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Abstract1

By engineering the electromagnetic vacuum field, the induced Casimir-Polder shift (also2

known as Lamb shift) and spontaneous emission rates of individual atomic levels can3

be controlled. When the strength of these effects becomes comparable to the energy4

difference between two previously uncoupled atomic states, an environment-induced5

interaction between these states appears after tracing over the environment. To the best6

of our knowledge, this interaction remains unexplored. We develop a description that7

permits the analysis of these non-diagonal perturbations to the atomic Hamiltonian in8

terms of an accurate non-Hermitian Hamiltonian. Applying this theory to a hydrogen9

atom close to a dielectric nanoparticle, we show strong vacuum-field-induced state mixing10

that leads to drastic modifications in both the energies and decay rates compared to11

conventional diagonal perturbation theory. In particular, contrary to the expected Purcell12

enhancement, we find a surprising decrease of decay rates within a considerable range of13

atom-nanoparticle separations. Furthermore, we quantify the large degree of mixing of14

the unperturbed eigenstates due to the non-diagonal perturbation. Our work opens new15

quantum state manipulation possibilities in emitters with closely spaced energy levels.16
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1 Introduction35

It is well known that atomic properties are modified due to the interaction with the quantized36

electromagnetic (EM) vacuum field supported by macroscopic bodies [1]. In the weak-coupling37

regime, this changes both the atomic linewidths (Purcell effect) [2] and energies (Lamb or38

Casimir-Polder [CP] shifts) [3]. These modifications have wide-ranging applications in fields39

such as optics or atomic and soft matter physics, including the design of efficient single photon40

sources [4–6], the atomic force microscope [7], new atom trapping methods [8,9] or the precise41

manipulation of atomic properties with tunable nanostructures [10]. Theoretical descriptions42

of these effects are commonly perturbative, using either standard perturbation theory or open43

quantum systems approaches [11], although efforts to go beyond the purely perturbative regime44

have also been published [12]. When the interactions are weak, the effect of the environment45

is customarily treated for each atomic state independently, giving rise to simple diagonal energy46

shifts and decay rates. However, for subsets of near-degenerate atomic states, the CP shift47

and/or spontaneous emission rates may be of the same order as the energy differences within48

the subset, suggesting that the above treatment is not consistent, even if the light-matter49

coupling is perturbative.50

In this work, we show that the standard diagonal perturbation approach indeed fails when51

field-induced shifts are comparable to the energy level differences, requiring the treatment of52

environment-induced interactions between the levels. Recently, this issue started to be tackled53

with an open quantum systems framework designed for structures with closely spaced levels [13].54

In that work the standard Bloch-Redfield equation [11] was turned into a Lindblad form [14],55

with the corresponding benefit of trace preservation, while simultaneously eluding the usual56

secular approximation that neglects the couplings between non-degenerate states [15]. Here, we57

extend this framework to incorporate the effect of the counter-rotating terms in the light-matter58

Hamiltonian and construct a master equation that accurately represents the off-diagonal CP59

and decay terms, which we expect to be relevant in any system with subsets of near-degenerate60

levels. From the Lindblad equation, we extract an effective non-Hermitian Hamiltonian that61

determines the dynamics of a subset of levels and in turn enables a quantitative exploration of62

the vacuum-field-induced state mixing. We illustrate the effects of the off-diagonal terms by63

applying the above steps to a system comprised of a hydrogen atom close to an aluminum nitride64

(AlN) nanoparticle (NP), and study the impact of the off-diagonal couplings on the dynamics65

of the atom. We find strong modifications to the level structure and observe significant state66

mixing at atom-NP distances on the order of 100 nm. Consequently, the atomic dynamics close67

to the NP cannot be understood without consideration of the effects discussed in this work. The68

situation treated here lies between conventional weak coupling (where light-matter interactions69

can be treated perturbatively and states can be considered independently) and strong coupling70

(where light and matter excitations mix significantly due to non-perturbative interactions).71

In this novel regime of “strong weak coupling”, perturbative light-matter interactions lead to72

significant state mixing within the matter component.73
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2 Methods74

2.1 Macroscopic quantum electrodynamics75

We describe the interaction between atoms and the EM field supported by macroscopic bodies76

within macroscopic quantum electrodynamics (MQED) [16–18]. The corresponding Power-77

Zienau-Woolley light-matter Hamiltonian in the dipole approximation [3,19–21] is78

H = Hat +Hf − d · E(rat). (1)

Here, Hat is the matter Hamiltonian, emphasizing that we treat a single atom. The field79

Hamiltonian,80

Hf =
∑

λ

∫

d3r

∫

dωħhω f†
λ
(r,ω) · fλ(r,ω), (2)

contains the (bosonic) polaritonic annihilation and creation operators fλ(r,ω) and f†
λ
(r,ω) that81

describe both the purely electromagnetic and the macroscopic polarization fields. Here, the82

index λ= {e, m} labels the electric or magnetic nature of the excitations, and the integrals are83

over all space and over all positive frequencies. The last term is the dipolar interaction between84

the atom with dipole operator d and the electric field E(r) evaluated at the atomic position rat,85

where86

E(r) =
∑

λ

∫

d3s

∫

dωGλ(r, s,ω) · fλ(s,ω) +H.c., (3)

with87

Ge(r, s,ω) = i
ω2

c2

√

√ ħh
πϵ0

Imϵ(s,ω)G(r, s,ω),

Gm(r, s,ω) = i
ω

c

√

√ ħh
πϵ0

Imµ(s,ω)
|µ(s,ω)|2
�

∇s ×G(s, r,ω)
�T

.

