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Abstract

A spontaneous symmetry-breaking order is conventionally described by a tensor-product
wavefunction of some few-body clusters; some standard examples include the simplest
ferromagnets and valence bond solids. We discuss a type of symmetry-breaking orders,
dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by
any such tensor-product state. Given a symmetry breaking pattern, we propose a crite-
rion to diagnose if the symmetry-breaking order is entanglement-enabled, by examin-
ing the compatibility between the symmetries and the tensor-product description. For
concreteness, we present an infinite family of exactly solvable gapped models on one-
dimensional lattices with nearest-neighbor interactions, whose ground states exhibit
entanglement-enabled symmetry-breaking orders from a discrete symmetry breaking.
In addition, these ground states have gapless edge modes protected by the unbroken
symmetries. We also propose a construction to realize entanglement-enabled symmetry-
breaking orders with spontaneously broken continuous symmetries. Under the unbro-
ken symmetries, some of our examples can be viewed as symmetry-protected topological
states that are beyond the conventional classifications.
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1 Introduction

Spontaneous symmetry breaking is a ubiquitous phenomenon and plays fundamental roles in
numerous physical systems, ranging from astronomical objects like neutron stars to quantum
mechanical objects like atoms forming a crystal. It is also the basis of many important modern
technologies, such as hard drives, maglev trains, and spintronics.

In quantum physics, a standard recipe in characterizing a spontaneous symmetry breaking
order is by representing it as a tensor-product wavefunction of some few-body clusters. For
example, as depicted in Fig 1, a quantum ferromagnetic order is often described as a tensor
product of spin-ups or spin-downs; a valence-bond-solid order is described as a tensor product
of spin-singlets. Note that while a generic symmetry-breaking state is not a tensor-product
wavefunction, here we stress that the recipe is about the possibility of realizing such a symmetry
breaking state via a tensor-product wavefunction as a characteristic description. The tensor-
product description is also usually the “fixed point" wavefunction of the symmetry breaking
orders. This conventional wisdom seems to suggest that all symmetry breaking orders can be
represented by a tensor-product wavefunction.

Figure 1: “Classical" symmetry-breaking orders. (a) A quantum ferromagnetic order.
(b) A valence-bond-solid order.

Nevertheless, remarkably, there exist symmetry-breaking orders that are impossible to be
described by any tensor-product state, fundamentally requiring entanglement. We dub such
orders entanglement-enabled symmetry-breaking orders (EESBOs), which will be defined more
precisely later. How would such orders arise? An expected scenario is where the remaining
symmetry has some Lieb-Schultz-Mattis (LSM) constraints, mandating the states to be long-
range entangled. Later we will review how LSM constraints from the remaining symmetry
mandate EESBOs via an example from Ref. [1].

On the other hand, in this work, we investigate a less anticipated and less discussed situ-
ation where the symmetries do not have LSM constraints but are still incompatible with any
tensor-product wavefunctions. That is, although the wavefunction is short-range entangled, it
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can never be smoothly deformed to a limit represented by a tensor-product wavefunction, as
long as the given symmetry-breaking pattern is to be realized. We make this notion of EESBO
precise, and propose a diagnostic to check if a symmetry-breaking order is entanglement-
enabled. To illustrate the idea more concretely, we construct models with exactly solvable
ground states to unambiguously prove that such EESBOs can exist, where the spontaneously
broken symmetries are discrete. We then discuss more examples with spontaneously broken
continuous symmetries, which show additional interesting properties, such as novel structures
of the Goldstone modes.

In passing, we note that models exhibiting short-range EESBOs which can be diagnosed by
our diagnostic have appeared in Refs. [2–4]. However, the motivations to study such models
appear to not be based on EESBOs, and the obstruction of the local-product-state realization
of the order was not shown explicitly therein. In Appendix A, we will apply our diagnostic to
verify that they are indeed EESBOs.

Here we point out some potential significance of EESBO. The usual description of the
symmetry-breaking orders suggests that all symmetry-breaking orders are essentially “clas-
sical" [5], since they allow a description by a tensor-product wavefunction. On the other
hand, EESBO is intrinsically quantum, indicating the incompleteness of the above description.
For instance, recent development in the systematic understanding of the magnon topological
band structures is based on “classical" symmetry-breaking orders [6–10]. However, the com-
plete understanding must incorporate the magnons arising from EESBOs. Furthermore, the
properties of the symmetry defects associated with EESBOs are largely unexplored and could
pave a way to future technologies, much like the roles of skyrmions in spintronics [11–13].

This paper is organized as follows. In Sec. 2, we present a precise definition of EESBOs,
which is followed by some convenient diagnostics to check whether a symmetry-breaking or-
der is entanglement-enabled in Sec. 3. In Sec. 4, we provide an infinite family of models with
exactly solvable ground states that exhibit EESBOs (together with some other interesting prop-
erties), where the spontaneously broken symmetries are discrete. In Sec. 5, we discuss more
examples of EESBOs where the spontaneously broken symmetries are continuous. We finish
the paper with discussion in Sec. 6. Additional details are presented in various appendices.

2 Definition of entanglement-enabled symmetry-breaking orders

To define EESBOs precisely, we first need to clarify how to specify the symmetry setting of
a physical system, and the notion of a tensor-product state of few-body clusters. We will
see that EESBOs arise from some incompatibility between the symmetries and tensor-product
wavefunctions.

For concreteness, we consider a quantum system on a lattice, described by a tensor product
of local Hilbert spaces. Changing the structures of the local Hilbert spaces, i.e., their dimen-
sions and operator contents, changes the physical system. Below we often use “spin-S system"
to mean a bosonic system with 2S + 1 dimensional local Hilbert spaces. We assume that the
system is described by some local Hamiltonian with a symmetry group G0.

To describe spontaneous symmetry breaking, we first have to specify the symmetries of the
Hamiltonian1. In particular, we need the symmetry setting specified by i) the group G0 formed
by the symmetry actions on local operators, ii) how states in each local Hilbert space transform
under the symmetry, and iii) the locations of the degrees of freedom (DOF)2. For example, a
spin system on a kagome or honeycomb lattice described by the usual Heisenberg Hamiltonian

1We only consider 0-form, ordinary symmetries.
2In this definition of a symmetry setting, if there is a U(1) symmetry, the filling factor is allowed to be tuned

after specifying these three pieces of data, unless it is pinned by other symmetries.
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has G0 = SO(3)×ZT
2×p6m, where SO(3), ZT

2 and p6m describe the spin rotation, time reversal
and lattice symmetries, respectively. We stress that the group G0 does not fully specify this
symmetry setting without specifying how each spin transforms under G0, e.g., the magnitude
of the spin, whether it is a Kramers doublet, etc. We also need to specify the locations of the
spins, i.e., whether they live on a kagome or honeycomb lattice. However, for convenience,
we just use the group G0 to denote the symmetry setting, keeping other information implicit.

The ground states of the system may spontaneously break the symmetry G0 to its subgroup
G,3 and we denote this symmetry-breaking order by “G0→ G". To define EESBO more formally,
let us define the “classical" symmetry-breaking order first.

Definition 1 Given G0 and G, we call the symmetry-breaking order “classical" if its G-symmetric
ground states |ψ〉 can be represented by a local product state, i.e., |ψ〉=

⊗

i |ψi〉Λi
, where |ψi〉Λi

is supported only in a local region Λi for all i.

Here by local we mean that the “size" of Λi does not scale with the system size, and we will
call the state “ultralocal" if each Λi is just one site. Note that although a “classical" G0 → G
symmetry-breaking order can be realized by local product states, generically it can also be
realized by other states, which may have (even long-range) entanglement, since G alone does
not fully determine the ground states. As mentioned in Sec. 1 and Fig. 1, the all-up or all-down
ferromagnetic states and the valance-bond-solid state are examples of the classical order, since
the G-symmetric states (i.e., , the G0 symmetry-breaking states) can be realized as a local tensor
product state.

We now give a definition of EESBO, which is defined as the non-“classical" symmetry break-
ing orders.

Definition 2 Given the symmetry breaking relation G0→ G, if all possible G-symmetric ground
states cannot be realized by local product states but can be realized by some entangled states, we
call the G0 → G symmetry-breaking order an "entanglement enabled symmetry-breaking order"
(EESBO).

