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Abstract

We introduce a new universal framework describing fluctuations and corre-
lations in quantum and classical many-body systems, at the Euler hydro-
dynamic scale of space and time. The framework adapts the ideas of the
conventional macroscopic fluctuation theory (MFT) to systems that support
ballistic transport. The resulting “ballistic MFT” (BMFT) is solely based on
the Euler hydrodynamics data of the many-body system. Within this frame-
work, mesoscopic observables are classical random variables depending only
on the fluctuating conserved densities, and Euler-scale fluctuations are ob-
tained by deterministically transporting thermodynamic fluctuations via the
Euler hydrodynamics. Using the BMFT, we show that long-range correlations
in space generically develop over time from long-wavelength inhomogeneous
initial states in interacting models. This result, which we verify by numerical
calculations, challenges the long-held paradigm that at the Euler scale, fluid
cells may be considered uncorrelated. We also show that the Gallavotti-Cohen
fluctuation theorem for non-equilibrium ballistic transport follows purely from
time-reversal invariance of the Euler hydrodynamics. We check the validity of
the BMFT by applying it to integrable systems, and in particular the hard-rod
gas, with extensive simulations that confirm our analytical results.
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1 Introduction

Determining the emergent, universal principles of non-equilibrium dynamics in many-body
systems is an extremely active subject of current research. The emergence of hydrody-
namics for the description of fluxes and large-scale motion is one of the most far-reaching
ideas, and has been been extremely successful recently (see, e.g., [1–3]). However, a crucial
question is to go beyond, and develop a statistical theory for fluctuations and correlations.
An important result is the Gallavotti-Cohen fluctuation theorem [4,5], which relates fluc-
tuations of currents to equilibrium properties of reservoirs or driving forces, and which is
valid no matter how far from equilibrium the system is. In this spirit, at large scales of
space and time, x, t → ∞, one would expect only few properties of the microscopic model
to be required in order to understand the full spectrum of fluctuations. What are these
properties and what is the statistical theory for large-scale dynamics?

In the last two decades, a universal approach to accessing the diffusive scale x ∼
√
t

has been proposed and developed: macroscopic fluctuation theory (MFT) [6, 7]. It is a
large-deviation theory for many-body systems out of equilibrium whose hydrodynamics
is purely diffusive, taking as only input the hydrodynamic equations of the system (thus,
transport quantities such as the diffusion matrix). MFT has given an understanding
of both current fluctuations and correlations, explaining long-range effects observed in
driven-diffusive non-equilibrium steady states (NESS) [7]. It has been successfully applied
to many classical many-body diffusive systems, such as the symmetric simple exclusion
process (SSEP) [8–12]. It is expected to hold for stochastic or deterministic, classical or (at
nonzero temperature) quantum systems, as on large scales one always finds hydrodynamics
and classical fluctuations around it (although to our knowledge, no quantum application of
the MFT has been reported so far). Quantum effects on fluctuations in diffusive systems
have also been studied, with the construction of a quantum version of the MFT being
considered [13].

A natural question is as to the nature of correlations and fluctuations in systems that
admit ballistic transport. Ballistic transport means that persistent currents can exist even
with vanishing gradients. It is realised in many important systems including the totally
asymmetric exclusion process (TASEP) [14], anharmonic chains [15], and integrable many-
body systems [16, 17]. In all cases, the leading hydrodynamic equation is the (general
form of the) Euler hydrodynamic equation, which is solely based on the assumption of
maximisation of entropy in local fluid cells and which arises at the ballistic (or hyperbolic)
scaling x ∼ t [3, 18]. It takes the form

∂tqi(x, t) + A j
i (x, t)∂xqj(x, t) = 0, (1)

where qi(x, t) are averages of the local conserved densities admitted by the model, and
A j
i (x, t) is the “flux Jacobian”, the variation of the fluxes with respect to the densities

(see (8)),

A j
i =

∂ji
∂qj

, (2)

in the entropy-maximised state at x, t. But relatively little is known about the structure
of fluctuations at the ballistic scale as compared to what is available at the diffusive scale
with the MFT, the main works being [19–23]. One is thus looking for an adaptation of
the framework of the MFT to the universal description of correlations and fluctuations of
ballistic modes based solely on the Euler equation.

In Ref. [24], this theory, which we refer to as the ballistic MFT (BMFT), has been first
introduced. The theory requires only the Euler hydrodynamics data of the system (the flux
Jacobian A j

i as a function of maximal entropy states), and accounts for the presence of
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any number of ballistic modes. The BMFT is a large-deviation theory, based on an action
principle and saddle-point analysis much like the diffusive MFT, but it gives access to the
ballistic scale instead of the diffusive scale. The BMFT provides the space-time probability
distribution of fluctuating local observables in states that are subject to large-wavelength
variations and motion and described by Euler hydrodynamics. In Ref. [24], the application
of the BMFT to Euler scale correlations [19, 25] has been, in particular, considered. It
has been therein fundamentally shown that the BMFT generically predicts that long-range
correlations develop over long times in non-stationary states. For initial states with spatial
variations on large wavelengths ℓ, these are correlations which develop over time t ∼ ℓ,
which extend on regions of size x ∼ ℓ, and with strength ∼ 1/ℓ. A physical interpretation
is that correlated ballistic modes are emitted continuously at points where the state vary
in time and scatter; alternatively, the one may see long-wavelength profiles in the fluid as
being formed of a bath of ballistic modes that scatter and correlate continuously. See the
pictorial representation in Fig. 1.

In this manuscript we systematically present and develop the results of the companion
manuscript [24]. We discuss in details and in completely general terms the physical as-
sumptions on which the BMFT relies and the associated implications. The BMFT states
that Euler-scale fluctuations of time-evolved observables are obtained by deterministically
transporting fluctuations of conserved quantities in the initial state via the Euler hydro-
dynamic equations of the model. This follows from a simple principle of “local relaxation
of fluctuations” within fluid cells, similar in spirit to, but a refinement of, the princi-
ple of local relaxation that justifies the emergence of the Euler hydrodynamic equations
themselves [18]. The principle stems from a separation of scales: non-conserved degrees
of freedom vary quickly in time as they are affected by every interaction within the vol-
ume of a cell, and the local state rapidly covers the microcanonical shell; while conserved
quantities vary more slowly as they are only affected by exchanges through the surface of
fluid cells, and the local state slowly fluctuates amongst different microcanonical shells.
We further develop the application of the BMFT to the ballistic large-deviation theory
of current fluctuations. Using the BMFT, we show that the Gallavotti-Cohen fluctuation
theorem for the large-deviation function of total currents holds independently from the
details of the microscopic dynamics, purely as a consequence of a time-reversal symmetry
of the Euler hydrodynamic equations. Considering the applications to correlations of the
BMFT, we show that the latter naturally retrieves the whole structure of Euler-scale corre-
lation functions, such as hydrodynamic projection formulas [18,19,26–30]. The emergence
of long-range correlations in interacting many-body systems subjected to long-wavelength
dynamics, even from states which have only short-range correlations, is further discussed.
The differences between this phenomenon and correlations stemming from linear-response
theory [19, 22, 23, 31] are presented (see Fig. 1). Both in the case of current fluctuations
and of correlations, we give explicit results for integrable systems, based on generalised
hydrodynamics (GHD) [16, 17]. In order to confirm these results, we will compare with
simulations in the classical model of hard rods on the line.

We believe the BMFT is a framework with wide applicability, appropriate for the study
of a vast range of correlations and large deviations in many-body systems, integrable or
not, quantum or classical, deterministic or stochastic. It is a universal tool capable of
describing the rare fluctuations of any (mesoscopic) observable, including charge densities
and currents, in a unified way. In principle the BMFT should work in arbitrary dimension-
ality; however, in order to lay out its foundation without any unnecessary complication,
we shall focus on the one-dimensional case.
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Figure 1: Correlations from the BMFT and linear response. Pictorial representa-
tion of the Euler-scale evolution from a state with a density bump varying on a macroscopic
length scale ℓ around the origin. Dark and light blue denote high and low particle den-
sity ⟨q0(ℓx, ℓt)⟩ℓ, respectively. Red lines are sketches of fluid waves while dotted arrows
indicate their trajectories. Red points denote the space-time points of the observables in-
volved in the correlations. (a) Long-range Euler-scaled correlations ℓ ⟨q0(ℓx, ℓt)q0(0, ℓt)⟩cℓ
develop over time because of coherent wave emissions at positions where the state is in-
homogeneous and non stationary, throughout the time evolution. This nonlinear effect is
described by the BMFT and it necessarily requires an inhomogeneous and non stationary
state, and two (as in the Figure), or more, interacting modes. Initially uncorrelated Euler-
scale fluid cells therefore develop correlations over time. (b) Euler-scaled correlations at
different times ℓ ⟨q0(ℓx, ℓt)q0(0, 0)⟩cℓ also occur because of normal modes emitted by the
perturbation of the state at the insertion of the earlier observable, and probed by the later
observables. This mechanism is described by linear response and it can take place also in
homogeneous and stationary states, such as the one sketched in the figure.

1.1 Previous works on the ballistic scale

There is an extensive literature on the Euler scale of various types of many-body systems,
from stochastic particle systems to quantum spin chains. We provide here only a partial
overview of some of the works relevant to this paper.

In stationary, homogeneous states, many results are available at the ballistic scale; this
includes not only equilibrium states, but also generalised Gibbs ensembles in integrable
models [32] and ballistic NESS emerging at long times from the partitioning protocol,
where constant flows exist [16,17,33]. Here, the partitioning protocol refers to a particular
initial condition that consists of two semi-infinite subsystems that are prepared at different
(generalised) Gibbs ensembles. Correlations have been studied by a variety of techniques,
such as linear and non-linear response and hydrodynamic projection methods. Under
ballistic scaling of space and time, they are purely controlled by the Euler hydrodynamics
of the model. See, e.g., the recent reviews [25,34].

The Boltzmann-Gibbs principle, that mesoscopic observables “project”, in some way,
onto mesoscopic conserved quantities, has a long history starting with Mori [35] and
Zwanzig [36]. Until recently it had been studied mainly in stochastic particle systems
assuming few conservation laws of the conventional form, see, e.g., the books [18, 26] and
the paper [27] for a recent result. For correlation functions, the Boltzmann-Gibbs principle
leads to hydrodynamic projection formulae. The first proposal for a general hydrodynamic
projection formula, for two-point correlation functions in Hamiltonian systems with many-
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component Euler hydrodynamics, were written in [28] and [19] (in homogeneous, and long-
wavelength inhomogeneous states, respectively). Hydrodynamic projections lead in a sim-
ple way to linearised Euler equations for two-point functions. In stationary, homogeneous
states, the linearised Euler equation for two-point functions has been shown rigorously in
the hard-rod gas [29]. Further, both the general hydrodynamic projection formula, and
the linearised Euler equation, have been shown rigorously in every finite-range quantum
spin chains [30]. There, the complete space of conserved quantities is defined rigorously,
and so is the Euler scaling limit of two-point correlation functions.

For higher-point functions, nonlinear response, as first proposed in [19], can be used,
as developed for integrable systems in [22], but the structure is less well understood.

In macroscopically inhomogeneous initial states of integrable systems, also much less
is known. A theory has been developed for two-point correlation functions at the ballistic
scale in [19], and numerical checks in the hard rod gas have confirmed the expression [31].

Fluctuations at the ballistic scale have also been studied in specific models by various
hydrodynamic techniques, which differ from the BMFT developed here. In the TASEP, the
earliest is that by Jensen [37] and Varadhan [38], culminating in an exact rate function (see,
e.g., [39] for recent developments on the rate function of the TASEP from first principles).
Another approach is via a ballistic extension of the diffusive MFT (similar to, but differing
from, that proposed in section 3.3), which has been written [8] for the so-called weakly
asymmetric simple exclusion process (WASEP), whose totally asymmetric limit gives the
TASEP. By taking the totally asymmetric limit the Jensen-Varadhan formulation is re-
obtained. In the TASEP, exact current large deviation functions (and SCGFs) are in fact
known in various situations [40,41].

The recently developed ballistic fluctuation theory (BFT) [20, 21], which provides the
large-deviation theory for total current fluctuations in stationary states, is the first general
theory for ballistic-scale fluctuations. The BFT is based on modifying the local states by
accounting for the insertion of total currents, through a “flow equation” derived using
hydrodynamic linear response. It shows that these fluctuations are also controlled by the
Euler hydrodynamics of the model, and it accounts for an arbitrary number of ballistic
modes. It implies, for instance, that “dynamical phase transitions” occur whenever the
initial state admits a hydrodynamic mode with vanishing velocity. The first four cumulants
of energy transport have been checked against numerical simulations in the hard rod
gas [21], and the BFT reproduces the known exact SCGF in homogeneous states of the
TASEP [42, Sec 4.2], obtained by first-principle calculations earlier [41]. It has been
confirmed by exact calculations in the box-ball system [43]. The BFT was generalised to
long-wavelength, non-stationary situations in integrable systems in [23], but again this is
less understood.

The Gallavotti-Cohen fluctuation theorem (GCFT) has been studied widely, see the
review [44] for basic results. In particular, in ballistic NESS, the GCFT was analytically
proved for several models, see the review [33]. This includes (interacting) conformal field
theories [45]. It has also been verified for integrable systems [21] by numerically evaluating
the expression obtained from the BFT, although no proof yet has been provided. A general
argument based on time-reversal symmetry of the microscopic model was proposed [46]
for the full current fluctuations, including the early times of the partitioning protocol.
For the latter state, the GCFT has been checked for various non-interacting models, see,
e.g., [47, 48].

1.2 Organisation of the paper

This paper is organised as follows. In Sec. 2, we set the stage by introducing the two main
quantities that we will study: the scaled cumulant generating function (SCGF) for time-

6



SciPost Physics Submission

integrated currents and the Euler-scale dynamical correlation functions. In particular,
we shall emphasise that the BMFT predicts a novel phenomenon that had been hitherto
not known, which is the existence of long-range correlations in equal-time Euler-scale
correlators in generic ballistic many-body systems. In Sec. 3, we then discuss the general
idea of the BMFT, which rests upon the assumption of local relaxation of fluctuations,
culminating in the expression of local equilibrium averages in terms of path-integrals.
The relation to diffusive MFT is also explained. In Sec. 4, the actual implementations of
the BMFT to compute the above two objects will be then carried out. The associated
equations are hard to solve in general. In Sec. 5, we discuss integrable systems, where it
turns out that all the difficulties presented in generic cases can be circumvented. The main
predictions for this class of systems, as well as some technical details, are provided. We
eventually conclude with future directions in Sec. 6. Technical aspects of the presentation
and details about the calculations and the numerical simulations are consigned to the
Appendix sections.

The notations used throughout the manuscript are as follows: microscopic system’s
observables (or operators in quantum systems) are denoted with a hat as ô(x, t), and their
fluid-cell mean, defined in (23), as o(x, t) (these are still operators in quantum systems).
The integration of a microscopic observable over the full, infinite length of the system
is denoted with a capital letter, Ô =

∫
R dx ô(x). Note that the space and time used as

arguments in ô(x, t) and o(x, t) are microscopic ones. We will also define below classical
fluctuating variables o(x, t) in Eqs. (48)-(51) which are identified, via their Euler-scale
correlation functions, with the mesoscopic means o(ℓx, ℓt). Recall that ℓ is the macroscopic
scale, and thus in o(x, t) space and time coordinates are macroscopic ones. Finally, we
will also take ensemble averages of the microscopic observables ô within homogeneous,
stationary states (that is, within (generalised) Gibbs ensembles, see below), which we will
denote in typewriter font, o. With macroscopically varying states, such as in Eq. (12)
below, the Lagrange multipliers (or generalised temperatures) βi(x), or βi(x, t), give rise
to space or space-time dependent averages, o(x) or o(x, t), where space-time coordinates
are again macroscopic.

2 Main physical predictions and numerical checks

We now overview the setup for the BMFT, the two main applications and physical pre-
dictions from the theory (the current large deviations and the CGFT in Subsec. 2.1, the
Euler-scale correlation functions and long-range correlations in Subsec. 2.2), and the ex-
plicit results in integrable systems and numerical checks we performed to verify these
predictions (Subsec. 2.3).

The setup is an extensive model, quantum or classical, supported on the line R, with
a dynamics that admits a certain number of extensive conserved quantities,

Q̂i =

∫
R
dx q̂i(x). (3)

Here and below, the set of values the index i can take is kept arbitrary; it can be finite or
infinite. Extensivity is intuitively understood as the fact that qi(x) is local – it probes the
system at, or around, position x only (this includes quasi-local densities as constructed in
integrable models [49]). The set of charges Q̂i is assumed to be complete1.

1Completeness and extensivity are difficult to define rigorously in general. Although we are not looking
for rigour in the present paper, we nevertheless mention that these concepts are given fully unambiguous
definitions for the linearised Euler hydrodynamics of quantum spin chains in [30].
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One of the representative models that belongs to the former case is the classical an-
harmonic chain whose Hamiltonian reads [15]

ĤAHC =
N∑
j=1

(
1

2
p2j + V (rj)

)
, rj = xj+1 − xj , (4)

where xj and pj give the position and the momentum of j-th particle. Barring some excep-
tions, the model possesses the three conservation laws (3) for i = 0, 1, 2, corresponding to
the number of particles q̂0(x) =

∑N
j=1 δ(x−xj), the momentum q̂1(x) =

∑N
j=1 pjδ(x−xj),

and the energy q̂2(x) =
∑N

j=1 ejδ(x − xj) with ej =
1
2p

2
j + V (rj). Some exceptions occur

when the potential is fine-tuned, giving a number of conservation laws that grows like N ,
e.g., the system of hard rods of lengths a, with VHR(r) = ∞ for |r| ≤ a and VHR(r) = 0
for |r| > a [50], and the Toda chain VToda(r) = e−r [51–53]. Quantum mechanically, one
of the prototypical integrable models is the Lieb-Liniger model, which is given by [54]

ĤLL = −1

2

N∑
j=1

∂2

∂x2j
+ c

∑
i<j

δ(xi − xj), (5)

where c > 0. Time evolution may, however, not necessarily be generated by a Hamiltonian;
in stochastic models, a conserved quantity is to be understood as a martingale for the
stochastic dynamics.

