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Abstract1

By engineering the electromagnetic vacuum field, the induced Casimir-Polder shift (also2

known as Lamb shift) and spontaneous emission rates of individual atomic levels can3

be controlled. When the strength of these effects becomes comparable to the energy4

difference between two previously uncoupled atomic states, an environment-induced5

interaction between these states appears after tracing over the environment. This inter-6

action has been previously studied for degenerate levels and simple geometries involving7

infinite, perfectly conducting half-spaces or free space. Here, we generalize these studies8

by developing a convenient description that permits the analysis of these non-diagonal9

perturbations to the atomic Hamiltonian in terms of an accurate non-Hermitian Hamil-10

tonian. Applying this theory to a hydrogen atom close to a dielectric nanoparticle, we11

show strong vacuum-field-induced state mixing that leads to drastic modifications in both12

the energies and decay rates compared to conventional diagonal perturbation theory. In13

particular, contrary to the expected Purcell enhancement, we find a surprising decrease of14

decay rates within a considerable range of atom-nanoparticle separations. Furthermore,15

we quantify the large degree of mixing of the unperturbed eigenstates due to the non-16

diagonal perturbation. Our work opens new quantum state manipulation possibilities in17

emitters with closely spaced energy levels.18
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1 Introduction37

It is well known that atomic properties are modified due to the interaction with the quantized38

electromagnetic (EM) vacuum field supported by macroscopic bodies [1]. In the weak-coupling39

regime, this changes both the atomic linewidths (Purcell effect) [2] and energies (Lamb or40

Casimir-Polder [CP] shifts) [3]. These modifications have wide-ranging applications in fields41

such as optics or atomic and soft matter physics, including the design of efficient single photon42

sources [4–6], the atomic force microscope [7], new atom trapping methods [8,9] or the precise43

manipulation of atomic properties with tunable nanostructures [10]. Theoretical descriptions44

of these effects are commonly perturbative, using either standard perturbation theory or open45

quantum systems approaches [11], although efforts to go beyond the purely perturbative46

regime have also been published [12–14]. When the interactions are weak, the effect of47

the environment is customarily treated for each atomic state independently, giving rise to48

simple diagonal energy shifts and decay rates. However, for subsets of near-degenerate atomic49

states, the CP shift and/or spontaneous emission rates may be of the same order as the energy50

differences within the subset, suggesting that the above treatment is not consistent, even if the51

light-matter coupling is perturbative. This has been discussed in the literature for atoms in free52

space [15,16].53

In this work, we show that the standard diagonal perturbation approach indeed fails when54

field-induced shifts are comparable to the energy level differences, requiring the treatment55

of environment-induced interactions between the levels [17, 18]. Recently, this issue has56

been tackled with an open quantum systems’ framework designed for structures with closely57

spaced levels [19]. In that work, the standard Bloch-Redfield equation [11] was turned into a58

Lindblad equation [20], with the corresponding benefit of guaranteed positive populations,59

while simultaneously eluding the usual secular approximation that neglects the couplings60

between non-degenerate states [21]. Here, we extend this framework to incorporate the effect61

of the counter-rotating terms in the light-matter Hamiltonian and construct a master equation62

that accurately represents the off-diagonal CP and decay terms, which we expect to be relevant63

in any system with subsets of near-degenerate levels. From the Lindblad equation, we extract64

an effective non-Hermitian Hamiltonian that determines the dynamics of a subset of levels65

and in turn enables a quantitative exploration of the vacuum-field-induced state mixing. We66

illustrate the effects of the off-diagonal terms by applying the above steps to a system comprised67

of a hydrogen atom close to an aluminum nitride (AlN) nanoparticle (NP), and study the impact68

of the off-diagonal couplings on the dynamics of the atom. We find strong modifications to69

the level structure and observe significant state mixing at atom-NP separations on the order70

of 100 nm. Consequently, the atomic dynamics close to the NP cannot be understood without71

consideration of the effects discussed in this work. The situation treated here lies between72

conventional weak coupling (where light-matter interactions can be treated perturbatively73

and states can be considered independently) and strong coupling (where light and matter74

excitations mix significantly due to non-perturbative interactions). In this novel regime of75

“strong weak coupling”, perturbative light-matter interactions lead to significant state mixing76

within the matter component.77
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2 Methods78

2.1 Macroscopic quantum electrodynamics79

We describe the interaction between atoms and the EM field supported by macroscopic bodies80

within macroscopic quantum electrodynamics (MQED) [22–24]. The corresponding Power-81

Zienau-Woolley light-matter Hamiltonian in the dipole approximation [3,25–27] is82

H = Hat +Hf − d · E(rat). (1)

Here, Hat is the matter Hamiltonian, emphasizing that we treat a single atom. The field83

Hamiltonian,84

Hf =
∑

λ

∫

d3r

∫

dωħhω f†
λ
(r,ω) · fλ(r,ω), (2)

contains the (bosonic) polaritonic annihilation and creation operators fλ(r,ω) and f†
λ
(r,ω) that85

describe both the purely electromagnetic and the macroscopic polarization fields. Here, the86

index λ= {e, m} labels the electric or magnetic nature of the excitations, and the integrals are87

over all space and over all positive frequencies. The last term is the dipolar interaction between88

the atom with dipole operator d and the electric field E(r) evaluated at the atomic position rat,89

where90

E(r) =
∑

λ

∫

d3s

∫

dωGλ(r, s,ω) · fλ(s,ω) +H.c., (3)

with91

Ge(r, s,ω) = i
ω2

c2

√

√ ħh
πϵ0

Imϵ(s,ω)G(r, s,ω),

Gm(r, s,ω) = i
ω

c

√

√ ħh
πϵ0

Imµ(s,ω)
|µ(s,ω)|2
�

∇s ×G(s, r,ω)
�T

.