It is worth emphasizing that the above definition of EESBO is different from the usual phe-
nomenon of coexistence of spontaneous symmetry breaking and nontrivial topological phase.
In the latter, the ground state with spontaneously broken symmetries can be a nontrivial topo-
logical phase, but usually one assumes that it does not have to be a nontrivial topological
phase and the symmetry breaking pattern of interest can be represented by a local product
state. However, in our definition of EESBO, the ground states with the relevant symmetry
breaking pattern can never be represented by any local product state. An explicit example
that highlights this difference is given at the end of Sec. 4.

3 Diagnostics for long-range and short-range EESBOs

Having defined EESBOs, in this section we provide some convenient diagnostics that can be
used to check whether a symmetry-breakng order is entanglement-enabled.

As discussed in the Introduction, a somewhat expected scenario that gives rise to an EESBO
is if there are LSM-type constraints4 that mandate all G-symmetric ground states to be long-
range entangled [14–17], so the corresponding symmetry-breaking order must be entanglement-
enabled. For instance, consider a kagome lattice qubit system with G0 = SO(3)× ZT

2 × p6m,

3How states transform under G is determined by how they transform under G0, and the locations of the DOF
are often unchanged after spontaneous symmetry breaking. So the symmetry setting after spontaneous symmetry
breaking is fully specified.

4As commented before, in our definition the U(1) filling factor is not fixed unless it is pinned by other symme-
tries, so there is no LSM constraint purely associated with the filling factor.
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i.e., G0 includes an SO(3) spin rotation symmetry where the qubits carry spin-1/2, a ZT
2 time

reversal symmetry where the qubits transform as Kramers doublets, and a p6m lattice symme-
try that moves the locations of the qubits. It is proposed that G0→ G = SO(3)× p6m for some
Hamiltonian [1] (i.e., ZT

2 is spontaneously broken), which has an LSM constraint mandating
all G-symmetric ground states to be long-range entangled. LSM constraints therefore serve as
a useful diagnostic for the long-range entangled type of EESBOs.

Although interesting by itself, the entanglement-enabled nature of such symmetry-breaking
orders is anticipated due to the LSM constraints. It may be more remarkable that EESBOs
can arise even if G-symmetric states have no LSM constraint, i.e., G-symmetric states can be
short-range entangled but cannot be local product states. Given the original and remaining
symmetries G0 and G without the LSM constraints, how do we diagnose if the symmetry-
breaking order is entanglement-enabled? Assuming the G0 → G symmetry-breaking order is
realizable, we can have a useful general criterion to show its entanglement-enabled nature:
G contains a lattice symmetry which constrains the structure of any local product state, and
an on-site symmetry which is incompatible with this constraint. This symmetry G therefore
forbids the possibility of local-product-state realization, forcing the symmetry-breaking order
to be entanglement-enabled. In practice, the lattice symmetry will often constrain any local
product state to be ultralocal, which is then incompatible with the on-site symmetry.

4 EESBOs with a broken discrete symmetry

We first show an infinite family of examples of EESBO with a broken discrete symmetry. These
examples are inspired by a setup in Ref. [18], and we will point out the difference between
our consideration and Ref. [18] later. Each of this infinite family of EESBOs lives on a one
dimensional lattice, where each site hosts an n2 dimensional local Hilbert space, labeled by
an integer n ⩾ 3. We represent a basis of the local Hilbert space at site j by |α,β〉 j , where
α,β = 0, 1, · · · , n− 1 are defined modulo n. We consider the generalized Pauli operators µx ,z

j

and νx ,z
j , where

µz
j |α,β〉 j = e

2πi
n α|α,β〉 j , µx

j |α,β〉 j = |α+ 1,β〉 j ,

νz
j |α,β〉 j = e

2πi
n β |α,β〉 j , νx

j |α,β〉 j = |α,β + 1〉 j .

While it is convenient to view variables α and β as fictitious DOF, it is crucial to keep in mind
that the local Hilbert space is formed by α and β together; in particular, one cannot discuss the
entanglement between the α and β DOF at the same site.

The symmetry group G0 of the Hamiltonian contains a Zx
n ×Z

z
n internal symmetry, where

Zx
n is implemented by

∏

j µ
x
j ν

x
j , and Zz

n is implemented by
∏

j∈even(µ
z
jν

z
j)
∏

j∈odd(µ
z
jν

z
j)
−1.

G0 also contains a lattice translation symmetry T :
⊗

j |α jβ j〉 j →
⊗

j |α jβ j〉 j+1 and a reflection
symmetry with respect to the site j=0, σ:

⊗

j |α jβ j〉 j →
⊗

j |β jα j〉− j .
We comment on some noteworthy aspects of this symmetry setting. First, while the sym-

metry G0 can be defined on an infinite 1d lattice, defining it on a finite lattice with L sites
requires a periodic boundary condition and L to be even. Second, all operators transform in a
linear representation of the Zx

n ×Z
z
n symmetry. But the states at each site transform in its pro-

jective representations, and pairs of adjacent sites together form a linear representation [18].
Third, T and Zx

n ×Z
z
n do not commute, and our setting has no LSM constraint.
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4.1 Application of the EESBO diagnostic

We now consider the symmetry breaking pattern where T is broken to T2 with other symme-
tries intact, namely, G0 → G, where G is generated by Zx

n × Z
z
n, σ and T2. Below we show

the obstruction in realizing such a symmetry-breaking order as a local product state using the
diagnostic laid out previously in Sec. 3 for the short-ranged entangled EESBOs.

We first show that the lattice symmetries T2 and σ enforces any local tensor-product de-
scription to be ultralocal. Recall that a local tensor-product description |ψ〉 =

⊗

i |ψi〉Λi
re-

quires the possibly entangled cluster |ψi〉Λi
to be supported only in a local region Λi which

does not scale with the system size for all i. If we assume sites 2 j1 and 2 j2 (or sites 2 j1 + 1
and 2 j2 + 1) are entangled, then T2 would require extensively many sites to be entangled,
contradicting the assumption of the local tensor-product description. That is to say, to be rep-
resentable by a local product state, no lattice sites labeled with even (odd) numbers can be
entangled. Now if sites 2 j1 and 2 j2+1 are entangled, then σ requires sites 2 j1 and 4 j1−2 j2−1
to be entangled. T2 further requires sites 4 j1−2 j2−1 and 6 j1−4 j2−2 to be entangled, and we
now see that two even-numbered sites have to be entangled, which would result in a contra-
diction again. So any tensor-product description must be ultralocal, i.e., the size of Λi is one.
However, because the states at each site transform in projective representations of the Zx

n×Z
z
n

symmetry (recall n⩾ 3), no ultralocal product state is invariant under Zx
n ×Z

z
n.

Figure 2: The symmetry-breaking ground states of the Hamiltonian Eq. (1) with
periodic boundary condition. With open boundary condition, the ground states have
dangling edge degrees of freedom, depicted by the same figure but with the dashed
lines removed.

4.2 An infinite family of exactly solvable models

We have shown that if this symmetry-breaking order can be realized, they must be EESBOs
since it is impossible to be realized as a tensor-product state. In the following, we present
explicit parent Hamiltonians and ground states for them, which firmly establishes that such
EESBOs are theoretically possible.

Consider the Hamiltonian on a 1d lattice with an even number of sites L and a periodic
boundary condition ( j + L ≡ j),

H =
L
∑

j=1

(I − Pj, j+1) , (1)

where I is the identity operator, Pj, j+1 is the projector onto the linear space

span{|D(α)a,b 〉, |D
(β)
a,b 〉, a, b = 1 . . . n} ,

where

|D(α)a,b 〉 =
n
∑

d=1

|α j=d,β j=a,α j+1=d,β j+1= b〉

|D(β)a,b 〉 =
n
∑

d=1

|α j=a,β j=d,α j+1= b,β j+1=d〉
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are the “dimers" of the DOF α or β . It is easy to verify that the two unnormalized zero-
correlation-length G-symmetric states

|ψA〉 =
∑

{α j ,β j}

L/2
∏

j=1

δα2 jα2 j+1
δβ2 j−1β2 j

|α1β1 . . .αLβL〉 ,

|ψB〉 =
∑

{α j ,β j}

L/2
∏

j=1

δα2 j−1α2 j
δβ2 jβ2 j+1

|α1β1 . . .αLβL〉 (2)

are the ground states, i.e., H|ψA(B)〉 = 0, which are depicted in Fig. 2. In Appendix B, we
show that these two states are indeed the only two ground states of H, and that H has a
spectral gap in the thermodynamic limit. Note that these two states are orthogonal only in the
thermodynamic limit but are linearly independent at any finite L.