Under time evolution, continuity equations for local densities q̂i(x, t) and currents
ȷ̂i(x, t) hold:

∂tq̂i(x, t) + ∂xȷ̂i(x, t) = 0. (6)

Crucial to the structure of the BMFT and the expression of our main results are
the set of stationary, homogeneous states where entropy is maximised with respect to the
available conserved quantities. The states are characterised by a set of inverse “generalised
temperatures” (temperature, chemical potential, Galilean or relativistic boosts, etc.), or
Lagrange multipliers, βi,

⟨•⟩β =
1

Z
µ

(
exp

[
−
∑
i

βiQ̂i

]
•
)
, Q̂i =

∫
R
dx q̂i(x). (7)

µ is any “flat a priori measure” that is homogeneous (invariant under space translation)
and stationary (invariant time evolution). Physically, it is an infinite-temperature en-
semble, such as the trace in quantum mechanics µ = Tr, or the flat phase-space integral
µ =

∫ ∏
n dpndqn in classical mechanics. Here and henceforth, Z is the constant normalis-

ing the resulting state ⟨•⟩β. Note that in integrable systems, where an infinity of conserved

quantities may be involved in (7), these states are usually referred to as generalised Gibbs
ensembles (GGE).

Also crucial are the flux Jacobian and Euler hydrodynamic equations. We recall that
the flux Jacobian is the variation of the average currents ji = ⟨ȷ̂i⟩β with respect to the

average densities qi = ⟨q̂i⟩β within homogeneous stationary states,

A i
j = A i

j [β] =
∂jj
∂qi

= −
∑
k

∂jj
∂βk

Cki, (8)

where Cki = (C−1)ki is the inverse of the static covariance matrix, or susceptibility matrix,
Cij ,

Cij = − ∂qi
∂βj

=

∫
R
dx ⟨q̂i(x)q̂j(0)⟩cβ . (9)
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By positive-definiteness of the matrix C there is a bijection q ↔ β (in appropriate domains
of values of these quantities). The Euler equation is obtained by assuming that the state
is slowly varying in space and time so that in every fluid cell local entropy maximisation
to the state (7) takes place. A fluid cell may be seen as a “mesoscopic” region: a region
of extent L, large compared to microsocpic scales ℓmicro, set by the mean inter-particle
distance and interaction lengths, but small compared to macroscopic spatial variation
scales ℓ (we take all the “scales” to have dimension of length),

ℓmicro ≪ L ≪ ℓ. (10)

Thus all quantities associated to the state (7) now acquire x, t dependence, βi(x, t),
qi(x, t) and ji(x, t), and the resulting equation takes a number of equivalent forms: Eq. (1),
and (using the property AC = CAT , see, e.g., [28])

∂tqi(x, t) + ∂xji(x, t) = 0,

∂tβ
i(x, t) +

∑
j

A i
j [β(x, t)]∂xβ

j(x, t) = 0. (11)

Clearly, the Euler hydrodynamic equations are linear if the flux Jacobian is in fact
independent of the state. We name henceforth, in agreement with Ref. [20], “interacting”
those hydrodynamic systems where the flux Jacobian A k

i (x, t) = A k
i [β(x, t)] depends

non-trivially on the state β(x, t).
The BMFT is concerned with out-of-equilibrium phenomena that happen at long wave-

lengths and long times. For definiteness, we will look at time evolution from initial states
with long-wavelength ℓ variations

⟨•⟩ℓ =
1

Z
µ

(
exp

[
−
∑
i

∫ ∞

−∞
dxβi

ini(x/ℓ)q̂i(x)
]
•
)
. (12)

For an extensive discussion of such long-wavelength states and the ensuing Euler hydro-
dynamics of many-body systems admitting an arbitrary number of conserved quantities,
see, e.g., [3].

2.1 Current large deviations and fluctuation theorem

The BMFT gives access to the large-deviation theory for total observables integrated on
macroscopic regions of space and time. Two natural examples are the scaled cumulant
generating functions (SCGF) F̃ (λ, T ) and F (λ, T ) of total charges〈

eλQ̂(ℓX)
〉
ℓ
≍ eℓXF̃ (λ,X), Q̂(ℓX) =

∫ ℓX

0
dx q̂i∗(x, 0), (13)

and, most interestingly, of total currents,〈
eλĴ(ℓT )

〉
ℓ
≍ eℓTF (λ,T ), Ĵ(ℓT ) =

∫ ℓT

0
dt ȷ̂i∗(0, t), (14)

as ℓ → ∞. The notation “≍” means, e.g., F (λ, T ) = limℓ→∞
1
ℓT log

〈
eλĴ(ℓT )

〉
ℓ
, cf.

Ref. [23]. Here q̂i∗ and ȷ̂i∗ are one particular pair of charge density and current of
the model; as the basis of conserved charges is kept arbitrary, this is without loss of
generality. Note that Eq. (14) is equivalently the large-deviation theory for the total
amount of the conserved quantity i∗ transported from left to right in time ℓT , that is

9
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Ĵ(ℓT ) =
∫∞
0 dx (qi∗(x, ℓT )−qi∗(x, 0)). The SCGF’s are generating functions for the scaled

cumulants of Q̂(ℓX) and Ĵ(ℓT ); for instance F (λ, T ) =
∑

n≥0 λ
ncn(T )/n! with

cn(T ) = lim
ℓ→∞

(ℓT )−1

∫ ℓT

0
dt1 · · ·

∫ ℓT

0
dtn ⟨ȷ̂i∗(0, t1) · · · ȷ̂i∗(0, tn)⟩cℓ . (15)

In (13) and (14), the SCGF is evaluated in general in the macroscopically inhomoge-
neous state (12), where variations occur over the length scale ℓ; thus the results depend on
the scaled position X and scaled time T . Many studies have concentrated on the special
case of homogeneous initial states, where F (λ, T ) = F (λ, 1) =: F (λ), but our theory gives
access to the general situation.

It is explained in [20] that F̃ (λ,X) is simply a difference of thermodynamic free energies
(see also Appendix A),

F̃ (λ,X) =
1

X

∫ X

0
dx (f [βini(x)]− f [β•

ini(x)− δ•i∗λ]), (16)

where f [β] is the specific free energy for the stationary state (7), defined as a generating
function for averages of conserved densities, ⟨q̂i⟩β = ∂f/∂βi.

The quantity F (λ, T ) is more involved, as it requires understanding the dynamics of
the model. In homogeneous states, where βini is indepedent of position, a general solution
in terms of the Euler hydrodynamics is given by the BFT [20, 21]. However, the BMFT
developed here is, to our understanding, the first general framework that applies to many-
body systems both for homogeneous stationary states and long-wavelength inhomogeneous
and non-stationary states.

Of particular interest is the partitioning protocol. In this setup, the initial state takes
the Gibbs form with different, but otherwise constant, Lagrange multipliers on the right
(x > 0) and the left (x < 0), for instance2:

exp

[
−
∑
i∈C

(
βi
L

∫ 0

−∞
dx q̂i(x) + βi

R

∫ ∞

0
dx q̂i(x)

)
+
∑
i ̸∈C

βi
0Q̂i

]
, (17)

where C specifies the set of the charges for which there is imbalance in the state. With
this particular form of the initial state, choosing a single i∗ in the SCGF is no longer the
most general case, and instead one may consider

F (λ, T ) = lim
ℓ→∞

1

ℓT
log
〈
e
∑

i∈C λiĴi(ℓT )
〉
ℓ
. (18)

In this equation, Ĵi(ℓT ) is defined analogously as Ĵ(T ) after (14) with the replacement
i∗ → i. The Gallavotti-Cohen fluctuation theorem (GCFT) gives a symmetry relation
for this (generalised) current SCGF. As the initial state (17) is scale invariant, F (λ, T ) =
F (λ, 1) =: F (λ), and the GCFT is

F (β
L
− β

R
− λ) = F (λ). (19)

We will show, using the BMFT, that the GCFT holds solely as a consequence of a
time-reversal symmetry of the Euler hydrodynamics. With A j

i [β] the flux Jacobian within

2This is not a large-wavelength initial state. However, it quickly settles to a large-wavelength state,
and the effect of the initial transient on the cumulants vanish in the large-scale limit, as confirmed by our
numerical results in Sec. 5.

10
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the state (7), the symmetry is an appropriate time-reversibility of the Euler hydrodynamic
solution, including the existence of a collection of signs Si ∈ {+1,−1} such that

A j
i [β] = −SiSjA

j
i [β̃], (20)

where β̃i = Siβ
i (no sum over repeated indices), along with the requirements Si = 1 and

⟨ȷ̂i⟩β = −⟨ȷ̂i⟩β̃ for all i ∈ C. This arises if there exists a time-reversal symmetry of the

microscopic model, under which densities of conserved charges transform diagonally, with
signs Si, see Eq. (84).

The result shows that, in ballistic many-body systems, the GCFT is a consequence
of general principles of large-scale fluctuations, and does not depend on the microscopic
details. In particular, by combining with generalised hydrodynamics, this provides, as
far as we are aware, the first proof of the GCFT in all integrable many-body systems.
The application to models of conventional hydrodynamic type, such as TASEP and the
anharmonic chains, would require a more in-depth study of “weak solutions” to the BMFT
equations (see below).

2.2 Long-range correlations

The BMFT also gives access to connected correlation functions of any number of meso-
scopic observables at different, macroscopically separated points in space-time, again in
general from large-wavelength states. Let us first recall the main elements of Euler-scale
correlation functions.

The Euler scaling limit of correlation functions is the limit where space, time and
wavelengths all tend to infinity simultaneously. The scaling limit in fact requires two
additional operations: one must take fluid-cell means, and the correlation function must
be rescaled appropriately. See [19]. For the n-point function, the Euler scaling limit is

Sô1,...,ôn(x1, t1; · · · ;xn, tn) := lim
ℓ→∞

ℓn−1 ⟨o1(ℓx1, ℓt1) · · · on(ℓxn, ℓtn)⟩cℓ , (21)

where ⟨· · ·⟩cℓ is the connected correlation function in the initial state (12), again with its de-
pendence on the scale of spatial variations ℓ explicitly written. For the two point function,
explicitly, ⟨o1(x1, t1)o2(x2, t2)⟩cℓ = ⟨o1(x1, t1)o2(x2, t2)⟩ℓ − ⟨o1(x1, t1)⟩ℓ ⟨o2(x2, t2)⟩ℓ, and

Sô1,ô2(x1, t1;x2, t2) := lim
ℓ→∞

ℓ ⟨o1(ℓx1, ℓt1)o2(ℓx2, ℓt2)⟩cℓ . (22)

In the Euler-scaling limit (21), the quantity oi(x, t) is the fluid-cell means of ôi around
the space-time point x, t; the fluid-cell mean can be taken as a mesoscopic space-time
average

o(x, t) =
1

vL2

∫ L/2

−L/2
dy

∫ vL/2

−vL/2
ds ô(x+ y, t+ s), (23)

for some v > 0. The fluid-cell mean (23) is generically required in order for the limit
expressed in (22) to be described by Euler hydrodynamics. Time-averaging is, in general,
necessary in order to wash out oscillations; see for instance the discussion in Ref. [55]
for the XX spin chain and in Ref. [56] for the classical sinh-Gordon field theory. For the
hard-rod model, however, we find that averaging in space (as in Eq. (35)) works well (see
also Ref. [31]). See [19,25] for discussions of fluid-cell means.

In general, Sôi1 ,...,ôin
(xi1 , ti1 ; · · · ;xin , tin) is expected to be symmetric under permu-

tations of indices ik 7→ iσ(k). This is clear in classical systems, but should also hold in
quantum systems thanks to the taking of the Euler scaling limit, as shown by the rigorous

11
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results of [30] for two-point functions in stationary homogeneous states of quantum spin
chains.

As discussed in [23], the SCGF F (λ, T ) is related to Euler-scale correlation functions.
Indeed, from Eqs. (14) and (15), and assuming that we can neglect the spatial part of the
fluid-cell mean,

cn(T ) = T−1

∫ T

0
dt1· · ·

∫ T

0
dtn Sȷ̂i∗ ,...,ȷ̂i∗ (0, t1; · · · ; 0, tn). (24)

Therefore, conceptually, Euler-scale correlation functions (21) encode all Euler-scale in-
formation.

We note that the existence (in some sense) of the limit (21) does not mean that the
n-point correlation function of microscopic observables decays as ℓ1−n. In non-integrable
systems the result of the limit is expected to be a distribution, where delta-functions are
found along the characteristics of the fluid, representing a decay of microscopic correlations
that is slower than ℓ1−n. In integrable systems, because of the continuum of fluid modes,
n-point correlation functions generically indeed decay as ℓ1−n. See the review [25].

Before presenting our results, we recall that using hydrodynamic linear response ar-
guments and other related principles, one arrives, from the Euler hydrodynamic equa-
tions (1), (11), at predictions for Euler-scale correlations. This is based on the fact
that the hydrodynamic equations, with initial condition βi(x, 0) = βi

ini(x) or equivalently
qi(x, 0) = ⟨q̂i⟩βini(x)

, predict the averages of all mesoscopic observables [3, 18]:

lim
ℓ→∞

⟨o(ℓx, ℓt)⟩ℓ = ⟨ô⟩β(x,t) =: o(x, t). (25)

The main lines of linear and nonlinear response arguments in multi-component Euler
hydrodynamics (see Appendix C for a short review) are expressed in [19, 22], where they
are worked out for integrable models.

One prediction is the hydrodynamic projection formula for two-point functions [19]:

Sô1,ô2(x1, t1;x2, t2) =
∂o1
∂qi

∣∣∣
β(x1,t1)

∂o2
∂qj

∣∣∣
β(x2,t2)

Sq̂i,q̂j (x1, t1;x2, t2), (26)

where for lightness of notation, here and below, the Einstein convention of summation
over repeated indices is used. That is, it is sufficient to know the Euler-scale correlation
functions of conserved densities, in order to access other Euler-scale correlation functions.
In stationary homogeneous states (7) of short-range quantum spin chains, this has been
shown rigorously in Ref. [30]. In particular,

Sȷ̂k,q̂j (x1, t1;x2, t2) = A i
k (x1, t1)Sq̂i,q̂j (x1, t1;x2, t2). (27)

Combining (27) with the conservation laws (6), one obtains a linear equation for
Sq̂i,q̂j (x, t;x

′, t′):

∂tSq̂i,q̂j (x, t;x
′, t′) + ∂x

(
A k
i (x, t)Sq̂k,q̂j (x, t;x

′, t′)
)
= 0. (28)

This is a linearised version of the Euler equations, which physically represents the prop-
agation of a small disturbance on top of a (generically) inhomogeneous, non-stationary
background. Eq. (28) says that the hydrodynamic modes are transported via the local
flux Jacobian A k

i (x, t) = A k
i [β(x, t)] viewed as a “propagator”, being emitted by the ob-

servable at x′, t′ and probed by the observable at x, t. Of course, in homogeneous and
stationary states, Eq. (28) can be solved explicitly by a simple Fourier transform as the
flux Jacobian can be taken out of the derivative.

12
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We will show that the BMFT gives the full structure of Euler-scale correlation func-
tions. First, we show that (26) and (28) indeed hold. We also obtain a generalisation of
hydrodynamic projections to higher-point functions, and related linearised Euler hydro-
dynamic equations. For three-point functions, omitting the explicit space-time arguments
for lightness of notation, hydrodynamic projection is

Sô1,ô2,ô3 =
∂o1
∂qi

∂o2
∂qj

∂o3
∂qk

Sq̂i,q̂j ,q̂k +
∂2o1

∂qi∂qj

∂o2
∂qk

∂o3
∂ql

Sq̂i,q̂kSq̂j ,q̂l +cyclic perm. of 1, 2, 3, (29)

and the evolution equation is

∂t1Sq̂i,q̂j ,q̂k + ∂x1

(
A l
i Sq̂l,q̂j ,q̂k + H lr

i Sq̂l,q̂jSq̂r,q̂k

)
= 0, (30)

where H lr
i = ∂2ji/∂ql∂qr. The evolution equation is in agreement with nonlinear response

results of [22], and a similar structure has been found in the hydrodynamic limit of the
quantum single exclusion process [57, 58]. These, as we will show, in fact follow quite
directly from the scaling (21) and the BMFT principle of relaxation of fluctuations.

We further show one of the most striking physical predictions of the BMFT: the lack
of correlations between separate fluid cells that is often assumed in hydrodynamic response
theory, is in fact not generically preserved under macroscopic time evolution.

By standard arguments, an initial state of the form (12) has quickly decaying cor-
relations. With finitely-many local densities q̂i(x), exponential decay is typically found
on microscopic length scales ℓmicro ≪ ℓ, much like in equilibrium states. In integrable
systems, as infinitely-many charges may be involved, 1/x2 correlations may appear, as is
found in NESS [59, 60]. But in all cases, correlations are expected to decay faster than
1/|x|. This means that equal-time Euler-scale correlations in this state vanish at different
points,

Sô1,ô2(x1, 0;x2, 0) = 0 if x1 ̸= x2. (31)

In this states, fluid cells are not correlated at macroscopic scales. In particular, if t′ = 0,
the initial condition for (28), as taken in [19], is

Sq̂i,q̂j (x, 0;x
′, 0) = Cij(x, 0) δ(x− x′). (32)

In the conventional view of Euler hydrodynamics, under time evolution, local entropy
maximisation occurs with respect to the mesoscopic conserved quantities in fluid cells, and
the form (12), with time-dependent βi(x, t), describes the state later in time. This indeed
correctly describes averages of local observables. But the BMFT generically invalidates
the time-evolved form of (12) at nonzero macroscopic times for the description of Euler-
scale correlations. That is, the set of states of the form (12) is not preserved under time
evolution. Long-range correlations appear,

Sô1,ô2(x1, t;x2, t) ̸= 0 for |x1 − x2| > 0, t > 0, (33)

and the BMFT gives a quantitative prediction.
In fact, it is possible to argue for long-range correlations directly from hydrodynamic

projection. Indeed, if the flux Jacobian depends on the state and has a nontrivial matrix
structure, and the state is space-time dependent, the evolution equation

∂tSq̂i,q̂j (x, t;x
′, t) + ∂x

(
A k
i (x, t)Sq̂k,q̂j (x, t;x

′, t)
)
+ ∂x′

(
A k
j (x′, t)Sq̂i,q̂k(x, t;x

′, t)
)
= 0,

(34)
which follows from (26) for t1 = t2 = t and the conservation laws, does not preserve the
initial delta-function structure. Although hydrodynamic projection for two-point functions
was already known, this observation, it appears, had not been made before.

