p;’had ~ pdata(pfr’had) into the normalizing flow. To achieve this, we approximate the con-

t,had
T

For comparison, we also apply the binned reweighting method using the binned p;’haddensity
from Pythia and the unfolded ATLAS data.

Figure 7 compares the outcome of the two approaches to the unfolded data. Neither ap-
proach faithfully reproduces the data marginals of pya.,(py, m'"), which we attribute to the
inadequate predictive power of the leading-order Pythia calculation. Large differences be-
tween the resulting distributions are not expected, as in the ideal case both the reweighting
and cNF should result in the same corrected probability distribution. Nonetheless, correcting
the pfr’had distribution does yield a better description of the m*‘differential cross-sections than
the nominal Pythia prediction. Crucially, our approach allows for a more precise model of the
corrected Pythia, with 25-50% smaller statistical uncertainties per bin than obtained using the

binned reweighting approach.

tinuous distribution of p in data by applying splines to the binned ATLAS measurement.

I — Data = — Data
w031 +  MC Flow w0204 7 +  MC Flow
2 -+ MC Reweighting 2 = -+ MC Reweighting
5 5
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Figure 7: The marginals of the normalizing flow outputs compared to unfolded data.
Statistical uncertainties are estimated using bootstraps of the training samples. The
cNF approach generally achieves 25-50% smaller statistical uncertainties than the
binned reweighting.
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5.2 Preprocessing for neural networks

Using this approach will be particularly useful for training other neural networks which require
distributions over a subset of inputs for different classes to match, for example when using
planing to reduce bias. In comparison to reweighting and downsampling approaches, this
approach does not reduce the effective training statistics, nor does it introduce a large range
of weights per batch. Additionally, it can be used to increase the effective training statistics for
a neural network, which has been observed to increase performance in supervised tasks [23].

Furthermore, it can be useful when using distribution or distance based loss functions in
conditional generative models which cannot easily incorporate weights. In particular when
training partially input convex neural networks [17], the conditional normalizing flow can be
used to guarantee the same values of non convex inputs between the input and target batch of
data. In cases where there is a difference in the distribution of the non convex inputs between
the input and target data, these models can struggle to converge.

6 Conclusion

In this work we have introduced an alternative approach to standard reweighting techniques,
using conditional normalizing flows. With cNFs we show it is possible to extract a model
for the conditional probability distribution and generate new data from the distribution for
a desired conditional distribution, removing the need to derive per event weights to modify
distributions.

In comparison to binned and density estimation based reweighting techniques, this ap-
proach demonstrates better agreement to the data drawn from the true target distribution,
and higher statistical precision. Furthermore, the statistical uncertainty on the generated data
distributions come only from the number of training examples and can be calculated with
bootstrapping approaches, rather than the compound of both the statistical precision on both
the training and target distributions. Due to learning the conditional distribution, using cNFs
does not suffer from sparse data in high dimensions, like with binned approaches, and instead
scales well to higher dimensions. This also enables generating a much larger number of data
for given conditional values, which has been seen to be beneficial with generative adversarial
networks for training other neural networks.

In addition to the benefits for training other neural networks, we show how this approach
can be applied to observed and measured distributions in high energy physics analyses. By
training a cNF on the MC simulation of the signal process for the measured observables, mis-
modelling in one or multiple observables compared to the observed experimental data can be
accounted for and the resulting distributions can be compared to the data. This methodology
could be further expanded in reinterpretation analyses. The distributions of non observed pa-
rameters could be changed, in order to study their impact on the agreement between recorded
collision data and the theoretical predictions which depend on these parameters. Examples
for such parameters are higher order effects in the signal process, such as the modelling of top
quark kinematics or monte carlo tuning parameters. Hypothetical corrections from beyond
the standard model physics that modify underlying distributions could also be studied, such
as those arising from loop effects in top quark and Higgs boson production mechanisms.
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A Supplementary Material

A.1 Detailed network architecture

The following table show the hyperparameters of the conditional normalizing flow used in the

results section

Category Hyperparameter Value
Number of stacks 12
Tails Linear
Flow Number of bins 10
Tail Bound 3.5
LR scheduler CosineAnnealingl.R(1e-4, 1e-6)
Training Number of epochs 500
Training size 500.000
Gradient clipping 10

Table 2: Hyperparameters of the conditional normalizing flows used for the toy ex-

amples

Table 3: Hyperparameters of the normalizing flows trained on ttsamples

Category Hyperparameter Value
Number of stacks 5
Tails Linear
Flow Number of bins 10
Tail Bound 3.5
Conditional Base  True
LR scheduler CosineAnnealingl.R(1e-3, 1le-5)
.. Number of epochs 500
Training

Training size 200.000
Gradient clipping 10

A.2 Neural network hyperparameters

Throughout the paper we have been using neural networks as a discriminator and for the DRE
(NN) method. All the network have the same hyperparameters seen in Table 4.

Table 4: Hyperparameters for the neural networks

Category Hyperparameter Value
Hidden layers 4
Network parameters Layer size 64
Batch norm After each activation function
Activation function Leaky ReLu
Loss function BCE

LR scheduler CosineAnnealingLR(1e-3, le-7)

Training Number of epochs 200
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Figure 8: Comparisons are shown of estimated statistical uncertainties on binned
marginal distributions over quantities of interest, f; and f;, after altering the con-
ditional quantities ¢y and c¢;. Both the skewed Gaussian and uniform distribution
examples are shown. The conditional normalizing flows generally result in strongly
reduced statistical uncertainties compared to the reweight methods.
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Figure 9: Receiver operator characteristic curves for classifiers trained to discrimi-
nate between the ground truth distributions over f;; and f;, with altered distributions
over ¢; and ¢y, and those obtained through several strategies for correcting the condi-
tionals’ distributions. While a classifier can easily discriminate between the original
distribution (produced via a standard multivariate Gaussian over ¢, and c;) and the
altered distributions, it is unable to do so after correcting the conditional distribu-
tions using any of the strategies tested.
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