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Abstract

We study the boundary states of the archetypal three dimensional topological
order, i.e. the three dimensional Z2 toric code. There are three distinct
elementary types of boundary states that we will consider in this work. In the
phase diagram that includes the three elementary boundaries there may exist
a multi-critical point, which is captured by the so-called deconfined quantum
critical point (DQCP) with an “easy-axis” anisotropy. Moreover, there is an
emergent Zd

2 symmetry that swaps two of the boundary types, and it becomes
part of the global symmetry of the DQCP. The emergent Zd

2 symmetry on the
boundary is originated from a type of surface defect in the bulk. We further
find a gapped boundary with a surface topological order that is invariant under
the emergent symmetry.
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1 Introduction

For many physical systems, the most prominent features happen at the boundary rather
than the bulk. The well-known examples of such include the topological insulators and
topological superconductor, as well as their generalizations, the so-called “symmetry pro-
tected topological” (SPT) states [1, 2]. Although various diagnosis based on the bulk
wave functions have been developed for these systems [3–6], most physical observables
still happen at the boundary, or defects.

Boundaries of long-range entangled topological states have also attracted much atten-
tion. [7–19] For example, the two-dimensional toric code topological order has two types
of gapped one-dimensional boundaries, which correspond to the boundary type with con-
densation of anyon e and m respectively. Furthermore, at the interface between the two
types of boundaries, there is a localized Majorana zero mode. In the two-dimensional toric
code, there is a transformation that exchanges the e and m anyons, and hence swaps the
two boundary types. One can also drive the boundary to a (1 + 1)D Ising critical point
that is invariant under the e−m exchange symmetry. [14] The emergent symmetry acts on
the boundary precisely in the manner of the Kramers-Wannier self-duality. [20, 21] Simi-
lar boundary phenomena are much less studied for higher dimensional topological orders,
even for some of the archetypal topological orders. It has only been recently clarified that,
on the boundary of the three dimensional Z2 topological order, there can be three distinct
types of gapped phases. The three phases are condensations of topological excitations
with distinct properties, one of which involves a “twist” of the condensation, as will be
elaborated later. [22]

In this work, we consider the phase diagram including the three types of gapped
boundaries. We find that depending on the microscopic physics, there could exist a multi-
critical point among the three gapped boundaries, and this multi-critical point is captured
by the deconfined quantum critical point proposed in the context of spin-1/2 quantum
magnet [23, 24]. Moreover, we demonstrate that there also exists a Zd

2 emergent duality
symmetry which swaps two of the boundary types, and the action of the Zd

2 symmetry
can be implemented by “sweeping” an invertible defect through the system.

The three boundary types mentioned above are representative boundaries without
anyons that are only localized at the boundary. If we loosen the last constraint, more exotic
gapped boundaries can exist. In particular, we demonstrate that there exists a gapped
boundary which preserves the emergent Zd

2 symmetry. This boundary can alternatively
be constructed by gauging a bulk 3D SPT state with Zd

2 ×Z2 symmetry with a boundary
that has topological order.

2 Three classes of gapped boundaries

2.1 Constructions

— Gauging a short-range-entangled state
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The three distinct elementary types of boundaries can be constructed explicitly through
two procedures. The first construction is to gauge the Z2 symmetry in a three-dimensional
short-range entangled state with a gapped boundary. This procedure turns the system
into a long-range entangled topological order. In the 3D bulk, we will always start with
a trivial disordered state (a paramagnet) symmetric under the Z2 symmetry. On the 2D
boundary, however, we can consider three different types of short-range entangled states at
the 2D boundary: (1) The ordered state that spontaneously breaks the Z2 symmetry; (2)
the trivial disordered product state or a Z2 paramagnet; (3) the Z2 non-trivial symmetry
protected topological state (often referred to as the “Levin-Gu” state [25]).

After gauging the Z2 symmetry, the bulk will become a Z2 topological order, and the
three different short-range entangled 2D boundary states will turn into the following three
gapped boundaries 1:

(1) The “Higgsed” boundary, which is the descendant of the Z2 ordered short-range
entangled state after gauging. At the Higgsed boundary, the point-like e anyon in
the bulk condenses at the boundary, which freezes the dynamics of the Z2 gauge
field at the boundary through the Higgs mechanism. The m−loop excitation in the
bulk cannot terminate at the Higgsed boundary as it braids nontrivially with the
condensed e−anyon. This scenario is the analogue of the e−boundary of the 2D
toric code phase.

(2) The “deconfined” boundary, which is obtained by gauging the 3D bulk with a trivial
disordered Z2 paramagnet at the boundary. This boundary condition allows the
m−loop to terminate at the boundary, hence we can also view this phase as the
analogue of the 1d m−boundary of the 2D toric code. The e−anyon from the bulk,
and the m−loop termination at the boundary will have mutual semionic statistics at
the boundary. Nevertheless, the end points of the m−loop which terminate on the
boundary always costs energy proportional to the length of the string. Thus, there
is a string tension between two terminations attached with a single m−loop.

(3) The “twisted” boundary is obtained by gauging the 3D bulk with the Levin-Gu SPT
at the boundary. It is known that if we gauge the two dimensional Levin-Gu state
the resulting state is the double-semion topological order. Namely, the Z2 flux gets
transmuted to have semionic statistics instead of bosonic statistics of the toric code.
Similarly, on the twisted boundary, the m−string in the bulk can also terminate at
this boundary like the deconfined boundary. However, the end point of the m-string
has semionic statistics.

— Layered construction
The other construction that also gives rise to the above gapped boundaries is the

so-called “layered construction” [22, 26, 27], which consists of starting with stacks of Z2

toric codes, and performing condensation of composite excitations between layers. The
3D toric code can then be obtained by condensing pairs of e excitations from adjacent
layers, causing the e anyon to become mobile in the third direction. On the other hand,
the m anyons in each layer are confined, but a product of m anyons braids trivially with
the condensate and therefore forms the m loop of the toric code.