13
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Long-range correlations occur whenever the system is interacting (that is, the flux
Jacobian depends on the state), spatio-temporal variations are present, and there are
more than one fluid velocity. They are built by macroscopically separated fluid modes
going at different velocities, that have been emitted coherently in small regions with spatio-
temporal variations, and scatter with each other. More generally, correlations at the Euler
scale in space-time, such as (22), are not only due to fluid modes propagating between
observables as obtained by linear response theory, but also receive contributions from
fluid modes coherently emitted in the past. As a consequence, the initial condition (32)
does not hold at times t′ > 0, in contrast to what is normally assumed in linear- and
nonlinear-response studies.

The above mechanism for long-range correlations is of hydrodynamic origin. In certain
situations there may be other mechanisms at play, giving rise to long-range correlations of
similar strength, but not described by the BMFT. For instance, if the initial condition is
not of large-scale variations, say it admits a step density profile, then it can be expected
that during the initial stage of the dynamics some nontrivial correlations build up from
the microscopic physics. Thus dynamical correlations of observables at different spatial
positions, from such initial conditions, will be given by the combination of the early time
microscopic ones and hydrodynamics ones as above. We shall indeed numerically observe
for the hard-rod model evolving from a step initial condition, that correlations that stem
from microscopic physics give additional contributions to those from coherent production
of normal modes described by the BMFT.

Lastly, we remark that the observed long-range correlations are not in contradiction
with the Lieb-Robinson bound [61], which constraints the spatial extent of time-evolved
operators in lattice systems. By the Lieb-Robinson bound, nontrivial long-range correla-
tions (33) can exist only if the two Lieb-Robinson light cones that fan out from x = x1
and x = x2 overlap; beyond this, correlations must decay exponentially (or as fast as in
the initial state). Our explicit formulae for long-range correlations in integrable systems
(132) show that correlations indeed decay quickly when the light cones determined by the
maximum fluid velocity do not overlap; the maximum fluid velocity is bounded by the
Lieb-Robinson velocity.

2.3 Numerical checks: integrable systems

As mentioned, the BMFT is based on an action principle. The BMFT action turns out to
be rather simple. It yields a set of hydrodynamic-type equations of motion that describe
the representative, “typical” dynamics which encodes the rare but large fluctuations at the
root of Euler-scale correlations. Handling the resulting BMFT equations is however tricky.
First, obtaining exact, analytic solutions is usually difficult, much like in conventional
MFT (see however the recent exact result [12, 62]). Second, generically the profile of
the solution would display points of non-continuity where entropy is not conserved, as in
Euler hydrodynamics. Due care is therefore needed in determining which weak solution to
choose. This is a problem that has been addressed in simple models by first formulating
the MFT in the presence of viscosity terms and taking the vanishing viscosity limit [8].
In the present paper, we do not address this problem more generally, although we provide
some pointers.

In order to avoid these difficulties and assess our new theory in models which are
simple enough yet which present all the structures of interacting Euler hydrodynamics, we
concentrate on one-dimensional integrable systems. Their hydrodynamics, which has been
coined generalised hydrodynamics (GHD), has come under intensive scrutiny over the last
five years [16, 17, 63, 64] (see also the review [3] and the special issue [65]). GHD is based
on the idea that fluid cells are described by generalised Gibbs ensemble (GGE). These
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are, nominally, Eq. (7) with, in general, infinitely many charges involved. These are the
ensembles emerging in integrable systems under relaxation [32], instead of the usual Gibbs
ensembles. In GHD, one in fact forgoes the set of explicit, extensive conserved charges,
and describes the relaxed states more universally in terms of distributions of asymptotic
states, see [3]. GHD has been observed in recent experiments on cold atomic gases [66–68],
and it is also the framework at the heart of the theory of soliton gases, structures observed
in water-wave and light-guide experiments [69–71].

In integrable systems, an intricate analysis of entropy-non-conserving discontinuous
points is not necessary, as their hydrodynamic equations are known to have no shock
solutions [72], something that is attributed to complete linear degeneracy of these equations
[3,73,74]. Linear degeneracy means that the hydrodynamic velocity of a given normal mode
does not depend on the value of this normal mode. This allows for contact discontinuities,
instead of shocks, to develop, where entropy is preserved, as seen for instance in non-
equilibrium steady states [16]. Further, one of the salient features of GHD is that it admits
exact solutions of its hydrodynamic equations by means of the method of characteristics
[75]. This fact greatly facilitates the application of the BMFT to integrable systems,
allowing us to understand the structure of the BMFT equations to a much larger extent
than in usual interacting many-body systems.

We concentrate on the two types of physical quantities discussed above: the scaled
cumulants cn(T ) for total time-integrated currents, Eqs. (14), (15), and the Euler-scale,
equal-time two-point functions Sq̂i,q̂j (x1, t1;x2, t2), Eq. (22). The latter is numerically
evaluated as:

Sq̂0,q̂0(x1, t;x2, t) = lim
ℓ→∞

ℓ

L2

∫ L/2

−L/2
dy

∫ L/2

−L/2
dy′

〈
q̂0(ℓx1 + y, ℓt)q̂0(ℓx2 + y′, ℓt)

〉c
ℓ
. (35)

The integrals over y and y′ give the fluid-cell means q0(ℓx1, ℓt) and q0(ℓx2, ℓt) over the
mesoscopic scale L in Eq. (10)3. The numerical evaluation of cn(T ) is detailed in Appendix
I. The calculations are performed in the generality of the universal GHD formalism, and
thus the results apply to all integrable many-body systems, quantum or classical. The
numerical comparisons are done against simulations of the hard rod model. This model is
simple enough to simulate with good statistics, yet non-trivial enough to present all the
properties of generic interacting intergable systems. The hydrodynamic theory of the hard
rod model [50] is known to be a special case of GHD [63, 76], and thus our GHD result
can immediately be specialised to it (see Appendix B).

First, the scaled cumulants are evaluated both in homogeneous, stationary states (7),
and in the non-stationary configurations emanating from an initial partitioning of the
system into two homogeneous halves as in Eq. (17). As in both cases there is scale
invariance, the scaled cumulants are not time dependent, cn(T ) = cn. For homogeneous
states, we show that the BMFT results for the first nontrivial scaled cumulants c2 and c3
agree with the known expressions from the BFT [21]. For the partitioning protocol, we
show that our BMFT results also agree with the recent inhomogeneous BFT proposal [23].
We further compare the c2 result against molecular-dynamics simulations of the hard rod
model, with excellent agreement.

As an illustration, we find that cpart2 , the second cumulant associated to particle trans-
port (i∗ = 0 in our convention) in the partitioning protocol of the hard-rod model, is given
by

cpart2 = (1− aρ)3
∫
R
dθ nθ|veffθ |. (36)

3One may take L = ϵℓ for some ϵ > 0, and take ϵ → 0 after the limit on ℓ. Numerical simulations were
done with ϵ = 0.05. In the hard rod gas, we expect L = 0, no fluid-cell averaging, would also work, but
this is hard to verify numerically.
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Here a is the rod length, ρ is the density of the rods in the NESS, and nθ is the “normal
mode” density in the NESS, which is simply the velocity distribution function, labeled
by the velocity θ, normalised in such a way that ρ(1 − aρ)−1 =

∫
R dθ nθ. The effective

velocity of the rods veffθ is given by

veffθ =
1

1− aρ

(
θ − (1− aρ)

∫
R
dϕϕnϕ

)
. (37)

The NESS is the fluid state on the ray x/t = 0 of the partitioning protocol; see the solution
to the hydrodynamic Riemann problem of the hard rods in [76]. Interestingly, expression
(36) is precisely the same as its homogeneous version except that each thermodynamic
quantity is now evaluated with respect to the NESS. The reason for this resemblance
will be explained in later sections. We find perfect agreement with numerics, thereby
confirming the validity, at least for this cumulant, of both the inhomogeneous version of
BFT, and of our new BMFT.

Second, we provide, using the GHD normal modes, explicit sets of integral equations
for two-point correlation functions of conserved densities in space-time, from arbitrary
large-wavelength initial configurations, in the Euler scaling limit, Sq̂i,q̂j (x1, t1;x2, t2).

In particular, we focus on the equal-time case t1 = t2 = t. The assumption that the
state is of locally entropy-maximised form at that time, Eq. (12), would only give a delta
function; as discussed already, the BMFT generically invalidates this assumption.

For the density-density dynamical correlation function Sq̂0,q̂0(x, t; 0, t) in the hard-rod
gas, the BMFT yield the following exact expression:

Sq̂0,q̂0(x, t; 0, t) = ρ(x, t)(1− aρ(x, t))2δ(x)− (1− aρ(0, t))2
∫
R
dθ [nE ]θ(0, t), (38)

where Eθ(x, t) satisfies the integral equation

Eθ(x, t) = Eθ
0 (x, t) + wθ(x, t)

∫ x

−∞
dy (1− aρ(y, t))[nE ]dr;θ(y, t). (39)

In the previous equation, ρ(x, t) and nθ(x, t) are defined as before except that this time they
are functions of space and time, and evaluated in the fluid cell at x, t. The objects Eθ

0 (x, t)
and wθ(x, t) are some (cumbersome) functionals of nθ(x, t), which can be obtained from
Eqs. (132)-(138) by specialising to the hard-rod gas (see Appendix B). Finally, adr;θ(x, t)
for any function aθ(x, t) is defined by

adr;θ(x, t) := aθ(x, t)− a(1− aρ(x, t))

∫
R
dϕnϕa

ϕ(x, t). (40)

We verify numerically with the hard rod simulations that long-range correlations indeed
develop, that is, that Sq̂0,q̂0(x1, t;x2, t) gives, for all t > 0, a function of x that is nonzero on
an extended region. Furthermore, we also confirm that this function agrees with the above
BMFT prediction. We have done this from Eqs. (38) and (39) (and Eqs. (132)-(138)) for
Sq̂0,q̂0(x, t; 0, t) in Fig. (1) of the companion manuscript [24]. In the case of the correlator
Sq̂0,q̂0(x, t;−x, t), we present our analysis in Sec. 5 (see Fig. 4).

3 MFT for ballistic transport

In this Section, we introduce the BMFT formalism, which will be used in the calculations
presented in the next sections of the manuscript. In particular, in Subsec. 3.1, we give the
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main statements of the BMFT in Eqs. (46)-(49), along with the predictions (50), (51). In
Subsec. 3.2, we provide a justification for these statements. In Subsec. 3.3, a connection
between BMFT and the conventional diffusive MFT is presented. The ideas developed in
Subsec. 3.3 are not used in later sections, hence for a basic understanding of the BMFT,
this subection can be skipped.

3.1 Formulation of the BMFT

The starting point for our implementation of the BMFT is the set of initial states (12).
Below we sometimes write qi = qi[β] to emphasise its functional dependence on the βi’s;
as mentioned just before Eq. (11), there is a bijection q ↔ β. Likewise, we write A = A[β].
For local observables ô, including the currents ô = ȷ̂i, we write

o[q] := ⟨ô⟩β (under qi = qi[β]). (41)

As is clear from (25) at t = 0 (and the initial condition βi(x, 0) = βi
ini(x)), the marginal

distributions of fluid cells in the initial state, or the fluid-cell reduced density matrices in
the quantum language, give, at least for mesoscopic means, GGEs with the local values of
βi. By the fast correlation decay discussed above, the full measure induced on mesoscopic
means is a product measure over these local fluid-cell marginals.

It is a simple statistical mechanics exercise [77] to express the product measure rep-
resenting (12) on the mesoscopic conserved quantities. In order to do so, one sees the
coarse-grained, mesoscopic means qi(ℓx, 0), whose correlations are obtained from (12), as
classical fluctuating variables, qi(x, 0), whose correlations are obtained from an appropriate
measure dPini[q(·, 0)]; that is, one sets the equivalence

qi(ℓx, 0) ≡ qi(x, 0) (at Euler scale). (42)

The equivalence hold in the Euler scaling limit in Eq. (10) with L, ℓ → ∞. In macroscopic
coordinates, the fluid cell scale L shrinks to a point, thus the measure dPini[q(·, 0)] is
pointwise factorised. One finds that the following measure represents well the initial state
(12): dPini[q(·, 0)] = dµ[q(·, 0)] e−ℓF [q(·,0)] where F [q(·, 0)] can be expressed as follows4:

F [q(·, 0)]=
∫
R
dx
(
βi
ini(x)qi(x, 0)−f [βini(x)]−s[q(x, 0)]

)
. (43)

Here dµ[q(·, 0)] =
∏

x∈R
∏

i dqi(x) is the flat measure, and s[q] is the entropy density,
which is defined (up to an unimportant constant) by the equations ∂s[q]/∂qi|qi=qi[β] = βi.

The function F [q(·, 0)] can be interpreted as a relative entropy5, and it is clearly pointwise
factorised.

The measure dPini[q(·, 0)] represents the initial state (12) at the Euler scale. Indeed,
the generating function of equal-time Euler-scale correlations takes the form of a difference
of integrated free energies, generalising (16) (see Appendix A):〈

exp

∫
R
dxλi(x/ℓ)q̂i(x)

〉
ℓ

≍ exp ℓ

(∫
R
dx
(
f [βini(x)]− f [βini(x)− λ(x)]

))
, (44)

and the Legendre transform, of a difference of free energies is a relative entropy, giving
the large-deviation functional e−ℓF [q(·,0)] in Eq. (43) (see e.g. Ref. [78]). In particular, the

4One can also write F [q(·, 0)] =
∫
R dx

∫ q(x,0)

q
ini

(x) dri C
ij [r](qj(x, 0)− rj) where C[r] is the static covariance

matrix as a function of average conserved densities ri’s.
5Indeed, F [q(·, 0)] =

∫
R dxµ

[
ϱ̂[β(x, 0)] log

(
ϱ̂[β(x, 0)]/ϱ̂[βini(x)]

)]
, where ϱ̂[β] = exp

[
−
∑

i β
iQ̂i

]
/Z(β).
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saddle-point of this measure indeed gives the correct averages of conserved densities for
(12); defining βi(x, 0) via the relation qi(x, 0) = qi[β(x, 0)], the saddle-point equation is

βi(x, 0) = βi
ini(x, 0) (saddle-point of dPini[q(·, 0)]). (45)

The main purpose of the BMFT is to give an action principle that describes how the
probability distribution dPini[q(·, 0)] extends to a probability distribution for the full space-
time mesoscopic conserved densities, dP[q(·, ·)] for qi(·, ·)’s on S := R× [0, T ], for any time
T . This action principle is derived from the main assertion of the BMFT that the initial
distribution dPini[q(·, 0)] propagates in time according to the Euler equations (11). We
will justify this assertion below in Subsec. 3.2.

Specifically, the resulting measure on space-time configurations is

dP[q(·, ·)] = dµ[q(·, ·)] e−ℓF [q(·,0)]δ[∂tq + ∂xj[q]]. (46)

dµ[q(·, ·)] is the flat measure for functions on S. The delta functional, which we represent
as an integral over an auxiliary fields (as is done in the diffusive MFT [10])

δ[∂tq + ∂xj[q]] =

∫
(S)

dµ[H(·, ·)] exp
[
−ℓ

∫
R
dx

∫ T

0
dtH i(∂tqi + ∂xji[q])

]
, (47)

enforces the Euler equations. Here on the integral symbol we indicate the range of the
functions in the function space over which we integrate.

Euler-scale correlation functions involving mesoscopic fluid-cell means of any observ-
ables o(ℓx, ℓt) are obtained with the above measure by identifying them with appropriate
classical random variables. They are identified with the functions of qi(x, t)’s representing
their GGE averages in the local states characterised by qi(x, t)’s:

o(ℓx, ℓt) ≡ o[q(x, t)] (at Euler scale). (48)

Explicitly, the BMFT average is given by

⟨⟨•⟩⟩ℓ =
1

Z

∫
(S)

dµ[q(·, ·)] e−ℓF [q(·,0)]δ(∂tq + ∂xj[q]) • . (49)

The main BMFT predictions are expressions for Euler-scale correlations (21)

Sô1,...,ôn(x1, t1; · · · ;xn, tn) = lim
ℓ→∞

ℓn−1
〈〈
o1[q(x1, t1)] · · · on[q(xn, tn)]

〉〉c
ℓ
, (50)

and in particular

F (λ, T ) = lim
ℓ→∞

1

ℓT
log ⟨⟨expλℓJ(T )⟩⟩ℓ , (51)

where

J(T ) =

∫ T

0
dt ji∗ [q(0, t)], (52)

see Eqs. (21) and (14). (Recall that the expansion of the right-hand side of (51) in powers
of λ boils down to correlation functions as in the right-hand side of (50).) We will write
(50), for simplicity, as

⟨•⟩ℓ ∼ ⟨⟨•⟩⟩ℓ . (53)

Although we have formulated the theory using functional integration on appropriate
measures, the result as ℓ → ∞ on the right-hand side of (53) is in fact obtained by taking
a saddle point. For an observable O[q] in space-time,

− lim
ℓ→∞

ℓ−1 log
〈〈
exp
(
ℓO[q]

)〉〉
ℓ
= FO[q

∗], (54)
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where
FO[q(·, ·)] = F [q(·, 0)]−O[q(·, ·)], (55)

is the “observable action”, and q∗ is the minimiser of the “BMFT action”

SO[q,H] = FO[q] +

∫
R
dx

∫ T

0
dtH i(∂tqi + ∂xji[q]), (56)

with respect to q and H. Equivalently, one can see the fields H i(·, ·) as Lagrange pa-
rameters enforcing the Euler equations viewed as constraints on the minimisation of the
observable action FO. That is:

δSO[q,H]

δqi(x, t)

∣∣∣
q=q∗

= 0, ∂tq
∗
i + ∂xji[q

∗] = 0. (57)

We take O = λJ(T ) for the current SCGF, and O =
∑n

a=1 λaoa[q(xa, ta)] for the generator
of Euler-scale correlation functions, with n independent generating parameters λa. The
set of equations (57) – the BMFT equations – will form the basis for our analysis below.

