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Abstract

In the field of quantum many-body physics, the spectral (or Lehmann) representation
simplifies the calculation of Matsubara n-point correlation functions if the eigensystem
of a Hamiltonian is known. It is expressed via a universal kernel function and a system-
and correlator-specific product of matrix elements. Here we provide the kernel func-
tions in full generality, for arbitrary n, arbitrary combinations of bosonic or fermionic
operators and an arbitrary number of anomalous terms. As an application, we consider
bosonic 3- and 4-point correlation functions for the fermionic Hubbard atom and a free
spin of length S, respectively.
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1 Introduction

Multi-point correlation functions of n quantum mechanical operators, also known as n-point
functions, are a central concept in the study of quantum many-body systems and field the-
ory [1]. They generalize the well-known 2-point functions, which, for the example of elec-
trons in the solid state, are routinely measured by scanning tunneling spectroscopy or angle-
resolved photon emission spectroscopy [2]. For magnetic systems, the 2-point spin correlators
can be probed in a neutron scattering experiment. Higher order correlation functions with
n = 3, 4,5... can for example be measured in non-linear response settings [3]. In the emerg-
ing field of cold atomic quantum simulation, (equal-time) n-point functions are even directly
accessible [4].

On the theoretical side the study of higher order correlation functions gains traction as
well. One motivation is the existence of exact relations between correlation functions of dif-
ferent order n [5, 6]. Although these exact relations can usually not be solved exactly, they
form a valuable starting point for further methodological developments like the parquet ap-
proximation [7]. Thus even if the 4-point correlator (or, in that context, its essential part, the
one-line irreducible vertex [1]) might not be the primary quantity of interest in a calculation,
it appears as a building block of the method. Another example is the functional renormaliza-
tion group method (fRG) in a vertex expansion [8, 9]. It expresses the many body problem
as a hierarchy of differential equations for the vertices that interpolate between a simple solv-
able starting point and the full physical theory [10]. Whereas experiments measure correlation
functions in real time (or frequency), in theory one often is concerned with the related but con-
ceptually simpler versions depending on imaginary time [1]. In the following, we will focus
on these Matsubara correlation functions, which, nevertheless feature an intricate frequency
dependence.

Whereas the above theoretical methods usually provide only an approximation for the n-
point functions, an important task is to calculate these objects exactly. This should be possible
for simple quantum many body systems. We consider systems simple if they are amenable
to exact diagonalization (ED), i.e. feature a small enough Hilbert space, like few-site clusters
of interacting quantum spins or fermions. Also impurity systems, where interactions only act
locally, can be approximately diagonalized using the numerical renormalization group [11].

Knowing the exact n-point functions for simple systems is important for benchmark test-
ing newly developed methods before deploying them to harder problems. Moreover, n-point
functions for simple systems often serve as the starting point of further approximations like
in the spin-fRG [12–14], or appear intrinsically in a method like in diagrammatic extensions
of dynamical mean field theory [15] with its auxiliary impurity problems. Another pursuit
enabled by the availability of exact n-point functions is to interpret the wealth of information
encoded in these objects, in particular in their rich frequency structure. For example, Ref. [16]
studied the fingerprints of local moment formation and Kondo screening in quantum impurity
models.

In this work we complete the task to calculate exact n-point functions by generalizing the
spectral (or Lehmann) representation [1, 17] for Matsubara n-point correlation functions to
arbitrary n. We assume that a set of eigenstates and -energies is given. Following pioneering
work of Refs. [18–20] and in particular the recent approach by Kugler et al. [21], we split the
problem of calculating imaginary frequency correlators into the computation of a universal
kernel function and a system- and correlator-specific part (called partial spectral function in
Ref. [21]). We provide the kernel functions in full generality for an arbitrary number n of
bosonic or fermionic frequencies. Previously, these kernel functions were known exactly only
up to the 3-point case [18], for the fermionic 4-point case [19–21] or for the general n-point
case [21] but disregarding anomalous contributions to the sum that the kernel function con-
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sists of. These anomalous contributions are at the heart of the complexity of Matsubara n-point
functions. They occur when certain combinations of eigenenergies and external frequencies
vanish individually, see the anti-diagonal rays in Fig. 1(c). Physically, they correspond to long-
term memory effects, are related to non-ergodicity and, in the case of bosonic two-point func-
tions reflect the difference between static isothermal susceptibilities and the zero-frequency
limit of the dynamical Kubo response function [22,23].

The structure of the paper is as follows: In Sec. 2 we define the Matsubara n-point function
GA1...An

�

ω1, ...,ωn−1

�

and review some of its properties. The spectral representation is derived
in Sec. 3 with Eq. (15) being the central equation written in terms of the kernel function
Kn(Ω1, ...,Ωn−1). Our main result is an exact closed-form expression of this most general kernel
function which is given in Sec. 4. Examples for n= 2,3, 4,5 are given in Sec. 5 where we also
discuss simplifications for the purely fermionic case. We continue with applications to two
particular systems relevant in the field of condensed matter theory: In Sec. 6, we consider
the Hubbard atom and the free spin of length S, for which we compute n-point functions not
previously available in the literature. We conclude in Sec. 7.

2 Definition of Matsubara n-point function GA1...An

�

ω1, ...,ωn

�

We consider a set of n = 2, 3,4, ... operators {A1, A2, ...,An} defined on the Hilbert space of a
quantum many-body Hamiltonian H. The operators can be fermionic, bosonic or a combina-
tion of both types, with the restriction that there is an even number of fermionic operators. As
an example, A1 = d†d ≡ n, A2 = d, A3 = d† where d† and d are canonical fermionic creation
and annihilation operators. A subset of operators is called bosonic if they create a closed alge-
bra under the commutation operation. They are called fermionic if the algebra is closed under
anti-commutation, see Sec. 1 of Ref. [24]. Spin operators are thus bosonic.