Here, ϵ and µ stand for the electric and magnetic response functions, respectively. G =88

G0+Gscatt is the classical electromagnetic Green tensor, separated in its free-space and scattering89

contributions. In the weak-coupling regime, G0 is responsible for the free-space Lamb shift [3],90

a NP-independent contribution that can be simply reabsorbed in Hat. Compared to the effects91

we study in this work, this is a negligible correction that we discard entirely in the following.92

For concreteness, we focus on a hydrogen atom interacting with a spheroidal AlN NP (see93

Figure 1a). It should be noted, however, that the following arguments are of broader generality94

and applicable to a wide range of physical systems, provided that the energies and transition95

dipole moments of the atom and the Green tensor of the nanostructure are accessible, a general96

requirement of CP calculations. We choose this NP shape and material for two reasons: (i) the97

EM resonances along the symmetry axis (z) enhance the atomic transitions mediated by Ez with98

respect to the other components, and (ii) the energy range of the EM resonances coincides with99

the hydrogenic transition we want to target. Hence, this system provides a realistic and not100

overly complicated testing ground for the formalism developed, and will allow us to illustrate101

the effects of the off-diagonal vacuum shifts.102

In Equation 1, Hat is diagonal, and its eigenvalues include fine structure corrections [22]:103

En j =

�

−
1

2n2
−
α2

2n3

�

1

j + 1
2

−
3

4n

��

Eh, (4)

where n, j, α and Eh ≃ 27.2 eV are the main quantum number, the total electronic angular104

momentum, the fine structure constant and the Hartree energy, respectively. The energy levels,105
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Figure 1: (a) Sketch of the system. (b) Simplified level structure of the hydrogen atom
with Bohr levels and fine structure splitting (not to scale). Diagonal lines: dipolar
transitions allowed from the n= 4 Bohr level to the n= 5 and n= 3 Bohr levels. (c)
Top: spectral density of the AlN NP, obtained by setting d = 50 nm in Equation 7,
bottom: result of the integral in Equation 6d. e is the absolute value of the charge
of the electron and a0 is the Bohr radius. Vertical line: transition frequencies of the
atom from n= 7 to n= 6.

schematically shown in Figure 1b, are distributed in well-separated Bohr levels labeled by n,106

corrected with the fine structure splitting∆F , a j-dependent quantity that is 4 or more orders of107

magnitude smaller. This energy scale is small enough that the CP induced interaction between108

fine structure states with the same n can be relevant. The NP is a spheroid with major and109

minor axes M = 200 nm and m = 140 nm, with the AlN dielectric permittivity taken from [23].110

For this NP, the phonon-polariton resonances lie close to the transition energy between the111

hydrogenic n = 7 and n = 6 states. Specifically, we will focus on the off-diagonal effects within112

the n= 7 level for an atom located along the symmetry axis z of the NP.113

2.2 Master equation and effective non-Hermitian Hamiltonian114

To describe the dynamics of the field-modified atomic levels and their mixing, we derive a115

Lindblad equation for the atomic density matrix ρ by considering the EM fields as a weakly116

coupled bath and perturbatively tracing out the EM degrees of freedom. The standard open117

quantum systems approach [11] leads to a Bloch-Redfield equation, which does describe the118

bath-induced interaction between levels, but leads to non-trace-preserving dynamics in which119

the coherent evolution cannot be interpreted as an effective non-Hermitian Hamiltonian. A120

standard secularization procedure leads to a trace-preserving Lindblad equation, but removes121

the off-diagonal terms describing state mixing. Instead of secularization, we extend the approach122

of Ref. [13] for obtaining a trace-preserving Lindblad equation for near-degenerate levels to123

include the effect of the counter-rotating terms of the dipolar interaction (for details, see124

Appendix A). The master equation at zero temperature and for the symmetric geometry of125

Figure 1a, where G is a diagonal matrix, is then given by126

ρ̇ =
−i
ħh
[Hat +HCP,ρ] +

∑

δ,n

L
Σ
(n)
δ

[ρ]. (5)

Here, HCP is the CP shift, Σ(n)
δ

are decay operators, and LA[ρ] = AρA†− 1
2{A

†A,ρ} is a Lindblad127

dissipator. There is a decay operator for each spatial component δ in the spherical basis and128
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for each Bohr level n. The CP shift is given by HCP = ħh
∑

δ,n D(n)†
δ

D(n)
δ

, where129

〈 j|D(n)
δ
|n〉=
q

λδδ(ωn j)〈 j|dδ|n〉, (6a)

and the decay operators can be expressed as130

〈 j|Σ(n)
δ
|n〉=
q

γδδ(ωn j)〈 j|dδ|n〉. (6b)

Here, the atomic states |n〉 and | j〉 belong to the nth and jth Bohr level, respectively, and ωn j =131