The BMFT formalism we have here outlined presents similarities with the Martin-
Siggia-Rosa (MSR) [79–81] formalism, which provides a field-theoretical functional repre-
sentation of the Langevin equation. As such the MSR is a field theory formulated at the
mesoscopic scale for a slowly varying field, while all the other rapidly fluctuating degrees
of freedom are effectively represented through the Gaussian noise term in the Langevin
equation. This is a fundamental difference with the BMFT, which is a macroscopic fluc-
tuation theory based on the large-scale deterministic Euler equation. The BMFT action
is therefore entirely controlled by Euler-scaling limit, where the macroscopic length scale
is sent to infinity ℓ → ∞. This allows to compute the BMFT path integrals exactly by
saddle point, as explained above. This is a great advantage with respect to the MSR
action, which does not contain any macroscopic scale parameter being formulated from
the mesoscopic Langevin equation. The MSR path integral are therefore evaluated only
approximately by perturbative expansions and renormalization group schemes, see, e.g.,
Ref. [82]. From the technical point of view, we mention that the field H(x, t) is the equiv-
alent in the BMFT action of the so-called “response field” of the MSR functional. The
response field in the MSR action is introduced, similarly as in Eq. (47), via Laplace trans-
form of the delta function enforcing the field to obey the Langevin equation. The BMFT
action (55), however, is linear in the field H(x, t), while the MSR action is quadratic in
the response field. This difference is caused by the integration over the Gaussian noise
(absent in the BMFT), which produces the quadratic term in the response field.

From Eq. (57), it is evident that the space-time configuration minimizing the BMFT
action satisfies the Euler equation (although, as we will see, the initial condition is not
q[βini(x)], but a λ- or λa-dependent initial condition accounting for the rare fluctuations we
are focusing on). We shall therefore use for the minimizer q∗ the notation q∗(x, t) = q(x, t).
A sketch of the space-time configurations whose weight is given by the BMFT action in
Eq. (56), together with the saddle point minimizing configuration, is given in Fig. 2.

We note that it is not necessary to have as initial state the form (12) (which gives the
initial measure in factorised form (43)). The initial state must be slowly varying, but may
otherwise have long-range correlations, thus giving a non-factorised initial measure. The
BMFT principle, which simply says to evolve the initial fluctuating state with the Euler
equation, will work all the same, with in (46) that measure instead of e−ℓF [q(·,0)]. However,
the state (12), giving the measure (43), is natural to assume in local equilibrium, and is
simple yet nontrivial enough for this presentation.
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Figure 2: Space-time configurations (Feynman history) of fluctuating variables o(x, t) that
contribute to the BMFT path integrals (49). Due to local relaxation of fluctuations, the
functional form of the classical fluctuating variables o(x, t) on rare trajectories (sketched in
red in the Figure) is completely determined by the fluctuating variables for the conserved
densities q(x, t) through the GGE expression, i.e., o(x, t) = o[q(x, t)]. The trajectory
minimizing the BMFT action is sketched in black dashed. Along this trajectory, Euler
hydrodynamics is recovered and the fluctuating variables o(x, t) take the value given by
the λ-dependent GGE at the corresponding space-time point (x, t), i.e., o(x, t) = o[q(x, t)].

3.2 Local relaxation of fluctuations

The BMFT probability distribution, Eqs (46) and (49), results from a single assumption
about fluctuations of mesoscopic variables. This is the assumption that

Mesoscopic means of local observables (coarse-grained observables), o(ℓx, ℓt), do not
fluctuate independently from the conserved densities, but are fixed functions of these,

o[q(x, t)].

That is, the form (50) must hold, for some, yet unknown, functions oa[q(x, t)], which
we show below must be the GGE average oa[q(x, t)]. This means that the mesoscopic
fluctuating degrees of freedom are reduced to the conserved quantities: all other degrees
of freedom quickly relax, and only the “slowly-decaying modes”, which are the extensive
conserved quantities of the model, remain as fluctuating variables in the Euler scaling
limit. In phase space, the interpretation is that the fixed-q shell is quickly covered in
fluid cells (as per the principle of ergodicity), and large-scale fluctuations are fluctuations
between different shells.

The principle can be justified by a separation of fluctuation scales between variables
that change due to interactions within the fluid cell, and those that are only affected
by exchanges between fluid cells. Take the picture of classical particles with short-
range interactions. If τ is the mean free time and ρ the spatial density, then in a
length L and time T there will be ρLT/τ collisions (interactions). Thus an observable

(LT )−1
∫ L
0 dx

∫ T
0 dt o(x, t) affected by the few-body interaction with nearby particles will

have fluctuations due to in-cell process of order 1/
√

ρLT/τ . But conserved quantities

(LT )−1
∫ L
0 dx

∫ T
0 dt qi(x, t) are only affected by exchange of particles through the bound-

aries of the cells, and exchange of energy and other quantities by interactions through these
boundaries. Naturally, such processes take place less frequently than the in-cell processes,
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giving contributions to fluctuations only of order 1/
√
T/τ and 1/

√
ρℓmicroT/τ , respec-

tively. Therefore, with T ∝ L inter-cell fluctuations of fluid-cell means ∆inter-cello ∝ 1/
√
L

dominate over in-cell fluctuations ∆in-cello ∝ 1/L, and as ∆in-cellqi = 0, in-cell processes
simply cover the phase-space shell with fixed values of qi’s.

Tacitly assumed in the above assumption is that fluid-cell means of observables can
be seen as classical random variables, in agreement with the general expectation that the
Euler-scale correlation functions are symmetric as mentioned above. In classical systems
this is clearly the case. In quantum systems, this assumes that such fluid-cell means
become, in the Euler scaling limit, classical fluctuating variables. The idea is that such
observables are examples of the “macroscopic observables” introduced by von Neumann
in the context of the quantum ergodic theorem [83] (see an analysis of this paper in [84]).
An ergodicity result has recently been shown [85], which implies that, in a large class
of stationary, homogeneous states of quantum lattices with short-range Hamiltonians,
averages of observables over space-time indeed project onto the state average times the
identity operator; this further support taking fluid-cell means as classical variables.

The principle of local relaxation of fluctuations is of course closely related to the prin-
ciple used normally to justify hydrodynamics: the hydrodynamic equations can be derived
by assuming that state averages of fluid-cell means of local observables are functions of
local conserved densities only. As this must be true in (G)GE’s, then the functions are
fixed to (G)GE averages. As this holds in particular for the currents, the Euler equations
follow.

The concept of relaxation of fluctuations goes one step further, and makes this assump-
tion for the large-scale fluctuations. It turns out again that the functions o[q] are uniquely
fixed to the ensemble averages o[q] by this assumption. Indeed, Eqs. (25) at t = 0, and
(50) at n = 1 and t1 = 0, imply

⟨ô⟩β(x,0) =
∫
(R)

dPini[q(·, 0)] o[q(x, 0)], (58)

hence by the saddle-point (45) we obtain (48). Of course, this is nothing else but the
equivalence of macrocanonical and microcanonical ensembles: the fast relaxation over the
fixed-q shell gives (microcanonical) values of observables that are functions of the qi’s as
per their (macrocanonical) GGE averages.

Local relaxation of fluctuations has appeared in various forms in the literature. Most
importantly, the Boltzmann-Gibbs principle is often stated as a projection of fluctuating
fields onto fluctuating conserved fields in stochastic particle systems, see, e.g., [26, 27].

With local relaxation of fluctuations, and in particular Eq. (48), it is a simple matter to
obtain the BMFT formula. This again parallels the derivation of the Euler hydrodynamic
equations. As, by the equations of motion, the conservation laws must be satisfied, we
must have

⟨•⟩ℓ =

〈
eℓ

∫
R dx

∫ T
0 dtHi(x,t)(∂tqi+∂xji) •

〉
ℓ〈

eℓ
∫
R dx

∫ T
0 dtHi(x,t)(∂tqi+∂xji)

〉
ℓ

, (59)

for all ℓ, and any values of the fields H i(x, t). Note that variations of densities and currents
occur on scales ℓ, hence with a factor ℓ2 from the space-time integral and ℓ−1 from the
derivatives, we indeed have a factor ℓ in the exponential; it is made explicit here as integrals
are on macroscopic variables x, t. The principle of local relaxation of fluctuations at all
times t implies that there is some measure dP[q(·, ·)] representing averages ⟨•⟩ℓ at large ℓ,

⟨•⟩ℓ ∼
∫
(S)

dP[q(·, ·)]•, (60)
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and this can be used on (59). With the result (48) for the observables ȷ̂i, we deduce that

dP[q(·, ·)] ∝ dP[q(·, ·)]eℓ
∫
R dx

∫ T
0 dtHi(x,t)(∂tqi+∂xji[q]). (61)

Assuming that the hyperbolic system (11) has a unique solution – or imposing appropriate
conditions on possible weak solutions to make it unique – the arbitrariness of H i(x, t)
implies that dP[q(·, ·)] is supported on this solution. Thus it is sufficient to put a measure
on the initial condition, hence to know the marginal at time t = 0. As the initial measure
dPini[q(·, 0)] must be this marginal, we obtain (46) (equivalently (49)), where the flat
integration measure over all times with the delta functional guarantee both the right
initial-time marginal and the support on the hydrodynamic solution. This shows (46) -
(51).

3.3 Relation to diffusive MFT and fluctuating hydrodynamics

The goal of this section is to provide further justifications for the BMFT, by proposing how
it relates to the well-known and well-established theory of diffusive MFT [7], and by making
a parallel with (nonlinear) fluctuating hydrodynamics (NLFHD) [15]. The conventional
MFT gives a probability distribution for mesoscopic variables in purely diffusive systems,
and of course BMFT is largely inspired by it.

On the one hand, as explained above, the underlying idea of the BMFT, the local
relaxation of fluctuations, implies that the mesoscopic currents j do not fluctuate inde-
pendently, but rather are random variables given, as functions of fluctuating conserved
densities, by the stationary (GGE) values, j = j[q]. On the other hand, in diffusive MFT,
the currents fluctuate, via a stochastic, Gaussian noise determined by microscopic diffusion
via the Einstein relation (see [7]). Both are, nevertheless, “macroscopic fluctuation the-
ories”, describing large deviations of fluid trajectories obtained by saddle-point analysis.
How are these two theories related?

In order to better understand this, we propose here a multi-scale hydrodynamic fluc-
tuation theory that covers both ballistic and diffusive effects. We will see that BMFT is
obtained under ballistic scaling, in the limit of zero noise and zero diffusion, while diffusive
MFT is obtained under diffusive scaling, with ballistic currents set to zero. The result-
ing saddle-point analysis, in BMFT and diffusive MFT, is therefore done under different
choices of scaling.

The general idea of combining ballistic and diffusive effects is not new: it was used
in [8] to analyse the weakly asymmetric simple exclusion process, and, by a zero-noise
limit, to obtain a ballistic fluctuation theory for the totally asymmetric simple exclusion
process. But as far as we are aware, a universal theory has not been constructed yet.

Formulated in terms of the ballistic scale ℓ, our ansatz is a theory for fluctuating
classical variables that reproduce not only the leading large-ℓ order of correlation functions
such as (21) (the Euler scale), but also the next-to-leading order. The measure dP[q(·, ·)]
must be modified in order to reproduce correctly both these leading and next-to-leading
orders. This multi-scale hydrodynamic fluctuation theory is no longer a large-deviation
theory, as its analysis would require going beyond saddle-point equations and considering
“loop corrections”, which we reserve for future works. In a sense, it is an action re-
formulation for NLFHD, as it combines both ballistic and diffusive scales (recall that
their combination, in NLFHD, helps explaining superdiffusive behaviours of two-point
correlation functions.) The ideas proposed here, besides being applicable to general multi-
component hydrodynamic systems, are also slightly different from those of [8].

Recall that the main assertions of the BMFT is the measure on the mesoscopic densities
(46). The macroscopic fluctuation theory that covers both the ballistic and diffusive
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orders, instead, is a measure on space-time configurations (q(x, t), j(x, t)) : (x, t) ∈ R ×
[0, T ] of both the mesoscopic charge densities and currents. The measure accounts for
fluctuations of the currents that, although suppressed in the limit ℓ → ∞, give small
contributions for ℓ large that describe the next-to-leading order corrections to the Euler-
scale correlation functions. It is natural to introduce independent fluctuations of fluid-cell
means of observables at that order. Indeed, the argument above concerning the separation
of scales, with fluctuations of order ∆in-cello ∝ 1/L and ∆inter-cello ∼ 1/

√
L, indicates that

at the next order, in-cell fluctuations, which affect non-conserved observables, and not just
inter-cell fluctuations, by which non-conserved observables follow conserved ones, must be
taken into account. As discussed above, corrections to large-scale correlations induced by
such additional fluctuations may be diffusive, superdiffusive, etc. Here, we will not develop
the full phenomenology, but only express the measure, emphasising how it extends BMFT
to including microscopic noise, and how it specialises in the case without ballistic currents
to the standard equations of the MFT under the right scaling.

The measure encoding ballistic and diffusive behaviours is obtained by adding Gaus-
sian noise contributions to the currents. As explained, this represents the small, rapid
fluctuations of quickly relaxing modes that are not protected by conservation laws, oc-
curring within microcanonical shells, on top of the large fluctuations due to fluctuating
mesoscopic charges. That is,

dP[(q, j)(·, ·)] = dµ[q(·, ·)]dP[j|q] e−ℓF [q(·,0)]δ[∂tq + ∂xj], (62)

where dP[j|q] = dPnoise[ℓj· − ℓj·[q] + D j
· [q]∂xqj |q] is obtained from adding noise to the

diffusive-order constitutive relation for the currents,

ji = ji[q] + ℓ−1
(
−D j

i [q]∂xqj + ηi). (63)

The measure dPnoise[η|q] on the zero-mean Gaussian noise ηi is fully determined by the
correlation matrix 〈

ηi(x, t)ηj(x
′, t′)

〉
noise

= Lij [q]δ(x− x′)δ(t− t′). (64)

The factors of ℓ in (63) are obtained from the same scaling as above,

qi(ℓx, ℓt) ≡ qi(x, t), ji(ℓx, ℓt) ≡ ji(x, t). (65)

The fluid-cell means qi, ji on the mesoscopic scale L must be defined carefully, so as not
to “wash out” diffusive effects, hence we propose

ℓmicro ≪ L ≪ ℓdiff ≪ ℓ, ℓdiff :=
√
ℓ. (66)

Note that now ji(x, t) fluctuates independently, through its associated noise (of course,
the full measure is still supported on space-time configurations that satisfy the continuity
equation ∂tqi + ∂xji = 0). Above, Lij is the “microscopic Onsager matrix”, a positive
definite matrix representing local Gaussian fluctuations of the microscopic currents. The
diffusion matrix D j

i is related to the Onsager matrix via the Einstein relation D = LC−1.
When corrections to the Euler scale of correlation functions are indeed diffusive, and

not superdiffusive, the microscopic Onsager matrix can be evaluated from correlation func-
tions in stationary states via the Green-Kubo formula Lij =

∫∞
0 dt

∫
R dx⟨ȷ̂−i (x, t)ȷ̂−j (0, 0)⟩cβ

(at qi = qi[β]), where ȷ̂
−
i = ȷ̂i−A j

i q̂j is the current minus its projection onto the conserved
densities. The microscopic Onsager matrix is no longer simply given by the Green-Kubo
formula when the correction to ballistic transport is superdiffusive. This is in fact the
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most typical case in the Hamiltonian dynamics of non-integrable translation invariant sys-
tems; see [86] for a recent proposal on the microscopic Onsager matrix that should be
used in such situations in the fluctuating hydrodynamics. In integrable systems, typically
corrections to ballistic transport are indeed diffusive [64,87].

Naturally, one may ask why not introduce noise to other observables o(x, t) than the
currents themselves, with noise correlations of the form (64) and Onsager-like coefficients
involving these other observables, Lȷ̂i,ô and Lô,ô′ . Generic observables are not directly in-
volved in the measure (62), however if noise correlations exist between generic observables
and currents, these will affect the currents and must be included. Such effects appear not
to have been discussed in the literature, neither in the context of fluctuating hydrodynam-
ics nor of the MFT. A possible resolution is that, according to the Hilbert space theory for
diffusive and thermalising processes developed in [88,89], it is possible to separate generic
observables into a linear combination of currents ȷ̂i and a part ô that is orthogonal to
currents within the “second order hydrodynamic space” (meaning Lȷ̂i,ô = 0). This would
mean that their noises do not correlate to those of currents, and hence it is safe to only
consider fluctuating currents in the measure (62). A complete understanding is certainly
missing.

As mentioned, the proposal (62) with (63) is to describe not only the ballistic scale
of correlation functions, but also their leading correction. If these are diffusive, a simple

example is the correlator limℓ→∞ ℓ−
1
2

〈〈
qi(x+ ℓ−

1
2 δx, t)qj(0, 0)

〉〉c
ℓ
around a ballistic ray

of velocity v = x/t in a stationary, homogeneous initial state. The result is a function of v
and δx that describes the diffusive profile of the correlator around this ray; of course, it is
nontrivial if and only if v is one of the hydrodynamic velocities of the model in that state,
v ∈ spec(A). More generally, the theory (62) with (63) leads to the basic noisy-current
stochastic equations for two-point correlation functions (thus, by the NLFHD analysis [15],
under the appropriate conditions these equations explain superdiffusion). We expect the
theory to also predict the leading corrections to long-time saturation of the transport
cumulants cn in (15) (see also the discussion in Sec. 5).

It is clear from Eq. (62) with (63) that the leading order at large ℓ reduces to the
BMFT. Effectively, the BMFT is the zero-noise, zero-diffusion limit (of course, physical
diffusion does not need to vanish for the BMFT to hold, its effects are simply at a smaller
scale than that observed by the BMFT). But also, under appropriate rescaling and with
vanishing ballistic currents, one recovers from Eqs. (62) and (63) the standard diffusive
MFT [7].