The condensation near the top-most layer of the toric code determines which gapped
boundary is obtained as follows

1Abstractly, these topological boundaries are characterized by the so-called Lagrangian algebras of the
higher category that describes the topological order. Even though the development of the theory is still
on-going, simple examples such as that for the Z2 topological order have been worked out.
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Figure 1: (left) A cube of the three dimensional lattice is triangulated into six
tetrahedrons. (right) The tilted triangular lattice on the boundary.

(1) The Higgsed boundary is obtained by also condensing e in the top-most layer. This
corresponds to condensing the e particle of the 3D toric code on the boundary.

(2) The deconfined boundary is obtained by condensing only e pairs in adjacent layers,
analogous to the condensation in the bulk. This allows the m loop to terminate on
the boundary

(3) The twisted boundary is obtained by replacing the 2D toric code model on the top
layer with the double semion (DS) model. Then, we still let the pair of e−anyons
from every two adjacent layers condense. In particular, on the top two layers, the
pair to condense is the bound state of the boson, usually named ss̄, in the DS layer
and the e particle in the second (toric code) layer. This results in the m-loop of the
3D toric code terminating as a semion s. And the boson ss̄ can freely move into the
bulk and become the Z2 charge.

2.2 Exactly solvable limits

Let us give the microscopic models in exactly solvable limits corresponding to the gapped
boundaries, also called “topological boundaries” [22,28]. Our system is on a three dimen-
sional lattice. The lattice is a triangulation of the cubic lattice, each cube is triangulated
into six tetrahedrons, as shown on the left of Fig. 1. We consider a smooth termina-
tion of the three dimensional lattice, so that the boundary is on a two-dimensional tilted
triangular lattice, as illustrated in Fig. 1.

The bulk Hamiltonian is given by

Hbulk = −
∑
v

Av −
∑
∆

B∆, Av =
∏
l∋v

Xl, B∆ =
∏
l∈∆

Zl, (1)

such that all the 14 edges in Av, as well as all the 3 edges of a triangle ∆ in B∆ are
within the three dimensional lattice with a boundary. Then any state that is the ground
state of Hbulk is a boundary state. The wavefunctions of these states are only distinct
near the boundary. More precisely, one can show that for any two boundary states, their
reduced density matrices in any bulk region, say a region within order 1 distance from the
boundary, are identical, by virtue of the topological order.

In the boundary Hamiltonian Hbdry, we allow any local terms that commute with all
terms in Hbulk. What terms are there? The boundary Hilbert space is not a local tensor
product Hilbert space, as there are constraints if we restrict ourselves on the ground state
subspace of the bulk Hamiltonian. First, note that for any triangle ∆ on the boundary B
(see the right in Fig. 1), there is a constraint

B∆∈B = 1,
∏

l∈Cbdry

Zl = 1. (2)
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where Cbdry is any non-contractible loop on the boundary. The second constraint is the
following,

G ≡
∏

bulk v

Av =
∏

l∋boundary v, l∈bulk
Xl = 1, (3)

as this operator is a product of bulk star terms.
Given these two bulk constraints, we can find three fixed-point boundary Hamiltoni-

ans: Each Hamiltonian has local terms that commute with each other, and is translation
invariant. [22]

(1) The “Higgsed” boundary. On this boundary, the e particles are condensed, as well
as the Cheshire charge - a string where e particles are condensed. The fixed point
Hamiltonian is

He = −
∑

boundary l

Zl. (4)

(2) The “deconfined” boundary. On this boundary, the m-loop is condensed. The m-
loop excitation in the bulk can open up, and terminate on the boundary. The fixed
point Hamiltonian is

Hm =−
∑

boundary v

Av, Av =
∏
l∋v

Xl, (5)

where each star term Av is a product of ten Pauli-X operators.

(3) The “twisted deconfined” boundary. Here, the twisted m-loop is condensed. The
fixed point Hamiltonian is

Htwisted m =−
∑

boundary v

Atwisted
v , (6)

Atwisted
v = Avω(g1, g2g, g)ω(g2g, g, g3)ω(g, g3, g4)ω(g5, g6g, g)ω(g6g, g, g7)ω(g, g7, g8),

where g is the generator of the Z2 group, ω(gi, gj , gk) is a representative of [ω], the
non-trivial class in H3[Z2, U(1)]. Here, our convention is that the only non-trivial
element is ω(g, g, g) = −1. And gi, i = 1, · · · 8 label the states on the 8 edges around
a vertex v shown on the right of Fig. 1.

One can see that, up to additional Pauli X operators on edges pointing into the bulk,
the terms in Hm are the “star terms” in the two-dimensional toric code model, and the
terms inHtwisted m are equivalent to the “star terms” in the two-dimensional double semion
model [29], up to a finite-depth quantum circuit on the boundary. Nevertheless, since the
“plaquette terms” B∆ = 1 for ∆ on the boundary, are part of bulk Hamiltonian (1).
Thus, the magnetic quasi-particle excitation is not present when the bulk is in the ground
state. Only a single type of point-like excitations appears on the two types of deconfined
boundaries, which is the Z2 electric charge.

The fixed-point wavefunctions of the toric code model with the three types of bound-
aries are condensations of surfaces, as illustrated in Fig. 2 and Fig. 3. More precisely,
on the background that Zl = 1 on all links, a closed surface ∂V in the bulk is created
by
∏

v∈V Av; an open surface ∂V that lands on the boundary is also created by
∏

v∈V Av,
except that for those vertices v on the boundary, Av is given in Eq. (5). For the twisted
boundary, the sign of the wavefunction amplitude counts the parity of the number of open
surfaces on the boundary. The wavefunctions are obtained from the fixed-point wavefunc-
tions of the 3D short-range entangled states with three types of short-range entangled
boundaries via gauging. In particular, the basis state |{gi}⟩, with gi ∈ {0, 1} on the site i,
is mapped to |{gij = (gi + gj) mod 2}⟩.
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Figure 2: The ground state wavefunction with the “Higgsed” boundary. The
wavefunction is a superposition of configurations with closed surfaces.