Intrigueingly, these symmetry-breaking ground states are Zx
n × Z

z
n symmetry-protected

topological (SPT) states. This can be shown by examining the ground states with open bound-
ary condition. In this case, the dimension of the ground state subspace becomes 2n2, where
the extra degeneracy comes from the edge states of the dangling α or β DOF, as depicted in
Fig. 2 with the dashed lines removed. These edge DOF transform projectively under Zx

n ×Z
z
n,

which is a hallmark of 1d Zx
n × Z

z
n SPTs [19–21]. More interestingly, under the remaining

Zx
n × Z

z
n × σ symmetry, these ground states can be viewed as SPTs beyond the conventional

group-cohomology-based classification [22, 23], which is possible because the states at each
site transform projectively under the on-site symmetries [18]. To capture such states, a more
refined classification like the ones in Refs. [18,24] is needed. We leave the derivation of these
statements in Appendix B.

It is worth mentioning that the model analogous to Eq. (1) can be defined for n= 2. In this
case, similar analysis shows that the ground states still realize a G0 → G symmetry-breaking
order, and that they are still nontrivial SPTs under the remaining Zx

2 ×Z
z
2 symmetry. However,

the G0 → G symmetry-breaking order in this case is not entanglement-enabled, because it
can be realized by a tensor-product state, e.g.,

∏

j∈even(|11〉 j + |22〉 j)
∏

j∈odd(|11〉 j − |22〉 j).
This example highlights the difference between the notion of EESBOs and the usual notion of
spontaneous symmetry breaking coexisting with nontrivial SPTs.

Before finishing this section, we comment on some differences between the examples dis-
cussed above and the one in Ref. [18]. One of the major differences is that our setups have
spontaneous symmetry breaking, while the one in Ref. [18] does not. Moreover, in Ref. [18],
it was argued that a G-symmetric short-range entangled ground state must have nontrivial
edge states for the case of n = 4. Although it is not explicitly discussed there, this statement
is actually true for all n⩾ 3, i.e., for the entire infinite family discussed here. However, in our
diagnostic of EESBO above, we actually do not need to and did not use this property.

5 EESBOs with spontaneously broken continuous symmetries

The above section firmly establishes that EESBOs can exist even without LSM constraints asso-
ciated with the remaining symmetry G. In this section, we present examples of entanglement-
enabled spontaneously broken continuous symmetries, which result in richer structures and
illustrate some important features of EESBOs.

Consider a d-dimensional spin-S system with G0 = SO(3)×Zd , where the Zd translation
symmetric lattice has one site per unit cell, and a spin-S moment lives on each site. We consider
the case where d > 1 and G = Z2 × Zd , i.e., SO(3) is broken to Z2 while the translation is

7
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x
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x

yz
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Figure 3: (a) A spin-S tate can be represented as 2S points on a Bloch sphere, where
the SO(3) rotation can be viewed as a rigid body rotation of the 2S points, here
S = 7/2. (b) An example of a spin-S state which breaks SO(3) symmetry to Z2,
generated by the π rotation with respect to Sz .

intact5. Note that there is no LSM constraint associated with the symmetry G, so we will apply
our short-ranged EESBO diagnostic below.

5.1 “Classical" symmetry-breaking orders for S ⩾ 1

First, it is easy to verify that the translation symmetry forces all local product states to be
ultralocal, i.e., |ψ〉 =

⊗

i |χ〉i where i is the site label and |χ〉 is a spin-S wavefunction. It
therefore suffices to examine the compatibility of the onsite SO(3)→ Z2 symmetry with the
tensor-product description.

To start, first recall that any spin-S state can be uniquely represented by 2S points on a
Bloch sphere [25–27] (see Fig. 3(a)); this representation is known as the Majorana representa-
tion, and it is a generalization of the familiar statement that any spin-1/2 state can be uniquely
represented by a single point on a Bloch sphere. The validity of this representation is based
on the fact that all spin-S states can be constructed by symmetrizing 2S spin-1/2 states. The
advantage of the Majorana representation is that the SO(3) spin rotation acts as a rigid body
rotation of these 2S points.

Now it is easy to see that for all S ⩾ 1, there are single-site spin-S states |χ〉 with a Z2
symmetry generated by the π rotation with respect to Sz , and one example is to put 2 of the
2S points at spherical coordinates with polar angle anything but notπ/2, and azimuthal angles
0 and π for each of them. The other 2S−2 points are put on the north pole (see Fig. 3(b)). It
is easy to check that such a state has no symmetry other than the Z2. Therefore, the G0 → G
symmetry-breaking order can be represented by an ultralocal product state for S ⩾ 1, and
a representative wavefunction is simply taking the spin at each site to be the Z2 symmetric
single-site state discussed here.

On the other hand, if S = 1/2, all translation symmetric ultralocal product states have a re-
maining U(1) on-site symmetry. Specifically, any translation symmetric ultralocal product state
of a spin-1/2 system has a wavefunction of the form

⊗

i

�

cos θ2 |Sz=
1
2〉i + sin θ2 eiφ |Sz=−

1
2〉i
�

,
which has a U(1) symmetry generated by N̂ =

∑

i

�

cosθ Ŝz
i + sinθ cosφŜ x

i + sinθ sinφŜ y
i

�

.
Therefore, SO(3) can never be broken down to Z2 if S = 1/2 and if the ground state can be
represented by a local product state. We therefore see that for S = 1/2 the G0→ G symmetry-
breaking order must be entanglement-enabled if it can be realized.

5The Mermin-Wagner theorem forbids such a symmetry-breaking order for d = 1.
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5.2 EESBO for S = 1
2

A representative wavefunction of this EESBO can be taken as a stack of spin-1/2 chains (see
Fig. 4), where each chain is described by a matrix-product state

|ψ〉=
∑

{s j}

tr(A[s1] . . . A[sL])|s1 . . . sL〉 (3)

with matrices

A[sz=
1
2 ] =

�

1+ a 0
0 1− a

�

, A[sz=−
1
2 ] =

�

0 b
c 0

�

(4)

Each chain has a translation symmetry along itself, and different chains are arranged so that
the entire system has the Zd translation symmetry. If a = b = c = 0, this state is a product
state (and therefore not an EESBO) with all spins pointing in the z-direction, and it has the
aforementioned remaining unbroken U(1) and translation symmetries. To make the wave-
function an EESBO with the unbroken Z2 and translation symmetry, we consider nonzero a, b
and c. In Appendix C, we show that for generic nonzero real-valued a, b and c, the remaining
symmetry of this system is G = Z2 ×Zd and that the state is short-range entangled.

Figure 4: Stacks of spin-1/2 chains that realize the G0 = SO(3)×Zd → G = Z2 ×Zd

EESBOs in 2 (left) and 3 (right) dimensions, where each chain is described by the
matrix-product state in Eq. (4).

A remarkable aspect of this wavefunction is that it can be viewed as a G-SPT beyond the
conventional group-cohomology-based classification in Refs. [22, 23, 28] and in some sense
even beyond the more refined classification in Refs. [18,24], which is possible because the Z2
symmetry acts on states as a Z4 group. Furthermore, in these symmetry-breaking orders, for
all S ⩾ 1/2, there are generically two gapless Goldstone modes, where one of them has a linear
dispersion and the other has a quadratic dispersion. We present these analyses in Appendix C.

This example highlights some intriguing points. First, in the previous examples, after
fixing G, G0 is immaterial in determining whether the G0 → G symmetry-breaking order is
entanglement-enabled. However, the nature of G0 is important here. For instance, if the
SO(3) spin rotation symmetry is replaced by O(2), G0 = O(2)×Zd still has G = Z2×Zd as its
subgroup, but the G0→ G symmetry-breaking order is “classical" for all S6. Second, it is inter-
esting to see that fixing G0 but enlarging G = Z2 ×Zd to G = U(1)×Zd makes the would-be
G0 → G EESBO for S = 1/2 “classical". In addition, in the previous examples, after explicitly
breaking G0 while preserving G, the EESBOs cannot smoothly evolve into local product states.
However, here the EESBO can be evolved into a local product state by tuning b and c to zero
(though at which point it has an enlarged U(1)× Zd symmetry). Third, this example shows
that whether a symmetry-breaking order is entanglement-enabled can depend on the precise
representation of DOF under the on-site symmetry, rather than only the equivalence class of
projective representations.