Here, ϵ and µ stand for the electric and magnetic response functions, respectively. G =92

G0+Gscatt is the classical electromagnetic Green tensor, separated in its free-space and scattering93

contributions. In the weak-coupling regime, G0 is responsible for the free-space Lamb shift [3],94

a NP-independent contribution that can be simply reabsorbed in Hat. Compared to the effects95

we study in this work, this is a negligible correction that we discard entirely in the following.96

For concreteness, we focus on a hydrogen atom interacting with a spheroidal AlN NP (see97

Figure 1a). It should be noted, however, that the following arguments are of broader generality98

and applicable to a wide range of physical systems, provided that the energies and transition99

dipole moments of the atom and the Green tensor of the nanostructure are accessible, a general100

requirement of CP calculations. We choose this NP shape and material for two reasons: (i) the101

EM resonances along the symmetry axis (z) enhance the atomic transitions mediated by Ez with102

respect to the other components, and (ii) the energy range of the EM resonances coincides with103

the hydrogenic transition we want to target. Hence, this system provides a realistic and not104

overly complicated testing ground for the formalism developed, and will allow us to illustrate105

the effects of the off-diagonal vacuum shifts.106

In Equation 1, Hat is diagonal, and its eigenvalues include fine structure corrections [28]:107

En j =

�

−
1

2n2
−
α2

2n3

�

1

j + 1
2

−
3

4n

��

Eh, (4)

where n, j, α and Eh ≃ 27.2 eV are the main quantum number, the total electronic angular108

momentum, the fine structure constant and the Hartree energy, respectively. The energy levels,109
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Figure 1: (a) Sketch of the system. (b) Simplified level structure of the hydrogen atom
with Bohr levels and fine structure splitting (not to scale). Diagonal lines: dipolar
transitions allowed from the n= 4 Bohr level to the n= 5 and n= 3 Bohr levels. (c)
Top: spectral density of the AlN NP, obtained by setting d = 50 nm in Equation 7,
bottom: result of the integral in Equation 6d. e is the absolute value of the charge
of the electron and a0 is the Bohr radius. Vertical line: transition frequencies of the
atom from n= 7 to n= 6.

schematically shown in Figure 1b, are distributed in well-separated Bohr levels labeled by n,110

corrected with the fine structure splitting∆F , a j-dependent quantity that is 4 or more orders of111

magnitude smaller. This energy scale is small enough that the CP induced interaction between112

fine structure states with the same n can be relevant. The NP is a spheroid with major and113

minor axes M = 200 nm and m = 140 nm, with the AlN dielectric permittivity taken from [29].114

For this NP, the phonon-polariton resonances lie close to the transition energy between the115

hydrogenic n = 7 and n = 6 states. Specifically, we will focus on the off-diagonal effects within116

the n= 7 level for an atom located along the symmetry axis z of the NP.117

2.2 Master equation and effective non-Hermitian Hamiltonian118

To describe the dynamics of the field-modified atomic levels and their mixing, we derive a Lind-119

blad equation for the atomic density matrix ρ by considering the EM fields as a weakly coupled120

bath and perturbatively tracing out the EM degrees of freedom. We start from the standard121

open quantum systems approach, which leads to the so-called Bloch-Redfield equation [11,30]:122

ρ̇ = −
i
ħh
[Hat,ρ] +
∑

abcd

�

− i
�

Λca,d b(ωbd)|a〉〈c|d〉〈b|ρ −Λca,d b(ωac)ρ|a〉〈c|d〉〈b|
�

+ i
�

Λca,d b(ωbd)−Λca,d b(ωac)
�

|d〉〈b|ρ|a〉〈c|

−
1
2

�

Γca,d b(ωbd)|a〉〈c|d〉〈b|ρ + Γca,d b(ωac)ρ|a〉〈c|d〉〈b|
�

+
1
2

�

Γca,d b(ωbd) + Γca,d b(ωac)
�

|d〉〈b|ρ|a〉〈c|
�

, (5)

where ρ is the atomic density matrix, the Latin indices a, b, c, d denote atomic eigenstates and123

ωab = (Ea − Eb)/ħh. The rotationally invariant quantities Γca,d b(ω) and Λca,d b(ω) are given by124

Γca,d b(ω) = d∗ca · γ(ω) · dd b (6a)

Λca,d b(ω) = d∗ca ·λ(ω) · dd b, (6b)
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where dca is a matrix element of the atomic dipole operator, and γ and λ are defined as125

γ(ω) = 2πJ(ω), (6c)

λ(ω) = P
∫

dω′
Jscatt(ω′)
ω−ω′

. (6d)

Here, P denotes the principal value and J(ω) is the spectral density of the EM field,126

J(ω) =
ω2

ħhπε0c2
ImG(rat, rat,ω). (7)