We define the imaginary time-ordered n-point correlation functions for imaginary times
τk ∈ [0,β], [25,26],

GA1A2...An
(τ1,τ2, ...,τn)≡ 〈T A1(τ1)A2(τ2)...An(τn)〉 , (1)

where Ak(τk) = eτkHAke−τkH denotes Heisenberg time evolution. Here and in the following,
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Figure 1: (a) Ordering convention for imaginary times in Eq. (9). (b) Eigenstates and
energies of the Hubbard atom. (c) Matsubara correlation function GSx S y Sz (ω1,ω2)
withω j = 2πm j/β (m j ∈ Z, j = 1, 2) for the Hubbard atom (35) at β = 10, h= 0.1,
ε = −2, U = 2, see Eq. (45). The sharp anti-diagonal ray ∝ δω1+ω2,0 represents
an anomalous term of order a = 1. The other broadened rays become sharp and
anomalous for h→ 0, see Eq. (49).
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k = 1,2, ..., n. The expectation value is calculated as



...
�

= tr[ρ...] where ρ = exp(−βH)/Z
is the thermal density operator at temperature β = 1/T and Z = tr exp(−βH) is the partition
function. Note that other conventions for the n-point function differing by a prefactor are
also used in the literature, e.g. Ref. [21] multiplies with (−1)n−1. In Eq. (1), the imaginary
time-ordering operator T orders the string of Heisenberg operators,

T A1(τ1)A2(τ2)...An(τn)≡ ζ(p)Ap(1)(τp(1))Ap(2)(τp(2))...Ap(n)(τp(n)), (2)

where p is the permutation p ∈ Sn such that τp(1) > τp(2) > ... > τp(n) [see Fig. 1(a)] and
the sign ζ(p) is −1 if the operator string Ap(1)Ap(2)...Ap(n) differs from A1A2...An by an odd
number of transpositions of fermionic operators, otherwise it is +1. The special case n = 2,
with ζ(12) = 1 and ζ(21) = ζ (ζ= 1 for A1,2 bosonic, ζ= −1 for A1,2 fermionic), simplifies to

T A1(τ1)A2(τ2) =

¨

A1(τ1)A2(τ2) : τ1 > τ2,

ζA2(τ2)A1(τ1) : τ2 > τ1.
(3)

Imaginary time-ordered correlation functions (1) fulfill certain properties which we review
in the following, see e.g. [26] for a more extensive discussion. First, they are invariant under
translation of all time arguments,

GA1A2...An
(τ1,τ2, ...,τn) = GA1A2...An

(τ1 +τ,τ2 +τ, ...,τn +τ) , (4)

with τ ∈ R such that τk + τ ∈ [0,β]. They also fulfill periodic or anti-periodic boundary
conditions for the individual arguments τk,

GA1...An
(τ1, ...,τk = 0, ...,τn) = ζkGA1...An

(τ1, ...,τk = β , ...,τn) (5)

where ζk = +1 or −1 if Ak is from the bosonic or fermionic subset of operators, respectively.
This motivates the use of a Fourier transformation,

GA1...An
(τ1, ...,τn) ≡ β−n

∑

ω1,...,ωn

e−i(ω1τ1+...+ωnτn)GA1...An
(ω1, ...,ωn) , (6)

GA1...An
(ω1, ...,ωn) =

∫ β

0

dτ1 · · ·
∫ β

0

dτne+i(ω1τ1+...+ωnτn)GA1...An
(τ1, ...,τn) , (7)

where ωk = 2πmk/β or ωk = 2π(mk+1/2)/β with mk ∈ Z are bosonic or fermionic Matsub-
ara frequencies, respectively, and

∑

ωk
is shorthand for

∑

mk∈Z. Note that fermionic Matsubara
frequencies are necessarily nonzero, a property that will become important later. As we will
not discuss the real-frequency formalisms, we will not write the imaginary unit in front of
Matsubara frequencies in the arguments of GA1...An

(ω1, ...,ωn). Again, note that in the litera-
ture, different conventions for the Fourier transformation of n-point functions are in use. In
particular some authors pick different signs in the exponent of Eq. (7) for fermionic creation
and annihilation operators, or chose these signs depending on operator positions.

Time translational invariance (4) implies frequency conservation at the left hand side of
Eq. (7),

GA1...An

�

ω1, ...,ωn−1,ωn

�

≡ βδ0,ω1+...+ωn
GA1...An

�

ω1, ...,ωn−1

�

, (8)

where on the right hand side we skipped the n-th frequency entry in the argument list of G.
Note that we do not use a new symbol for the correlation function when we pull out the factor
β and the Kronecker delta function.
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3 Spectral representation of GA1...An

�

ω1, ...,ωn−1

�

The integrals involved in the Fourier transformation (7) generate all n! different orderings of
the time arguments τk. As in Ref. [21] it is thus convenient to use a sum over all n! permuta-
tions p ∈ Sn and employ a product of n−1 step-functions θ , with θ (x) = 1 for x > 0 and 0 oth-
erwise, to filter out the unique ordering for which β > τp(1) > τp(2) > ...> τp(n−1) > τp(n) > 0,
see Fig. 1(a),

GA1...An
(τ1, ...,τn) =
∑

p∈Sn

ζ(p)

�n−1
∏

i=1

θ (τp(i) −τp(i+1))

�




Ap(1)(τp(1))Ap(2)(τp(2))...Ap(n)(τp(n))
�

.