(En−E j)/ħh. Had the counter-rotating terms in the dipolar coupling not been taken into account,132

the Hermitian dipole operators would have been replaced by raising and lowering operators,133

such that ω j ≤ωn. Instead, our description also incorporates the CP shift contribution given134

by states with ω j >ωn. The decay rates γδε and energy shifts λδε are given by135

γδε(ω) = 2πJδε(ω), (6c)

λδε(ω) =

∫

dω′
J scatt
δε
(ω′)

ω−ω′
, (6d)

where Jδε(ω) is the spectral density of the EM field,136

Jδε(ω) =
ω2

ħhπε0c2
Im Gδε(rat, rat,ω). (7)

Here, the Greek indices denote spatial components, and we replace G by Gscatt in J scatt (Equa-137

tion 6d), since the free-space contribution was discarded. Note that the expressions for λδε138

contain both the so-called resonant contributions, proportional to ReGscatt, and non-resonant139

contributions to the energy shift [24]. The electromagnetic Green tensor is computed using the140

boundary element method implemented in SCUFF-EM [25,26]. Both Jδε(ω) and λδε(ω) are141

shown in Figure 1c (top and bottom panels, respectively).142

While solving Equation 5 is considerably more affordable than a direct solution of Equation 1,143

several faithful approximations allow for further simplification, succinctly described below, with144

more details and an explicit check of the validity of the approximations given in Appendix B145

and Appendix C. First, for the dynamics within a single Bohr level, here n= 7, we can discard146

the states with n ̸= 7 and write a closed set of equations for n= 7, due to the large difference147

in the energy scales associated to the Bohr transition energies and the environment-induced148

perturbations. The other states are then considered only implicitly as intermediate virtual states149

that contribute to the CP and decay terms. Furthermore, within this subspace, the “quantum150

jump” terms Σ(7)
δ
ρΣ

(7)†
δ

in Equation 5 are negligible since they are proportional to Jδδ(∆F ),151

and the spectral density approaches zero for small frequencies. With these approximations, the152

dynamics within the n= 7 subspace is described by an effective non-Hermitian Hamiltonian153

H(7)eff = H(7)at +ħh
∑

δ

�

D(7)†
δ

D(7)
δ
−

i
2
Σ
(7)†
δ
Σ
(7)
δ

�

, (8)

where Hat has been projected onto the n= 7 subspace. Last, due to the axial symmetry of the154

system (see Figure 1a), the z component of the total angular momentum is conserved and155

Equation 8 consists of independent blocks for each value of m j. In the following, we focus156

on the subspace m j = 1/2, which reduces the number of states to be considered to 7 for this157

particular case.158
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3 Results159

The above derivation significantly simplifies the analysis of the dynamics. In particular, the160

effective Hamiltonian can be diagonalized, and the real and imaginary parts of its eigenvalues161

correspond to the energies and decay rates of the states including the vacuum-field-induced162

state mixing. These energies and decay rates are shown in Figure 2a and Figure 2b, respectively.163

Since the CP shift is dominated by an overall attraction to the surface (inset of Figure 2a), we164

plot it relative to the average value for each separation d, revealing a completely different and165

much more complex structure compared to the fully secularized, diagonal model. In particular,166

clear avoided crossings highlight the relevance of the off-diagonal terms. Similarly striking167

differences between both models appear in the decay rates shown in Figure 2b. Due to the168

off-diagonal terms, the decay rates cross each other several times. Particularly prominent is the169

vacuum-field-induced generation of a state that becomes more protected against spontaneous170

decay as the atom approaches the NP for separations between about d = 40 nm and 60 nm.171

This is in stark contrast to the behavior when the states are treated independently, for which172

the effect of quenching leads to monotonic increase of the Purcell factor and thus decay rate173

with decreasing separation [27,28]. We note that the subradiant state created by field-induced174

mixing has a smaller decay rate than any of the original eigenstates of the atom at the same175

distance when mixing is not included.176

(a)

(b)

(c)

Figure 2: (a) Energies and (b) decay rates as a function of the atom-NP separation
d. (c) Decay rates with the NP shape chosen to optimize the decay rate reduction:
M = 200 nm and m= 120 nm. Solid black lines: full model with off-diagonal terms.
Green dashed lines: model without the off-diagonal terms.

The emergence of this protected state can be understood by realizing that the system177

approaches an idealized situation in which one of the states in the n = 7, m j = 1/2 manifold is178

fully decoupled from the EM environment. This situation would occur if we could ignore the179

(i) fine structure, (ii) x- and y-polarized electric fields in Equation 1, and (iii) contributions of180

6
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states outside of the n = 6 Bohr level to the CP shift and spontaneous decay. Then, 7 states181

in n = 7 couple to 6 states in n = 6 through the single operator dz, and there is always one182

superposition (“dark state”) with vanishing coupling. For the realistic system, this idealized183

situation is approached for various reasons. First, the elongated shape of the NP suppresses the184

x x and y y components of J and λ compared to the zz component. Second, the coincidence of185

the first peak of Jzz and λzz with the energy of the transition from n = 7 to n = 6 enhances the186

contributions from n= 6 intermediate states compared to other Bohr levels. Lastly, when the187