+ + · · ·

− + · · ·

(a)

(b)
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+

Figure 3: The ground state wavefunctions with (a) the “deconfined” boundary,
and (b) the “twisted” deconfined boundary. In both cases, the wavefunctions
are superpositions of closed surfaces, as well as open surfaces that terminate on
the boundary. The difference comes from the relative phase between the two
wavefunctions for those configurations with odd number of open surfaces.

2.3 More gapped boundaries with surface anyons

The above gapped boundaries can host surface excitations which can freely move into the
bulk. However, there can be further boundaries where some surface excitations cannot
move freely into the bulk. One trivial way to achieve this is to simply stack an arbitrary
(2 + 1)D topological order onto the boundary.

Here, we demonstrate that there are further boundaries that are beyond stacking with
2D topological orders. The construction is very similar to that of the twisted boundary:
we replace the top-most toric code layer with a different topological order, and condense
certain bosonic anyons. Consider the 3D toric code with the deconfined boundary. The
bulk excitations are generated by an order-two particle e3D and the loop excitation m3D.
Now, consider stacking on top a two-dimensional Z4 toric code which has order-four anyons
generated by e2D and m2D where e42D = m4

2D = 1. If we now condense the pair e22De3D
near the top, the anyon e22D can now move into the bulk, since it is identified with e3D.
Nevertheless, e2D is still deconfined only on the boundary.

For the flux sector, originally m3D is allowed to terminate on the boundary. However,
since e22De3D is condensed, this forces the end point of m3D to be bound with m2D in order
to braid trivially with the condensate. As a result, the point particles on the boundary
are reduced to the set {1, e2D, e22D, e32D} × {1,m2

2D}, where e22D can move into the bulk.
We illustrate this construction in Fig. 4.

Let us provide an explicit lattice realization of this boundary. We replace the qubits
on the boundary of the 3D Z2 toric code with Z4 qudits and denote the generalized Pauli
operators which satisfy ZX = iXZ. Because we are dealing with Z4 variables on the
boundary, we need to pick an orientation of each edge Oe = ±1. The bulk stabilizers are
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e2D m2
2D

e

e22D

m−loop

m2D

Figure 4: The 3D Z2 topological order with a surface topological order, via
stacking a surface topological order and surface condensation. Here, e2D and
m2

2D from Z4 toric code generates surface anyons, among which e22D can move
freely into the bulk. And m2

2D only exists at the termination of m−loop.

as in Eq. (1), while the vertex stabilizers on the boundary are

Abdry
v =

∏
l⊃v;l∈∂M

XOl
l

∏
l⊃v;l∈M

Xl, (7)

As for the boundary plaquettes, we define two types of plaquettes. If the plaquette has
links that are completely in the boundary then we define

Bbdry
p∥

=
∏

l⊂p;l∈∂M
ZOl
l . (8)

On the other hand, if the plaquette contains links pointing into the bulk, we define

Bbdry
p⊥

=
∏

l⊂p;l∈∂M
Z2
l

∏
l⊂p;l∈M

Zl. (9)

As an explicit example, for a cubic lattice, the boundary stabilizers are

Abdry
v = X †X †

X
X
X

, (10)

Bbdry
p∥

= Z
Z

Z† Z† , Bbdry
p⊥

=
Z2

Z

Z

Z

,
Z2

Z Z

Z

. (11)

Let us now check the boundary excitations. The stabilizer Abdry
v can be violated by a

string of Z on the direct lattice on the boundary. The eigenvalues ±i corresponds to the
anyon e2D and e32D on the boundary. These anyons are deconfined only on the boundary:
they cannot move into the bulk. On the other hand, the anyon e22D corresponding to

Abdry
v = −1 can move into the bulk using Zl for a link l which ends on the boundary

vertex v.
Next we analyze the flux excitations. The loop m3D in the bulk can be excited with

a membrane of Xl on the dual lattice as usual. However, when the loop ends on the
boundary, we must act with X so that Bbdry

p⊥ is not excited. This causes Bbdry
p∥ to be

excited with eigenvalue ±i. This corresponds to the fact that the end point of the loop in
the bulk is attached with m2D of the Z4 toric code. Finally, the point particle m2

2D can
be created with Z2 on the dual lattice on the boundary.

7
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We can also relate the above boundary to a Z2 symmetric state. That is, by ungaug-
ing both the bulk and boundary, the bulk becomes a Z2 symmetric paramagnet, while
the boundary realizes a Z2 symmetry-enriched Z2 toric code, where the e anyon carries
fractionalized charge of the Z2 symmetry.

We remark that a more general family of such boundaries can be constructed by
stacking on top of the “deconfined” boundary a general anyon theory described by a
modular tensor category C2D that contains a Z2 boson b2D and condensing the pair b2De3D
near the top. The resulting anyons on the boundary then can be described by a premodular
subcategory containing all anyons that braid trivially with b2D (since all the anyons that
braid are now attached to the end points of the flux loops). To obtain the above boundary
by gauging, we start with a Z2 paramagnet in the bulk, and place a Z2 SET on the
boundary. This SET corresponds to the G-crossed braided fusion category that results
from condensing b2D with G = Z2.

Let us further remark that from the point of view of gauging, we can also embed such
2+1D SETs in the 3+1D bulk instead of on the boundary. Upon gauging, this gives rise
to a codimension one non-invertible defect of the toric code. Such non-invertible defects
have an immediate relation to defect network constructions of fracton and hybrid fracton
orders [30–34]. In particular, starting with a “foliation” of 2+1D SETs and gauging the
Z2 symmetry in the bulk reproduces exactly the 1-foliated hybrid fracton models.