(9)

To expose explicitly the time dependence of the Heisenberg operators, we insert n times the
basis of eigenstates and -energies of the many-body Hamiltonian H. Instead of the familiar no-
tation
�

� j1
�

,
�

� j2
�

, ... and E j1 , E j2 , ... we employ
�

�1
�

,
�

�2
�

, ... and E1, E2,.... for compressed notation

and denote operator matrix elements as A1 2 =



1|A|2
�

. We obtain

GA1...An
(τ1, ...,τn) =
∑

p∈Sn

ζ(p)

�n−1
∏

i=1

θ (τp(i) −τp(i+1))

�

(10)

×
1
Z

∑

1...n

e−βE1 eτp(1)E1A
1 2
p(1)e

(−τp(1)+τp(2))E2A
2 3
p(2)e

(−τp(2)+τp(3))E3 ...e(−τp(n−1)+τp(n))EnA
n 1
p(n)e

−τp(n)E1 ,

and apply the Fourier transform according to the definition (7),

GA1...An

�

ω1, ...,ωn

�

=
1
Z

∑

p∈Sn

ζ(p)
∑

1...n

e−βE1A
1 2
p(1)A

2 3
p(2)...A

n 1
p(n) (11)

×

�

∫ β

0

dτp(1)e
Ω

1 2
p(1)τp(1)

�

�∫ τp(1)

0

dτp(2)e
Ω

2 3
p(2)τp(2)

�

...

�∫ τp(n−2)

0

dτp(n−1)e
Ω

n−1 n
p(n−1)τp(n−1)

��∫ τp(n−1)

0

dτp(n)e
Ω

n 1
p(n)τp(n)

�

,

where we defined

Ω
a b
k ≡ iωk + Ea − Eb ∈ C. (12)

In Eq. (11), the first line carries all the information of the system and the set of operators
{A1, A2, ..., An}. The remaining terms can be regarded as a universal kernel function defined
for general {Ω1,Ω2, ...,Ωn} probed at Ωk ∈ C which depends on the system and correlators via
(12). Upon renaming the τ-integration variables τp(k)→ τk, this kernel function is written as
follows:

Kn (Ω1, ...,Ωn)≡

�

∫ β

0

dτ1eΩ1τ1

�

�∫ τ1

0

dτ2eΩ2τ2

�

...

�∫ τn−2

0

dτn−1eΩn−1τn−1

��∫ τn−1

0

dτneΩnτn

�

(13)

≡ βδ0,Ω1+Ω2+...+Ωn
Kn (Ω1, ...,Ωn−1) + Rn (Ω1, ...,Ωn) . (14)

In the second line we split Kn into a part Kn proportional to βδ0,Ω1+Ω2+...+Ωn
and the rest Rn.

We dropped Ωn from the argument list of Kn which can be reconstructed from {Ω1, ...,Ωn−1}.
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Finally, we express GA1...An

�

ω1, ...,ωn

�

of Eq. (11) using the kernel Kn so that the general

Ωk ∈ C get replaced byΩ
a b
k of Eq. (12). For these,Ω

1 2
p(1)+Ω

2 3
p(2)+...+Ωn 1

p(n) = i(ω1+ω2+...+ωn),
since the Ek cancel pairwise. The structure of Eq. (8) (which followed from time transla-
tional invariance) implies that the the terms proportional to Rn are guaranteed to cancel when
summed over permutations p ∈ Sn, so that only the terms proportional to Kn remain. We drop
the βδ0,ω1+ω2+...+ωn

from both sides [c.f. Eq. (8)] and find the spectral representation of the
n-point correlation function in the Matsubara formalism,

GA1...An

�

ω1, ...,ωn−1

�

=
1
Z

∑

p∈Sn

ζ(p)
∑

1...n

e−βE1A
1 2
p(1)A

2 3
p(2)...A

n 1
p(n) × Kn

�

Ω
1 2
p(1),Ω

2 3
p(2), ...,Ω

n−1 n
p(n−1)

�

.

(15)
An equivalent expression was derived in the literature before [21], see also Refs. [18–20]
for the cases of certain small n. However, kernel functions Kn where previously only known
approximately, for situations involving only a low order of anomalous terms, see the discussion
in Sec. 5. We define an anomalous term of order a = 1, 2, ...n− 1 as a summand contributing
to Kn (Ω1, ...,Ωn−1) that contains a product of a Kronecker delta functions δ0,x , where x is a
sum of a subset of {Ω1, ...,Ωn−1}. As can be seen in Fig. 1(c), these anomalous contributions
to GA1...An

�

ω1, ...,ωn−1

�

correspond to qualitatively important sharp features.
In the next section, we present a simple, exact expression for general Kn (Ω1, ...,Ωn−1).

Readers not interested in the derivation can directly skip to the result in Eq. (26) or its explicit
form for n= 2,3, 4,5 in Sec. 5.

4 General kernel function Kn

�

Ω1, ...,Ωn−1

�

Assuming the the spectrum and and matrix elements entering Eq. (15) are known, the remain-
ing task is to find expressions for the kernel function Kn (Ω1, ...,Ωn−1) defined via Eqns. (13)
and (14) as the part of Kn (Ω1,Ω2, ...,Ωn) multiplying βδ0,Ω1+Ω2+...+Ωn

. To facilitate the pre-
sentation in this section, in Eq. (13) we rename the integration variables τk → τn−k+1 and
define new arguments zn− j+1 = Ω j for j = 1, 2, ..., n− 1,

Kn(Ω1 = zn,Ω2 = zn−1, ...,Ωn = z1)

=
�

∫ β

0

dτneznτn
��

∫ τn

0

dτn−1ezn−1τn−1
�

...
�

∫ τ3

0

dτ2ez2τ2
��

∫ τ2

0

dτ1 ez1τ1
︸︷︷︸

≡h1(τ1)

�

︸ ︷︷ ︸

≡h2(τ2)

(16)

= βδ0,z1+z2+...+zn
Kn (zn, zn−1, ..., z2) + Rn (zn, zn−1, ..., z1). (17)

As indicated in Eq. (16), we call hk(τk) the integrand for the
∫ τk+1

0 dτk integral for k = 1,2, ..., n.
At k = 1 this integrand is given by h1(τ1) = ez1τ1 and we will find hk for k = 2, 3, ..., n itera-
tively. For z ∈ C, we define the abbreviations δz ≡ δ0,z and

∆z ≡

¨

0 if z = 0
1
z if z ̸= 0

(18)

and consider the integral (for p = 0, 1,2, ... and τ̃≥ 0, proof by partial integration and induc-
tion)
∫ τ̃