To see this, recall that in diffusive MFT, one concentrates on the diffusive scale ℓdiff =√
ℓ. Let us thus define new scaled variables as

qi(ℓdiffx, ℓ
2
difft) ≡ q̌i(x, t), ℓdiffji(ℓdiffx, ℓ

2
difft) ≡ ȷ̌i(x, t), (67)

where the extra factor on the current guarantees that the continuity equation stays un-
changed. Further, in purely diffusive systems, the hydrodynamic velocities vanish. Let us
thus take ji = 06. In fact, with external fields Ei, constant currents develop at the dif-
fusive scale, determined by Onsager’s coefficients. Accounting for these, one may instead
make the replacement in Eq. (63)

ji[q] → ℓ−1
diffLij [q̌]E

j . (68)

In order to get the theory in the diffusive scaling, we start from the fundamental equation
for the ballistically scaled quantities (63) (with this replacement), we rewrite them in terms

6It is also possible, by a simple ballistic shift, to concentrate on diffusive effects around other velocities
than 0.
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of the fundamental microscopic quantities as per (65), and we further rewrite these in
terms of diffusively scaled quatities as per (67). Using the scaling property ηi(x/ℓdiff , t) =√
ℓdiffη(x, t), the diffusively scaled fluctuating currents then take the form

ȷ̌i = Lij [q̌]E
j −D j

i [q̌]∂xq̌j + ℓ
− 1

2
diffηi. (69)

Writing explicitly the Gaussian measure for the noise, one then obtains

dP[(q̌, ȷ̌)(·, ·)] = dµ[q̌(·, ·)]dµ[ȷ̌(·, ·)] e−ℓdiff(F [q̌(·,0)]+I[q̌,ȷ̌])δ[∂tq̌ + ∂xȷ̌], (70)

where the functional I[q̌, ȷ̌] is given by

I[q̌, ȷ̌] =
∫ T

0
dt

∫
R
dxLij [q̌](ȷ̌i − ȷ̌diff,i[q̌, ∂xq̌])(ȷ̌j − ȷ̌diff,j [q̌, ∂xq̌]), (71)

with
ȷ̌diff,i = Lij [q̌]E

j −D j
i [q̌]∂xq̌j . (72)

This is exactly the diffusive MFT probability distribution on space-time configurations
(q̌(x, t), ǰ(x, t)) : (x, t) ∈ R × [0, T ] of Ref. [7], written here in its most general, multi-
component form.

4 BMFT for current fluctuations and Euler-scale correla-
tions

With a firm foundation for the BMFT, we move on to its actual implementation to generic
quantum or classical many-body systems. In Subsec. 4.1, we focus on the SCGF F (λ, T )
defined in Eq. (14). In Subsec. 4.2, we discuss how the ballistic MFT allows to recover
the result of the aforementioned BFT theory for homogeneous and stationary states. In
Subsec. 4.3, the derivation of the Gallavotti-Cohen fluctuation theorem (19) within the
BMFT formalism is detailed. In Subsec. 4.4, we discuss Euler-scale correlation functions
Sq̂i1 ,q̂i2

(x1, t1;x2, t2), defined in Eqs. (21)-(23). In Subsec. 4.5, we show how the BMFT for-
malism naturally embodies the (non)linear hydrodynamic projection result (see Eq. (26)).
In Subsec. 4.6, we show how the BMFT predicts long-range correlations.

4.1 BMFT of current fluctuations

The BMFT offers us an efficient way of evaluating the SCGF F (λ, T ), as
〈〈
eλℓJ(T )

〉〉
ℓ
≍

eℓTF (λ,T ). According to the discussion in Subsec. 3.1, cf. Eqs. (51)-(54), we have〈〈
eλℓJ(T )

〉〉
ℓ
≍ e−ℓFcurr[q∗], (73)

where q∗ minimise

Scurr[q,H] := Fcurr[q] +

∫
S
dxdtH i(∂tqi + ∂xji[q]), (74)

and Fcurr[q(·, ·)] = F [q(·, 0)]− λJ(T ). The saddle-point equations (57) yield the following
BMFT equations (dropping the star symbol ∗ for lightness of notation)

H i(x, 0) = βi
ini(x)− βi(x, 0), (75a)

H i(x, T ) = 0, (75b)

∂tβ
i + A i

j [β]∂xβ
j = 0, (75c)

∂tH
i + A i

j [β]∂xH
j = −λδ(x)A i

i∗ [β], (75d)
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where we used AC = CAT [28] and in (75c) and (75d) we have removed the explicit x, t
dependence of βi(x, t) and H i(x, t). Note that for convenience the BMFT equations are
written in terms of βi, which are related to the densities via the usual mapping to GGE
averages, qi(x, t) = qi[β(x, t)]. As remarked after Eq. (57), we also drop the dependence of
H and βi on λ to lighten the notation. One can recast these equations into a more useful
form by redefining the auxiliary field H i by H i(x, t) 7→ H i(x, t)− λδii∗Θ(x) with the step
function Θ(x), yielding

λδ i
i∗Θ(x)− βi(x, 0) + βi

ini(x)−H i(x, 0) = 0, (76a)

λδ i
i∗Θ(x)−H i(x, T ) = 0, (76b)

∂tβ
i(x, t) + A i

j [β(x, t)]∂xβ
j(x, t) = 0, (76c)

∂tH
i(x, t) + A i

j [β(x, t)]∂xH
j(x, t) = 0, (76d)

which are the main equations we shall deal with. The boundary conditions associ-
ated to Eq. (76) are βi(x → ±∞, t) = βi

ini(x → ±∞), H i(x → +∞, t) = λδ i
i∗ and

H i(x → −∞, t) = 0 for any value of t. The re-writing in Eq. (76) is equivalent to ex-
pressing the time-integrated current in the BMFT action in terms of the density J(T ) =∫∞
0 dx (qi∗(x, T )− qi∗(x, 0)) (see also after Eq. (14)) from the beginning.

The SCGF may be written in various ways. Clearly using (43) and (55), TF (λ, T ) =

F [q(·, 0)]−λ
∫ T
0 dt ji∗ [q(0, t)] evaluated on the solution to (76a)-(76d). But also, note that

(in a self-explanatory notation)

d

dλ
TF (λ, T ) = −

dFcurr[q]

dλ
= −

dScurr[q,H]

dλ
= J(T ), (77)

as Scurr is stationary under changes of H and q on the saddle point. Therefore, integrating
over λ,

F (λ, T ) =
1

T

∫ λ

0
dλ′
∫ T

0
dt ji∗ [q

(λ′)(0, t)], (78)

where q
(λ′)
i (0, t) = qi[β

(λ′)(0, t)] is the solution to (76a)-(76d) at x = 0, for λ replaced by
λ′ (with the notation introduced after Eq. (57)). Expression (78) has a similar form to
what was obtained in the BFT [20, 21, 23] (see also the discussion in Appendix D about
the inhomogeneous BFT).

We note that β(x, t) (or equivalently q(x, t)) time-evolve independently from H(x, t),
and the only effect of having nontrivial H(x, t) enters into the boundary conditions. This
is in stark contrast with the diffusive cases (see, e.g., [10]).

As is usual in solving Euler equations, weak solutions [90] may appear from the BMFT
equations, for both β(x, t) and H(x, t); therefore, ambiguities may arise. Much like for
Euler hydrodynamic equations, one may need to re-introduce diffusive effects in order
to obtain the equivalent of Lax conditions for the BMFT equations, and thus determine
the correct solution for β(x, t) and H(x, t). Such considerations will be relevant in the
application of the BMFT, for instance, to the anharmonic chain, whose hydrodynamics is
composed of three conservation laws [15], and to the TASEP, whose hydrodynamics is the
inviscid Burgers equation. Of importance may be the fact that, in the Jensen-Varadhan
theory [37, 38], the contributions to the rate function stem only from hydrodynamic con-
figurations that give positive Kruzhkov entropy productions (that is, negative physical
entropy production, contrary to what is required for usual hydrodynamic solutions). We
leave this for future studies.
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4.2 Relation with the ballistic fluctuation theory

The BFT [20, 21], briefly recalled in the introduction, gives the time-independent SCGF
F (λ, T ) = F (λ) in the case where the initial state βini(x) = βini is homogeneous and
stationary. In this theory, the SCGF is written in a form similar to (78), F (λ) =∫ λ
0 dλ′ ji∗ [q(λ

′)], but now qi(λ) = qi[β(λ)] describes a stationary, homogeneous state sat-
isfying the BFT flow equation

∂λβ
i(λ) = −sgn(A[β(λ)]) i

i∗ , βi(0) = βi
ini. (79)

We note that Eq. (79) is proved solely on the basis of hydrodynamic projection techniques
and therefore applies generally, both to integrable and non-integrable systems.

As a verification of the ballistic MFT developed here, we argue that it reproduces the
above BFT result. In order to do so, we would only need to establish that β(λ)(0, t) = β(λ)

for all t ∈ (0, T ). As β(0)(x, t) = βini, we would only need to show that β(λ)(0, t) is
independent of t and satisfies the BFT flow equation (79). This would require a precise
analysis of the solution to the BMFT equations, and is related to the assumption, made
in [20], that connected time correlation functions of all orders vanish sufficiently fast at
large times. We keep this precise analysis for future works, and instead provide a consistent
argument.

Under the assumption that β(λ)(0, t) is independent of t ∈ (0, T ), it is clear from (76c)
that at x = 0, the state is homogeneous, including at the leading order beyond the Euler
scale, as ∂xβ

(λ)(x, t)|x=0 = 0. Let us concentrate on a region t ∈ [s− r, s+ r], x ∈ [−y, y]
where r > 0 and y > 0 are finite but small (in macroscopic units). Let us further assume
that, for a given λ, the homogeneous, stationary state there (as we argued it must be),
is in fact also clustering, thus it is a GGE. As a consequence, we may apply the BMFT
on this region, where as initial state in (43) we take βini = β(λ)(0, s). Now let us perturb
λ → λ + δλ, and consider the BMFT for the insertion of δλJ(T ). The leading-order
BMFT equations are as in (76a)-(76d), but in terms of the leading-order quantities in
δβi(x, t) = βi(x, t)−βi(0, s) (which are assumed small as δλ is taken small), for x ∈ [−y, y]
and t ∈ [s− r, s+ r],

δλ δ i
i∗Θ(x)− δβi(x, s− r)− δH i(x, s− r) = 0, (80a)

δλ δ i
i∗Θ(x)− δH i(x, s+ r) = 0, (80b)

∂tδβ
i(x, t) + A i

j ∂xδβ
j(x, t) = 0, (80c)

∂tδH
i(x, t) + A i

j ∂xδH
j(x, t) = 0, (80d)

where A = A[β(λ)(0, s)]. This is a linear system, whose solution is simple:

δH i(x, t) = δλΘ(x− (t− s− r)A) i
i∗ , (81)

and then, using δH i(x, s− r) = δλΘ(x+ 2rA) i
i∗

δβi(x, t) = δλ [Θ(x− (t− s+ r)A) i
i∗ −Θ(x− (t− s− r)A) i

i∗ ]. (82)

Thus δβi(0, s) = −δλ sgn(A) i
i∗ , which indeed reproduces (79).

In view of the long-range correlations that appear, as mentioned, generically in inho-
mogeneous states, the assumption that the state at (0, s) is indeed clustering is the most
nontrivial. However, explicit results for the cumulants in Sec. 5 show that the BMFT
indeed agrees with the BFT in integrable systems.

The BFT was also extended to inhomogeneous states (12) for integrable systems in [23].
We discuss this in light of the present understanding in Appendix D.
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4.3 Fluctuation theorem

We now show that the BMFT equations (75a)-(75d) provide an intuitively clear under-
standing as to how the Gallavotti-Cohen fluctuation theorem (GCFT) is realised in many-
body systems [4,5]. To unveil the full symmetry stemming from a time-reversal symmetry
of Euler hydrodynamics, we consider in this Subsection the generalised SCGF (18). Ac-
cordingly the equation for H i of the BMFT equations (75d) is altered to

∂tH
i + A i

j [β]∂xH
j = −δ(x)

∑
j∈C

λjA i
j [β]. (83)

In the following, we assume that the solution to (75a)-(75d) are continuous solutions, and
not weak solutions under certain entropy or Lax condition (see the discussion in Subsec
4.1). We will then discuss briefly what steps may fail for weak BMFT solutions. We recall
that for integrable systems, the BMFT solutions are continuous and well behaved, hence
the proof below applies.

Recall that the GCFT manifests itself as a particular symmetry of the SCGF (14), in
the partitioning protocol, where by scale invariance, we can set T = 1 and F (λ, T ) = F (λ).
The symmetry relation is Eq. (19). This is normally seen to originate from a relation be-
tween the probability associated to time-forward and time-reversed trajectories. Our argu-
ment from the BMFT shows that in fact the theorem holds from a weaker version of time-
reversal invariance, and for any many-body systems which admits an Euler hydrodynamic
description, independently from the details of the microscopic dynamics (be it classical or
quantum, stochastic or deterministic). The time-invariance requirement is the existence
of a “time-reversal” involution T of the algebra of observables, T (o1o2) = T (o1)T (o2),
T ◦T = 1, with the only requirements that the a priori measure µ be invariant µ ◦ T = µ,
that it acts on charge densities and currents as follows:

T (q̂i(x, t)) := Siq̂i(x, 1− t), (84a)

T (ȷ̂i(x, t)) := −Siȷ̂i(x, 1− t), (84b)

for Si ∈ {+1,−1}, and that the charges Q̂i whose (time-integrated) currents are put in the
generalised SCGF (18) be invariant, Si = 1 for all i ∈ C. The sign Si is the parity of the
charge Q̂i, taking values 1 (resp. −1) if it is time-reversal even (resp. odd). Note that the
relation for the current (84b) (where the extra minus sign appears) is not an additional
constraint: it is a consequence of the relation for the densities along with the continuity
equation.

The argument is as follows. In the partitioning protocol, the initial state (17) is

βi
ini(x) =

{
Θ(x)βi

R +Θ(−x)βi
L (i ∈ C)

βi
0 (otherwise).

(85)

First, we make two variable changes. In (83) we write

λi = βi
L − βi

R − λ̃i (86)

for all i ∈ C. We then note that the extra delta-function terms that this brings can be
cancelled by a shift of the functions H i(x) by βi

ini(x). In order to also exchange the initial
and final conditions (75a), (75b), we further shift by −βi(x, t) and change the sign,

H i(x, t) → βi
ini(x)− βi(x, t)−H i(x, t). (87)
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Combining with (75c), the shift does not affect the left-hand side of (83), and hence the
equations stay of the same form. Thus

H i(x, 0) = 0, (88a)

H i(x, 1) = βi
ini(x)− βi(x, 1), (88b)

∂tβ
i + A i

j [β]∂xβ
j = 0, (88c)

∂tH
i + A i

j [β]∂xH
j = −δ(x)

∑
j∈C

λ̃jA i
j [β]. (88d)

Second, we use the dynamical input of time-reversal invariance, (84). This implies the
following identities involving GGE averages

qi = Siq̃i, ji = −Sij̃i, (89)

where õ := ⟨ô⟩β̃ with β̃i = Siβ
i (no sum over repeated indices). These identities give rise

in particular to a relation for the flux Jacobian,

A j
i [β] = −SiSjA

j
i [β̃]. (90)

Relation (90), as well as
Si = 1, ji = −j̃i, (91)

for all i ∈ C are in fact the only dynamical relations that are needed.
With these relations, we can now make the final, time-reversal change of variable

βi(x, t) = Siβ̃
i(x, 1− t), H i(x, t) = SiH̃

i(x, 1− t). (92)

It is a simple matter to see, using (90) and Si = 1 for any i ∈ C, that (88c), (88d) are
invariant under this change, and that the initial and final conditions (88a) and (88b) are
again exchanged. Thus we recover the original equations (75a)-(75c) and (83), but in terms
of β̃i(x, t), H̃ i(x, t) and λ̃i. Assuming that the solution is unique, and re-introducing the
explicit λ-dependence for clarity, we conclude that

β̃
(λ)

(x, t) = β(λ̃)(x, t), (93)

or equivalently β̃
(λ̃)

(x, t) = β(λ)(x, t). Finally, in order to obtain the symmetry of the

SCGF, we use the expression (78). We have for every i ∈ C, using q(λ) = q[β(λ)] and the

relation ji = −j̃i, that

∂F (λ)

∂λi
=

∫ 1

0
dt ji[q

(λ)(0, t)] =

∫ 1

0
dt ji[q̃

(λ̃)(0, t)] = −
∫ 1

0
dt ji[q

(λ̃)(0, 1− t)]

= −
∫ 1

0
dt ji[q

(λ̃)(0, t)] =
∂F (β

L
− β

R
− λ)

∂λi
.

(94)

Integrating in λi from the mid-point λi = (βi
L − βi

R)/2, we obtain Eq. (19).
Let us finally comment on the potential pitfalls if weak solutions are involved. The

first is the shift made in (87). This step works only because we use (75c) to keep the
left-hand side of (75d) invariant. However, if βi(x, t) and H i(x, t) admit weak solutions of
different entropy type, for instance with positive, respectively negative, physical entropy
production, then this does not work, and the derivation fails. Another is the time-reversal
change of variable itself, Eq. (92), which, on weak solutions, would simply reverse the
entropy production type. As mentioned, in integrable systems these pitfalls are avoided.
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4.4 BMFT of dynamical correlation functions

While in previous studies the MFT has been mainly applied to study density and cur-
rent fluctuations, it also provides us a powerful way of evaluating dynamical correlation
functions in both homogeneous and inhomogeneous states. In diffusive systems, correla-
tion functions in a NESS have been studied using the conventional MFT in [7, 77]. To
our knowledge, however, we provide here the first instance where the MFT is applied to
compute dynamical correlation functions on the Euler scale in arbitrary slowly modulating
initial states.