CP shifts become greater than the fine structure, the latter becomes a perturbative correction188

that can be neglected to lowest order. Based on these considerations, we change the aspect189

ratio of the NP by decreasing the minor axis to m= 120 nm in order to amplify the protection190

of the state. As shown in Figure 2c, the minimum decay rate becomes an order of magnitude191

smaller than the naive expectation without off-diagonal terms, unambiguously demonstrating192

that the off-diagonal terms can significantly impact the structure of the atom and cannot be193

neglected in a realistic description.194

Next, we evaluate the amount of vacuum-field-induced state mixing. The eigenstates |ψ〉195

of Equation 8 are linear superpositions of the fine structure basis states |φk〉, and the degree of196

this mixing can be quantified using the so-called participation ratio P [29], defined as197

P(|ψ〉) =

�

∑

k

|〈ψ|φk〉|4
�−1

. (9)

It measures the number of basis states “equally” contributing to the normalized state |ψ〉, with198

possible values ranging from 1 to the number of basis states (7 for the case studied here). For199

example, for a state of the form |ψ〉=
p

1/n
∑n

k=1 eiθk |φk〉, P equals n. In Figure 3, we show200

the participation ratio of the eigenstates of Equation 8 as a function of the atom-NP separation201

d, with green lines showing P for each eigenstate and the thick black line representing the202

average over all states. We find state mixing to be negligible for separations above ≈ 150 nm,203

indicating that the off-diagonal contributions to Equation 8 are too small to effectively couple204

the states. For shorter distances, the magnitude of the off-diagonal terms,
�

�〈i|Heff| j〉
�

�, becomes205

comparable to the difference of the corresponding diagonal elements,
�

�〈i|Heff|i〉 − 〈 j|Heff| j〉
�

�,206

and the states mix appreciably. In particular, clear peaks in P appear when the diagonal CP shifts207

bring initially detuned states into resonance, such that the off-diagonal elements dominate more208

easily. Despite the non-monotonic behavior, overall the participation ratios tend to increase209

as the atom approaches the NP until they stabilize at about d = 30 nm. At closer distances,210

vacuum-field couplings determine the eigenstates and dominate over the fine structure, which211

becomes a small perturbation of these new eigenstates. We note that for the setup studied here,212

almost complete mixing of some atomic states is achieved, with values of P larger than 5, close213

to the theoretical maximum of 7.214

20 40 60 80 100 120 140
d (nm)(min) 123

456
(max) 7

P
i

Average

Figure 3: Participation ratios Pi versus atom-NP separation. Green lines: P of each
eigenstate. Black line: average P at each separation.
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4 Conclusion215

In conclusion, we have shown that vacuum-field-induced interactions can significantly mix216

groups of near-degenerate levels in atoms and must, therefore, be included to accurately217

characterize the dynamics. We have derived a trace-preserving Lindblad master equation218

that provides a precise description of these situations and allows an interpretation of the field-219

modified atomic structure in terms of an effective non-Hermitian Hamiltonian. For concreteness,220

we have applied these general ideas to a hydrogen atom coupled to an AlN NP. This leads to221

striking new features in the atomic structure, such as avoided level crossings and, surprisingly,222

a decrease of the decay rate for a particular eigenstate with decreasing distance to the NP even223

though the Purcell factor for each uncoupled state grows monotonically. This illustrates that224

the off-diagonal terms can even have counterintuitive consequences. Deeper exploration of the225

eigenstates reveals that the atomic structure in this regime greatly differs from the original fine226

structure of the free-space atom, even though the atom-field interactions are perturbative and227

the atom remains a well-defined entity, in contrast to the strong light-matter coupling regime.228

From an atomic physics perspective, the hydrogen atom treated here becomes “unrecognizable”229

as the atomic structure and spectroscopic properties within each sublevel change completely.230

We note that while we treat a specific setup here, the framework can be straightforwardly231

applied to other nanostructures (e.g., graphene [10]) and emitters or level splittings (e.g., due232

to hyperfine structure). Our work thus extends the regime where vacuum-field-induced forces233

and decay rates are accurately described and opens the door to new strategies for developing234

quantum state manipulation platforms based on off-diagonal vacuum-induced effects.235
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A Derivation of the master equation244

The master equation used in this work, Eq. (5) in the main text, is closely based on the one245

derived in [13], modified to include the counter-rotating terms of the light-matter Hamiltonian246

and a realistic electromagnetic environment, with three spatial components and non-trivial247

structure. We revisit the derivation here and highlight the additions and differences compared248

to [13]. For simplicity, the derivation is presented in a way that directly relates to the illustrative249

physical system of the main text, that is, a hydrogen atom. However, this is not a true limitation250

of the approach and approximations, as long as one considers level structures with distinct251

subsets of closely spaced states, a common feature of atomic systems due to fine structure or252

hyperfine structure splittings. Starting from the conventional Bloch-Redfield (BR) equation,253

we first describe the customary secular approximation, a procedure known to yield a trace-254

preserving Lindblad master equation. This equation would systematically neglect the off-255

diagonal terms discussed in this work. Then, we take the BR equation and perform a series of256

approximations that lead to a different Lindblad equation, maintaining the non-secular terms.257
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A.1 Bloch-Redfield master equation258