0

dττpezτ =

�

τ̃p+1

p+ 1
δz + p! (−1)p∆1+p

z

p
∑

l=0

(−1)l

l!
∆−l

z τ̃
l

�

ezτ̃ − p! (−1)p∆p+1
z . (19)
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Recall that we are only interested in the contribution Kn (zn, zn−1, ..., z2) that fulfills frequency
conservation, see Eq. (17). The δz1+z2+...+zn

in front of this term arises from the final τn in-
tegration of hn(τn) ∝ e(z1+z2+...+zn)τn via the first term in Eq. (19). This however requires
that all zk (except the vanishing ones, of course) remain in the exponent during the iterative
integrations. This requirement is violated by the last term in the general integral (19) (which
comes from the lower boundary of the integral). All terms in Kn that stem from this last term
in Eq. (19) thus contribute to Rn and can be dropped in the following [21]. Note however, that
it is straightforward to generalize our approach and keep these terms if the full Kn is required.

To define the iterative procedure to solve the n-fold integral in Eq. (16), we make the
ansatz

hk(τk) =
k−1
∑

l=0

fk(l)τ
l
ke(zk+zk−1+...+z1)τk , (20)

which follows from the form of the integral (19) and our decision to disregard the terms con-
tributing to Rn. The ansatz (20) is parameterized by the numbers fk(l) with l = 0,1, ..., k− 1.
These numbers have to be determined iteratively, starting from fk=1(l = 0) = 1, read off from
h1(τ1) = ez1τ1 , c.f. Eq. (16). Iteration rules to obtain the fk(l) from fk−1(l) are easily derived
from Eqns. (16), (19) and (20). We obtain the recursion relation

fk(l) =
k−1
∑

p=0

M̃k−1(l, p) fk−1(p). (21)

This can be understood as a matrix-vector product of fk−1 = ( fk−1(0), fk−1(1), ..., fk−1(k−2))T

with the k× (k− 1)-matrix

M̃k−1(l, p) =
p!
l!

�

δl,p+1δ̃k−1 + θ (p− l + 1/2) (−1)l+p ∆̃
1+p−l
k−1

�

, (22)

where ∆̃k ≡ ∆zk+...+z2+z1
, δ̃k ≡ δzk+...+z2+z1

. The tilde on top of the δ̃k and ∆̃k signals the
presence of a sum of z j in the arguments (below we will define related quantities without tilde
for the sum of Ω j). Note that the first (second) term in brackets of Eq. (22) comes from the
first (second) term in square brackets of Eq. (19).

The next step is to find Kn (zn, zn−1, ..., z2). This requires to do the integral
∫ β

0 dτnhn(τn)
which can be again expressed via Eq. (19) but with the replacement τ̃ → β . Only the first
term provides a βδz1+z2+...+zn

and is thus identified with Kn. We find:

Kn (zn, zn−1, ..., z2) =
n−1
∑

l=0

β l fn(l)
l + 1

. (23)

The argument z1 that the right hand side of Eq. (23) depends on is to be replaced by z1 = −z2−z3−...−zn,
in line with the arguments in Kn (zn, zn−1, ..., z2). Then, to conform with Eq. (15), we reinstate
Ω j = zn− j+1 for j = 1,2, ..., n− 1. This amounts to replacing the terms δ̃ j and ∆̃ j that appear
in fn(l) as follows,

δ̃ j = δz j+...+z2+z1
= δΩ1+Ω2+...+Ωn− j

≡ δn− j , (24)

−∆̃ j = −∆z j+...+z2+z1
=∆Ω1+Ω2+...+Ωn− j

≡∆n− j , (25)

where we used Ω1+Ω2+ ...+Ωn = 0= zn+ ...+z2+z1. Finally, we can express Eq. (23) using
a product of n − 1 matrices M̃ multiplying the initial length-1 vector with entry f1(0) = 1.
Transferring to the Ω-notation by using Eqns. (24) and (25), we obtain

Kn (Ω1, ...,Ωn−1)

=
n−1
∑

in−1=0

n−2
∑

in−2=0

· · ·
2
∑

i2=0

1
∑

i1=0

β in−1

in−1 + 1
M1(in−1, in−2)M2(in−2, in−3) · · ·Mn−2(i2, i1)Mn−1(i1, 0)

(26)

7
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with
M j(l, p)≡

p!
l!

�

δl,p+1δ j − θ (p− l + 1/2)∆1+p−l
j

�

. (27)

The closed form expression (26) of the universal kernel, to be used in the spectral representa-
tion (15), is our main result. By definition it is free of any singularities as the case of vanishing
denominators is explicitly excluded in Eq. (18).

5 Explicit kernel functions Kn

�

Ω1, ...,Ωn−1

�

for n= 2, 3,4, 5

[CHANGED SECTION TITLE!] While the previous section gives a closed form expression for
kernel functions of arbitrary order, we here evaluate the universal kernel functions Kn (Ω1, ...,Ωn−1)
defined in Eq. (14) from Eq. (26) for n= 2,3, 4,5 and show the results in Tab. 1. In each col-
umn, the kernel function in the top row is obtained by first multiplying the entries listed below
it in the same column by the common factor in the rightmost column and then taking the sum.
The symbols δ j and ∆ j for j = 1,2, ..., n− 1 which appear in Tab. 1 are defined by

δ j ≡ δΩ1+Ω2+...+Ω j ,0, (28)

∆ j ≡ ∆Ω1+Ω2+...+Ω j
≡

¨

0 if Ω1+Ω2+...+Ω j=0
1

Ω1+Ω2+...+Ω j
if Ω1+Ω2+...+Ω j ̸= 0

, (29)

compare also to the previous section. As an example, for n = 2 and n = 3 we obtain from
Tab. 1

K2(Ω1) = −∆Ω1
+
β

2
δΩ1

, (30)

K3(Ω1,Ω2) = +∆Ω1
∆Ω1+Ω2

−
β

2
δΩ1
∆Ω2
−∆Ω1

δΩ1+Ω2

�

β

2
+∆Ω1

�

+δΩ1
δΩ2

β

2
β

3
, (31)

respectively. The rows of Tab. 1 are organized with respect to the number a of factors δl in the
summands. Here, a = 0 indicates the regular part and a = 1,2, ..., n− 1 indicates anomalous
terms. There are n − 1 choose a anomalous terms of order a. Our results are exact and go
substantially beyond existing expressions in the literature – these are limited to n≤ 3 [18] or
to fermionic n = 4 [19–21] with a = 0,1 (and a = 2,3 guaranteed to vanish, see below) or
arbitrary n with a = 0 [21]. Alternative expressions for the n = 3,4 kernel functions with
a ≤ 1 were given in [21], but they are consistent with our kernel functions as they yield the
same correlation functions, see the Appendix.