In order to illustrate how it works, let us evaluate Sq̂i1 ,q̂i2
(x1, t1;x2, t2), which is the

Euler scaling limit (22) for the charge densities q̂i1 , q̂i2 . We repeat the arguments made
in Subsec 4.1 for the SCGF. The BMFT gives the saddle-point result

Sq̂i1 ,q̂i2
(x1, t1;x2, t2) = − d2

dλ1dλ2
Fcorr[q

∗]
∣∣∣
λ1=λ2=0

, (95)

where q∗ minimises the BMFT action Scorr[q,H] associated to the dynamical correlation
function,

Scorr[q,H] := Fcorr[q] +

∫
S
dxdtH i(∂tqi + ∂xji[q]), (96)

with Fcorr[q(·, ·)] = F [q(·, 0)] − (λ1qi1(x1, t1) + λ2qi2(x2, t2)). Here the final time T in
S = R× [0, T ] could take an arbitrary value so long as T > t1, t2; we will see that the result
is indeed independent of T . Again, we drop the star symbol ∗ for lightness of notation. By
the saddle-point equation, the total λ2 derivative equals the partial derivative, and since
∂λ2Fcorr = −qi2(x2, t2) = qi2 [β(x2, t2)], we have

Sq̂i1 ,q̂i2
(x1, t1;x2, t2) =

d

dλ
qi2(x2, t2)

∣∣∣
λ=0

, (97)

where we redefined λ := λ1, with the associated BMFT equations

H i(x, 0) = βi
ini(x)− βi(x, 0), (98a)

H i(x, T ) = 0, (98b)

∂tβ
i + A i

j [β]∂xβ
j = 0, (98c)

∂tH
i + A i

j [β]∂xH
j = −λδ i

i1δ(x− x1)δ(t− t1). (98d)

Here, the boundary conditions are βi(x → ±∞, t) = βi
ini(x → ±∞) and H i(x → ±∞, t) =

0 for any value of t.
Similarly, higher-point functions are accessed by multiple derivatives. In fact, one may

repeat the argument for arbitrary observables, using

Fcorr[q] = F [q(·, 0)]−
n∑

a=1

λaoa[q(xa, ta)], (99)

as per the theory of Subsec. 3.1 (see Eqs. (55)-(57)). This gives

Sô1,...,ôn(x1, t1; · · · ;xn, tn) =
dn−1on[q(xn, tn)]

dλ1 · · · dλn−1

∣∣∣
λ1,...,λn−1=0

, (100)
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with the BMFT equations

H i(x, 0) = βi
ini(x)− βi(x, 0), (101a)

H i(x, T ) = 0, (101b)

∂tβ
i + A i

j [β]∂xβ
j = 0, (101c)

∂tH
i + A i

j [β]∂xH
j = −

n−1∑
a=1

λa
∂oa
∂qi

δ(x− xa)δ(t− ta). (101d)

4.5 (Non)linear hydrodynamic projections and (non)linear response

We first note that two applications of Eq. (100) with n = 2 give

Sô1,ô2(x1, t1;x2, t2) =
∂o2
∂qi

∣∣∣
q(x2,t2)

Sô1,q̂i(x1, t1;x2, t2), (102)

where q(x2, t2) is the Euler hydrodynamic solution; by recursion this implies the hydro-
dynamic projection principle of Eq. (26). Further, as the BMFT equation (98c) implies
the Euler equation (11) relating qi2(x2, t2) with ji2(x2, t2) in (97), we may apply the t2
derivative, use this Euler equation, take the x2 derivative out, and apply the λ derivative
on ji2(x2, t2) using (102) with ô1 = q̂i1 and ô2 = ȷ̂i2 . The result is the Euler equation
(28) for Euler-scale two-point functions of conserved densities, which is expanded around
the inhomogeneous background. Thus, these two pillars of the study of ballistic-scale
correlation functions follow simply from the BMFT.

By multiple applications of the λa-derivatives, the BMFT gives rise to a nonlinear
hydrodynamic projection principle, for higher-point functions. For instance, for three-
point functions, dropping the explicit space-time dependence,

Sô1,ô2,ô3 =
d

dλ1

∂o3
∂qi

dqi
dλ2

=
∂o3
∂qi

Sô1,ô2,q̂i +
∂2o3

∂qi∂qj
Sô1,q̂jSô2,q̂i , (103)

which by recursive applications give rise to (29),

Sô1,ô2,ô3 =
∂o1
∂qi

∂o2
∂qj

∂o3
∂qk

Sq̂i,q̂j ,q̂k +
∂2o1

∂qi∂qj

∂o2
∂qk

∂o3
∂ql

Sq̂i,q̂kSq̂j ,q̂l + cyclic perm. of 1, 2, 3.

(104)
Thus, for the evaluation of general n-point correlation functions in the Euler scaling limit,
it stays true that it is sufficient to know the dynamical correlation functions of conserved
densities, along with the stationary, homogeneous averages of the local fields involved.
We note that formula (29) gives an immediate explanation for certain 3-point function
projection formulae obtained earlier by linear response from the Euler equations [88, Eqs
187, 189]. Note that the BMFT techniques described here recast the problem of nonlinear
hydrodynamic projections into simple applications of differential operators, and higher-
point formulae are straightforward to work out.

The transport equation for higher-point functions can be deduced from the nonlinear
hydrodynamic projection principle, as usual by using the conservation laws. For the three-
point function, for instance, from Eq. (29) one has

∂t1Sq̂i,q̂j ,q̂k + ∂x1

(
A l
i Sq̂l,q̂j ,q̂k + H lr

i Sq̂l,q̂jSq̂r,q̂k

)
= 0, (105)

where H lr
i = ∂2ji/∂ql∂qr. This is in agreement with the results of nonlinear response

arguments from the Euler equations [22].
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As a remark on the overall consistency of our theory, we note that the BMFT
(non)linear hydrodynamic projection formulae are in fact entirely a consequence of the
Euler scaling ℓ1−n, implied by Eq. (21), of n-point connected correlation functions at
space-time points scaled with ℓ, along with the principle of local relaxation of fluctuations.
Indeed, one expresses the observable o[q] as a series in powers of qi’s, rewrites this in
terms of connected correlation functions, and uses the Euler scaling. The terms that
remain nonzero in the Euler scaling limit give the projection formula. For illustration,
consider the scaled two-point function ℓ ⟨o1 q2⟩cℓ (where the scaled space-time positions
are kept implicit), with an observable of the (purely theoretical) form o1[q] = q21. We
evaluate, as ℓ → ∞

Sô1,q̂2 ∼ ℓ ⟨o1 q2⟩cℓ
∼ ℓ

〈〈
q21q2

〉〉
ℓ
− ℓ

〈〈
q21
〉〉

ℓ
⟨⟨q2⟩⟩ℓ

= ℓ ⟨⟨q1q1q2⟩⟩cℓ + 2ℓ ⟨⟨q1⟩⟩ℓ ⟨⟨q1q2⟩⟩cℓ
∼ 2q1Sq̂1,q̂2 , (106)

where in the last step we used the fact that, by Euler scaling, ⟨⟨q1q1q2⟩⟩cℓ = O(ℓ−2) and
⟨⟨q1q2⟩⟩cℓ = O(ℓ−1) as ℓ → ∞, and thus only the second term remains finite. This gives
(26) for this particular observable.

4.6 Long-range correlations

As discussed in Sec. 2, the BMFT generically predicts that the equal-time correlator
Sq̂i1 ,q̂i2

(x1, t;x2, t) possesses long-range correlations, provided that three elements are
present: interactions, initial inohomogeneity, and multiple conservation laws. By the
BMFT, it is possible to see this from rather general arguments.

Consider again the BMFT equations (98). Let us denote formally the result of the
linear evolution by the space-time dependent propagator A i

j ,

∂tγ
i + A i

j [β]∂xγ
j = 0, (107)

from time t = t1 to time t = t2, by using the operator Uλ(t2, t1):

γ(t2) = Uλ(t2, t1)γ(t1), (108)

where here and below, for lightness of notation, when not writing the spatial argument, the
result is seen as a function of space. We make explicit the λ-dependence of the operator;
recall that the propagator A i

j [β] depends in general on βi’s (unless the hydrodynamic
system is non-interacting), which are the λ-dependent solution to Eqs. (98).

Clearly,
β(t) = Uλ(t, t

′)β(t′), (109)

Upon integrating both sides of the equation (98d) for H over [t1 − ε, t1 + ε] (ε > 0
infinitesimal), we have H i(x, t1 + ε) − H i(x, t1 − ε) = −λδ i

i1
δ(x − x1) . Since, by the

boundary condition (98b), 0 = H(T ) = Uλ(T, t1+ε)H(t1+ε), invertibility of the evolution
operator implies H i(x, t1 + ε) = 0, which yields H i(x, t1 − ε) = λδ i

i1
δ(x − x1). Writing

H(t1−ε) = Uλ(t1, 0)H(0) = Uλ(t1, 0)βini−Uλ(t1, 0)β(0) from the other boundary condition
(98a), and using (109), we then obtain

βi(x, t1) =
(
Uλ(t1, 0)βini

)i
(x)− λδ i

i1δ(x− x1). (110)

Eq. (110) is a crucial result concerning the structure of BMFT. Note that if the evo-
lution operator Uλ(t1, 0) was simply the Euler hydrodynamic (nonlinear) evolution, inde-
pendent of λ, then Uλ(t1, 0)βini would give βi(x, t1) evaluated at λ = 0. In this case, (110)
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would simply state that the insertion of the observable at t = t1 can be implemented by
evolving the fluid from the initial state up to time t1, and then by perturbing the fluid
state and measuring its linear response. However, Uλ(t1, 0), representing time evolution
for times t < t1, is not the fluid evolution, and depends on λ itself, even though the
inserted observable is at time t1. In (110), the λ dependence comes both from the ex-
plicit δ-function, and from the evolution operator itself. The former represents the linear
response contribution, while the latter, we interpret as coming from nonlinear correlated
wave production and scattering occurring in the times before t1; an interpretation that is
made clearer in our studies of integrable systems.

In Appendix C, we review hydrodynamic response theory. In particular, we show
on the basis of the result in Eq. (110) that hydrodynamic response theory for two-point
function is correct only if the model is non-interacting, the earlier time in the correlator
is zero t1 = 0, or the state is homogeneous. For higher-point function, it is correct only if
the model is non-interacting, or all but one of the times are zero.

From (110) one evaluates the correlation function (97) at t2 = t1 as follows

Sq̂i1 ,q̂i2
(x1, t1;x2, t1) =

d

dλ
qi2 [β(x2, t1)]

∣∣∣∣
λ=0

= Ci1i2(x1, t1)δ(x2 − x1)− ∂λ
(
Uλ(t1, 0)βini

)i
(x2)

∣∣∣
λ=0

Ci i2(x2, t1).

(111)

The first term in the resulting expression is the linear response (see Appendix C), which at
equal times is simply the thermodynamic response of the fluid cell and thus supported at
equal positions. The second term, on the other hand, clearly demonstrates the potential
presence of long-range correlations – recall that the derivative with respect to λ brings a
dependence on x1, and in general the result is nonzero for x1 ̸= x2. It does not appear
to be possible in general to obtain a more explicit expression of the resulting correlations
than (111), however we will see that in integrable systems, explicit integral equations are
found, which give indeed nonzero results for x1 ̸= x2.

As we mentioned, in certain situations no long-range correlations are expected even at
t1 > 0 (for t1 = 0 no long range correlation appear as the initial state is by assumption
not correlated; in this case Uλ(0, 0) = 1). Two of the conditions can be seen immediately
from the above result. Indeed, the second term in (111) vanishes either if the system
is noninteracting (in which case Uλ(t1, 0) is λ-independent) or the initial condition is
homogeneous (in which case Uλ(t1, 0)βini = βini).

For the third condition, that no long range correlation appear if there is only one
conservation law, a different general argument is required. For this purpose, consider
the evolution equation (34) for equal-time Euler-scale correlations, which follows from
hydrodynamic projections (shown in the previous subsection from BMFT). In the single
component case, it reads

∂tSq̂,q̂(x, t;x
′, t) + ∂x[A(x, t)Sq̂,q̂(x, t;x

′, t)] + ∂x′ [A(x′, t)Sq̂,q̂(x, t;x
′, t)] = 0. (112)

It is a simple matter to show that the form Sq̂,q̂(x, t;x
′, t) = C(x, t)δ(x − x′) is invariant

under time evolution. As the initial condition satisfies it, with C(x, 0) = C(x), then indeed
the solution preserved the delta-function structure, and no long-range correlation appear.
In particular, one finds for C(x, t)

∂tC(x, t) + ∂x[A(x, t)C(x, t)] = 0. (113)

The argument using the evolution equation makes it less evident how no long-range
correlation may appear if the flux Jacobian is independent of the state, as must be true
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from the BMFT result (111). Here we simply note that, in this case, by diagonalising
the resulting evolution equation, and using conditions on the covariance matrix of normal
modes [15] one recovers the lack of long-range correlations.

It should be emphasised that various types of long-range correlations have been ob-
served in both driven-diffusive NESS [91,92], boundary-driven NESS in ballistic quantum
spin chains [93] and in ballistic NESS of integrable systems [60]. In diffusive systems,
a NESS, which is usually induced by an external field and hence has nonzero gradients,
presents 1/x spatial correlations due to Fourier-space discontinuities of diffusive transport
coefficients. Indeed, a discontinuity in the Fourier space generically points to 1/x decay
because of the representation Θ(k) ∼

∫
R dx eikx/x of the step function. The existence of

such long-range correlations was also microscopically established for the SSEP, which was
attributed to non-locality of the density large deviation function in the NESS [94]. In
integrable systems, a ballistic NESS also develops at long times from unbalanced initial
conditions, e.g., in the partitioning protocol; it itself homogeneous (it has no gradient)
with constant fluxes, as permitted by ballistic transport. For instance, in the case of the
free massive scalar field theory, it was shown that correlators show long-range correlations
with varying exponents (1/x decay for certain correlations involving the “fundamental
fields”, and 1/x2 for correlations involving conserved densities) [59]. In the same vein,
it was also demonstrated that density-density correlations in the Lieb-Liniger model in a
NESS have long range, 1/x2, due to discontinuities in the quasi-particle distributions [60].
Importantly, these long-range correlations are purely due to discontinuities in the NESS
density matrix, in its representation in terms of asymptotic particles, and do not necessi-
tate interactions. In the case of the ballistic boundary-driven XX quantum spin chain [93],
long-range correlations in the NESS, similarly, do not need interactions and they can only
be detected in the atypical-biased dynamics describing quantum trajectories supporting
large currents (being absent, instead, in the typical-unbiased dynamics).

Long-range correlations in all these cases are in sharp contrast with what the BMFT
captures: long-range correlations that take generic shape in space, but that decay as
1/ℓ and are supported on regions that grow with ℓ as time grows like ℓ (and the initial
inhomogeneity is of length scale ℓ). These are controlled entirely by the Euler-scale hy-
drodynamics, and do not necessitate singularities in the Fourier or asymptotic-particle
space representation of any transport coefficient. They represent nontrivial correlations
between separate fluid cells, because integrals of the resulting correlation functions over
macroscopic regions that are at macroscopic separations have finite values. This is in
contrast, in particular, to the 1/x2 contributions in ballistic NESS, that pertain to single
fluid cells.

4.7 Fluctuations inside fluid cells

We now argue that the BMFT gives information not only about the Euler-scale correlations
and fluctuations, which occur at macroscopic scales, but also about fluctuations within the
fluid cells. More precisely, we argue that the fluid cells’ thermodynamics can be accessed
– that is, the susceptibilities and in general all the cumulants of total charges in the cell,
scaled by the size of the cell. As the free energy generates such cumulants, this amounts
to the specific free energy of the fluid cell, i.e., its total free energy divided by its size.

Most importantly we also argue that, in general in interacting, non-integrable models,
the specific free energy of the fluid cell at macroscopic coordinates x, t, is not that of the
state described by the solution to the Euler equation βi(x, t). But in integrable systems, the
fluid cell free energy is indeed that of this GGE. The physics is similar to that behind long-
range correlation, but instead of being that of interactions between different fluid mode,
the nontrivial fluctuations within fluid cells is due to modes self-interaction. Here self-
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interaction refers to the nontrivial dependence of normal modes on their own propagation
(effective) velocities. Thus, we conjecture that this effect is absent whenever the fluid is
linearly degenerate (such as in integrable systems).

The question is about the large-deviation theory for the mesoscopically extensive con-
served quantities Qi within any given fluid cell. At the macroscopic coordinates x, t, these
may be taken as

Qi = Lqi(ℓx, ℓt). (114)

In order to illustrate the ideas, we concentrate on the second cumulants, but similar
calculations can be done for higher cumulants.

In analogy with usual thermodynamics, by extensivity of the charges the cumulants
are expected to scale like L, which is trivial for the first cumulant,

〈
Qi

〉
ℓ
∼ Lqi(x, t). The

picture is that within the fluid cell {(ℓx + y, ℓt) : y ∈ [−L/2, L/2]}, correlation functions
⟨q̂i(ℓx+ y, ℓt)q̂j(ℓx, ℓt)⟩cℓ decay quickly as |y| grows, up to values of order ℓ−1, where the
long-range correlations start. Note that it has to be of this order so that it is smoothly
connected to long-range correlations outside the fluid cell, which would amount to the
contribution to

〈
Qi1Qi2

〉c
ℓ
with magnitude O(L2/ℓ). Thus, for instance for the second

cumulants, one expects
〈
Qi1Qi2

〉c
ℓ
∼ L(Ci1,i2 + O(L/ℓ)) for some Ci1,i2 to be determined.

Here O(L/ℓ) is a sub-leading term with respect to the first one because usually L is taken
as L = ℓα for some 0 < α < 1 by the mesoscopic scaling, hence L/ℓ = L1−1/α < 1. We
note that under the picture of fast decay within the fluid cell, one may also take

Qi :=

∫ ϵℓ/2

−ϵℓ/2
dy q(ℓx+ y, ℓt). (115)

for ϵ > 0 small, which is useful for the calculation below.
It turns out that the covariance matrix

〈
Qi1Qi2

〉c
ℓ
is determined by the coefficient

Ci1,i2(x, t) of the delta-function contribution,

Sq̂i1 ,q̂i2
(x, t;x′; t) = Ci1,i2(x, t)δ(x− x′) + regular. (116)

Indeed,

〈
Qi1Qi2

〉c
ℓ

=

∫ ϵℓ/2

−ϵℓ/2
dy
〈
qi1(ℓx+ y, t)Lqi2(ℓx, t)

〉c
ℓ

= Lℓ

∫ ϵ/2

−ϵ/2
dy
〈
qi1(ℓ(x+ y), t)qi2(ℓx, t)

〉c
ℓ

= L

∫ ϵ/2

−ϵ/2
dySq̂i1 ,q̂i2

(x+ y, t;x, t)

= LCi1,i2(x, t) (for ϵ small). (117)

The question is therefore about the coefficient of this delta-function.
In the BMFT result (111), the first term gives for coefficient the C-matrix of the GGE

represented by βi(x, t); this term gives the GGE covariances. But what about the second
term?