The BR equation for our system is given by [11,30]259

ρ̇ = −
i
ħh
[Hat,ρ] +
∑

abcd

�

− i
�

Λca,d b(ωbd)|a〉〈c|d〉〈b|ρ −Λca,d b(ωac)ρ|a〉〈c|d〉〈b|
�

− i
�

Λca,d b(ωbd)−Λca,d b(ωac)
�

|d〉〈b|ρ|a〉〈c|

−
1
2

�

Γca,d b(ωbd)|a〉〈c|d〉〈b|ρ + Γca,d b(ωac)ρ|a〉〈c|d〉〈b|
�

+
1
2

�

Γca,d b(ωbd) + Γca,d b(ωac)
�

|d〉〈b|ρ|a〉〈c|
�

, (10)

where the latin indices a, b, c, d denote atomic eigenstates, while Γca,d b(ω) and Λca,d b(ω) are260

rotationally invariant quantities given by261

Γca,d b(ω) = d∗ca · γ(ω) · dd b (11a)

Λca,d b(ω) = d∗ca ·λ(ω) · dd b, (11b)

with γ and λ given by Eq. (6c) and Eq. (6d) of the main text, while dca is a matrix element262

of the atomic dipole operator. We note that while we indicate the complex conjugation of the263

dipole matrix elements, it is possible to choose an atomic basis in which they are real; thus,264

both Γ and Λ are real quantities.265

Equation (10) is rather complicated, but the physical interpretation of each line is simple:266

the first two lines of the sum are responsible for the Casimir-Polder (CP) shifts, while the third267

and fourth lines describe decay processes. While the CP terms can often be neglected, this is not268

the case for the system we study, as they are of the same order as the hydrogenic fine structure.269

For the same reason, we must include the counter-rotating (CR) terms in the full light-matter270

Hamiltonian. Otherwise, λ(ω) would only be evaluated at non-negative frequencies and271

Equation 10 would miss significant contributions to the CP terms arising from the negative272

frequencies. The CR terms only affect the energy shift, as the decay terms γ(ω) vanish at273

negative frequencies (at zero temperature, as assumed here). It is worth noting that even274

without considering the CR terms, the equation already includes the basis for the off-diagonal275

CP terms we discuss in the main text, albeit in a complex manner that is hard to disentangle.276

The BR equation has several drawbacks: First, it is not trace-preserving and does not277

guarantee positivity of the density matrix. Although it has been shown that these deviations278

from physical density matrices are negligible when the approximations made in deriving the279

BR equation are valid [15, 31], dealing with formally unphysical density matrices requires280

additional care. Second, the BR matrix is characterized by a superoperator of dimension N2×N2,281

where N is the number of system states, which makes analysis of its behavior challenging. In282

contrast, a Lindblad-type master equation automatically ensures the physicality of the density283

matrix, and at the same time allows for a simpler analysis since it is characterized by a single284

Hamiltonian and a set of decay operators, all of dimensions N × N .285
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A.2 Lindblad master equation with full secularization286

The usual procedure to obtain a Lindblad equation from Equation 10 is the so-called secular287

approximation which consists in eliminating every term where ωac ̸=ωbd . Doing so yields288

ρ̇ =−
i
ħh
[Hat,ρ]− i

(S)
∑

abd

�

Λda,d b(ωbd)|a〉〈b|,ρ
�

+
(S)
∑

abcd

Γca,d b(ωbd)
�

|d〉〈b|ρ|a〉〈c| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

(12)

where the superscript (S) in the sum indicates that only terms with ωac =ωbd are kept. In the289

energy shift, this is equivalent to the conditionωa =ωb since |c〉 = |d〉 there. The energy shift is290

clearly Hermitian because it is a real and symmetric matrix. The decay term can be reexpressed291

by grouping the sum over transitions into sets with a given frequency Ω=ωac =ωbd , which292

yields293

∑

Ω

∑

αβ

γαβ(Ω)
�

σ
β
Ωρσ

α†
Ω −

1
2

¦

σα†
Ω σ

β
Ω,ρ
©

�

=
∑

Ωε

Γε(Ω)
�

SεΩρSε†Ω −
1
2

¦

Sε†Ω SεΩ,ρ
©

�

. (13)

Here, greek indices α,β indicate spatial directions, while all dipole transitions dα with a294

frequency difference of Ω are combined in the transition operators σαΩ =
∑(Ω)

ab dαab|a〉〈b|. The295

right-hand side above is obtained by diagonalizing γαβ (Ω) =
∑

ε M†
αε(Ω)Γε(Ω)Mεβ (Ω) for each296

transition frequency Ω and defining SεΩ =
∑

α Mεα(Ω)σαΩ. In this last form, it is evident that the297

full secularization returns a Lindblad master equation. However, the only off-diagonal terms298

present are the ones connecting degenerate states. This approximation has been shown to be299

inadequate in a variety of contexts [13,15,31], since it indiscriminately removes the coupling300

between coherences (off-diagonal elements of ρ) and populations of non-degenerate states.301