In the case of purely fermionic correlators (all Ak fermionic), individual Matsubara fre-
quencies ωk cannot be zero and thus the Ω

a b
k ≡ iωk+ Ea− Eb of Eq. (12) always have a finite

imaginary part and are non-zero, regardless of the eigenenergies. In this case, only sums of
an even number of frequencies can be zero, and we can simplify δ1 = δ3 = δ5 = ... = 0. The
expressions for the kernels in Tab. 1, now denoted by Kn|F for the fermionic case, simplify to

K2(Ω1)|F = −∆1, (32)

K4(Ω1,Ω2,Ω3)|F = ∆1∆3

�

δ2

�

β

2
+∆1

�

−∆2

�

, (33)

K6(Ω1, ...,Ω5)|F = ∆1∆3∆5

§

−∆2∆4 −δ2δ4

�

β

2
β

3
+ (∆1 +∆3)
�

β

2
+∆1

��

(34)

+δ4∆2

�

β

2
+∆1 +∆2 +∆3

�

+δ2∆4

�

β

2
+∆1

�ª

.
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#anom. K2(Ω1) K3(Ω1,Ω2) K4(Ω1,Ω2,Ω3) K5(Ω1,Ω2,Ω3,Ω4) factor for entire row
a = 0 −∆1 +∆1∆2 −∆1∆2∆3 +∆1∆2∆3∆4 1

a = 1

+δ1 −δ1∆2 +δ1∆2∆3 −δ1∆2∆3∆4
β
2

−∆1δ2 +∆1δ2∆3 −∆1δ2∆3∆4
β
2 +∆1

+∆1∆2δ3 −∆1∆2δ3∆4
β
2 +∆1 +∆2

−∆1∆2∆3δ4
β
2 +∆1 +∆2 +∆3

a = 2

+δ1δ2 −δ1δ2∆3 +δ1δ2∆3∆4
β
2
β
3

−δ1∆2δ3 +δ1∆2δ3∆4
β
2

�

β
3 +∆2

�

−∆1δ2δ3 +∆1δ2δ3∆4
β
2
β
3 +∆1

�

β
2 +∆1

�

+δ1∆2∆3δ4
β
2

�

β
3 +∆2 +∆3

�

+∆1δ2∆3δ4
β
2
β
3 + (∆1 +∆3)
�

β
2 +∆1

�

+∆1∆2δ3δ4
β
2
β
3 + (∆1 +∆2)
�

β
2 +∆2

�

+∆2
1

a = 3

+δ1δ2δ3 −δ1δ2δ3∆4
β
2
β
3
β
4

−δ1δ2∆3δ4
β
2
β
3

�

β
4 +∆3

�

−δ1∆2δ3δ4
β
2

�

β
3
β
4 +∆2

�

β
3 +∆2

��

−∆1δ2δ3δ4
β
2
β
3
β
4 +∆1

�

β
2
β
3 +∆1

�

β
2 +∆1

��

a = 4 +δ1δ2δ3δ4
β
2
β
3
β
4
β
5

Table 1: Universal kernel functions Kn

�

Ω1, ...,Ωn−1

�

for n = 2,3, 4,5 defined in
Eq. (14) and calculated from Eq. (26)in Sec. 4. In each column, the kernel function
in the top row is obtained by first multiplying the entries listed below it in the same
column by the common factor in the rightmost column and then taking the sum,
see Eqns. (30) and (31) as examples. The symbols δ j and ∆ j appearing are defined
in Eqns. (28) and (29). The rows are organized with respect to the number a of
appearances of δ j , i.e. the order of the anomalous terms.

9
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This concludes the general part of this work. Next, we consider two example systems fre-
quently discussed in the condensed matter theory literature. Using our formalism, we provide
analytical forms of correlation functions that to the best of our knowledge were not available
before.

6 Applications: Hubbard atom and free spin

6.1 Fermionic Hubbard atom

The Hubbard atom (HA) describes an isolated impurity or otherwise localized system with
Hamiltonian

H = ε(n↑ + n↓) + Un↑n↓ − h(n↑ − n↓), (35)

see Fig. 1(b) for a sketch. The HA corresponds to the limit of vanishing system-bath coupling
of the Anderson impurity model (AIM), or vanishing hopping in the Hubbard model (HM).
The particle number operators nσ = d†

σdσ count the number of fermionic particles with spin
σ ∈ {↑,↓}, each contributing an onsite energy ε shifted by an external magnetic field h in
z-direction. An interaction energy U is associated to double occupation.

Due to its simplicity and the four-dimensional Hilbert space, the correlation functions for
the HA can be found analytically using the spectral representation. It is therefore often used for
benchmarking [3,27,28]. The presence of the interaction term leads to a non-vanishing n= 4
one-line irreducible vertex function. The HA serves as an important reference point to study
and interpret properties of the AIM and HM beyond the one-particle level, for example diver-
gences of two-line irreducible vertex functions [29–32] and signatures of the local moment
formation in generalized susceptibilities [16, 33]. Using the fermionic kernels in Eqns. (32)
and (33), we have checked that our formalism reproduces the results for the 2-point and 4-
point correlators given in Refs. [19,21,26] for half-filling, ε= −U/2 and h= 0.