2.4 Effective field theories

The three elementary types of boundaries of the 3D Z2 topological order can also be
described by effective field theories. Our starting point is a generalization of the Luttinger
liquid theory that describes the boundary of two-dimensional Abelian topological orders,
which we reviewed in Appendix A. A family of Abelian topological orders in three spatial
dimensions can be described by a topological action of the BF kind:

Sbulk =
N

2π

∫
M

B ∧ dA, (12)

where A and B are the dynamical one-form and two-form fields, respectively, M is the
four-dimensional spacetime, and N ∈ Z denotes the level. The physical meaning of the
two-form field B is that it is the dual of the current of the charge-N matter field that
couples to the one-form gauge field A: J ∼ dB. The charge-N matter field condenses
and Higgses the one-form gauge field A to a ZN gauge field, i.e. the bulk becomes a ZN

topological order. If the spacetime manifold M is closed, the action is invariant under
the gauge transformation of A → A + dφ for a zero-form field φ and B → B + dχ, for a
one-form field χ.

To describe the boundary, we may begin with the following action:

S0 =
1

2π

∫
dtdxdy [N∂tϕ (∂xby − ∂ybx) + V [ϕ, b]] , (13)

where ϕ is a zero-form field, b is a one-form field, and V [ϕ, b] are some non-universal terms.
There are two types of quasi-excitations on the boundary: the point-particle excitation
created by eiϕ, and loop excitation ei

∮
C b, and they are coupled to the gauge field A and

B respectively. Local excitations, which can be created by microscopic degrees of freedom
locally, are at least composites of these quasi-excitations and have trivial statistics.

Now we consider the case with N = 2, the BF theory in the bulk describes the Z2

topological order. Due to the fusion rule of the quasi-particle e × e = 1, and that of the
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quasi-loop m × m = 12, we know that there are at least two local excitations ei2ϕ and
ei2

∮
C b. A more generic action for the boundary should include the following local terms:

δS = −
∫

dtdxdy

(
u1 cos 2ϕ+

∑
C

uC cos 2

∮
C
b

)
, (14)

where
∑

C is a formal sum of all possible closed loop configurations. In the ground state,
when the quasi-particle condenses on the boundary, ⟨eiϕ⟩ ≠ 0, the gauge field A is “frozen”
due to the Higgs mechanism at the boundary. The condensation of the quasi-particle at
the boundary can be caused by the Hamiltonian Eq. 4. In the Higgsed phase of A, A = dϕ,
and the boundary action reduces to

Sbdry
e =

2

2π

∫
∂M

ϕ ∧ dB. (15)

This action, combined with the bulk action, is invariant under the zero-form gauge trans-
formation A → A+ dφ, ϕ → ϕ− φ, and the one-form gauge transformation B → B + dχ.

In the opposite limit, i.e. the “deconfined boundary”, the boundary Hamiltonian Eq. 5
can cause the loop excitation ei

∮
C b to condense at the boundary, for loops C parallel with

the boundary. In the condensate of the loop excitations, the two-form field B is identified
with db. Now the gapped boundary is described by the topological action,

Sbdry
m =

2

2π

∫
∂M

b ∧ dA. (16)

This action, combined with the bulk action, is invariant under the zero-form gauge trans-
formation A → A+ dφ, and the one-form gauge transformation B → B + dχ, b → b− χ.

There is also a third choice of the boundary topological action:

Sbdry
twisted m =

1

2π

∫
∂M

(2b ∧ dA−A ∧ dA) . (17)

This action, combined with the bulk action, is also invariant under the zero-form gauge
transformation A → A+dφ, and the one-form gauge transformationB → B+dχ, b → b−χ.
In fact, Sbdry = 1

2π

∫
∂M (2b ∧ dA− kAdA) are allowed choices with integer k for a bosonic

system; nevertheless when k = 2k′ with integer k′, the action is equivalent to Sbdry
m up to

a field redefinition b → b− k′A. Hence the only physically distinct boundary action is the
one with k = 1.

Let us analyze the excitations on the boundary. We start with the second boundary
condition described by

Sbdry
m =

2

4π

∫
∂M

(b ∧ dA+A ∧ db) . (18)

Even though b comes from the pure gauge in the bulk B = db, it is a dynamical U(1)
gauge field on the boundary. Then comparing Eq (18) with Eq (35), we recognize that
this action is the two-component Chern-Simons action with a K matrix which is the same
as that of the 2D Z2 topological order.

Similarly, on the third type of boundary, the action can be rewritten as

Sbdry
twisted m =

1

4π

∫
∂M

(2b ∧ dA+ 2A ∧ db− 2A ∧ dA) . (19)

2We abuse the notation and use m to label the Z2 flux loop excitation in three-dimensional topological
order as well.
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Figure 5: A Z2 flux string with two end-points terminating on the boundary.

This is the topological action describing the twisted Z2 topological order. With this
twisted action, the point gauge charge of A remains a deconfined bosonic excitation on
the boundary. Now let us discuss the terminations of m−loops on the boundary. Consider
an excited state in the topological order, where an open m-string ends on the boundary at
two points. Such excitation only exists when the m-loop is condensed on the boundary, de-
scribed either by Sbdry

m or Sbdry
3 . The statistics of the end-point of the m−loop corresponds

to the charge of b, i.e. the charge vector m = (0, 1)T of the deconfined boundary theory

Eq. (18) or the twisted boundary given by Eq. (19), where K =

(
0 2
2 0

)
or K =

(
−2 2
2 0

)
respectively. Its self-statistics is given by θm = πmTK−1m. On the deconfined boundary,
θm = 0; while on the twisted deconfined boundary, θm = π

2 , i.e. the end-points of the
m−loops are self-semionic.