In integrable models, the BMFT predicts that the covariace matrix is correctly de-
scribed by the GGE e−

∑
i β

i(x,t)Qi associated to the Lagrange multipliers βi(x, t) at that
point. In particular, the second term in (111) does not have delta-function contributions.
Thus, extending this to all cumulants, although the Euler-hydrodynamics time evolution
of (12) does not correctly describe Euler-scale correlations at macroscopic times, in in-
tegrable models, it still correctly describes all fluctuations of extensive quantities within
fluid cells.
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By contrast, a simple analysis for non-integrable models with a single fluid mode
suggests that, in such cases, the fluctuations within fluid cells are not given by the Gibbs
states e−

∑
i β

i(x,t)Qi . That is, although all averages of local observables agree with this
state, mesoscopically extensive quantities fluctuate according to a different distribution.
In this case, the covariance matrix satisfies (113), and thus it evolves nontrivially.

Of course, local averages do not probe the full distribution: in the limit of large fluid
cells, from the viewpoint of local averages, the distribution concentrates on the micro-
canonical shell specified by the local conserved densities qi(x, t). The scaled cumulants of
mesoscopic quantities Qi probe more subtle, rare fluctuations (in the sense of large devi-
ation theory). For instance, it is well known that the macrocanonical and microcanonical
ensembles are equivalent for local averages, but give different scaled cumulants of exten-
sive observables (extensive observables are, in fact, non-fluctuating in the microcanonical
ensemble). In the BMFT, there is no reason for the fluid cell to be distributed according to

e−
∑

i β
i(x,t)Qi ; what we find is that inhomogeneous long-wavelength initial states generate

in general, over time, different, non-canonical distributions within fluid cells.
We elucidate this aspect in Appendix E by considering the TASEP as a paradigmatic

example.

5 BMFT for integrable systems

There are many good reasons to study the out-of-equilibrium physics of integrable sys-
tems, as it is well established that integrability qualitatively affects thermalisation and
hydrodynamic behaviours (see, e.g., the special issues [65, 95]). However, here the main
purpose is to provide explicit examples of applications of the BMFT, and demonstrate that
the machinery of GHD allows us to obtain the exact expressions of the two main objects
we have been focusing on, the SCGF F (λ, T ) and the Euler-scale dynamical correlation
function Sq̂i1 ,q̂i2

(x1, t1;x2, t2).

5.1 The BMFT formulation using GHD

Integrable many-body systems possess a large number, that grows with the system’s size,
of extensive conserved charges [96]. Probably the most important consequence of this
is that many-body scattering processes factorise into two-body processes and preserve all
momenta. This in turn amounts to the existence of stable excitations called quasi-particles:
a quasi-particle is identified with an asymptotic particle of the model (or an “asymptotic
object”, be it a particle, bound state, soliton, radiation mode, etc.), and by elastic and
factorised scattering, its trajectory can be “traced” within space-time throughout the full
scattering process, from the in-state to the out-state. This is true at least at the level of
precision required for Euler hydrodynamics. Below we will refer to quasi-particles simply
as “particles”, and we will parametrise their associated asymptotic momenta as pθ in
terms of a “rapidity” θ. In general, the rapidity θ may be a multiple index, encoding both
the asymptotic momentum and the type of asymptotic object, if the model admits many
types; for simplicity we will assume it is a single continuous index take values in R, as is
the case for the Lieb-Liniger and hard-rod models, where one may use simply pθ = θ.

The density of particles per unit rapidity Q̂θ =
∫
dx ρ̂θ(x) (i.e., ρ̂θ(x)dθdx counts

the number of particles with rapidity within [θ, θ + dθ) and position within [x, x + dx))
is an extensive conserved charge, and these together form a complete basis of extensive
charges7, see the review [25]. Thus θ parametrises the hydrodynamic modes. The standard

7More precisely, Q̂θ is not quite extensive, but together for θ ∈ R they form a “scattering basis” for the
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formulation of GHD is as a hydrodynamic theory in terms of such modes. Thus it is
a hydrodynamic equation for the average densities ρθ(x) := qθ(x). The corresponding
average currents take the form jθ = veffθ ρθ (see the reviews [97, 98]) where the effective
velocity satisfies

p′θv
eff
θ = E′

θ + 2π

∫
dϕT ϕ

θρϕ(v
eff
ϕ − veffθ ); (118)

here Eθ is the asymptotic energy of the particle θ, and primes are derivatives, e.g., p′θ =
dpθ/dθ. The effective velocity depends on the specifics of the interactions in the model
via the differential scattering phase T θ

ϕ, which is, in quantum systems, related to the two-

body scattering phase Sθϕ as T θ
ϕ = −i d logSθϕ/(2πdθ). Here for simplicity we assume

that T θ
ϕ = T ϕ

θ is symmetric, which is the case for many integrable systems (seeing T as a
matrix, the column index is the leftmost, superscript, and the row index is the rightmost,
subsript index). The GHD equation is then

∂tρθ + ∂x(v
eff
θ ρθ) = 0. (119)

See the lecture notes [3] for details.
We will use Greek indices for labelling rapidities, and Roman indices, as done in

previous sections, for labelling a generic basis of conserved charges. Lagrange multipliers
associated to the charges Q̂θ will be denoted βθ. These are related to the Lagrange
multipliers βi, for a generic basis of conserved charges, as

βθ = βihθi , (120)

where hθi is the one-particle eigenvalue of Q̂i in quantum systems, or the quantity of
that charge carried by the asymptotic object θ in classical systems. Charge densities and
current averages are given by qi =

∫
R dθ hθi ρθ and ji =

∫
R dθ hθi jθ.

In applying the BMFT to GHD, it is convenient to re-write the path-integral (49) in
terms of ρθ. We now explain how this work; this will also allow us to introduce some of
the main objects of the thermodynamics of integrable many body systems.

The BMFT expectation values are given by

⟨•⟩ =
∫
(S×R)

dµ[ρ(·, ·)]e−ℓF [ρ(·,0)]δ(∂tρ+ ∂xj[ρ])•, (121)

where the path-integral is performed over all the possible configurations of (x, t, θ) 7→
ρθ(x, t), with (x, t, θ) ∈ S×R = R× [0, T ]×R. Again, the delta function is best understood
via its integral representation

δ(∂tρ+ ∂xj[ρ]) =

∫
(S×R)

dµ[H(·, ·)] exp
[
−
∫
S×R

dtdxdθHθ(∂tρθ + ∂x(v
eff
θ ρθ))

]
. (122)

The probability distribution for the initial fluctuation in Eq. (43) reads

F [ρ(·, 0)]=
∫
R
dx
(∫

R
dθ βθ

ini(x)ρθ(x, 0)−f [βini(x)]−s[ρ(x, 0)]
)
, (123)

where the free energy density f [β] and the (Yang-Yang) entropy density s[ρ] [99, 100]
are given by f [β] =

∫
R dθ p′θF

θ/(2π) and s[ρ] =
∫
R dθ ρtotθ (nθϵ

θ − Fθ), respectively, with
Fθ = F(ϵθ) the free energy function [3]. The latter encodes the statistics of the quasi-
particles; e.g., for fermions it is given by F(ϵ) = − log(1 + e−ϵ). The quantities nθ and ϵθ

space of extensive conserved charges, out of which any charge can be written as a θ integral.
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are the occupation function and pseudo-energy, respectively, and are related to each other
by nθ = dF(ϵ)/dϵ|ϵ=ϵθ . The pseudo-energy is in turn related to the Lagrange multipliers
by the non-linear integral equation

ϵθ = βθ +

∫
R
dϕT θ

ϕ F
ϕ. (124)

The total density of states ρtotθ is

ρtotθ =
p′θ
2π

+

∫
R
dϕT ϕ

θρϕ, (125)

and one can check that the above definitions imply the relation

nθ =
ρθ
ρtotθ

. (126)

Finally, let us comment on how the Lieb-Liniger model and the hard rods are charac-
terised by the quantities we introduced above. First, the differential scattering phase T θ

ϕ

is given, respectively, as follows:

(TLL)
θ
ϕ =

2c

(θ − ϕ)2 + c2
, (THR)

θ
ϕ = −a, (127)

where c is the coupling constant of the Lieb-Liniger model (5). Second, another quantity
that distinguishes them is the statistics factor F(ϵ), which reads FLL(ϵ) = − log(1 + e−ϵ)
and FHR(ϵ) = −e−ϵ. Note that, since both of them are Galilean invariant, the dispersion
relation is given in the same way: Eθ = θ2/2 and pθ = θ.

5.2 Main predictions

Before jumping into the formulation of the BMFT for integrable systems, we collect in
Subsecs. 5.2.1 and 5.2.2 the main results obtained from the BMFT for the cumulants and
the correlation functions, respectively, so that readers who are interested in only results
can simply consult. The details of the calculations for current fluctuations and cumulants
are reported in Subsecs. 5.3 and 5.4 and in Appendix G, while correlation functions are
discussed in Subsec. 5.5 and in Appendix H.

5.2.1 Cumulants

The evaluation of the SCGF F (λ, T ) is equivalent to computing all the cumulants cn(T ) =
dnF (λ, T )/dλn|λ=0, see the definitions in Eqs. (14) and (15). The BMFT allows us to
compute an arbitrary cn(T ) by knowing how thermodynamic quantities change as λ varies.
The equation that turns out to be instrumental in computing cn(T ) is the one for ∂λϵ

θ,
which we call the flow equation (see Eq. (147)), for the pseudo-energy ϵθ.

Using the flow equation, we can compute the first few cumulants for homogeneous
initial conditions. The final formulas for the second and the third cumulants are given by

chom2 =

∫
R
dθ χθ|veffθ |(hdr;θi∗

)2, (128)

chom3 =

∫
R
dθ χθ|veffθ |hdr;θi∗

(
sθf̃θ (h

dr;θ
i∗

)2+3[sf (hdri∗ )
2]dr;θ

)
. (129)

Let us explain the quantities that appear in Eqs. (128) and (129). First, the dressing
operation is defined for any function of θ as adr;θ =

∫
R dϕ (R−T)θϕa

ϕ, where the trans-
formation matrix R is defined by R = 1 − nT ; the superscript T means the transpose,
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and the superscript −T is the transpose of the inverse. Note that the matrix R di-
agonalises the flux Jacobian A ϕ

θ = ∂(veffθ ρθ)/∂ρϕ, i.e., RAR−1 = diag veff . The quasi-
particle susceptibility χθ := ρθfθ is a statistics-dependent quantity where fθ = f(ϵθ) =
−(d2F(ϵ)/dϵ2)/(dF(ϵ)/dϵ)

∣∣
ϵ=ϵθ

(for example, fθ = 1−nθ for fermionic statistics). Further,

we define f̃θ := −(d log f(ϵ)/dϵ|ϵ=ϵθ + 2fθ), and sθ is the sign of the effective velocity
sθ := sgn veffθ .

Expressions (128) and (129) precisely coincide with the cumulants obtained previously
using the BFT in Ref. [21]. Since the homogeneous BFT is built solely upon the tenet of
Euler hydrodynamics (with the assumption of strong clustering in both space and time),
the agreement gives an important consistency check for the BMFT.

The real advantage of the BMFT, however, is that it also allows us to calculate the
SCGF F (λ, T ) and the cumulants for inhomogeneous initial conditions in a unified way.
We emphasize that results for the SCGF F (λ, T ) and the cumulants in inhomogeneous
initial states are scarce. So far, this problem has been, indeed, addressed only with the
inhomogeneous BFT approach of Ref. [23]. Importantly, since it does not account for
long-range correlation among fluid cells, which in general are present in ballistic many-
body systems by our results as discussed in Sec. 1 and 3, this approach is at present not
solidly founded. The BMFT approach accounts for all ballistic effects, including potential
long-range correlations, to large scale fluctuations in interacting and inhomogeneous fluids.

We evaluated the second cumulant cpart2 in the partitioning protocol (recall that the
cumulants cpartn do not depend on T for the partitioning protocol by scale invariance, see
the discussion after Eqs. (14) and (17) in Subsec. 1).

In integrable systems, the partitioning protocol can be solved explicitly; the result is
a space-time profile of states which depends only on the ray ξ = x/t, by scale invariance.
The space-time profile is determined by the occupation function nθ(ξ), which satisfies the
following self-consistency equation,

nθ(ξ) = nR,θΘ(ξ − veffθ (ξ)) + nL,θΘ(veffθ (ξ)− ξ), (130)

where the ξ-dependence of veffθ (ξ) is determined by nθ(ξ). The occupation functions nR,θ

and nL,θ are those corresponding to the left and right states, respectively, in (17). A
remarkable feature of the solution is that, since θ is a continuous parameter, it naturally
gives rise to a smooth profile of the fluid in space-time, where each fluid mode θ presents
a single contact discontinuity [3, 16].

We find from the BMFT that cpart2 is completely given by the thermodynamic quantities
evaluated with respect to nθ(ξ = 0):

cpart2 =

∫
R
dθ χθ(0) |veffθ (0)| (hdr;θi∗

(0))2, (131)

Eq. (131) explicitly shows that cpart2 , computed over the inhomogeneous and non-stationary
partitioning protocol state, reduces to the cumulant (128) evaluated on the homogeneous
NESS, the state at ξ = 0 emerging at long times in the partitioning protocol. This is a
highly non-trivial statement since in inhomogeneous and non-stationary fluids [19,31], in-
direct effects, present if the model is interacting and not directly caused by the propagation
of normal modes, means that correlations depend on the full inhomogeneous fluid profile
and are not only determined by the fluid characteristics connecting the space-time points
of interest. It turns out that these additional effects cancel out in the partitioning protocol
when we count the statistics at x = 0; in general, however, these effects are present if we
change the ray on which the statistics is evaluated or use other initial conditions.

In Subsec. 5.4, we present the detailed derivation of Eq. (131) for cpart2 with the BMFT
formalism and we compare it with numerical simulations of the hard-rod model observing
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an excellent agreement. The derivation of Eq. (131) with the inhomogeneous version of
BFT is reported in Appendix D. The numerical analysis we perform thereby validates our
new BMFT.

We also checked that the inhomogeneous BFT yields Eq. (131). Hence for this cumulant
in the partitioning protocol on the ray ξ = 0, the inhomogeneous BFT is correct, despite
not taking into account long-range correlations. Within the BMFT, this can be understood
technically by the fact that the contribution to cpart2 coming from the long-range part of
the current-current correlator vanishes because the fluid velocity of the normal mode that
propagates on the ray ξ = 0 is zero.

In principle the higher cumulants cn≥4 can be computed by evaluating ∂n−1
λ ϵθ

∣∣
λ=0

,
but the task gets increasingly convoluted. Although the exact expression is harder to

write down, one can also calculate the SCGF F (λ, T ) =
∫
S dtdθ

∫ λ
0 dλ′ hθi∗j

(λ′)
θ (0, t)/T by

solving the MFT equation with a λ-dependent initial condition (144), using the method
of characteristics. We hope to look into this in a future work.

5.2.2 Dynamical correlation functions

As explained in the previous sections, the BMFT predicts the existence of long-range
correlations in generic ballistic many-body systems. Since such long-range correlations had
not been predicted by any other means, it is of paramount importance to quantitatively
evaluate them in a concrete model.

To this end, we computed the dynamical correlation function Sqi1 ,qi2
(x1, t;x2, t) for

integrable systems using the BMFT, and we obtained the following formula, which spe-
cialises (111):

Sq̂i1 ,q̂i2
(x1, t;x2, t) = Ci1i2(x1, t)δ(x1 − x2) + Ei1i2(x1, x2; t), (132)

where Ci1i2(x1, t) :=
∫
R dθ [χθh

dr;θ
i1

hdr;θi2
](x1, t) is the local covariance matrix, and

Ei1i2(x1, x2; t) := −
∫
R dθ [χθh

dr;θ
i2

Eθ](x2, t) is the term that represents long-range correla-
tions. The symbol [•](x, t) means that all the quantities inside the bracket are evaluated
at the space-time point (x, t). The function Eθ(x, t) satisfies the integral equation

Eθ(x, t) = Eθ
0 (x, t) + wθ(x, t)

∫ x

−∞
dy [χE ]dr;θ(y, t), (133)

where we defined (here and below, ∂ is the derivative with respect to the spatial argument)

wθ(x, t) :=
∂ϵθini(uθ(x, t))

ρtotθ (uθ(x, t), 0)
, (134)

with the initial pseudo-energy ϵθini(x) related to βi
ini(x) via (124). We set uθ(x, t) :=

Uθ(x, t; 0), where Uθ(x, t; s) defines the fluid characteristics for the mode θ: it is the spatial
coordinate of the characteristic line, at time s, that passes through (x, t). It satisfies [75]∫ Uθ(x,t;s)

−∞
dy ρtotθ (y, s) + v−θ (t− s)=

∫ x

−∞
dy ρtotθ (y, t), (135)

with v−θ := limx=−∞ veffθ ρtotθ .
Finally, the source term of the integral equation (133), i.e., Eθ

0 (x, t), is written as a
sum of two terms Eθ

0 (x, t) = Dθ
1(x, t) +Dθ

2(x, t). The first term reads

Dθ
1(x, t) :=

∫
R2

dϕ dα (R−T)θϕ(uθ(x, t), 0)∂
[
(RT)ϕαh

dr;α
]
(x1, t)Θ(uθ(x, t)− uα(x1, t))

− wθ(x, t)[χhdr]dr;θ(x1, t)Θ(x2 − x1). (136)
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The second term comes from the initial condition

Dθ
2(x, t) := −wθ(x, t)

∫ uθ(x,t)

−∞
dy [χD3]

dr;θ(y, 0), (137)

where Dθ
3(x, 0) is given by

Dθ
3(x, 0) := −hdr;θ(x1, t)

δ(x− uθ(x1, t))

∂Uθ(uθ(x1, t), 0; t)

+

∫
R2

dϕ dα (R−T)θϕ(x, 0)∂
[
(RT)ϕαh

dr;α
]
(x1, t)Θ(x− uα(x1, t)). (138)

Despite the tedious expression of the long-range correlation term Ei1i2(x1, x2; t), the nu-
merical evaluation of it turns out to agree well with its value obtained from hard-rod
simulations. This confirms that not only do the long-range correlations exist at least in in-
tegrable systems but also they can be accurately computed by the BMFT. The comparison
between the predictions by the BMFT for the correlator Sq̂0,q̂0(x, t; 0, t), from Eqs. (132)-
(138) specialized to the hard-rod model (cf. Eqs. (38) and (39)), and numerics is reported
in Fig. (1) of the companion manuscript [24]. For the correlator Sq̂0,q̂0(x, t;−x, t), the
comparison is reported in Sec. 5.5 in Fig. 4.