We have replaced G by Gscatt in Jscatt (Equation 6d), since the free-space contribution is assumed127

to be included in the bare atomic Hamiltonian, and it is also smaller than the NP-induced effects128

discussed in this work. We note that while we indicate the complex conjugation of the dipole129

matrix elements, it is possible to choose an atomic basis in which they are real; thus, both Γ130

and Λ would be real quantities. Note that the expressions for λ contain both the so-called131

resonant contributions, which can be shown to be proportional to ReGscatt, and non-resonant132

contributions to the energy shift [31]. The electromagnetic Green tensor is computed using the133

boundary element method implemented in SCUFF-EM [32,33].134

Equation 5 does indeed describe the bath-induced interaction between levels, but allows135

for non-physical dynamics, as it does not guarantee the positivity of the density matrix. A136

standard secularization procedure leads to a completely positive Lindblad equation, but removes137

the crucial off-diagonal terms describing state mixing (for more details see subsection A.2138

of the appendix). Instead of secularization, we extend the approach of Ref. [19] to obtain a139

completely positive Lindblad equation for near-degenerate levels by including the effect of140

the counter-rotating terms of the dipolar interaction. This approach consists in replacing both141

Λca,d b(ωbd) and Λca,d b(ωac) with their geometric mean Λ̃ca,d b =
Æ

Λca,d b(ωbd)
Æ

Λca,d b(ωac),142

and the same for Γca,d b(ωbd) and Γca,d b(ωac). Similar ideas have also been proposed elsewhere143

in the literature [18,34]. When applied to Equation 5, this replacement symmetrizes the pairs144

of indices ca and d b. Then, for the symmetric geometry of Figure 1a where G is a diagonal145

matrix, the resulting master equation can be rewritten as146

ρ̇ =
−i
ħh
[Hat +HCP,ρ] +

∑

δ,n

L
Σ
(n)
δ

[ρ]. (8)

Here, HCP is the CP shift, Σ(n)
δ

are decay operators, and LA[ρ] = AρA†− 1
2{A

†A,ρ} is a Lindblad147

dissipator. There is a decay operator for each spatial component in the spherical basis δ = 0,±1,148

and for each Bohr level n. The CP shift is given by HCP = ħh
∑

δ,n D(n)†
δ

D(n)
δ

, where149

〈 j|D(n)
δ
|n〉=
q

λδδ(ωn j)d
δ
jn, (9a)

and the decay operators can be expressed as150

〈 j|Σ(n)
δ
|n〉=
q

γδδ(ωn j)d
δ
jn. (9b)

In the definitions above, the atomic states |n〉 and | j〉 belong to the nth and jth Bohr level,151

respectively. Had the counter-rotating terms in the dipolar coupling not been taken into account,152

the Hermitian dipole operators in Equation 5 would have been replaced by raising and lowering153

operators, such that only terms where ω j ≤ωn would be present in Equation 8. Instead, our154

description also incorporates the CP shift contribution given by states with ω j > ωn. More155

details about the derivation steps can be found in subsection A.3 of the appendix. Finally, we156

note that for an atom interacting with a thermal bath, the expression in Equation 8 would157
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contain additional terms proportional to the occupation number nT (ω) = (eħhω/kB T − 1)−1,158

but at the relevant transition frequencies this can be shown to be very small for laboratory159

temperatures. Therefore, these thermal contributions have been neglected.160

While solving Equation 8 is considerably more affordable than a direct solution of the161

Schrödinger equation with the Hamiltonian from Equation 1, several faithful approximations162

allow for further simplification, succinctly described below, with more details and an explicit163

check of the validity of the approximations given in Appendix B and Appendix C, respectively.164

First, for the dynamics within a single Bohr level, here n= 7, we can discard the states with165

n ̸= 7 and write a closed set of equations for n= 7, due to the large difference in the energy166

scales associated to the Bohr transition energies and the environment-induced perturbations.167

The other states are then considered only implicitly as intermediate virtual states that contribute168

to the CP and decay terms. Furthermore, within this subspace, the “quantum jump” terms169

Σ
(7)
δ
ρΣ

(7)†
δ

in Equation 8 are negligible since they are proportional to Jδδ(∆F ), and the spectral170

density approaches zero for small frequencies. With these approximations, the dynamics within171

the n= 7 subspace is described by an effective non-Hermitian Hamiltonian172

H(7)eff = H(7)at +ħh
∑

δ

�

D(7)†
δ

D(7)
δ
−

i
2
Σ
(7)†
δ
Σ
(7)
δ

�

, (10)

where Hat has been projected onto the n= 7 subspace. Last, due to the axial symmetry of the173

system (see Figure 1a), the z component of the total angular momentum is conserved and174

Equation 10 consists of independent blocks for each value of m j. In the following, we focus175

on the subspace m j = 1/2, which reduces the number of states to be considered to 7 for this176

particular case.177

3 Results178

The above derivation significantly simplifies the analysis of the dynamics. In particular, the179

effective Hamiltonian can be diagonalized, and the real and imaginary parts of its eigenvalues180

correspond to the energies and decay rates of the states including the vacuum-field-induced181

state mixing. These energies and decay rates are shown in Figure 2a and Figure 2c, respectively.182

Since the CP shift is dominated by an overall attraction to the surface (inset of Figure 2a), we183

plot it relative to the average value for each separation d, revealing a completely different and184

much more complex structure compared to the fully secularized, diagonal model. In particular,185

clear avoided crossings highlight the relevance of the off-diagonal terms, similar to effects found186

in interatomic interactions in [35], but here occurring within a single atom. Similarly striking187

differences between both models appear in the decay rates shown in Figure 2c. Due to the188

off-diagonal terms, the decay rates cross each other several times. Particularly prominent is the189

vacuum-field-induced generation of a state that becomes more protected against spontaneous190

decay as the atom approaches the NP for separations between about d = 40 nm and 60 nm.191