3 Emergent symmetry and its defect

There is a unitary operator which leaves the ground state subspace of the toric code on a
closed manifold invariant, and thus can be taken as generating an emergent (non-onsite)
0-form Z2 symmetry in the ground state subspace.

Nevertheless, if the manifold has a boundary, this unitary operator exchanges the
“deconfined” and “twisted” boundaries. [35, 36] The unitary, if acting only on a region
V in the bulk, creates a codimension-1 invertible symmetry defect. Physically speaking,
there is a “gauged Levin-Gu state” on the defect.3 More precisely, the defect is obtained by
first embedding a codimension-1 defect containing the Levin-Gu SPT state into a three-
dimensional Z2 paramagnet. Then, after gauging the Z2 symmetry, the codimension-1
defect becomes the symmetry defect of this emergent Z2 symmetry of the toric code.

Explicitly, the unitary operator acting on a region V is,

U(V) =
∏
0123∈V

ei
π
8 (1+

∑
i̸=j(−1)i+jZij+Z01Z23), (20)

where 0, 1, 2, 3 labels the four vertices of a tetrahedron, or rather a branched 3-simplex [36].
The formula comes from gauging the symmetric finite depth circuit that create a two-
dimensional Z2 SPT on the boundary ∂V of a volumn V, which we show in the Appendix
B (see also, Ref. [37] for a similar unitary defined on the cubic lattice).

If we begin with the Z2 topological order with a “deconfined” boundary, and take V
to be the whole system, then the (non-onsite) unitary U commutes with Hbulk in the

3In a purely two-dimensional system, a gauged Levin-Gu state is a non-invertible state with double
semion topological order. However, here the defect created by the finite-depth circuit is invertible. There
is no deconfined point excitation localized on the defect, as described in Fig.6.

10



SciPost Physics Submission

e

ss̄ ss̄

ee

ss̄ ss̄

ee

e

m

s

m

s

m

m

...

...

Figure 6: The Z2 flux loop piecing through the invertible codimension-1 defect
(orange surface). On the defect, semion s is attached to the m-loop, the boson
ss̄ can move into the bulk as Z2 gauge charge.

subspace where B∆ = 1, yet changes the “deconfined” to the “twisted” boundary. That
is, up to plaquette terms B∆,

UAboundary vU
−1 = Atwisted

boundary v. (21)

The unitary operator U can be considered as a finite-depth quantum circuit on a three-
dimensional qubit system that swaps the two gapped boundaries.

3.1 Self-statistics of the termination of the m−loop

The symmetry defect U(V) also changes the statistics of the end-points of the m-loop.
One way to think of this is through a layered construction, as illustrated in Fig. 6. The
three dimensional Z2 gauge theory can be prepared with layers of toric code, followed with
condensing the pair of Z2 charges from neighboring layers. We can create the domain wall
defects on two layers (orange layers in the figure) by acting with the unitary in the region
between the two layers. This topological state with defects can also be prepared with a
layered construction. Here, we replace two layers of toric code models with double semion
models, and still condense the pair of bosonic quasi-particles from neighboring layers. In
this state, the deconfined excitations are the mobile Z2 charge, as well as the Z2 flux.
The Z2 flux is now a string of magnetic quasi-particles in all layers. In particular, in the
defected layers, the magnetic quasi-particles are semions.

Because of the condensed bosonic pairs, the even number of semions on the flux string
are identical to the even number of anti-semions, through fusing with the condensed pairs.
See Fig. 7 for the illustration.
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Figure 7: A pair of intersection points of the flux string and invertible
codimension-1 defect are either all self-semionic or all self-anti-semionic.
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Vector excitation statistics

Zd
2−→

excitation statistics

W≃

excitation

(0, 0, 0) 1 1 1 1 1

(1, 0, 0) e 1 e 1 e

(0, 0, 1) s′ i s′ i s′e

(1, 0, 1) s′e i s′e i s′

(0, 1, 0) m 1 s i ms′

(0, 1, 1) ms′ i ss′ −1 f

(1, 1, 0) f = me −1 s̄ = se −i fs′

(1, 1, 1) fs′ −i s̄s′ 1 m

Table 1: Excitations of the deconfined boundary with an additional chiral semion
topological order s′. The first four excitations are deconfined point excitations on
the boundary, the first two can move into the bulk; while the last four excitations
are confined as they are attached to flux loops in the bulk. Under the action
of Zd

2, which adds the term 2
4πAdA to the boundary, the end point of the loop

which is a boson m is transmuted into to a semion s. The excitations after the
transmutation can be identified by an isomorphism W to the original excitations,
showing that the Zd

2 symmetry action swaps s′ and s′e on the boundary, and
transmutes the self-statistics of the flux loop end points by a phase i.

3.2 A “deconfined” gapped boundary symmetric under the emergent
symmetry

If we consider the action of the invertible defect as an additional Zd
2 symmetry at the

boundary, which can be implemented by “sweeping” the invertible defect through the
entire bulk, then only the Higgs boundary is invariant under this Zd

2 symmetry. However,
it is possible to have a boundary that preserves the Zd

2 symmetry and also have deconfined
point excitations.

We first recall that the “deconfined” boundary is transformed into the “twisted” bound-
ary under the Zd

2 symmetry. Specifically, the statistics of the m-loop at the end point is
transmuted from a boson to a semion. Let us now show that the “deconfined” boundary
and the “twisted” boundary become equivalent by adding a 2+1D chiral semion topologi-
cal order to the boundary. Thus, by stacking the chiral semion onto either boundaries, we
obtain a boundary with surface topological order symmetric under the emergent symmetry.