Thus, in the system explored in the main text, relevant physics would be omitted within each302

Bohr level.303

A.3 Lindblad master equation with partial secularization304

We here show how to derive the Lindblad equation including off-diagonal terms between305

non-degenerate states used in the main text from the BR equation, Equation 10. Instead of a306

full secularization as discussed above, we start by performing a partial secularization to discard307

terms where the timescale induced by the environment, τE ∼min(|d2λ|−1, |d2γ|−1), is much308

larger than that of the atomic transitions, τat ∼ |ωac −ωbd |−1. In Equation 10, this is fulfilled309

for terms where |a〉 and |b〉 belong to different Bohr levels: First, if either |c〉 or |d〉 belongs to310

a different Bohr level than |a〉 and |b〉, respectively, then τat is very small compared with τE ,311

and secularization is well-justified. If, instead, |c〉 and |d〉 belong to the same Bohr levels as312

|a〉 and |b〉, respectively, then τE∝ 1/γ(∆F/ħh) becomes extremely large because ∆F is on the313

scale of the fine structure splitting and the spectral density approaches 0 when ω goes to 0.314

Hence, even if τat ∼ ħh/∆F is large, τE is even larger in the system studied here. This partially315

secularized BR equation is significantly simpler than the full one, but is not yet in Lindblad316

form.317

We next adapt the approach of [13] to the current problem with a more complex bath318

and with CR terms in the light-matter Hamiltonian. This approach consists in replacing both319

Λca,d b(ωbd) and Λca,d b(ωac) with their geometric mean Λ̃ca,d b =
Æ

Λca,d b(ωbd)Λca,d b(ωac),320

and the same for Γca,d b(ωbd) and Γca,d b(ωac). The CP Hamiltonian, second term in the right-321

hand side of Equation 14, appears after the replacement with both diagonal and off-diagonal322

matrix elements. The effect of the CR terms is manifested in the precise values of the matrix323
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elements, which change significantly depending on whether the CR interactions are included324

or not. When applied to Equation 10, the pairs of indices ca and d b become symmetrized, and325

the resulting master equation is326

ρ̇ =−
i
ħh
[Hat,ρ]− i

� (s)
∑

abcd

Λ̃ca,d b|a〉〈c|d〉〈b|,ρ
�

+
(s)
∑

abcd

Γ̃ca,d b

�

|d〉〈b|ρ|c〉〈a| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

, (14)

where the superscript (s) in the sum indicates the partial secularization mentioned above. The327

replacement Λ → Λ̃, Γ → Γ̃ is valid when the spectral density, Eq. (7) in the main text, is328

slowly varying, J(ω+ |d2λ|)≃ J(ω) and J(ω+ |d2γ|)≃ J(ω). In that case, for each term in329

Equation 10 where |ωac −ωbd |<max(|d2γ|, |d2λ|), the change in the value of the element is330

small, and it is a good approximation. For terms where |ωac −ωbd |>max(|d2γ|, |d2λ|), the331

value might change appreciably, but its effect on the dynamics is small due to the difference in332

energy scales. In fact, such terms could be eliminated through an additional secularization to a333

good approximation.334

In Equation 14, the energy shifts are described by an off-diagonal CP Hamiltonian HCP =335

ħh
∑(s)

abc Λ̃ca,cb|a〉〈b|. This Hamiltonian is symmetric, as Λ̃ca,cb = Λ̃cb,ca due to the reality of336

Λca,d b(ω). However, this means that it is only Hermitian if it is also real. This requires that337

Λca,cb(ωac) and Λca,cb(ωbc) have the same sign, so that the square root of their product is real.338

In the cases studied in the manuscript, the partial secularization we have performed earlier339

ensures that only terms with ωac ≃ ωbc survive, and combined with the properties of the340

spectral density, the sign condition is satisfied in all cases. A discussion of the general situation341

where this is not necessarily true will be given in a future work.342

In order for Equation 14 to be a Lindblad-type master equation, the decay rate tensor343

Γ̃ca,d b interpreted as a matrix in the combined indices ca and d b has to be symmetric positive344

semidefinite. In that case, it can be diagonalized with positive eigenvalues and the last term in345

Equation 14 can be rewritten as a sum of standard Lindblad decay terms. While it is symmetric346

by construction, we are not aware of a general proof of positive semidefiniteness for arbitrary347

spectral densities. For the cases we treat in the manuscript, where the Green tensor is diagonal348

and cylindrically symmetric such that its Cartesian components satisfy Gx x = Gy y , we below349

give a proof through explicit construction of the diagonalized form. Under this assumption, the350

decay tensor has the form γ(ω) = diag(γx x(ω),γx x(ω),γzz(ω)). We now express Γca,d b(ω) in351

terms of the spherical basis defined by352

d′ =





d+1

d−1

d0



= U · d=





−1/
p

2 −i/
p

2 0
1/
p

2 −i/
p

2 0
0 0 1



 ·





d x

d y

dz



 . (15)