This is in stark contrast to the behavior when the states are treated independently, for which192

the effect of quenching leads to monotonic increase of the Purcell factor and thus decay rate193

with decreasing separation [36,37]. Here, the same environment that induces the decay also194

produces the interactions that mix the states and leads to the formation of a state protected195

from the influence of the environment. We note that the subradiant or metastable state created196

by field-induced mixing has a smaller decay rate than any of the original eigenstates of the197

atom at the same distance when mixing is not included.198

The emergence of this protected state can be understood by realizing that the system199

approaches an idealized situation in which one of the states in the n = 7, m j = 1/2 manifold is200

fully decoupled from the EM environment. This situation would occur if we could ignore the201

6
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(a)

(c)

(b)

(d)

Figure 2: Every quantity is plotted against the atom-NP separation d. (a) Energies of
the eigenstates of the effective non-Hermitian Hamiltonian. (b) Participation ratios Pi
indicating the degree of mixing of the eigenstates. (c) Decay rates of the eigenstates of
the effective non-Hermitian Hamiltonian. (d) Decay rates with the NP shape chosen
to optimize the decay rate reduction: M = 200 nm and m= 120 nm. For plots (a),
(c) and (d), the solid black lines correspond to the full model with off-diagonal terms,
and the green dashed lines to the model without the off-diagonal terms. For plot
(b), the green lines are the participation ratio of each eigenstate, and the black line
represents the average participation ratio.

(i) fine structure, (ii) x- and y-polarized electric fields in Equation 1, and (iii) contributions of202

states outside of the n = 6 Bohr level to the CP shift and spontaneous decay. Then, 7 states203

in n = 7 couple to 6 states in n = 6 through the single operator dz, and there is always one204

superposition (“dark state”) with vanishing coupling. For the realistic system, this idealized205

situation is approached for various reasons. First, the elongated shape of the NP suppresses the206

x x and y y components of J and λ compared to the zz component. Second, the coincidence of207

the first peak of Jzz and λzz with the energy of the transition from n = 7 to n = 6 enhances the208

contributions from n= 6 intermediate states compared to other Bohr levels. Lastly, when the209

CP shifts become greater than the fine structure, the latter becomes a perturbative correction210

that can be neglected to lowest order. Based on these considerations, we change the aspect211

ratio of the NP by decreasing the minor axis to m= 120 nm in order to amplify the protection212

of the state. As shown in Figure 2d, the minimum decay rate becomes an order of magnitude213

smaller than the naive expectation without off-diagonal terms, unambiguously demonstrating214

that the off-diagonal terms can significantly impact the structure of the atom and cannot be215

neglected in a realistic description.216

Next, we evaluate the amount of vacuum-field-induced state mixing. The eigenstates |ψ〉217

of Equation 10 are linear superpositions of the fine structure basis states |φk〉, and the degree218

of this mixing can be quantified using the so-called participation ratio P [38], defined as219

P(|ψ〉) =

�

∑

k

|〈ψ|φk〉|4
�−1

. (11)

It measures the number of basis states “equally” contributing to the normalized state |ψ〉, with220

possible values ranging from 1 to the number of basis states (7 for the case studied here). For221

example, for a state of the form |ψ〉 =
p

1/n
∑n

k=1 eiθk |φk〉, P equals n. In Figure 2b, we show222

the participation ratio of the eigenstates of Equation 10 as a function of the atom-NP separation223

d, with green lines showing P for each eigenstate and the thick black line representing the224

7
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average over all states. We find state mixing to be negligible for separations above ≈ 150 nm,225

indicating that the off-diagonal contributions to Equation 10 are too small to effectively couple226

the states. For shorter distances, the magnitude of the off-diagonal terms,
�

�〈i|Heff| j〉
�

�, becomes227

comparable to the difference of the corresponding diagonal elements,
�

�〈i|Heff|i〉 − 〈 j|Heff| j〉
�

�,228

and the states mix appreciably. In particular, clear peaks in P appear when the diagonal CP shifts229

bring initially detuned states into resonance, such that the off-diagonal elements dominate more230

easily. Despite the non-monotonic behavior, overall the participation ratios tend to increase231

as the atom approaches the NP until they stabilize at about d = 30 nm. At closer distances,232

vacuum-field couplings determine the eigenstates and dominate over the fine structure, which233

becomes a small perturbation of these new eigenstates. We note that for the setup studied here,234

almost complete mixing of some atomic states is achieved, with values of P larger than 5, close235

to the theoretical maximum of 7.236

4 Conclusion237

In conclusion, we have shown that vacuum-field-induced interactions can significantly mix238

groups of near-degenerate levels in atoms and must, therefore, be included to accurately239

characterize the dynamics. We have derived a completely positive Lindblad master equation240

that provides a precise description of these situations and allows an interpretation of the field-241

modified atomic structure in terms of an effective non-Hermitian Hamiltonian. For concreteness,242

we have applied these general ideas to a hydrogen atom coupled to an AlN NP. This leads to243

striking new features in the atomic structure, such as avoided level crossings and, surprisingly,244

a decrease of the decay rate for a particular eigenstate with decreasing distance to the NP even245

though the Purcell factor for each uncoupled state grows monotonically. This illustrates that246

the off-diagonal terms can even have counterintuitive consequences. Deeper exploration of the247

eigenstates reveals that the atomic structure in this regime greatly differs from the original fine248

structure of the free-space atom, even though the atom-field interactions are perturbative and249

the atom remains a well-defined entity, in contrast to the strong light-matter coupling regime.250