6For example, the O(2) = SO(2)⋊Z2 can be taken to include the SO(2) spin rotation around Sx and the Z2 spin
rotation with respect to Sz by π. In the symmetry-breaking order under consideration, the SO(2) is completely
broken while the Z2 is preserved. A representative state can be taken as

⊗

i |Sz=
1
2 〉i , which is an ultralocal product

state.
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5.3 Additional examples

Here we present two more examples of EESBOs with spontaneously broken continuous sym-
metries (but these by no means exhaust all such EESBOs).

The first example is a d-dimensional (d > 1) spin-1 lattice system with one site per unit
cell which may be realized in some generalizations of the bilinear-biquadratic model (see,
e.g., Ref. [29] for a discussion of the bilinear-biquadratic model). Suppose its Hamiltonian
has PSU(3) and translation symmetries, i.e., G0 = PSU(3)×Zd , where each site of the lattice
hosts a spin-1 moment that transforms in the fundamental representation of SU(3), which is
a projective representation of PSU(3). Consider the case G = SO(3) × Zd , i.e., the transla-
tion is intact while PSU(3) is spontaneously broken to SO(3). Here the translation symmetry
ensures that all local product states must be ultralocal, because if any two sites were entan-
gled, translation symmetry requires that extensively many sites are entangled. But ultralocal
product states are clearly not invariant under the remaining on-site SO(3) symmetry. So this
symmetry-breaking order is entanglement-enabled. Its representative wave function can be
simply taken as a stack of many copies of the Affleck-Kennedy-Lieb-Tasaki (AKLT) chains ar-
ranged to have the Zd translation symmetry [30]. If desired, one can also construct a cat state
that preserves the full G0 symmetry by summing over the symmetry-breaking orbits. Because
each AKLT is short-range entangled, the entire stack is also short-range entangled. In other
words, there is no LSM constraint associated with the remaining symmetry G. Also, this repre-
sentative wavefunction shows that this EESBO is a within-group-cohomology state under the
remaining symmetry G.

The second example is a honeycomb lattice spin-1/2 system with G0 = SO(3)×ZT
2 × p6m,

where the spins live on the sites of a honeycomb lattice with a p6m lattice symmetry, and they
carry spin-1/2 under the SO(3) spin rotation symmetry and transform as a Kramers doublet
under the ZT

2 time reversal symmetry. Such a system is free of LSM constraints [31]. Now
consider a spin-nematic order where the remaining symmetry G = Z2×Z2×ZT

2 ×p6m, i.e., the
lattice symmetry and time reversal symmetry are intact, while the SO(3) symmetry is broken
to Z2 × Z2 generated by π spin rotations around three orthogonal axes. It is straightforward
to check that the lattice symmetry again requires a local product state to be ultralocal, which
must then break the remaining Z2×Z2×ZT

2 on-site symmetry, because each spin transforms in
its projective representation. So such a spin-nematic order is entanglement-enabled. To obtain
the wave function of this state, one can start from the G0-symmetric wavefunction in Ref. [31]
and perturb it so that G0 is broken to G. As a spin-nematic order, there are gapless Goldstone
modes carrying spin-2. Furthermore, Ref. [32] predicted that the vicinity of this EESBO may
realize an exotic quantum spin liquid that cannot be described by the usual parton approach.

6 Discussion

We have discussed various examples of EESBOs, which are intrinsically quantum symmetry-
breaking orders that elude the standard “classical" descriptions. While one mechanism of
EESBO is due to the LSM constraints of the remaining symmetry, we present a criterion for
EESBO in the cases without LSM constraints. Our work paves the way to discovering more
interesting aspects and insightful results about EESBOs. We finish this paper by discussing
some future directions.

For our infinite family of one dimensional EESBOs, it is interesting to generalize them to
higher dimensions. Since these EESBOs have symmetry-protected gapless boundaries, it is
natural to expect the transitions out of these phases to be gapless SPT states [33–35], which
warrant a further study. For the EESBOs with spontaneously broken continuous symmetries,
finding their parent Hamiltonians is another important problem.

10
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It might also be rewarding to connect the intrinsic quantumness of EESBOs to the com-
plexity of (path-integral) quantum Monte Carlo calculations from the perspective of quantum-
classical mapping. The Hamiltonian Eq. (1) is not stoquastic in either the µz/νz-diagonal basis
or the µx/νx -diagonal basis, though the ground state wavefunctions are nonnegative in both
basis. What would a corresponding “classical statistical mechanics model" look like for EESBO,
if such a sign problem of its Hamiltonian is curable? Could the intrinsic quantumness of EES-
BOs suggest that it is not curable by some (symmetry-preserving) local basis transformation,
signifying the sign-problem being symmetry protected or even intrinsic [36–39]?

Although much of the universal low-energy physics of EESBOs can be captured by the
usual effective field theory approach, it may require new methods to understand other impor-
tant properties of an EESBO due to the absence of a “classical" mean-field description. For
example, in EESBOs with spontaneously broken continuous symmetries, it is desirable to un-
derstand the band structures of their Goldstone modes. The conventional method is to analyze
the effective theory of these Goldstone modes based on a “classical" mean field, which is un-
available for EESBOs. To proceed, one may need techniques like the parton approach and/or
tensor networks. It is also interesting to understand the entanglement-enabled nature of these
symmetry-breaking orders from a field theoretic perspective, similar to the description of LSM
constraints using topological field theories [24,28,32].

A more formal challenge is to classify all EESBOs. From our examples, we see that EESBOs
often arise when the local DOF carry specific representations under the symmetry. This is anal-
ogous to the physics of obstructed insulators, fragile topology and generalized LSM constraints
studied in the context of symmetric states [18,40–44], because in all these cases certain many-
body entanglement pattern is incompatible with the properties of local DOF. It is interesting
to see if this analogy can be made sharper and useful. For example, one can ask how the
EESBO ground states with spontaneously broken continuous symmetries constrain the possi-
ble band topology of the Goldstone modes. To this end, anomaly-based methods developed in
Refs. [32,45] may be helpful.

Finally, it is important to identify more models and experimental systems exhibiting EES-
BOs. For example, it might be worth checking if some of the enigmatic “hidden orders" turn
out to be EESBOs. It is also interesting to see if various quantum simulators can realize EES-
BOs. Moreover, it is worth exploring whether the corresponding symmetry defects, whose
properties are not well understood so far, have potential technological applications.
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A Examples of EESBOs from the previous literature

In this appendix, we review some examples of EESBOs from the previous literature [2–4].
In particular, we will apply our diagnostics to verify that these symmetry-breaking orders are
indeed entanglement-enabled.

We start with the one dimensional example in Ref. [2], which has very similar flavor as the

11
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examples presented in Sec. 2. The relevant symmetry G0 in this example includes a PSU(4)
internal symmetry and a p1m lattice symmetry. Each site hosts a 6-dimensional Hilbert space,
and the states at each site transform as a vector under the SO(6) symmetry (while the operators
transform in the fundamental linear representation under PSU(4)), so these states are in the
projective representation of PSU(4). Furthermore, the p1m symmetry moves the locations of
the degrees of freedom in the same way as the example in Sec. 4. In addition, the ground
state breaks bond-centered reflection symmetry, just like the example in Sec. 4. Combining all
these observations, an argument almost identical to the one in Sec. 4 shows that the symmetry-
breaking order in Ref. [2] is entanglement-enabled.

Next, we discuss the example in Ref. [3], which proposed a spin nematic phase in a model
on a square lattice spin-1/2 system with G0 = SO(3)×ZT

2 × p4m. The actions of the symmetry
on the degrees of freedom is the same as in the familiar square lattice Heisenberg model.
The complete remaining symmetry G is not explicitly discussed in Ref. [3], but it appears that
G = Z2 × ZT

2 × pmm, i.e., the SO(3) spin rotational symmetry is broken to Z2 and the p4m
lattice symmetry is broken to pmm, while the time reversal symmetry is preserved. If this is
indeed the unbroken symmetry in this order, then there is still a nontrivial LSM constraint in
the system that enforces all G-symmetric ground states to be long-range entangled. That is,
this spin nematic order is a long-range EESBO.

However, various later papers question whether the model in Ref. [3] actually yields this
spin nematic phase (see Ref. [4] for a recent study). The new consensus is that upon adding a
mangetic field that explicitly breaks G0 = SO(3)×ZT

2 × p4m in Ref. [3] to G0 = U(1)× p4m,
the ground state spontaneously breaks this new G0 to G = Z2×pmm. This symmetry-breaking
order is also entanglement-enabled, and it has a similar flavor as the example in Sec. 5. This is
because there is also no LSM constraint from the remaining symmetry, and the lattice symmetry
also forces all local product states to be ultralocal. Then an almost identical argument as that
in Sec. 5 shows that this is a short-range EESBO.