Correlation functions including bosonic operators describe the asymptotic behaviour of the
n= 4 fermion vertex for large frequencies [34] or the interaction of electrons by the exchange
of an effective boson [35, 36]. These relations involve correlation functions of two bosonic
operators or of one bosonic and two fermionic operators, giving rise to expressions possibly
anomalous in at most one frequency argument, i.e. a ≤ 1.

For the HA, AIM and HM, bosonic correlation functions for n> 2 have not been considered
thoroughly so far. Only recently, steps in this direction were taken, particularly in the context
of non-linear response theory [3]. The response of a system to first and second order in an
external perturbation is described by 2- and 3-point correlation functions, respectively. For
the HA, physically motivated perturbations affect the onsite energy via a term δεn or take the
form of a magnetic field δh · S. Here, the parameters δϵ and δh denote the strength of the
perturbation and we define

n= n↑ + n↓ , S x =
1
2

�

d†
↑d↓ + d†

↓d↑
�

, S y =
−i
2

�

d†
↑d↓ − d†

↓d↑
�

, Sz =
1
2

�

n↑ − n↓
�

. (36)

The resulting changes of the expectation values of the density or magnetization in arbitrary
direction are described in second order of the perturbation by the connected parts of the corre-
lation functions GA1A2A3

(τ1,τ2,τ3), with Ai ∈ {n, Sx , Sy , Sz}, where the time-ordered expecta-
tion value is evaluated with respect to the unperturbed system (35) and Fourier transformed to
the frequencies of interest. These objects have been studied numerically in Ref. [3]. In the fol-
lowing, we give explicit, analytic expressions of the full correlation functions GA1A2A3

(ω1,ω2)
(i.e. including disconnected parts), for arbitrary parameters ε, U and h and for all possible
operator combinations using the (bosonic) kernel function K3, see Eq. (31). To the best of our
knowledge, these expressions have not been reported before.

10



SciPost Physics Submission

The eigenstates of the HA Hamiltonian (35) [see Fig. 1(b)] describe an empty (|0〉), singly
occupied (d†

↑ |0〉 = | ↑〉, d†
↓ |0〉 = | ↓〉) or doubly occupied (d†

↑d
†
↓ |0〉 = | ↑↓〉) impurity with

eigenenergies E0 = 0, E↑ = ε − h, E↓ = ε + h and E↑↓ = 2ε + U , respectively. The partition
function is Z = 1+ e−β(ε−h) + e−β(ε+h) + e−β(2ε+U). We define

s =
e−βε

Z
sinh(βh), c =

e−βε

Z
cosh(βh), (37)

and obtain all non-vanishing bosonic 3-point correlation functions (where ω3 = −ω1 −ω2):

Gnnn(ω1,ω2) = 2β2δω1
δω2

�

4e−β(2ε+U)

Z
+ c

�

, (38)

GnnSz (ω1,ω2) = β
2δω1

δω2
s, (39)

GnSx S y (ω1,ω2) = −βδω1
s
ω2

ω2
2 + 4h2

, (40)

GnSx Sx (ω1,ω2) = GnS y S y (ω1,ω2) = 2βδω1

h s
ω2

2 + 4h2
, (41)

GnSzSz (ω1,ω2) =
β2

2
δω1
δω2

c, (42)

GSzSx Sx (ω1,ω2) = GSzS y S y (ω1,ω2) = −s
ω2ω3 + 4h2

(ω2
2 + 4h2)(ω2

3 + 4h2)
+ βδω1

h c
ω2

2 + 4h2
, (43)

GSzSzSz (ω1,ω2) =
β2

4
δω1
δω2

s, (44)

GSx S y Sz (ω1,ω2) = 2h s
ω1 −ω2

(ω2
1 + 4h2)(ω2

2 + 4h2)
−
β

2
δω3

c
ω1

ω2
1 + 4h2

. (45)

We observe that each conserved quantity, in this case n and Sz , contributes an anomalous term
∝ δωk

in its respective frequency argument ωk. If an operator Ak is conserved [H, Ak] = 0,
the basis over which we sum in Eq. (15) can be chosen such that both H and Ak are diagonal,
A

1 2
k = A

1 1
k δ1,2. If A

1 1
k ̸= 0 for some state 1 the vanishing eigenenergy difference leads to

the appearance of an anomalous contribution. If the operators in the correlator additionally
commute with each other, in our case for example [n, Sz] = 0, there exists a basis in which all
operators and the Hamiltonian are diagonal, giving rise to correlation functions anomalous in
all frequency arguments.

In the limit of vanishing field h→ 0, we introduce an additional degeneracy E↑ = E↓ = ε
in the system, potentially resulting in additional anomalous contributions. The corresponding
correlation functions can then be obtained in two ways. Either we recompute them using the
kernel function K3 or we take appropriate limits, for example

lim
h→0

h sinh(βh)
ω2

k + 4h2
=
β

4
δωk

, (46)

resulting in

Gnnn(ω1,ω2) = β
2δω1

δω2

2(4e−β(2ε+U) + e−βε)
Z

, (47)

GnSαSα(ω1,ω2) = β
2δω1

δω2

e−βε

2Z
(α ∈ {x , y, z}), (48)

GSx S y Sz (ω1,ω2) = β
e−βε

2Z
(−δω1

∆ω2
+δω2

∆ω1
−δω1+ω2

∆ω1
), (49)

with all other correlation functions vanishing. As already pointed out in Ref. [3], only the
last correlation function retains a nontrivial frequency dependence due to non-commuting
operators.

11
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6.2 Free spin S

We now consider correlation functions of a free spin of length S, without a magnetic field, so
that temperature 1/β is the only energy scale. The operators {Sα}α=x ,y,z fulfill S xS x+S yS y+SzSz = S(S+1)
and the SU(2) algebra [Sα1 , Sα2] = i

∑

α3={x ,y,z} ε
α1α2α3Sα3 , thus they are bosonic. Since the

Hamiltonian vanishes and therefore all eigenenergies are zero, every Ω
a b
k in the spectral rep-

resentation (15) can vanish and a proper treatment of all anomalous terms is essential. As
the Heisenberg time dependence is trivial, Sα(τ) = Sα, the non-trivial frequency dependence
of the correlators, which can be can be non-vanishing at any order n, derives solely from the
action of imaginary time-ordering.