From an atomic physics’ perspective, the hydrogen atom treated here becomes “unrecognizable”251

as the atomic structure and spectroscopic properties within each sublevel change completely.252

We note that while we treat a specific setup here, the framework can be straightforwardly253

applied to other nanostructures (e.g., graphene [10]) and emitters or level splittings (e.g., due254

to hyperfine structure in Rydberg atoms [35,39]). Our work thus extends the regime where255

vacuum-field-induced forces and decay rates are accurately described and opens the door to256

new strategies for developing quantum state manipulation platforms based on off-diagonal257

vacuum-induced effects.258

Acknowledgements259

Funding information This work has been funded by the Spanish Ministry of Science, Innova-260

tion and Universities-Agencia Estatal de Investigación through the FPI contract No. PRE2019-261

090589 as well as grants RTI2018-099737-BI00, PID2021-125894NB-I00, and CEX2018-262

000805-M (through the María de Maeztu program for Units of Excellence in R&D). We263

also acknowledge financial support from the Proyecto Sinérgico CAM 2020 Y2020/TCS-6545264

(NanoQuCo-CM) of the Community of Madrid, and from the European Research Council265

through grant ERC-2016-StG-714870.266

8



SciPost Physics Submission

A Derivation of the master equation267

The derivation of the Lindblad master equation used in this work, Equation 8, is closely based268

on the one presented in [19], modified to include the counter-rotating terms of the light-matter269

Hamiltonian and a realistic electromagnetic environment, with three spatial components and270

non-trivial structure. We revisit the derivation here and highlight the additions and differences271

compared to [19]. For simplicity, the derivation is presented in a way that directly relates to272

the illustrative physical system of the main text, that is, a hydrogen atom. However, this is not273

a true limitation of the approach and approximations, as long as one considers level structures274

with distinct subsets of closely spaced states, a common feature of atomic systems due to fine275

structure or hyperfine structure splittings. We start by describing features of the Bloch-Redfield276

(BR) equation, and then explain the customary secular approximation, a procedure known277

to yield a completely positive Lindblad master equation. This equation would systematically278

neglect the off-diagonal terms discussed in this work. Then, we take the BR equation and279

perform a series of approximations that lead to a different Lindblad equation, maintaining the280

non-secular terms.281

A.1 Comments on the Bloch-Redfield master equation282

The BR equation for our system is given by Equation 5. Although it is rather complicated, the283

physical interpretation of each line is simple: the first two lines of the sum are responsible for284

the Casimir-Polder (CP) shifts, while the third and fourth lines describe decay processes. While285

the CP terms can often be neglected, this is not the case for the system we study, as they are286

of the same order as the hydrogenic fine structure. For the same reason, we must include the287

counter-rotating (CR) terms in the full light-matter Hamiltonian. Otherwise, λ(ω) would only288

be evaluated at non-negative frequencies and Equation 5 would miss significant contributions289

to the CP terms arising from the negative frequencies. The CR terms only affect the energy shift,290

as the decay terms γ(ω) vanish at negative frequencies. It is worth noting that even without291

considering the CR terms, the equation already includes the basis for the off-diagonal CP terms292

we discuss in the main text, albeit in a complex manner that is hard to disentangle.293

The BR equation has several drawbacks: First, it does not guarantee positivity of the density294

matrix. Although it has been shown that these deviations from physical density matrices are295

negligible when the approximations made in deriving the BR equation are valid [21,40], dealing296

with formally unphysical density matrices requires additional care. Second, the BR matrix is297

characterized by a superoperator of dimension N2 × N2, where N is the number of system298

states, which makes analysis of its behavior challenging. In contrast, a Lindblad-type master299

equation automatically ensures the physicality of the density matrix, and at the same time300

allows for a simpler analysis since it is characterized by a single Hamiltonian and a set of decay301

operators, all of dimensions N × N .302

A.2 Lindblad master equation with full secularization303

The usual procedure to obtain a Lindblad equation from Equation 5 is the so-called secular304

approximation which consists in eliminating every term where ωac ̸=ωbd . Doing so yields305

ρ̇ =−
i
ħh
[Hat,ρ]− i

(S)
∑

abd

�

Λda,d b(ωbd)|a〉〈b|,ρ
�

+
(S)
∑

abcd

Γca,d b(ωbd)
�

|d〉〈b|ρ|a〉〈c| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

(12)
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where the superscript (S) in the sum indicates that only terms with ωac =ωbd are kept. In the306

energy shift, this is equivalent to the conditionωa =ωb since |c〉 = |d〉 there. The energy shift is307

clearly Hermitian because it is a real and symmetric matrix. The decay term can be reexpressed308

by grouping the sum over transitions into sets with a given frequency Ω=ωac =ωbd , which309

yields310

∑

Ω

∑

αβ

γαβ(Ω)
�

σ
β
Ωρσ

α†
Ω −

1
2

¦

σα†
Ω σ

β
Ω,ρ
©

�

=
∑

Ωε

Γε(Ω)
�

SεΩρSε†Ω −
1
2

¦

Sε†Ω SεΩ,ρ
©

�

. (13)