Let us consider the following topological action on the boundary,

Sbdry
s′ =

1

2π

∫
∂M

(2b ∧ dA+ c ∧ dc) . (22)

This theory describes a stack of chiral semion topological order, which is given by the
U(1) Chern-Simons theory at level two associated with c, a dynamical U(1) field, onto the
“deconfined” boundary given in (16). The K-matrix of this boundary can be written as

Ks′ =

0 2 0
2 0 0
0 0 2

 , (23)

where we choose the basis such that the e anyon, the end point of the loop excitation m
and the newly introduced semion s′ correspond to unit charge vectors (1, 0, 0)T , (0, 1, 0)T ,
(0, 0, 1)T , respectively. The full list of excitations is summarized in Table 1.
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Under the action of the Zd
2 symmetry, the boundary is transformed into

Sbdry
s′ → 1

2π

∫
∂M

(2b ∧ dA−A ∧ dA+ c ∧ dc) . (24)

That is,

Ks′ → K̃s′ =

−2 2 0
2 0 0
0 0 2

 . (25)

As a result, the end point of the loop excitation m (which is originally a boson) gets
transmuted to a semion s.

However, the two boundaries related by the symmetry are actually equivalent. We can
see this by identifying the generating excitations as follows

e ≃ e, s ≃ ms′, s′ ≃ s′e. (26)

The above identification preserves the statistics and braiding, and can be encoded as the
following transformation on the K-matrix

W =

1 0 1
0 1 0
0 −1 1

 . (27)

where we can now explicitly confirm that

WK̃s′W
T = Ks′ . (28)

In conclusion, we have shown that the deconfined and twisted boundaries are equivalent
after stacking with a chiral semion topological order. Moreover, under the symmetry
action of Zd

2 on the boundary, the anyons s′ and s′e are permuted, an the termination of
m−loop has self-statistics transmuted by a phase i. This shows that the chiral semion
topological order can “absorb” the invertible defect which is pushed onto the boundary
under the action of Zd

2. We remark that it is known that the chiral semion topological
order can absorb the Levin-Gu SPT [38–41]. Our result can be viewed as the gauged
version of the results above.

3.3 A twisted bulk topological order

In the Z2 topological order, we can describe the presence of the invertible defect on the
surface Ω of a volume V by a topological action,

S[a, b] = 2

2π

∫
b ∧ da− 2

4π2

∫
δ⊥(V) ∧ a ∧ da, (29)

where δ⊥(V) is the delta-form for the volume V, and a, b are dynamical 1-form and 2-form
U(1) gauge fields, respectively.

We can further gauge the Zd
2 symmetry. The system becomes another topologically

ordered phase described by a twisted Dijkgraaf-Witten model [42]. The topological action
is

S[a, b] = 2

2π

∑
I=1,2

∫
bI ∧ daI − 2

4π2

∫
a2 ∧ a1 ∧ da1, (30)

13
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where aI , bI for I = 1, 2 are dynamical 1-form and 2-form U(1) gauge fields, respectively.
The associated 4-cocycle [ω] ∈ H4[Z2 × Z2, U(1)] can be represented by

ω(g, h, l,m) = e
i2π
N2

∑
IJK MIJKgIhJ (lK+mK−[lK+mK ]), (31)

where N = 2, g, h, l,m ∈ Z2 ×Z2, I, J,K = 1, 2 and the only non-vanishing component of
MIJK is M211 = 1.

Alternatively, this topological order can also be obtained from gauging a Z2×Z2 SPT
phase characterized by the same 4-cocycle. The topological response theory for the latter
is described by

S[A] = − 2

4π2

∫
A2 ∧A1 ∧ dA1, (32)

where A1 and A2 are background U(1) gauge fields.
Correspondingly, let us describe what the gapped boundary that respects the Zd

2 sym-
metry becomes after the symmetry is gauged. Specifically, we consider the boundary that
has a surface chiral semion topological order shown in Subsection 3.2. Since the Zd

2 sym-
metry action swaps s′ and s′e, after gauging the two surface anyons combine into a single
non-abelian anyon with self-statistics i and quantum dimension two. Fusing two such
“non-abelian semions” can result in four fusion outcomes corresponding to the sign rep-
resentations of Z2 × Zd

2, which are gauge charges that can freely move into the bulk. The
deconfined point excitations on this boundary are denoted by the premodular category
Reps(D4). [43, 44].

4 Phase transitions between gapped boundaries

4.1 Phase diagram of the three boundaries

In the previous section we have discussed three different boundary states of the bulk
3D toric code topological order. More generally, when the bulk is in the ground state,
depending on tuning parameters, the boundary system can interpolate between the three
phases. For example, the following Hamiltonian describes a two dimensional phase diagram
with the three boundaries:

Hbdry = −λHe − αHm − (1− α)Htwisted m + · · · , (33)

which includes the weighted sum of the fixed point Hamiltonians. The ellipsis refers to
other local terms that can be viewed as perturbations.

A schematic phase diagram of this Hamiltonian is shown in Fig. 8. Along the line
α = 1/2, the inversion of symmetry defect by

∏
U( ) (see Eq. (20)) becomes an

extra “emergent” Zd
2 symmetry of the boundary Hamiltonian. At large λ along the line

α = 1/2, this emergent Zd
2 symmetry is spontaneously broken, and the system is in either

the deconfined or the twisted boundary.
The details near the center of the phase diagram may depend on the microscopic

details of the Hamiltonian. [45–48] With proper perturbations to Hbdry, a multi-critical
point where three phases meet together may be realized at the boundary of our system.
A similar phase diagram was studied numerically in Ref. [48] for a 2D system with Z3

2

symmetry and a similar Zd
2 symmetry. There, it was found that the three phases indeed

meet at a multicritical point, which was argued to be in the same universality class as the
DQCP. By restricting the Z3

2 symmetry to the diagonal Z2 symmetry, this reproduces the
(fine-tuned) phase diagram of Eq. (33) without additional terms.
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(a)

(b)
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VBS

Nz < 0

“Higgsed”

Z2 ordered)(

Figure 8: (a) A schematic phase diagram on the boundary of the three-
dimensional Z2 topological order. The topological order with three gapped
boundaries can be obtained from “gauging” a three-dimensional Z2 symmetric
short-range entangled state with gapped boundaries (as labeled in parentheses),
as we describe in the main text. (b) A schematic phase diagram of quantum
magnets described by the noncompact CP1 model with “easy-axis” anisotropy.