In passing, we note that the entanglement-enabled nature of the spin nematic state pro-
posed in Ref. [3] is independent of whether the model therein realizes this order. That is, as
long as this order is realized in any model with the same symmetry setting as in Ref. [3], then
it is entanglement-enabled, since our argument only relies on the symmetry breaking pattern.

B More on the one dimensional Hamiltonians

In this appendix, we show several properties of the 1d Hamiltonian Eq. (1) in the main text. We
will show that (i) the only ground states of these Hamiltonians are the ones given in the main
text, (ii) all these Hamiltonians are gapped, (iii) the ground states are nontrivial symmetry-
protected topological (SPT) states under the remaining Zx

n × Z
z
n symmetry, and (iv) under

the remaining Zx
n × Z

z
n × σ symmetry they are beyond the conventional group-cohomology-

based classification developed in Refs. [22, 23]. Note that the first three properties apply to
the Hamiltonians defined for any n ⩾ 2, while the last one applies to the case with n ⩾ 3.
In the main text, we have shown that the relevant G0 → G symmetry breaking orders are
entanglement-enabled when n ⩾ 3. For n = 2, the G0 → G symmetry breaking order can be
realized by local product states, i.e.,

∏

j(|00〉 j + (−1) j|11〉 j) with j the site index, so it is not
entanglement-enabled.

Here we repeat the Hamiltonian for reader’s convenience:

HL =
L−1
∑

j=1

(I − Pj, j+1) + r(I − PL,1) , (5)

where Pj, j+1 is the projector onto the linear space P j, j+1 = span{|D(α)a,b 〉, |D
(β)
a,b 〉; a, b = 1 . . . n}

12
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and

|D(α)a,b 〉 =
n
∑

d=1

|α j=d,β j=a,α j+1=d,β j+1= b〉

|D(β)a,b 〉 =
n
∑

d=1

|α j=a,β j=d,α j+1= b,β j+1=d〉

are the maximum entangled states on α or β degrees of freedom. We may refer to the space
spanned by these states the “dimer" subspace of the α or β degrees of freedom, respectively.
In particular, we will consider the Hamiltonian with a open boundary condition (r = 0) or a
periodic boundary condition (r = 1).

It is sometimes useful to express the projector in terms of the operators [18]. Consider the
projectors projecting the states into the dimer subspace on α or β degrees of freedom P(α/β)j, j+1 ,

we have P(α/β)j, j+1 = P x
(α/β)P

z
(α/β), where

P x
(α) =

1
n

n−1
∑

d=0

(µx
j µ

x
j+1)

d and Pz
(α) =

1
n

n−1
∑

d=0

(µz
j)

d(µz
j+1)
−d , (6)

while

P x
(β) =

1
n

n−1
∑

d=0

(νx
j ν

x
j+1)

d and Pz
(β) =

1
n

n−1
∑

d=0

(νz
j)

d(νz
j+1)
−d . (7)

We then have Pj, j+1 = P(α)j, j+1 + P(β)j, j+1 − P(α)j, j+1P(β)j, j+1.

B.1 Uniqueness of the ground states

First we show the uniqueness of the ground states. Consider the following states depicted in
Fig. 2,

|ψ(A)a,b〉 =
∑

{α j ,β j}

ψ
(A)
{α jβ j}

(a, b)|α1β1 . . .αLβL〉 ,

|ψ(B)a,b〉 =
∑

{α j ,β j}

ψ
(B)
{α jβ j}

(a, b)|α1β1 . . .αLβL〉 , a, b = 1 . . . n (8)

where

ψ
(A)
{α j ,β j}

(a, b) = δα1a

 

L/2−1
∏

j=1

δβ2 j−1β2 j
δα2 jα2 j+1

!

δβL−1βL
δαL b ,

ψ
(B)
{α j ,β j}

(a, b) = δβ1a

 

L/2−1
∏

j=1

δα2 j−1α2 j
δβ2 jβ2 j+1

!

δαL−1αL
δβL b , if L is even, (9)

and

ψ
(A)
{α j ,β j}

(a, b) = δα1a

 

(L−1)/2
∏

j=1

δβ2 j−1β2 j
δα2 jα2 j+1

!

δβL b ,

ψ
(B)
{α j ,β j}

(a, b) = δβ1a

 

(L−1)/2
∏

j=1

δα2 j−1α2 j
δβ2 jβ2 j+1

!

δαL b , if L is odd. (10)
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Since the Hamiltonian is of the form of a sum of projectors, the eigenvalues of HL is
bounded below by 0. For the open boundary condition, it is easy to verify HL|ψ

(A)
a,b〉 = 0

and HL|ψ
(B)
a,b〉 = 0 for all a, b = 1 . . . n. We therefore would like to show that Ker(HL) = GL ,

where the span of the states is GL ≡ span{|ψ(A)a,b〉, |ψ
(B)
a,b〉, a, b = 1 . . . n}. Note that these 2n2

states are linearly independent (but not orthogonal) when L ⩾ 3, so dim(GL) = 2n2 when
L ⩾ 3. If L = 2, dim(GL) = 2n2 − 1.

To show Ker(HL) = GL for any L ⩾ 2, we use mathematical induction. Assume that for a
1d lattice with L sites (onsite Hilbert space dimension n2) and the corresponding Hilbert space
HL , the ground state space Ker(HL) = GL ⊂HL . Now we would like to add one more site and
to find Ker(HL+1) = Ker(HL)∩Ker(I − PL,L+1), where both Ker(HL) and Ker(I − PL,L+1) should
be understood as a linear subspace inHL+1. (This means dim(Ker(HL)) = 2n2×n2 as a linear
subspace ofHL+1.)

To find the intersection of the two linear subspaces, assume |ψ〉 ∈ Ker(HL) ⊂HL+1. Let us
first consider the case where L is odd. We can write

|ψ〉 =
∑

{α jβ j}

�

Aα1βLαL+1βL+1
χ
(A)
β1α2...αL

+ Bβ1αLαL+1βL+1
χ
(B)
α1α2β2...βL−1βL

�

|α1β1 . . .αL+1βL+1〉 ,

(11)

where

χ
(A)
β1α2...αL

=
(L−1)/2
∏

j=1

δβ2 j−1β2 j
δα2 jα2 j+1

and χ
(B)
α1α2β2...βL−1βL

=
(L−1)/2
∏

j=1

δα2 j−1α2 j
δβ2 jβ2 j+1

,

(the dimer part of the wavefunction), and there are 2n2 × n2 coefficients Aα1βLαL+1βL+1
and

Bβ1αLαL+1βL+1
. Requiring |ψ〉 ∈ Ker(I − PL,L+1) as well, we can also express

|ψ〉 =
∑

{α jβ j}
�

Xα1β1...αLαL+1
δβLβL+1

+ Yα1β1...βLβL+1
δαLαL+1

�

|α1β1 . . .αL+1βL+1〉 , (12)

where Xα1β1...αLαL+1
and Yα1β1...βLβL+1

are the coefficients of the linear combination of the vectors
in Ker(I − PL,L+1).

Equating the above two equations Eqs. (11) and (12), we obtain n2(L+1) linear equations
(α j ,β j = 1 . . . n)

Aα1βLαL+1βL+1
χ
(A)
β1α2...αL

+ Bβ1αLαL+1βL+1
χ
(B)
α1α2β2...βL−1βL

= Xα1β1...αLαL+1
δβLβL+1

+ Yα1β1...βLβL+1
δαLαL+1

,

which pose constraints on Aα1βLαL+1βL+1
and Bβ1αLαL+1βL+1

(or Xα1β1...αLαL+1
and Yα1β1...βLβL+1

conversely). For convenience, we will use the notation ᾱ j to denote the numbers in the set
{ᾱ j = 1 . . . n, ᾱ j ̸= α j} and similarly for β̄ j .