By construction, the spherical components of the dipole operator, dδ, connect states with a353

given m j to states with m j +δ. Due to its symmetry, γ(ω) is invariant under transformation to354

the spherical basis, γ′(ω) = U · γ(ω) ·U† = γ(ω). Since m j is a well-defined quantum number355

of our basis states, the advantage of the spherical basis is that every transition operator |a〉〈c|356

allowed by the selection rules (see Fig. 1b of the main text) is mediated by only one of d+1,357

d−1 or d0. Furthermore, because of the diagonal form of γ′, the transition operators |d〉〈b| and358

|c〉〈a| must have the same δ; otherwise Γca,d b(ω) = 0. As a consequence, we can expand the359

last term of Equation 14 as three separate sums, one for each value of δ, indicated below with360
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the label δ on the second summation sign:361

∑

δ

(s,δ)
∑

abcd

q

Γac,d b(ωbd)
q

Γac,d b(ωac)
�

|d〉〈b|ρ|a〉〈c| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

=

∑

δ

(s,δ)
∑

abcd

dδ∗ca dδd b

Æ

γδδ(ωbd)
Æ

γδδ(ωac)
�

|d〉〈b|ρ|a〉〈c| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

=

∑

δn

�

Σ
(n)
δ
ρΣ

(n)†
δ
−

1
2

¦

Σ
(n)†
δ
Σ
(n)
δ

,ρ
©

�

, (16)

where we have used that γδδ(ω)> 0 and that the dδca are real for any pair ca, and in the last362

step, we have defined the summed transition operator363

Σ
(n)
δ
=
(n)
∑

d b

dδd b

Æ

γδδ(ωbd)|d〉〈b|. (17a)

Here, the states |b〉 belong to the same Bohr level with main quantum number equal to n, while364

the |d〉 states can belong to any Bohr level. This is a consequence of the partial secularization365

explained at the beginning of this subsection. In this form, the decay term is given by an explicit366

Lindblad operator in terms of just three decay operators for each Bohr level n. We note that367

identical manipulations can be done on the energy shift terms, which can be refactored as368

D(n)
δ
=
(n)
∑

d b

dδd b

Æ

λδδ(ωbd)|d〉〈b|. (17b)

Finally, we can rewrite Equation 14 in our system as369

ρ̇ = −
i
ħh
[Hat +HCP,ρ] +

∑

δn

L
Σ
(n)
δ

[ρ] (18)

where HCP = ħh
∑

δn D(n)†
δ

D(n)
δ

and LA[ρ] = AρA† − 1
2{A

†A,ρ} are standard Lindblad decay370

terms. This is indeed a Lindblad equation for the atom that includes the relevant off-diagonal371

couplings both in the CP shift and the decay term.372

B Derivation of the effective Hamiltonian373

Any Lindblad equation ρ̇ = − i
ħh [H,ρ]+
∑

j LA j
[ρ] can be rewritten as ρ̇ = − i

ħh

�

Heffρ −ρH†
eff

�

+374
∑

j A jρA†
j , with the effective non-Hermitian Hamiltonian Heff = H − i

2

∑

j A†
jA j , and the terms375

of the last sum commonly referred to as the “refilling” or “quantum jump” terms. In physical376

situations where the refilling terms are negligible, the dynamics are then fully characterized by377

the eigenstates and eigenvalues of the effective Hamiltonian [32]. In the main text, we are378

concerned with the dynamics within a given Bohr level, in particular n= 7. Due to the partial379

secularization we performed, the effective Hamiltonian associated with Equation 18 is block-380

diagonal in Bohr levels, such that n remains a good quantum number and [Heff,Pn] = 0, where381

Pn is a projection operator onto the subspace with principal quantum number n. Projecting the382

Lindblad master equation onto this subspace gives383

ρ̇n = −
i
ħh

�

H(n)eff ρn −ρnH(n)†eff

�

+
∑

δn′
PnΣ

(n′)
δ
ρΣ

(n′)†
δ

Pn, (19)

H(n)eff = PnHeffPn = H(n)at +ħh
∑

δ

�

D(n)†
δ

D(n)
δ
−

i
2
Σ
(n)†
δ
Σ
(n)
δ

�

, (20)
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where ρn = PnρPn and H(n)at = PnHatPn. We thus only need to show that the refilling terms384

are negligible for the dynamics within a given Bohr level. To this end, we can rewrite them as385

PnΣ
(n′)
δ
ρΣ

(n′)†
δ

Pn =
(s,δ)
∑

abcd

dδ∗ca dδd b

Æ

γδδ(ωbd)
Æ

γδδ(ωac)Pn|d〉〈b|ρ|a〉〈c|Pn. (21)

Because of the partial secular approximation, |a〉 and |b〉 belong to the same Bohr level n′,386

and due to the projection operators Pn, |c〉 and |d〉 also have the same principal quantum387

number, n. Also, because γ is only non-zero at positive frequencies, we have that n′ ≥ n. We388

can immediately discard terms with n′ > n: They refer to the population that flows into the389