Here, Greek indices α,β indicate spatial directions, while all dipole transitions dα with a311

frequency difference of Ω are combined in the transition operators σαΩ =
∑(Ω)

ab dαab|a〉〈b|. The312

right-hand side above is obtained by diagonalizing the positive definite matrix γαβ(Ω) =313
∑

ε M†
αε(Ω)Γε(Ω)Mεβ(Ω) for each transition frequency Ω and defining SεΩ =

∑

α Mεα(Ω)σαΩ.314

In this last form, it is evident that the full secularization returns a Lindblad master equation.315

However, the only off-diagonal terms present are the ones connecting degenerate states. This316

approximation has been shown to be inadequate in a variety of contexts [19,21,40], since it317

indiscriminately removes the coupling between coherences (off-diagonal elements of ρ) and318

populations of non-degenerate states. Thus, in the system explored in the main text, relevant319

physics would be omitted within each Bohr level.320

A.3 Lindblad master equation: derivation details and proof321

We here show how to derive the Lindblad equation including off-diagonal terms between322

non-degenerate states used in the main text from the BR equation, Equation 5. Instead of323

a full secularization as discussed above, we start by performing a partial secularization to324

discard terms where the timescale induced by the environment, τE ∼min(|d2λ|−1, |d2γ|−1), is325

much larger than that of the atomic transitions, τat ∼ |ωac −ωbd |−1. This is not an important326

step, but it significantly simplifies the resulting expressions. In Equation 5, this is fulfilled for327

terms where |a〉 and |b〉 belong to different Bohr levels: First, if either |c〉 or |d〉 belongs to a328

different Bohr level than |a〉 and |b〉, respectively, then τat is very small compared with τE ,329

and secularization is well-justified. If, instead, |c〉 and |d〉 belong to the same Bohr levels as330

|a〉 and |b〉, respectively, then τE∝ 1/γ(∆F/ħh) becomes extremely large because ∆F is on the331

scale of the fine structure splitting and the spectral density approaches 0 when ω goes to 0.332

Hence, even if τat ∼ ħh/∆F is large, τE is even larger in the system studied here. This partially333

secularized BR equation is significantly simpler than the full one, but is not yet in Lindblad334

form.335

We next apply the geometric mean replacement discussed in the main text to Equation 5336

and obtain337

ρ̇ =−
i
ħh
[Hat,ρ]− i

� (s)
∑

abcd

Λ̃ca,d b|a〉〈c|d〉〈b|,ρ
�

+
(s)
∑

abcd

Γ̃ca,d b

�

|d〉〈b|ρ|c〉〈a| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

, (14)

where the superscript (s) in the sum indicates the partial secularization mentioned above.338

This procedure is accurate for the following reason. When the spectral density, given in339

Equation 7, is slowly varying: J(ω+ |d2λ|) ≃ J(ω) and J(ω+ |d2γ|) ≃ J(ω). In that case,340

for each term in Equation 5 where |ωac −ωbd | < max(|d2γ|, |d2λ|), the change in the value341

of the element is small, and the geometric mean is a good approximation. For terms where342

|ωac −ωbd | > max(|d2γ|, |d2λ|), the value might change appreciably, but its effect on the343
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dynamics is small due to the difference in energy scales. In fact, such terms could be eliminated344

through an additional secularization to a good approximation.345

After the replacement, the CP Hamiltonian, HCP = ħh
∑(s)

abc Λ̃ca,cb|a〉〈b|, contains both diago-346

nal and off-diagonal matrix elements. We note that the effect of the CR terms of the light-matter347

coupling is manifested in the precise values of the matrix elements, which change significantly348

depending on whether the CR interactions are included or not. Careful analysis shows that349

this Hamiltonian is Hermitian if λ(ωca) and λ(ωbd) have the same sign. Since λ(ω) has sign350

changes, in general, this is not always necessarily satisfied, leading to a potentially problematic,351

non-Hermitian CP Hamiltonian. In the cases studied in the manuscript, the partial secular-352

ization we performed earlier ensures that only terms with ωac ≃ωbc survive, and combined353

with the slow-varying property of the spectral density, the sign condition is satisfied always.354

A discussion of the general situation where this is not necessarily true will be presented in a355

future work.356

In order for Equation 14 to be a Lindblad-type master equation, the decay rate tensor Γ̃ca,d b357

interpreted as a matrix in the combined indices ca and d b, sometimes called Kossakovski matrix,358

has to be positive semidefinite. Then, it can be diagonalized with non-negative eigenvalues and359

the last term in Equation 14 can be rewritten as a sum of standard Lindblad decay terms. While360

it is symmetric by construction, we are not aware of a general proof of positive semidefiniteness361

of the decay tensor that results when the procedure described above is applied to arbitrary362

spectral densities and atomic spectra. For the cases we treat in the manuscript, where the363

Green tensor is diagonal and cylindrically symmetric such that its Cartesian components satisfy364

Gx x = Gy y , we give a proof below through explicit construction of the diagonalized form.365

Under this assumption, the decay tensor has the form γ(ω) = diag(γx x(ω),γx x(ω),γzz(ω)).366

We now express Γca,d b(ω) in terms of the spherical basis defined by367

d′ =





d+1

d−1

d0



= U · d=





−1/
p

2 −i/
p

2 0
1/
p

2 −i/
p

2 0
0 0 1



 ·





d x

d y

dz



 . (15)