First, considering the subset of the equations where β2 j = β2 j−1, α2 j+1 = α2 j for j = 1 . . . (L−1)/2
(so that χ(A) = 1), βL ̸= βL+1, αL ̸= αL+1 (so that the right-hand side is zero) and βL−1 ̸= βL
(so taht χ(B) = 0), we have Aα1βLαL+1β̄L

= 0. Similarly, the subset of the equations where

α2 j = α2 j−1, β2 j+1 = β2 j for j = 1 . . . (L − 1)/2 (so that χ(B) = 1), βL ̸= βL+1, αL ̸= αL+1 (so
that the right-hand side is zero) and αL−1 ̸= αL (so that χ(A) = 0) give us

Bβ1αL ᾱLβL+1
= 0 .

Next, we consider again the equations where β2 j = β2 j−1, α2 j+1 = α2 j for j = 1 . . . (L−1)/2
(so that χ(A) = 1), but now with βL = βL+1 and αL ̸= αL+1 (so that B = 0), giving us

Aα1βLαL+1βL
= Xα1β1...ᾱL+1αL+1

.
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Note that on the right-hand side, it is independent of βL (but depending on α1 and αL+1). We
therefore conclude that Aα1βLαL+1βL+1

= aα1αL+1
δβLβL+1

. Similarly, we consider the equations
where α2 j = α2 j−1, β2 j+1 = β2 j for j = 1 . . . (L − 1)/2 (so that χ(B) = 1), but now with
βL ̸= βL+1 (so that A= 0) and αL = αL+1. We have

Bβ1αLαLβL+1
= Yα1β1...β̄L+1βL+1

.

Again, since it is independent of αL on the right-hand side, we conclude that

Bβ1αLαL+1βL+1
= bβ1βL+1

δαLαL+1
.

This shows that GL+1 ⊇ Ker(HL+1). Since we already know GL+1 ⊆ Ker(HL+1), we indeed have
GL+1 = Ker(HL+1).

If L is even, a similar argument can be made with some modification. In particular, the set
of linear equations constraining the coefficients A, B, X and Y are now

Aα1αLαL+1βL+1
χ
(A)
β1α2...βL−1βL

+ Bβ1βLαL+1βL+1
χ
(B)
α1α2β2...αLβL

= Xα1β1...αLαL+1
δβLβL+1

+ Yα1β1...βLβL+1
δαLαL+1

,

where

χ
(A)
β1α2...βL−1βL

=
L/2−1
∏

j=1

δβ2 j−1β2 j
δα2 jα2 j+1

δβL−1βL
and χ

(B)
α1α2β2...αLβL

=
L/2−1
∏

j=1

δα2 j−1α2 j
δβ2 jβ2 j+1

δαL−1αL
.

Again, considering the subset of equations where β2 j−1 = β2 j for j = 1 . . . L/2, α2 j = α2 j+1
for j = 1 . . . L/2− 1, βL ̸= βL+1, αL ̸= αL+1 and αL−1 ̸= αL , we have Aα1αL ᾱLβL+1

= 0; while
considering the subset of equations where α2 j−1 = α2 j for j = 1 . . . L/2, β2 j = β2 j+1 for
j = 1 . . . L/2− 1, αL ̸= αL+1, βL ̸= βL+1 and βL−1 ̸= βL , we have Bβ1βLαL β̄L+1

= 0.
Now the set of equations where β2 j−1 = β2 j for j = 1 . . . L/2, α2 j = α2 j+1 for j = 1 . . . L/2−1,

βL ̸= βL+1, αL = αL+1 give us Aα1αLαLβL+1
= Yα1...β̄L+1βL+1

, resulting in

Aα1αLαL+1βL+1
= aα1βL+1

δαLαL+1
.

Similarly, the set of equations whereα2 j−1 = α2 j for j = 1 . . . L/2, β2 j = β2 j+1 for j = 1 . . . L/2−1,
βL = βL+1, αL ̸= αL+1 give us Bβ1βLαL+1βL

= Xα1...ᾱL+1αL+1
, resulting in

Bβ1βLαL+1βL+1
= bβ1αL+1

δβLβL+1
.

We therefore conclude GL+1 = Ker(HL+1) if L is even. The mathematical induction is therefore
establish since G2 = Ker(H2) = Ker(I − P1,2).

Finally, we show that if L ≥ 4 and even , and r = 1 (periodic boundary condition), the
ground state space is spanned by the states depicted in the main text. We would like to find
Ker[HL(r = 1)] = Ker[HL(r = 0)]∩ Ker(I − PL,1) ⊂HL .

By expressing |ψ〉 as

|ψ〉 =
∑

{α jβ j}

�

Aα1αL
χ
(A)
β1α2...αL

+ Bβ1βL
χ
(B)
α1α2β2...βL−1βL

�

|α1β1 . . .αL+1βL+1〉

=
∑

{α jβ j}

�

Xα1α2β2...αL
δβLβ1

+ Yβ1α2...βL
δαLα1

�

|α1β1 . . .αL+1βL+1〉 , (13)

where

χ
(A)
β1α2...βL−1βL

=
L/2−1
∏

j=1

δβ2 j−1β2 j
δα2 jα2 j+1

δβL−1βL
and χ

(B)
α1α2β2...αLβL

=
L/2−1
∏

j=1

δα2 j−1α2 j
δβ2 jβ2 j+1

δαL−1αL
,
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we have the linear equations

Aα1αL
χ
(A)
β1α2...αL

+ Bβ1βL
χ
(B)
α1α2β2...βL−1βL

= Xα1α2β2...αL
δβLβ1

+ Yβ1α2...βL
δαLα1

. (14)

The equations such that χ(A)
β1α2...βL−1βL

= 1, αL−1 ̸= αL and β1 ̸= βL give us

Aα1αL
= Y...δα1αL

≡ aδα1αL
,

while the equations such that χ(B)
α1α2β2...βL−1βL

= 1, βL−1 ̸= βL and α1 ̸= αL give us

Bβ1βL
= X ...δβ1βL

≡ bδβ1βL
.

B.2 Existence of the spectral gap in the thermodynamic limit

To show the existence of the spectral gap in the thermodynamic limit, we will use Theorem 2 in
Ref. [46]. Our ground states in a open chain are indeed a type of the generalized valence bond
solid (GVBS) states defined in Ref. [46]. Consider an interval [M , N] in an infinite 1d lattice,
we can define our Hamiltonian in this subregion H[M ,N] =

∑N−1
j=M h j , where h j = (1− Pj, j+1).

Now in the previous section, we have shown that the ground state subspace is indeed the GVBS
states (condition Fω = Fh in Theorem 2 of Ref. [46]). Due to the projector construction of
the Hamiltonian, we also have the condition Ker(H)[M ,N] = GM ,N , where GM ,N is the span of
the eigenvectors obtained from the reduced density matrix of ω on the region [M , N]. We
therefore conclude that our model and ground states satisfy the conditions of Theorem 2 in
Ref. [46], which shows the existence of the spectral gap in the thermodynamic limit.

B.3 Symmetry-protected edge states under open boundary condition

As pointed out in the main text, the ground states of Eq. (5) have dangling edge degrees
of freedom, and here we show that they are indeed protected by the symmetry Zx

n × Z
z
n, by

showing that these edge degrees of freedom transform in projective representations under
Zx

n ×Z
z
n.

The ground states under open boundary condition are given by Eq. (8). Recall the symme-
try Zx

n is implemented by
∏

j µ
x
j ν

x
j and Zz

n by
∏

j∈even(µ
z
jν

z
j)
∏

j∈odd(µ
z
jν

z
j)
−1. To determine

the effective symmetry actions on the edges, it suffices to examine the action of these symme-
tries on the “dimer"

∑n
d=1 |dd〉, which is the building block of the bulk. One can easily verify

thatµx
1µ

x
2

∑n
d=1 |dd〉=

∑n
d=1 |dd〉, and similarly for νx ; similarly, µz

1(µ
z
2)
−1
∑n

d=1 |dd〉=
∑n

d=1 |dd〉
and likewise for νz

1(ν
z
2)
−1. The bulk of the wavefunction is therefore invariant under the sym-

metry action, and the symmetry action only transforms the edge degrees of freedom. Moreover,
the ground states transform among the same A-type |ψ(A)a,b〉 or same B-type of states |ψ(B)a,b〉. It is
then easy to identify the edge symmetry operator. For example, if L is even, within the A-type
ground state space span{|ψ(A)a,b〉},

W x
L = µ

x
1 , W x

R = µ
x
L ,

W z
L = (µ

z
1)
−1 , W z

R = µ
z
L ;

while

W x
L = ν

x
1 , W x

R = ν
x
L ,

W z
L = (ν

z
1)
−1 , W z

R = ν
z
L ,

within the B-type ground state space span{|ψ(B)a,b〉}. The case for an odd L is similar.
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It is straightforward to check that the actions of Zx
n and Zz

n no longer commute on the
edge DOF, which means that these edge DOF transform in projective representations un-
der Zx

n × Z
z
n. Projective representations of Zx

n × Z
z
n are classified by H2(Zx

n × Z
z
n) = Zn,

and they can be characterized by an integer η that is defined modulo n, which is given by
W x

L,RW z
L,R = ei 2π

n ηL,RW z
L,RW x

L,R. Using the above symmetry actions, we see that ηL = −1 and
ηR = 1, for both the A-type and B-type ground states. Since the degeneracy between the A-type
and the B-type subspace is protected by the spontaneous breaking of the reflection symmetry
Tσ, we conclude that all these edge modes are protected by the unbroken symmetries and
spontaneous symmetry breaking.