The correlators are required, for example, as the non-trivial initial condition for the spin-
fRG recently suggested by Kopietz et al., Refs. [13, 37–40]. However, for n > 3 they are so
far only partially available: They are either given for restricted frequency combinations, or for
the purely classical case Sα1 = Sα2 = ...= Sαn where the SU(2) algebra does not matter, or for
finite magnetic field via an equation of motion [37] or diagrammatic approach [41,42].

We define the spin raising and lowering operators,

S± = (S x ± iS y)/
p

2, (50)

which have to appear in pairs for a non-vanishing correlator due to spin-rotation symmetry.
As for the HA, we do not consider connected correlators in this work for brevity. The classical
Sz-correlator can be found from its generating functional with source field h [13],

G (y = βh) =
sinh [y(S + 1/2)]
(2S + 1) sinh [y/2]

, (51)



(Sz)l
�

= lim
y→0
∂ l

yG(y)≡ bl−1, (52)

for example b1 =
S
3 (S + 1) and b3 =

S
15

�

3S3 + 6S2 + 2S − 1
�

and vanishing bl for even l. For
all other correlators involving αk = ±, we adapt Eq. (15) for the free spin case,

GSα1 Sα2 ...Sαn (ω1, ...,ωn−1) =
∑

p∈Sn

〈Sαp(1)Sαp(2) ...Sαp(n)〉Kn

�

iωp(1), iωp(2), ..., iωp(n−1)
�

, (53)

where we made use of the fact that all eigenenergies are zero and the Heisenberg time evolu-
tion is trivial. It is convenient to evaluate the equal-time correlators in Eq. (53) as

〈Sα1Sα2 ...Sαn〉=
1

2S + 1

S
∑

m=−S

〈m|Sα1Sα2 ...Sαn |m〉 ≡
1

2S + 1

S
∑

m=−S

n
∑

l=0

pl m
l = p0 +

n
∑

l=2

pl bl−1

(54)
where in the last step we used Eq. (52). We find the real expansion coefficients {pl}l=0,1,...,n it-
eratively by moving through the string α1α2...αn from the right and start from pl = δ0,l . Based
on the Sz eigenstates {

�

�m
�

}m=−S,...,S−1,S we obtain the iteration rules from Sz
�

�m
�

= m
�

�m
�

and S±
�

�m
�

=
p

1/2
p

S(S + 1)−m(m± 1)
�

�m ± 1
�

. We define an auxiliary integer c that
keeps track of the intermediate state |m+ c〉, initially c = 0. Depending on the α j that
we find in step j = n, n − 1..., 1 we take one of the following actions: (i) For α j = z, we
update pl ← pl−1 + cpl ∀l and leave c unchanged. It is understood that pl<0 = 0. (ii)
For α j = +, we combine the square-root factor brought by the raising operator with the
factor that comes from the necessary α j′ = − at another place in the string. We replace
pl ← −

1
2 pl−2 −

2c+1
2 pl−1 +
�3

2 b1 − c c+1
2

�

pl ∀l and then let c ← c + 1. (iii) For α j = −, we
update c← c − 1 and keep pl unchanged, pl ← pl ∀l.

Our final results for the free spin correlators are reported in Tab. 2. We reproduce the
known spin correlators for n = 2, 3 and determine the non-classical correlators GS+S+S−S−

12
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n= 2 GS+S−(ω) = GSzSz (ω) = βδωb1

n= 3 GS+S−Sz (ω1,ω2) = β b1(−δω1
∆iω2

+δω2
∆iω1

+δω1+ω2
∆iω2

) = −iGSx S y Sz (ω1,ω2)

n= 4

GSzSzSzSz (ω1,ω2,ω3) = δω1
δω2
δω3
β3 b3

GS+S+S−S− (ω1,ω2,ω3) = β b1[2×δω1
δω2
δω3
× β

2

5

�

3b1 −
1
3

�

+ r]

GS+S−SzSz (ω1,ω2,ω3) = β b1[1×δω1
δω2
δω3
× β

2

5

�

3b1 −
1
3

�

− r]
r =∆iω1

∆iω2

�

δω1+ω3
+δω2+ω3

−δω3
−δω4

�

−
�

δω1
∆2

iω2
+δω2

∆2
iω1

�

�

δω3
+δω4

�

−∆iω3
∆iω4

�

δω1
+δω2

�

Table 2: Matsubara correlation functions for a free spin-S up to order n = 4. Here,
ω4 = −ω1 −ω2 −ω3.

and GS+S−SzSz at order n = 4, which to the best of our knowledge were not available in the
literature [43]. We also confirmed the classical result for GSzSzSzSz , which in our full quantum
formalism requires some non-trivial cancellations. To arrive at our results, we used the identity

∆a+b (∆a +∆b)−∆a∆b = δa∆
2
b +δb∆

2
a −δa+b∆a∆b. (55)

We finally comment on the relation between the n = 3 free spin-Scorrelator GS+S−Sz from
Tab. (2) and the result for GSx S y Sz found for the zero-field limit of the HA in Eq. (49). The
operators S x ,y,z for the Hubbard model [c.f. Eq. (36)] project to the singly-occupied S = 1/2
subspace spanned by the states

�

�↑
�

,
�

�↓
�

. Thus, using GSx S y Sz = iGS+S−Sz and specializing the
free spin result from Tab. (2) to S = 1/2 (where b1 = 1/4) we find agreement with the
HA result (49) up to the factor 2e−βε/Z . This factor represents the expectation value of the
projector to the singly-occupied sector in the HA Hilbert space and goes to unity in the local-
moment regime.