Bohr level n through spontaneous emission from higher-lying Bohr levels, but since we assume390

that the initial atomic state is in level n and there are no processes leading to higher levels,391

these terms do not contribute. For the remaining terms with n′ = n, the atomic time scales392

are τat ∼ ħh/∆F , but the decay-induced time scales are τE∝ 1/γ(∆F/ħh). Given the spectral393

density used in the main text, in our system τE ≫ τat. Thus, the effect of the terms with n′ = n394

is negligible, and we can safely remove the “refilling” term and write the dynamics in the395

subspace with principal quantum number n as396

ρ̇n = −
i
ħh

�

H(n)eff ρn −ρnH(n)†eff

�

, (22)

which is equivalent to the Schrödinger equation ∂t |ψ(t)〉= −
i
ħh H(n)eff |ψ(t)〉.397

B.1 Angular momentum conservation398

For each Bohr level n, the effective Hamiltonian Equation 20 derived above is a block diagonal399

matrix, with each block corresponding to a given value of the z-projection m j of the atomic400

angular momentum. This is easy to see since Hat conserves angular momentum, while the401

operators D(n)
δ

and Σ(n)
δ

connect m j to m j +δ, and their Hermitian conjugates connect m j +δ402

back to m j , such that overall, m j is conserved. In contrast, physically and in the full Lindblad403

master equation Equation 18, it is only the z-projection of the total angular momentum of the404

photons and atom together that is conserved due to the cylindrical symmetry of the system.405

Indeed, the complete master equation in Equation 18 does connect different m j subspaces406

through the refilling term. Since we have shown this term to be negligible for the dynamics407

within a given subspace, we can exploit conservation of m j to analyze its subspaces separately,408

and have done so in the main text by fixing m j = 1/2.409

C Numerical check410

In order to verify the validity of the derived Lindblad equation and effective Hamiltonian, we411

here apply it to a simplified system for which an exact solution is possible. To do so, we study412

the populations of the states with n= 3 in the hydrogen atom coupled to an electromagnetic413

bath whose spectral density is a Lorentzian. The density and the corresponding energy shift414

integral are shown in Figure 4a and Figure 4b, and are given by415

J(ω) =
g2

π

κ/2
(ω−ωM )2 + (κ/2)2

, (23)

λ(ω) =

∫ ∞

−∞
dω′

J(ω′)
ω−ω′

= g2 ω−ωM

(ω−ωM )2 + (κ/2)2
, (24)
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(a) (b)

Figure 4: (a) Model spectral density, J(ω). (b) Integral of the spectral density that
appears in the shift, λ(ω).

with parameter values ħhg = (9/
p

5) · 10−4 eV/(ea0), ħhκ = 2 · 10−3 eV and ħhωM = 1.95 eV.416

It is well-known that a Lorentzian spectral density is completely equivalent to a single mode417

coupled to a completely flat, i.e. Markovian, bath [33,34], with dynamics described exactly by418

a Lindblad equation [35],419

ρ̇ = −
i
ħh
�

Hat +ħhωM a†a,ρ
�

−
κ

2
{a†a,ρ}+κaρa†, (25)

where a is the bosonic annihilation operator of the bath mode. Hence, we can compare the420

approximate solutions obtained with our approaches, Equation 18 and Equation 22, to the exact421

dynamics given by Equation 25. We take |ψ(0)〉 = |n = 3, l = 0, j = 1/2, m j = 1/2〉|nph = 0〉 as422

the initial state and propagate it in time.

0 200 400 600 800 1000 1200 1400
t (ps)10-4

10-3
10-2
10-1
100

Populat
ions n=

3

Exact H
(3)
eff Lindblad

Figure 5: Time evolution of the atomic populations. Thick brown lines: numerical
solution to the exact dynamics (Equation 25). Green dashed lines: effective Hamilto-
nian (Equation 22). Black dotted lines: Lindblad master equation (Equation 18).

423

In the exact calculations, we include the first 4 Bohr levels of the hydrogen atom with424

their complete fine structure (60 states), which gives converged results. The population of425

the |3, l, j, 1/2〉 states are plotted in Figure 5. The three largest populations are perfectly well426
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described by both our Lindblad equation and the effective, non-Hermitian Hamiltonian. It427

should be noted that the dynamics calculated using the BR approach are essentially the same428

as those obtained from the Lindblad equation and therefore not shown separately. There are429

two additional lines that are present only in the exact dynamics and the Lindblad equation,430

with populations of the order of 10−3. These are states that become populated through the431

refilling terms within the n= 3 subspace discussed above. These are unrealistically large here432

because the spectral density chosen here to enable comparison with an exact result does not433

obey the physical constraint J(ω) = 0 for ω≤ 0. In contrast, the spectral density used in the434

main text obeys these physical constraints and the refilling term can indeed be discarded with435

much less impact.436

0 200 400 600 800 1000 1200 1400
t (ps)10-4

10-3
10-2
10-1
100

Populat
ions n=

3

Counter-rotating Rotating wave approximation
Figure 6: Dynamics calculated with the effective Hamiltonian. Green lines: including
the contribution of the CR terms. Brown dashed lines: the rotating wave approxima-
tion has been performed on the light-matter Hamiltonian.

Having checked the validity of Equation 20, we may use it to reinforce the claim that the437

CR terms are important in our work. In Figure 6, we compare the dynamics when the effect of438

the CR terms is included and when it is not due to the rotating wave approximation. Clearly,439

the marked differences in the oscillations indicates that the CR terms significantly contribute to440

the CP shift and thus to the dynamics.441
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