B.4 Beyond the group-cohomology-based classification

In the above section, we have shown that the ground states we obtain are nontrivial SPTs
under the remaining Zx

n × Z
z
n symmetry. Since the remaining symmetry in fact contains a

Zx
n×Z

z
n×σ symmetry, we can ask what kind of SPT our ground states are under this symmetry.

We will see that our ground states are actually beyond the conventional group-cohomology-
based classification developed in Refs. [22,23].

The argument is a generalization of that in Ref. [18], which only discusses the case with
n= 4 and has no spontaneous symmetry breaking. The group-cohomology-based classification
of 1+ 1 dimensional Zx

n ×Z
z
n ×σ SPTs is

H2(Zx
n ×Z

z
n ×σ, U(1)σ) =

�

Z2, odd n
Z4

2, even n
(15)

where the subscript σ in U(1) means that the U(1) phase factor should be complex conju-
gated when acted by σ. For odd n, the nontrivial SPT is protected only by σ, which has no
protected edge state. Since our states do have protected edge states, they are beyond this
classification. For even n, the only possible edge states protected by the Zx

n × Z
z
n symmetry

from this classification have η = n/2. In our case, η = ±1, so our states are also beyond
the group-cohomology-based classification if n > 2. As noted in Ref. [18], here going beyond
the group-cohomology-based classification is possible because the states at each site transform
in projective representations of the on-site symmetries. To capture such states, one needs a
more refined classification that takes into account the possible projective representations of
the states at each site, such as the ones proposed in Refs. [18,24].

C The G0 = SO(3)×Zd → G = Z2 ×Zd symmetry-breaking orders

In this apeendix, we present the detailed calculations regarding the EESBO in spin-S lattice
system with G0 = SO(3)×Zd and G = Z2×Zd . We will verify that the remaining symmetry of
the wavefunction presented in the main text is indeed G. Next, we will show that this wave-
function represents a G-symmetric short-range entangled state that is beyond the conventional
group-cohomology-based classification of Refs. [22, 23], and in some sense even beyond the
more refined classification of Refs. [18, 24]. Finally, we will show that for all S ⩾ 1/2, this
symmetry-breaking order generically has two gapless Goldstone modes, where one of them
has a linear dispersion and the other has a quadratic dispersion.
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C.1 Verification of G-symmetry

Here we verify that for the one dimensional matrix product state (MPS) in the main text,
represented by the matrices

A[Sz=
1
2 ] =

�

1+ a 0
0 1− a

�

, A[Sz=−
1
2 ] =

�

0 b
c 0

�

(16)

for generic nonzero real-valued a, b, c, the state is short-range entangled and that the only
subgroup of SO(3) that is still a symmetry of this state is a Z2 symmetry generated by the π
rotation with respect to Sz . This implies that the stack of chains described in the main text is
also a short-range entangled state, whose symmetry is G = Z2 ×Zd .

Showing that this state is short-range entangled amounts to show that this MPS is injective.
To this end, we first construct the tensor

Ti, j,k,l =
∑

Sz=±
1
2

A[Sz]
i j

�

A[Sz]
kl

�∗
, (17)

from which we construct the 4× 4 transfer matrix

T̃(ik),( jl) = Ti, j,k,l . (18)

Here the relation between the indices of the tensor T and those of the transfer matrix T̃ is that
(11)↔ 1, (12)↔ 2, (21)↔ 3 and (22)↔ 4. Using Eqs. (16) and (17), we get

T̃ =







(a+ 1)2 0 0 b2

0 1− a2 bc 0
0 bc 1− a2 0
c2 0 0 (a− 1)2






(19)

which has eigenvalues {1 + a2 ±
p

4a2 + b2c2, 1 − a2 ± bc}. The largest eigenvalue is non-
degenerate for all a ̸= 0. That is, this MPS is injective and represents a short-range entangled
state as long as a ̸= 0.

Below we show thatZ2 (generated by theπ rotation with respect to Sz) is the only subgroup
of the SO(3) spin rotation symmetry that is still a symmetry of this MPS. Our strategy is to
first consider an operation whose action on the physical states is given by U(θ ) = exp (iSzθ ),
where 0 ⩽ θ < 2π. These are just all spin rotating with respect to Sz . We will see that the
MPS given by Eq. (16) is invariant only if θ = 0,π. This means that the Z2 generated by the
π rotation with respect to Sz is indeed a symmetry of this MPS. We then show that this is the
only symmetry of that MPS, by showing that 〈Sx〉= 〈Sy〉= 0 while 〈Sz〉 ̸= 0 for this MPS.

U(θ ) = exp (iSzθ ) is a symmetry of the MPS if and only if [47,48]

U(θ )SzS′z
A[S
′
z] = eiαVA[Sz]V † (20)

with α ∈ R and V ∈ SU(2). Here α and V can depend on θ . In the eigenbasis of Sz , U(θ ) is
diagonal, and this equation simply becomes

ei θ2 A[Sz=
1
2 ] = eiαVA[Sz=

1
2 ]V †, e−i θ2 A[Sz=−

1
2 ] = eiαVA[Sz=−

1
2 ]V † , (21)

Now we use the fact that any 2 × 2 matrix has a unique expansion in terms of the identity
matrix and the Pauli matrices, σx ,y,z . In our case, we can rewrite A[Sz=

1
2 ] = 1 + aσz and

A[Sz=−
1
2 ] = b+c

2 σx +
b−c
2 iσy , so the above equation becomes

ei θ2 (1+ aσz) = eiαV (1+ aσz)V
†, (22)

e−i θ2

�

b+ c
2
σx +

b− c
2

iσy

�

= eiαV
�

b+ c
2
σx +

b− c
2

iσy

�

V † . (23)
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Under the conjugation by V ∈ SU(2), the identity matrix is invariant while the Pauli matrices
transform as a vector under SO(3). So, when a ̸= 0, for the first equation to hold, we must
have eiα = ei θ2 and V = exp(i σz

2 φ) for some φ ∈ R. Then the second equation becomes

e−iθ
�

b+ c
2
σx +

b− c
2

iσy

�

=
b+ c

2
(cosφσx + sinφσy) + i

b− c
2
(− sinφσx + cosφσy)

=
be−iφ + ceiφ

2
σx +

be−iφ − ceiφ

2
iσy ,

which implies that

e−iθ (b+ c) = be−iφ + ceiφ , e−iθ (b− c) = be−iφ − ceiφ . (24)

If bc ̸= 0, then eiθ = eiφ = e−iφ , giving us eiθ = ±1, i.e., θ = 0 or θ = π. Therefore, within
the group of U(1) spin rotations with respect to Sz , the Z2 generated by π rotation is the only
symmetry of the MPS in Eq. (16). Note that if any of b and c vanishes, any θ = φ solves these
equations and the MPS has a U(1) symmetry corresponding to the Sz rotation.

The above Z2 symmetry implies that 〈Sx〉 = 〈Sy〉 = 0 for the MPS in Eq. (16). As long as
we can show that 〈Sz〉 ̸= 0, we know that the only subgroup of SO(3) spin rotation which can
possibly be a symmetry of Eq. (16) must be a subgroup of U(1) spin rotations with respect
to Sz . Then combined with the previous result, we conclude that the only subgroup of SO(3)
spin rotation that is still a symmetry of Eq. (16) is the Z2 generated by π rotation with respect
to Sz .