7 Conclusion

In summary, we have provided exact universal kernel functions for the spectral representation
of the n-point Matsubara correlator. Our results are an efficient alternative to equation-of-
motion approaches which often have difficulties to capture anomalous terms related to con-
served or commuting operators. We expect our results to be useful for various benchmark-
ing applications, as starting points for emerging many-body methods and for unraveling the
physical interpretation of n-point functions in various settings. Our results also apply in the
limit T → 0 where the formally divergent anomalous contributions are to be understood as
βδω,0 → 2πδ(ω). Some of these Dirac delta-functions will vanish after subtracting the dis-
connected contributions, others indicate truely divergent susceptibilities like the 1/T Curie
law for the spin-susceptiblity of the Hubbard atom in the local moment regime [26]. Although
our work has focused on imaginary frequency (Matsubara) correlators, with analytical expres-
sions now at hand, it is also interesting to study the intricacies of analytical continuation to
real frequencies and thus to further explore the connection of Matsubara and Keldysh corre-
lators [44].
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A Equivalence to convention of Ref. [21]

In Ref. [21] by Kugler, Lee and von Delft (KLD), only regular (a = 0) and anomalous terms
of order a = 1 have been considered for n = 3,4. The corresponding kernel functions were
derived from only (n−1)! permutations by setting τn = 0 and τi ̸=n > 0, but still applied to all
n! permutations to obtain the correlation functions. For n = 3, the resulting kernel function
(Eq. (46) in Ref. [21]) reads

K3,KLD(Ω1,Ω2) =∆1∆2 −∆1δ2
1
2
(β +∆1)−δ1∆2

1
2
(β +∆2) . (56)

This can be compared to the corresponding kernel function for n = 3 found in our Eq. (31)
truncated to a ≤ 1,

Ka≤1
3 (Ω1,Ω2) =∆1∆2 −∆1δ2

�

β

2
+∆1

�

−
β

2
δ1∆2. (57)

Both approaches are equally valid and should yield the same correlation functions (con-
sistently discarding terms with a = 2), yet the kernel functions are obviously different. To
resolve this issue, we define the difference of the kernel functions

K3,diff(Ω1,Ω2) = K3,KLD(Ω1,Ω2)− Ka≤1
3 (Ω1,Ω2) =

1
2

�

∆2
1δ2 −δ1∆

2
2

�

(58)

and show that the corresponding contributions to the correlation function vanishes when
summed over cyclically related permutations p = 123,231, 312. These contributions are given
by

1
Z

∑

p=123,231,312

ζ(p)
∑

123

e−βE1A
1 2
p(1)A

2 3
p(2)A

3 1
p(3)K3,diff(Ω

1 2
p(1),Ω

2 3
p(2))

=
ζ(123)

2Z

∑

123

e−βE1A
1 2
1 A

2 3
2 A

3 1
3

�

(1−δω1
δE1−E2

)δω1+ω2
δE1−E3

(iω1 + E1 − E2)2
−
δω1
δE1−E2

(1−δω1+ω2
δE1−E3

)

(iω1 + iω2 + E1 − E3)2

�

+
ζ(231)

2Z

∑

123

e−βE1A
1 2
2 A

2 3
3 A

3 1
1

�

(1−δω2
δE1−E2

)δω2+ω3
δE1−E3

(iω2 + E1 − E2)2
−
δω2
δE1−E2

(1−δω2+ω3
δE1−E3

)

(iω2 + iω3 + E1 − E3)2

�

+
ζ(312)

2Z

∑

123

e−βE1A
1 2
3 A

2 3
1 A

3 1
2

�

(1−δω3
δE1−E2

)δω3+ω1
δE1−E3

(iω3 + E1 − E2)2
−
δω3
δE1−E2

(1−δω3+ω1
δE1−E3

)

(iω3 + iω1 + E1 − E3)2

�

.

(59)
Considering the second term of permutation p = 312 and renaming the summation variables
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2→ 1, 3→ 2, 1→ 3 yields

−
ζ(312)

2Z

∑

123

e−βE1A
1 2
3 A

2 3
1 A

3 1
2

δω3
δE1−E2

(1−δω3+ω1
δE1−E3

)

i(ω3 +ω1) + E1 − E3

= −
ζ(312)

2Z

∑

123

e−βE3A
1 2
1 A

2 3
2 A

3 1
3

δω3
δE3−E1

(1−δω3+ω1
δE3−E2

)

(iω3 + iω1 + E3 − E2)2

= −
ζ(123)

2Z

∑

123

e−βE1A
1 2
1 A

2 3
2 A

3 1
3

δω1+ω2
δE1−E3

(1−δω1
δE1−E2

)

(iω1 + E1 − E2)2
,

(60)

where we usedω3 = −ω1−ω2 and the fact that δω3
enforces the third operator to be bosonic,

such that ζ(312) = ζ(123). This term exactly cancels the first contribution of permutation
p = 123 in (59). Repeating similar steps for the remaining terms, we find that the the second
term of p = 123 and the first term of p = 231 as well as the second term of p = 231 and the
first term of p = 312 cancel, leading to

1
Z

∑

p∈{123,231,312}

ζ(p)
∑

123

e−βE1A
1 2
p(1)A

2 3
p(2)A

3 1
p(3)K3,diff(Ω

1 2
p(1),Ω

2 3
p(2)) = 0. (61)

Similarly, summing over the second set of cyclically related permutations p = 132,213, 321
leads to a vanishing result, leading to the conclusion that

1
Z

∑

p∈S3

ζ(p)
∑

123

e−βE1A
1 2
p(1)A

2 3
p(2)A

3 1
p(3)K3,diff(Ω

1 2
p(1),Ω

2 3
p(2)) = 0. (62)

Thus we have shown that both kernel functions in Eqns. (56) and (57) are equivalent as they
yield the same correlation functions after summing over all permutations. The same statement
holds true for case of n= 4 and a = 1.
[UPDATED REFERENCE [3]!]
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