4.2 Connection to the deconfined quantum critical point

In this subsection, we discuss the connection between the phase diagram Fig. 8 to the
deconfined quantum critical point (DQCP) [23,24]. More precisely, the DQCP corresponds
to the multi-critical point in the phase diagram which includes the three short-range
entangled 2D states at the boundary of the system before gauging the Z2 symmetry.
Since the Z2 gauge field does not lead to singular dynamics in the infrared, we expect
that the dynamics at the transitions in the phase diagram Fig. 8, especially the potential
multi-critical point can still be captured by the DQCP.

The DQCP has a field theory description in terms of the noncompact CP1 (NCCP1)
model:

L =
∑
α=1,2

(
|Dazα|2 + r|zα|2

)
+ g

(∑
α

|zα|2
)2

+ u|z1|2|z2|2 + h
(
z†σzz

)
. (34)

There are two main tuning parameters in the system, r and h, which should correspond to
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λ and α in the lattice model. Compared with the original DQCP, our system should also
have a parameter u > 0, which makes the theory an “easy-axis” DQCP in the terminology
of quantum magnets. In our case, the photon phase corresponds to the ordered phase that
spontaneously breaks the Z2 symmetry, which eventually becomes the Higgs phase after
the symmetry is gauged.

When r < 0, the phase diagram in the DQCP is in the Neel order. The easy axis
anisotropy favors either N z ∼ z†σzz > 0 or N z < 0, respectively. Along the line h = 0,
there is an apparent symmetry in the CP1 model connecting N z > 0 and N z < 0, which
is just a Z2 symmetry that flips Sz in the quantum magnet context. If all the symmetries
of the DQCP are onsite, the theory of DQCP can only be realized on the 2D boundary of
a 3D SPT state [49]; and the Z2 symmetry that flips N z is precisely the fermionic duality
transformation of the (2+ 1)D QED with Nf = 2 flavors of Dirac fermions [50–52], which
is a dual representation of the DQCP [53–55]. This (2 + 1)D QED can also be used to
describe the quantum phase transition between 2D bosonic SPT states [56, 57], and the
fermionic duality transformation changes the level of the bosonic SPT states. Hence this
Z2 symmetry that flips Sz can also be identified as the Zd

2 symmetry discussed previously
(Section. 3), i.e. the emergent symmetry that swaps the deconfined and twisted boundaries
(which correspond to the Z2 paramagnet and Z2 SPT state respectively before gauging).
If this Zd

2 symmetry is an exact onsite symmetry in our system, the short-range entangled
bulk should be a SPT state protected by the Zd

2×Z2 symmetry, whose topological response
is given in Eq. (32). The boundary state along the line h = 0 either spontaneously breaks
the Z2 symmetry (r > 0), or the Zd

2 symmetry (r < 0).
When r < 0, by tuning h, the phase transition between the trivial bosonic insulator

and the bosonic SPT phase is expected to be first order due to the easy axis anisotropy.
If we fix h > 0 (or h < 0), the mass degeneracy of the two flavors of the bosonic fields
zα is lifted. By tuning r, the transition corresponds to the condensation of one of the
two flavors of zα, which is dual to a 3D XY transition, if the gauge field aµ of the CP1

theory is noncompact. Since the flux of the gauge field is conserved mod Z2, the 3D XY
transition is reduced to a 3D Ising transition, for both h > 0 and h < 0. This is consistent
with the common wisdom that the transition between the SPT and the ordered phase
with spontaneous symmetry breaking is an ordinary Landau transition.

The DQCP was initially proposed for two dimensional spin-1/2 quantum magnets.
The phases involved in the phase diagram of DQCP are all short-range entangled states.
But it is also natural for two dimensional spin-1/2 quantum magnets to form topological
orders, such as the chiral-semion state, or the ν = 1/2 fractional quantum Hall state if we
view the spin as a boson [58]. This spin liquid state can be invariant under the full SU(2)
spin symmetry, hence invariant under the Zd

2 symmetry that is a subgroup of the spin
rotation. The DQCP is also directly connected to the chiral semion spin liquid. The O(5)
nonlinear-Sigma model (NLSM) with a Wess-Zumino-Witten term at level-1 serves as the
low energy effective theory of the DQCP on the square lattice [59], and this NLSM can
be derived from the so-called “π−flux” spin liquid state, which is described by a (2+ 1)D
QCD with Nf = 2 flavors of Dirac fermion coupled with a SU(2) gauge field. The π−flux
spin liquid state can be driven into the chiral semion state by turning on a mass term of
the Dirac fermion spinons.

5 Summary and Discussions

In this work, we discussed three elementary boundary states of the 3D toric code topo-
logical order. The three elementary boundary states can be constructed intuitively as
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gauging the paramagnet boundary, the ordered boundary, and the Z2 SPT boundary of a
trivial symmetric paramagnetic bulk with a global Z2 symmetry. These boundary states
are elementary in the sense that they do not have independent anyons that are localized
only at the boundary. Other topological boundary states with anyons restricted at the
boundary can be constructed, and one of the topological boundary states is invariant un-
der a Zd

2 symmetry that swaps two of the elementary boundaries. We also discussed a
multi-critical point among the three elementary boundaries, and demonstrated its con-
nection to the deconfined quantum critical point proposed originally in the context of 2D
quantum magnets.