In the following, we use the standard transfer matrix method to calculate 〈Sz〉 for a spin-1/2
described by the MPS in Eq. (16), which contains L sites and has periodic boundary condition.
To this end, we first consider the tensor

Mi, j,k,l =
∑

m,m′=± 1
2

A[m]i j Ŝz,mm′
�

A[m
′]

kl

�∗
(25)

and convert it into a matrix in a way similar to Eq. (18):

M̃(ik),( jl) = Mi, j,k,l (26)

where Ŝz = diag(1/2,−1/2). Explicitly, we have

M̃ =







(a+ 1)2 0 0 −b2

0 1− a2 −bc 0
0 −bc 1− a2 0
−c2 0 0 (a− 1)2






(27)

Then

〈Sz〉=
Tr(M̃ T̃ L−1)

Tr(T̃ L)
(28)

To evaluate the above expression, we perform Jordan decomposition for T̃ and M̃ to obtain
T̃ = ST JT S−1

T and M̃ = SM JM S−1
M , where

ST =









0 0 2a−
p

4a2+b2c2

c2

p
4a2+b2c2+2a

c2

−1 1 0 0
1 1 0 0
0 0 1 1









,

SM =









0 0
p

4a2+b2c2−2a
c2

−
p

4a2+b2c2−2a
c2

1 −1 0 0
1 1 0 0
0 0 1 1









, (29)
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and JT = JM = diag(1 − a2 − bc, 1 − a2 + bc, 1 + a2 −
p

4a2 + b2c2, 1 + a2 +
p

4a2 + b2c2).
Plugging these into Eq. (28) and taking the limit L→∞ yield

〈Sz〉=
1+ a2 + 4a2−b2c2

p
4a2+b2c2

1+ a2 +
p

4a2 + b2c2
. (30)

Clearly 〈Sz〉 ̸= 0 for generic nonzero a, b, c ∈ R.
Therefore, we have completed the proof that, for generic nonzero a, b, c ∈ R, the only

subgroup of SO(3) that is still a symmetry of the MPS in Eq. (16) is the Z2 generated by the
π rotation with respect to Sz , which further implies that the remaining symmetry of the stack
of chains described in the main text is G = Z2 ×Zd .

C.2 G-symmetric short-range entangled state beyond the conventional classifi-
cation

In the previous section, we have already shown that the stack of spin-1/2 chains described
in the main text is a G-symmetric short-range entangled state. It is then natural to ask how
this state fits into the classification of d + 1 dimensional G symmetry-protected topological
states (G-SPTs). In this subsection, we show that this stack of spin-1/2 chains is beyond the
classification of d+1 dimensional G-SPTs develeped in Refs. [22,23], and in some sense even
beyond the more refined classification proposed in Refs. [18,24].

According to Refs. [22,23], the classification of d+1 dimensional G-SPTs is Hd+1(G, U(1)),
with G = Z2 × Zd . This group cohomology has been calculated in Ref. [28], and it is found
that

Hd+1(G, U(1)) =
d+1
∏

k=1

Hk (Z2, U(1))

 

d
k− 1

!

(31)

This classification has a simple interpretation in terms of dimensional reduction: to construct
a G-SPT in d spatial dimensions, we can first pick up k − 1 spatial dimensions, build up
(k − 1) + 1 spacetime dimensional Z2-SPTs along these dimensions, and stack these lower
dimensional Z2-SPTs in a way that preserves the Zd translation symmetry. Using the fact that
Hk(Z2, U(1)) = Z2 for odd k and Hk(Z2, U(1)) = Z1 for even k > 0, we can get the classifi-
cation of G-SPTs in various dimensions. When d = 1,2 and 3, the classification is Z2, Z2

2 and
Z4

2, respectively. The analysis can be extended to higher d, in which case it is still true that our
stack of spin-1/2 chains is beyond this group-cohomology-based classification, but below we
will focus on the case with d ⩽ 3.

Let us start with the case where d = 1 and the classification is Z2. The dimensional reduc-
tion picture implies that the nontrivial 1+1 dimensional G-SPT, roughly speaking, has each of
its translation unit cells hosting a Z2 odd state. More precisely, it means that when the length
of the chain increases by 1, the Z2 eigenvalue of the ground state changes. In other words, the
two different 1+1 dimensional G-SPTs are expected to be characterized by λ≡ limL→∞

λL+1
λL

,
where λL is the eigenvalue of the ground state with length L, |ψ〉L , under the Z2 symmetry
action X , i.e., X |ψ〉L = λL|ψ〉L [21]. It is natural to identify the G-SPT with λ= 1 (λ= −1) as
the trivial (nontrivial) SPT. Then a simple example of a trivial (nontrivial) 1+1 dimensional G-
SPT is a many-qubit state

∏

j |0〉 j (
∏

j |1〉 j), where the on-site Z2 symmetry action X j satisfies
X j|0〉 j = |0〉 j and X j|1〉 j = −|1〉 j . Note that both of these SPTs are ultralocal product states, al-
though they have symmetry-protected distinction. This highlights the fact that in the presence
of lattice symmetries the notions of trivial and nontrivial SPTs are in some sense semantic.

For our MPS state described by Eq. (16), the results from the previous subsection im-
ply that λL+1

λL
= eiα = i, which is neither 1 nor −1. This means that this simple MPS is a
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G-symmetric short-range entangled state beyond the conventional group-cohomology-based
classification [21], which is possible because in our case the Z2 on-site symmetry acts on states
as a Z4 group. Notice that this is different from having projective representations under the
on-site symmetry (Z2 actually has no projective representation), so in some sense such a state
is not even captured by the more refined classification proposed in Refs. [18, 24]. We also
remark that, if only the remaining symmetry G is preserved but G0 is explicitly broken, it
should be possible to deform our state such that b = c = 0 without closing the gap [21], which
smoothly connects our state to the all-spin-up ultralocal product state. During the course of
this deformation, λL+1

λL
= i is invariant. Moreover, we can consider another MPS state obtained

by switching A[Sz=
1
2 ]↔ A[Sz=−

1
2 ], which has λL+1

λL
= −i and can be smoothly connected to the

all-spin-down ultralocal product state while preserving the symmetry G. This again reflects
the fact that the notions of trivial and nontrivial SPTs are somewhat semantic in the presence
of lattice symmetries. More generally, it is more appropriate to view these states as being
described by a torsor over H2(Z2 ×Z, U(1)), rather than elements of H2(Z2 ×Z, U(1)).

Next, we move to the case with d = 2, where the classification is Z2
2. It is easy to see

that one of the two root SPTs is simply the nontrivial SPT protected only by Z2, where the
translation symmetry is unimportant, and the other root SPT is simply the higher dimensional
generalization of the 1+1 dimensional G-SPT discussed above. Roughly speaking, each trans-
lation unit cell in this SPT hosts a Z2 odd state. Clearly, our stack of spin chains is neither of
these two states, which means it is beyond the group-cohomology-based classification.

Finally, we turn to the case with d = 3, where the classification is Z4
2. One of the four root

states is simply again the generalization of the 1+1 dimensional state, where each translation
unit cell hosts a Z2 odd state. The other three root states can be viewed as stacks of 2 + 1
dimensional Z2-SPTs that have Z3 translation symmetry. Again, it is clear that our stack of
spin chains is none of these states, and it is therefore beyond the group-cohomology-based
classification. Instead, such a state should be thought of as a torsor over H2(Z2 × Z, U(1)),
rather than an element in H2(Z2 ×Z, U(1)).

C.3 Properties of the Goldstone modes

In this subsection, we discuss the properties of the Goldstone modes associated with the
G0→ G symmetry-breaking orders. This discussion applies to all S ⩾ 1/2.

We will use the results in Ref. [49], which connect the number of broken generators of a
continuous symmetry and the expectation values of the charge density in the ground states
to the number and dispersion of the Goldstone modes. The expectation values of the charge
density enter through the anti-symmetric matrix ρ defined as

ρab ≡ −i〈[Ŝa, Ŝb]〉/V , (32)

where Ŝa,b are the broken generators, and V is the volume of the system. Denote the number
of the broken generators by nBG , Ref. [49] shows that the total number of Goldstond modes
is nBG −

1
2rank(ρ), where nBG − rank(ρ) of them generically have linear dispersion, and the

other 1
2rank(ρ) of them generically have quadratic dispersion.

In our case, the number of broken generators is nBG = 3. Because the remaining sym-
metry of G does not require 〈S〉 = 0, the matrix ρ generically has rank 2. So there will be
nBG −

1
2rank(ρ) = 3− 2/2 = 2 gapless Goldstone modes, where one of them generically has

linear dispersion and the other has quadratic dispersion.
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