By construction, the spherical components of the dipole operator, dδ, connect states with a368

given m j to states with m j +δ. Due to its symmetry, γ(ω) is invariant under transformation to369

the spherical basis, γ′(ω) = U · γ(ω) ·U† = γ(ω). Since m j is a well-defined quantum number370

of our basis states, the advantage of the spherical basis is that every transition operator |a〉〈c|371

allowed by the selection rules (see Fig. 1b of the main text) is mediated by only one of d+1,372

d−1 or d0. Furthermore, because of the diagonal form of γ′, the transition operators |d〉〈b| and373

|c〉〈a| must have the same δ; otherwise Γca,d b(ω) = 0. As a consequence, we can expand the374

last term of Equation 14 as three separate sums, one for each value of δ, indicated below with375

the label δ on the second summation sign:376

∑

δ

(s,δ)
∑

abcd

q

Γac,d b(ωbd)
q

Γac,d b(ωac)
�

|d〉〈b|ρ|a〉〈c| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

=

∑

δ

(s,δ)
∑

abcd

dδ∗ca dδd b

Æ

γδδ(ωbd)
Æ

γδδ(ωac)
�

|d〉〈b|ρ|a〉〈c| −
1
2

¦

|a〉〈c|d〉〈b|,ρ
©

�

=

∑

δn

�

Σ
(n)
δ
ρΣ

(n)†
δ
−

1
2

¦

Σ
(n)†
δ
Σ
(n)
δ

,ρ
©

�

, (16)

where we have used that γδδ(ω)> 0 and that the dδca are real for any pair ca, and in the last377

step, we have defined the summed transition operator378

Σ
(n)
δ
=
(n)
∑

d b

dδd b

Æ

γδδ(ωbd)|d〉〈b|. (17a)
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Here, the states |b〉 belong to the same Bohr level with main quantum number equal to n, while379

the |d〉 states can belong to any Bohr level. This simplification is a consequence of the partial380

secularization explained at the beginning of this subsection. In this form, the decay term is381

given by an explicit Lindblad operator in terms of just three decay operators for each Bohr level382

n. We note that identical manipulations can be done on the energy shift terms, which can be383

refactored as384

D(n)
δ
=
(n)
∑

d b

dδd b

Æ

λδδ(ωbd)|d〉〈b|. (17b)

Finally, we can rewrite Equation 14 in our system as385

ρ̇ = −
i
ħh
[Hat +HCP,ρ] +

∑

δn

L
Σ
(n)
δ

[ρ] (18)

where HCP = ħh
∑

δn D(n)†
δ

D(n)
δ

and LA[ρ] = AρA†− 1
2{A

†A,ρ} is a standard Lindblad decay term.386

This is indeed a Lindblad equation for the atom that includes the relevant off-diagonal couplings387

both in the CP shift and the decay term.388

B Derivation of the effective Hamiltonian389

Any Lindblad equation ρ̇ = − i
ħh [H,ρ]+
∑

j LA j
[ρ] can be rewritten as ρ̇ = − i

ħh

�

Heffρ −ρH†
eff

�

+390
∑

j A jρA†
j , with the effective non-Hermitian Hamiltonian Heff = H − i

2

∑

j A†
jA j , and the terms391

of the last sum commonly referred to as the “refilling” or “quantum jump” terms. In physical392

situations where the refilling terms are negligible, the dynamics are then fully characterized by393

the eigenstates and eigenvalues of the effective Hamiltonian [41]. In the main text, we are394

concerned with the dynamics within a given Bohr level, in particular n= 7. Due to the partial395

secularization we performed, the effective Hamiltonian associated with Equation 18 is block-396

diagonal in Bohr levels, such that n remains a good quantum number and [Heff,Pn] = 0, where397

Pn is a projection operator onto the subspace with principal quantum number n. Projecting the398

Lindblad master equation onto this subspace gives399

ρ̇n = −
i
ħh

�

H(n)eff ρn −ρnH(n)†eff

�

+
∑

δn′
PnΣ

(n′)
δ
ρΣ

(n′)†
δ

Pn, (19)

H(n)eff = PnHeffPn = H(n)at +ħh
∑

δ

�

D(n)†
δ

D(n)
δ
−

i
2
Σ
(n)†
δ
Σ
(n)
δ

�

, (20)

where ρn = PnρPn and H(n)at = PnHatPn. We thus only need to show that the refilling terms400

are negligible for the dynamics within a given Bohr level. To this end, we can rewrite them as401

PnΣ
(n′)
δ
ρΣ

(n′)†
δ

Pn =
(s,δ)
∑

abcd

dδ∗ca dδd b

Æ

γδδ(ωbd)
Æ

γδδ(ωac)Pn|d〉〈b|ρ|a〉〈c|Pn. (21)

Because of the partial secular approximation, |a〉 and |b〉 belong to the same Bohr level n′,402

and due to the projection operators Pn, |c〉 and |d〉 also have the same principal quantum403

number, n. Also, because γ is only non-zero at positive frequencies, we have that n′ ≥ n. We404

can immediately discard terms with n′ > n: They refer to the population that flows into the405