There is a natural generalization of our results to the boundary states of the 3D bulk
ZN topological order, especially for N being a prime number. For a prime number N ,
there are N+1 types of elementary boundaries, which again can be constructed by gauging
the ZN paramagnet boundary, the ordered boundary that spontaneously breaks the ZN

symmetry, and the N−1 nontrivial 2D SPT states (the 2D SPT states with ZN symmetry
has a ZN classification) on the boundary of a trivial symmetric paramagnetic bulk with
the ZN symmetry.
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A Boundaries of 2D Abelian TO

We begin with an Abelian topological order described by a topological Chern-Simons
action,

Sbulk =
1

4π

∫
M

KIJaI ∧ daJ . (35)

where K is a N ×N symmetric integral matrix, whose diagonal elements are even, aI are
one-form fields, and M is the three-dimensional spacetime manifold. The boundary is a
Luttinger liquid system with U(1) symmetries,

S0 =
1

4π

∫
dtdx (KIJ∂xϕI∂tϕJ − VIJ∂xϕI∂xϕJ) , (36)

where ϕI ∈ [0, 2π) are bosonic field, The U(1) symmetry transformations are

eiϕI → eiαIeiϕI , (37)

where αI ∈ [0, 2π), for I = 1, · · · , N .
Then we turn on backscattering terms of quasiparticles,

δS = −
∫

dtdx
∑
m

Um cos (mIϕI) , (38)

where m are integer vectors.
The edge can be gapped due to the backscattering if and only if quasiparticles repre-

sented by the integer vectors M = {m}, satisfy the Lagrangian group condition [8, 11]:
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1. The quasiparticles in M are mutually bosonic,
θmm′
2π = mTK−1m′ ∈ Z for any

m,m′ ∈ M.

2. Any quasiparticle, given by an integer vector l not in M, braids non-trivially with
at least one quasi-particle in M: there exists m ∈ M, θml

2π = mTK−1l ̸∈ Z.

When the couplings Um are large, the quasiparticles in M condense, and the boundary

is gapped. Take the Z2 topological order with KZ2 =

(
0 2
2 0

)
as an example. There are

two types of Lagrangian groups: Me = {(1, 0)T } and Mm = {(0, 1)T }. Another example

is that in the twisted Z2 topological order with Ktwisted Z2 =

(
−2 2
2 0

)
, there is only one

Lagrangian group, Me = {(1, 0)T }. When the bosons in M are condensed, the boundary
is gapped.

More realistically, we only consider the backscattering of local excitations. Local exci-
tations are created by eimIϕI , where m = Kn and n is an integral vector.

Example 1. the Z2 topological order
Let us take the Z2 topological order as an example. Including backscattering terms of

local excitations that break as most symmetry as possible,

δS = −
∫

dtdx (u1 cos 2ϕ1 + u2 cos 2ϕ2) . (39)

In the limit |u1| ≫ |u2|,

⟨eiϕ1⟩ ≠ 0. (40)

The anyon in the Lagrangian group Me is condensed.
And in the other limit, |u1| ≪ |u2|,

⟨eiϕ2⟩ ≠ 0. (41)

The anyon in the Lagrangian group Mm is condensed.
When the electric charge is condensed, ⟨eiϕ1⟩ ̸= 0, we have an open quasi-string exci-

tation with end points on the boundary, e
iϕ1(x1)−

∫
L12

a1−iϕ1(x2), where L12 is a path from
point x1 to point x2. The gapped boundary is now described by a topological action. To
derive it, we use the equation of motion in Sbulk: da1 = 0, whose solution is a1 = dλ and
λ|bdry = ϕ1,

Sbdry, top
e =

2

4π

∫
∂M

ϕ1da2, (42)

where ϕ1 ∈ [0, 2π) is pinned to a value −i log⟨eiϕ1⟩. Excitations are created on the end
points of ei

∫
a2 . Since such end points cost energy, its dynamics is not captured by the

topological action.
Similarly, when the magnetic charge is condensed, the gapped boundary is described

by

Sbdry, top
m =

2

4π

∫
∂M

ϕ2da1. (43)

Example 2. Twisted Z2 topological order.
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In this case,

Sbdry =S0[Ktwisted Z2 ] + δS,

δS =−
∫

dtdx (u1 cos 2ϕ1 + u2 cos 2ϕ2) . (44)

Note that only anyons in the Lagrangian group can be condensed on the boundary, hence
the only compatible condensation is described by

⟨eiϕ1⟩ ≠ 0, (45)

The other quasi-particle associated with eiϕ2 cannot condense, since the it is not bosonic,
and not part of any Lagrangian group.

B Derivation of the unitary operator that swaps boundaries

The unitary operator (20) comes from gauging the symmetric finite depth circuit that cre-
ates a two-dimensional Z2 SPT on the boundary ∂V of a volume V, in a three-dimensional
Z2 paramagnetic state [36]. On a three-dimensional triangulated lattice with one qubit on
each site, the symmetric circuit is

USPT (V) =
∏
0123∈V

ν3(g0, g1, g2, g3)

=
∏
0123∈V

(−1)g
+
0 g−1 g+2 g−3 +g−0 g+1 g−2 g+3 ,

g±i =
1± Zi

2
, (46)

where ν3 ∈ H3[Z2, U(1)] is the 3-cocycle satisfying ν3(ga, gb, gc, gd) = ν3(1, g
−1
a gb, g

−1
a gc, g

−1
a gd).

It is related to another convention by ω(ga, gb, gc) = ν3(1, ga, gagb, gagbgc). In our choice,
the non-trivial elements of the cocycle are ν3(1, g, 1, g) = ν3(g, 1, g, 1) = −1, where g is
the generator of Z2 group.

The unitary operator has two further properties:

(1) The unitary operator commutes with the Z2 symmetry of the Z2 SPT.

(2) In a closed system, the unitary equals to the identity.
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