Bohr level n through spontaneous emission from higher-lying Bohr levels, but since we assume406

that the initial atomic state is in level n and there are no processes leading to higher levels,407

these terms do not contribute. For the remaining terms with n′ = n, the atomic time scales408
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are τat ∼ ħh/∆F , but the decay-induced time scales are τE∝ 1/γ(∆F/ħh). Given the spectral409

density used in the main text, in our system τE ≫ τat. Thus, the effect of the terms with n′ = n410

is negligible, and we can safely remove the “refilling” term and write the dynamics in the411

subspace with principal quantum number n as412

ρ̇n = −
i
ħh

�

H(n)eff ρn −ρnH(n)†eff

�

, (22)

which is equivalent to the Schrödinger equation ∂t |ψ(t)〉= −
i
ħh H(n)eff |ψ(t)〉.413

B.1 Angular momentum conservation414

For each Bohr level n, the effective Hamiltonian Equation 20 derived above is a block diagonal415

matrix, with each block corresponding to a given value of the z-projection m j of the atomic416

angular momentum. This is easy to see since Hat conserves angular momentum, while the417

operators D(n)
δ

and Σ(n)
δ

connect m j to m j +δ, and their Hermitian conjugates connect m j +δ418

back to m j , such that overall, m j is conserved. In contrast, physically and in the full Lindblad419

master equation Equation 18, it is only the z-projection of the total angular momentum of the420

photons and atom together that is conserved due to the cylindrical symmetry of the system.421

Indeed, the complete master equation in Equation 18 does connect different m j subspaces422

through the refilling term. Since we have shown this term to be negligible for the dynamics423

within a given subspace, we can exploit conservation of m j to analyze its subspaces separately,424

and have done so in the main text by fixing m j = 1/2.425

C Numerical check426

(a) (b)

Figure 3: (a) Model spectral density, J(ω). (b) Integral of the spectral density that
appears in the shift, λ(ω).

In order to verify the validity of the derived Lindblad equation and effective Hamiltonian,427

we here apply it to a simplified system for which an exact solution is possible. To do so, we study428

the populations of the states with n= 3 in the hydrogen atom coupled to an electromagnetic429

bath whose spectral density is a Lorentzian. The density and the corresponding energy shift430
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integral are shown in Figure 3a and Figure 3b, and are given by431

J(ω) =
g2

π

κ/2
(ω−ωM )2 + (κ/2)2

, (23)

λ(ω) =

∫ ∞

−∞
dω′

J(ω′)
ω−ω′

= g2 ω−ωM

(ω−ωM )2 + (κ/2)2
, (24)

with parameter values ħhg = (9/
p

5) · 10−4 eV/(ea0), ħhκ = 2 · 10−3 eV and ħhωM = 1.95 eV.432

It is well-known that a Lorentzian spectral density is completely equivalent to a single mode433

coupled to a completely flat, i.e. Markovian, bath [42,43], with dynamics described exactly by434

a Lindblad equation [44],435

ρ̇ = −
i
ħh
�

Hat +ħhωM a†a,ρ
�

−
κ

2
{a†a,ρ}+κaρa†, (25)

where a is the bosonic annihilation operator of the bath mode. Hence, we can compare the436

approximate solutions obtained with our approaches, Equation 18 and Equation 22, to the exact437

dynamics given by Equation 25. We take |ψ(0)〉 = |n = 3, l = 0, j = 1/2, m j = 1/2〉|nph = 0〉 as438

the initial state and propagate it in time.

0 200 400 600 800 1000 1200 1400
t (ps)10-4

10-3
10-2
10-1
100

Populat
ions n=

3

Exact H
(3)
eff Lindblad

Figure 4: Time evolution of the atomic populations. Thick brown lines: numerical
solution to the exact dynamics (Equation 25). Green dashed lines: effective Hamilto-
nian (Equation 22). Black dotted lines: Lindblad master equation (Equation 18).

439

In the exact calculations, we include the first 4 Bohr levels of the hydrogen atom with440

their complete fine structure (60 states), which gives converged results. The population of441

the |3, l, j, 1/2〉 states are plotted in Figure 4. The three largest populations are perfectly well442

described by both our Lindblad equation and the effective, non-Hermitian Hamiltonian. It443

should be noted that the dynamics calculated using the BR approach are essentially the same444

as those obtained from the Lindblad equation and therefore not shown separately. There are445

two additional lines that are present only in the exact dynamics and the Lindblad equation,446

with populations of the order of 10−3. These are states that become populated through the447

refilling terms within the n= 3 subspace discussed above. These are unrealistically large here448

because the spectral density chosen here to enable comparison with an exact result does not449

obey the physical constraint J(ω) = 0 for ω≤ 0. In contrast, the spectral density used in the450
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0 200 400 600 800 1000 1200 1400
t (ps)10-4

10-3
10-2
10-1
100

Populat
ions n=

3

Counter-rotating Rotating wave approximation
Figure 5: Dynamics calculated with the effective Hamiltonian. Green lines: including
the contribution of the CR terms. Brown dashed lines: the rotating wave approxima-
tion has been performed on the light-matter Hamiltonian.

main text obeys these physical constraints and the refilling term can indeed be discarded with451

much less impact.452

Having checked the validity of Equation 20, we may use it to reinforce the claim that the453

CR terms are important in our work. In Figure 5, we compare the dynamics when the effect of454

the CR terms is included and when it is not due to the rotating wave approximation. Clearly,455

the marked differences in the oscillations indicates that the CR terms significantly contribute to456

the CP shift and thus to the dynamics.457
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