5.3 Current fluctuations in integrable systems

In what follows, for brevity, much like for romain indices, we will also use Einstein’s
“summation convention” for rapidities: whenever expressions contain factors with repeated
upper and lower rapidity indices, integrals over R are understood, for instance

aθbθ ≡
∫
R
dθ aθbθ. (139)

As is required, we will also use veff;θ = veffθ .
Let us start with current fluctuations, for which we follow the procedure of Subsec. 4.1.

The action to be minimised (cf. Eq. (74)) is

Scurr[ρ,H] = Fcurr[ρ] +

∫
S
dtdxHθ(x, t)(∂tρθ + ∂xjθ[ρ]), (140)

where Fcurr[ρ] = F [ρ(·, 0)]−λ
∫ T
0 dt hθi∗jθ[ρ]. Let us redefine h

θ := hθi∗ for brevity. Accord-
ingly the set of MFT equations, from Eq. (76), for integrable models are

λhθΘ(x)− βθ(x, 0) + βθ
ini(x)−Hθ(x, 0) = 0, (141a)

λhθΘ(x)−Hθ(x, T ) = 0, (141b)

∂tβ
θ(x, t) + A θ

ϕ [β(x, t)]∂xβ
ϕ(x, t) = 0, (141c)

∂tH
θ(x, t) + A θ

ϕ [β(x, t)]∂xH
ϕ(x, t) = 0. (141d)

Note that the third equation is equivalent to the usual GHD equation in terms of the
density of particle ∂tρθ + ∂x(v

eff
θ ρθ) = 0 via AC = CAT. To solve these equations self-

consistently, we shall first recall how one can solve the initial-value problems in GHD. For
simplicity, we treat an integrable many-body system where quasi-particles have a single
species and scatter diagonally (e.g., Lieb-Liniger model). Let us start with introducing
normal modes. One usually introduces the normal modes by diagonalising the linearised
Euler equation, but in integrable systems it has been known that normal modes exists even
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in the fully non-linear GHD equation, which are actually not unique [16, 17]. We choose
and define our normal mode by ∂t,xϵ

θ := (R−T(x, t))θϕ∂t,xβ
ϕ, where the pseudo-energy ϵθ

was already defined in (124). Accordingly we rewrite (141c) as ∂tϵ
θ+veff;θ∂xϵ

θ = 0 [16,17].
It is clear that any function of ϵθ, e.g., the occupation function nθ, is also transported in
a convective fashion as ϵθ, hence is eligible for being a normal mode. Motivated by this
we also introduce a normal mode Gθ for the auxiliary field Hθ in the same way:

∂t,xG
θ := (R−T(x, t))θϕ∂t,xH

ϕ. (142)

While a priori it is not obvious if such a normal mode could exist, it turns out in integrable
systems that it does. This is because a compatibility condition ∂t∂xG

θ = ∂x∂tG
θ holds

due to the fact that the row of the (transposed) transformation matrix RT is a normal
mode: ∂t(R

T)θϕ + veffϕ ∂x(R
T)θϕ = 0, which is obvious from the definition of R.

In terms of the normal modes, one readily obtains the solution of the MFT equations.
We first solve the equation for Gθ(x, t) given by

λhdr;θ(0, T )Θ(x)−Gθ(x, T ) = 0, (143a)

∂tG
θ(x, t) + veff;θ(x, t)∂xG

θ(x, t) = 0. (143b)

Note that in principle there is an additional constant term in (143a), which is Gθ(−∞, T ).
This however can always be set to zero, as this goes away when transforming back to Hθ,
whose boundary conditions are specified after Eq. (76).

Since Gθ(x, t) is a normal mode, it admits the solution Gθ(x, t) = Gθ(rθ(x, t), T ) =
hdr;θ(0, T )Θ(rθ(x, t)), where we defined rθ(x, t) := Uθ(x, t;T ) from Eq. (135). The full
space-time profile of Gθ is however of no importance, and we merely use it to write down
a self-consistent initial condition for βθ(x, 0):

βθ(x, 0) = βθ
ini(x) + λhθΘ(x)− λ(RT)θϕ(0, T )Θ(x− uϕ(0, T ))h

dr;ϕ(0, T ). (144)

Therefore the MFT dynamics is now recast into GHD with the λ-dependent initial con-
dition given in the above self-consistent way, which again can be solved by the method
of characteristics. A somewhat special initial condition that complicates these considera-
tions is the partitioning protocol in Eq. (85), where one starts with a step initial condition
βθ
ini(x) = βθ

LΘ(−x) + βθ
RΘ(x). This situation calls for a more careful treatment, as the

flow equation ∂λϵ
θ(x, t) generically contains hdr(0, 0), which depends on the regularisation

chosen in the partitioning protocol. Such dependence on the regularisation at x = 0 is
also reflected in the fact that the transformation matrix R(x, t) defined as above becomes
ill-defined at x = t = 0 due to δ(0) that stems from ∂xβ

θ(x, 0) at λ = 0. Fortunately in
integrable systems one can directly define R using the integral equation that defines ϵθ,
which yields ∂λϵ

θ(x, t) = (R−T(x, t))θϕ∂λβ
ϕ(x, t). Note that which regularisation to use

does not affect the definition of Gθ, as Hθ and its derivatives are zero at λ = 0 anyway.

5.4 Flow equation and cumulants

To evaluate the cumulants, one needs to know how the fluid variables change as λ varies,
i.e., ∂λϵ

θ(x, t) (from which one recovers the derivatives of other variables). In general,
the flow equation for ∂λϵ

θ(x, t) takes a cumbersome form, but in the homogeneous case
βθ
ini(x) = βθ

ini, where β
θ
ini does not depend on the space coordinate x, it is given in a simple

way. Note from (144) that, using ∂xβ
θ := (RT(x, t))θϕ∂xϵ

ϕ, we have

∂xϵ
θ(x, 0) = λhdr;θ(0, 0)δ(x)− λδ(x− uθ(0, T ))h

dr;θ(0, T ), (145)
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where we used (RT)ϕθ(uθ(x, t), 0) = (RT)ϕθ(x, t) and note that we do not take summations
over rapidities when the only quantities with lower indices are uθ (or rθ). Upon integrating
over x and invoking ϵθ(x, t) = ϵθ(uθ(x, t), 0), the full profile of the normal mode is readily
obtained as

ϵθ(x, t) = ϵθini + λ
(
hdr;θ(0, 0)Θ(uθ)− hdr;θ(0, T )Θ(rθ)

)
, (146)

where the identity Θ(uθ(x, t)−uθ(0, T )) = Θ(rθ(uθ(x, t), 0)) = Θ(rθ(x, t)) was invoked and
we introduced the shorthanded notation uθ := uθ(x, t) and rθ := rθ(x, t). What we are
after however is not the explicit ϵθ(x, t) but rather its derivative by λ, which is obviously
given by

∂λϵ
θ(x, t) = ∂λ

[
λ(hdr;θ(0, 0)Θ(uθ)− hdr;θ(0, T )Θ(rθ))

]
. (147)

This is the sought flow equation in the homogeneous case. The flow equation with a
generic inhomogeneous initial condition (barring the partitioning protocol, which will
be treated separately later) is reported in Appendix F. The flow equation (147) essen-
tially encodes all the information needed to compute the cumulants that are given by

cn =
∫ T
0 dt ∂n−1

λ hθjθ(0, t)
∣∣∣
λ=0

, where we note that the cumulants do not depend on T

in the homogeneous case. Notice also that alternatively they can also be written as
cn = ∂n−1

λ

∫∞
0 dxhθ(ρθ(x, T )− ρθ(x, 0))

∣∣
λ=0

, which we shall use for evaluating the cumu-
lants.

As explained in Subsec. 4.2, β(0, t) in the BMFT (θ and λ dependence are suppressed
for brevity) can be identified with β(λ) in the BFT if β(0, t) is time-independent and
satisfies the BFT flow equation (79). It turns out that verifying these is still challenging
even for integrable systems, and only thing we can immediately notice is that at λ = 0
the MFT flow equation (147) becomes that of ϵθ(λ) in the BFT, which indicates that the
identification is true at least up to the first order in λ. Further analysis on the structure
of the BMFT flow equation (147) is left for future studies.

With the flow equation at our disposal, let us see how it can be used to compute c2
for the homogeneous initial condition. We first note

∂λρθ(x, t) = −(R−T)ϕθ(x, t)χϕ(x, t)∂λϵ
ϕ(x, t), (148)

where we used ∂ρθ/∂ϵ
ϕ = −(R−T)ϕθχϕ, from which we get

lim
λ→0

∂λρθ(x, t) = (R−T)ϕθh
dr;ϕχϕ(Θ(rϕ)−Θ(uϕ)), (149)

where the thermodynamic quantities without arguments are meant to be evaluated with
respect to the initial homogeneous state. Since uθ(x, t) = x − veffθ t and rθ(x, t) = x −
veffθ (t − T ) when λ = 0, it is a simple matter to observe that the homogeneous cumulant
chom2 reads

chom2 =

∫
R
dθ χθ|veffθ |(hdr;θ)2, (150)

where and we restored the integral for clarity. This is precisely the second cumulant that
has also been obtained using different methods previously [21, 28]. Following the same
logic, albeit growing complexity as n increases, one can in principle compute arbitrary
higher cumulants cn. See Appendix G for the computation of c3 (129).

One of the virtues of the MFT is that it allows us to compute cumulants for arbitrary
initial conditions that are not homogeneous following the same procedures. That being
said, as mentioned before, the partitioning protocol requires a separate consideration due
to the singularity of the rotation matrix R(0, 0) at x = t = 0. Firstly the flow equation
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for ∂λϵ
θ(x, t) takes a tedious and not so informative form (see Appendix F). As it turns

out, it is more convenient to evaluate the alternative form of c2, which is

c2 = ∂λ

∫ T

0
dt hθρθ(0, t)v

eff
θ (0, t)

∣∣∣∣
λ=0

= −hdr;θ(0)χθ(0)v
eff
θ (0)

∫ T

0
dt ∂λϵ

θ(0, t)
∣∣∣
λ=0

, (151)

where the thermodynamic quantities with arguments 0 are evaluated at ξ = x/t = 0.
Therefore we have to compute ∂λϵ

θ(0, t)
∣∣
λ=0

, which can be written as

∂λϵ
θ(0, t) = ∂λuθ ∂xϵ

θ(x, 0)
∣∣∣
x=uθ(0,t)

+ (∂λϵ
θ)(uθ(0, t), 0), (152)

where λ = 0 is taken in the right hand side. We hereafter assume that λ = 0 is always
taken in each equation at the end of manipulations unless otherwise stated. Note that in
fact the first term does not contribute. To see this, we recall that, at λ = 0, ∂xϵ(x, 0) =
(ϵθR − ϵθL)δ(x) (ϵθR/L are the pseudo-energies of the initial right/left subsystems), hence

∂xϵ
θ(x, 0)

∣∣
x=uθ(0,t)

is proportional to δ(uθ(0, t)). Since in the partitioning protocol we

have δ(uθ(0, t)) = δ(−veffθ (0)t) = δ(veffθ (0))/t when t > 0, this gives zero when multiplied
by veffθ (0) in (151). The task therefore boils down to calculate (∂λϵ

θ)(uθ(0, t), 0).
Using (144), (∂λϵ

θ)(uθ(0, t), 0) is given by

(∂λϵ
θ)(uθ(0, t), 0) = hdr;θ(uθ(0, t), 0)Θ(uθ(0, t))

− (R−T)θϕ(uθ(0, t), 0)(R
T)ϕγ(0, T )Θ(uθ(0, t)− uγ(0, T ))h

dr;γ(0, T ).

(153)

To proceed, we need to invoke a few important relations. First, it is a simple matter to
see

∂tuθ(0, t) = − vθ(0, t)

ρtotθ (uθ(0, t), 0)
, (154)

with vθ(x, t) = veffθ (x, t)ρtotθ (x, t) from Eq. (135). In the partitioning protocol, the solutions
are self-similar (i.e., they depend only on ξ = x/t), hence we have vθ(0, t) = vθ(ξ = 0)
when t > 0. This implies that uθ(0, t) is either monotonically increasing or decreasing
depending on the sign of vθ(0). Since uθ(0, 0) = 0, we conclude that

Θ(uθ(0, t)) = Θ(−veffθ (0)). (155)

A similar observation can be made to obtain Θ(rθ(0, t)) = Θ(veffθ (0)). Another re-
lation is that (RT)θϕ(x, t) is a normal mode with respect to ϕ, i.e., (RT)θϕ(x, t) =

(RT)θϕ(uϕ(x, t), 0). This means that (RT)ϕγ(0, T ) = (RT)ϕγ(uγ(0, T ), 0), which in turn

allow us to compute the building block (R−T)θϕ(uθ(0, t), 0)(R
T)ϕγ(uγ(0, T ), 0)Θ(uθ(0, t)−

uγ(0, T )). Importantly, this quantity depends only on the sign of veffθ (0) and veff;γ(0).
Thus when the signs of both velocities are the same, it simply gives δθγΘ(veffθ ), where we

used Θ(uθ(0, t)− uθ(0, T )) = Θ(veffθ ) because t < T . When the signs differ, only situation
when it has a nonzero contribution is when veffθ (0) < 0 < veffγ (0). Combining these, we
obtain

(R−T)θϕ(uθ, 0)(R
T)ϕγ(uγ , 0)Θ(uθ − uγ) = δθγΘ(veffθ ) + Θ(−veffθ )Θ(veffγ )(R−T

R )θϕ(R
T
L)

ϕ
γ ,

(156)
where temporarily we suppressed the argument of uθ(0, t), uγ(0, T ) and veffθ (0). Therefore
we end up with

(∂λϵ
θ)(uθ(0, t), 0)=

[
hdr;θR −Θ(veffγ )(R−T

R )θϕ(R
T
L)

ϕ
γh

dr;γ(0)
]
Θ(−veffθ )−hdr;θ(0)Θ(veffθ )

= (R−T
R )θϕ(R

T)ϕγ(0)
[
hdr;γ(0)−Θ(veffγ )hdr;γ(0)

]
Θ(−veffθ )−hdr;θ(0)Θ(veffθ )

= −hdr;θ(0)sgn(veffθ (0)), (157)
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where we used Θ(veffγ )(RT
L)

ϕ
γ = Θ(veffγ )(RT)ϕγ(0) and Θ(−veffγ )(RT

R)
ϕ
γ = Θ(−veffγ )(RT)ϕγ(0)

when passing from the second to the third, and from the third to the fourth line, respec-
tively. Plugging this back into (151), we finally obtain the cumulant in the partitioning
protocol cpart2 :

cpart2 =

∫
R
dθ χθ(0)|veffθ (0)|(hdr;θi∗

(0))2. (158)

This is the result anticipated in Eq. (131) of Subsec. 5.2. We again emphasize that in the
previous equation, where the counting statistics is performed at the point x = 0, the terms
caused by the interactions among normal modes cancel out. This determines the simple
expression in Eq. (158), where all the quantities are evaluated on the single ray ξ = 0,
corresponding to the homogeneous NESS of the partitioning protocol.

In order to test the non-trivial prediction of Eq. (158), we perform simulations of the
interacting hard-rod model, which we already introduced in Sec. 2.

The rods are initialized in the inhomogeneous partitioning protocol state in Eq. (85)
with only the inverse temperature Lagrange multiplier being non zero, i.e, the set C con-
tains only the energy conserved charge (and βi

0 = 0 otherwise). The initial state has
therefore the form in Eq. (17). The inverse temperatures βL,R and the rod length a there-
fore fix the rod densities ρ(βL,R) of the left (x < 0) and the right (x > 0) half. The rods’
positions are initially distributed in a symmetric interval [−Lsize/2, Lsize/2] around the
origin according to the aforementioned thermal densities ρ(βL,R), with NL = ρ(βL)Lsize/2
and NR = ρ(βR)Lsize/2 rods initially in the left and the right half, respectively. The rods’
velocities are sampled from the thermal velocity distribution, which is a Gaussian with
variance given by the corresponding inverse temperature 1/βL,R. Statistical fluctuations
are thereby solely determined by the initial sample of the positions and velocities, while the
dynamics is fully deterministic. In the numerical analysis, we focus on particle transport,
with single particle eigenvalue hθi∗ = 1, for the sake of simplicity. We count numerically
the number of rods transferred from the left to the right half over a time interval T since
the start of the dynamics. The cumulants are eventually computed by rescaling by the
time duration T and by averaging over a large number M of independent samples of the
initial rods’ distribution. The comparison between the prediction in Eq. (158) and the
value of cpart2 from the numerical simulations of the hard-rod gas is shown in Fig. 3.

From the figure we can see that the numerical data deviate from the Euler-scale pre-
diction for short times. This is caused by the fact, cf. the discussion after Eq. (17) in
Subsec. 2.1, that the initial state does not show large wavelengths variations. Corrections
coming from the microscopic nature of the initial state, on the one hand, cause the nu-
merical results to deviate from the Euler-scale prediction (158) at short times. At long
times, however, the partitioning protocol initial state quickly relaxes to a smoothly varying
state exhibiting large scale variations and the Euler-scale prediction is recovered with an
excellent precision. The discrepancy between Eq. (158) and the numerical data, at long
times T ∈ [10, 15] in the inset of Fig. 3, is, indeed, observable only on the fourth decimal
digit and it is well within the statistical uncertainty bars. The latter are computed by
propagating the statistical uncertainty of the computed mean transferred particle number
(and powers thereof) as detailed in Appendix I.

We emphasize that the prediction in Eq. (158), with the comparison with the nu-
merical simulations in Fig. 3, represents, to our knowledge, the first result in integrable
models for cumulants evaluated over inhomogeneous and non-stationary states, such as
the partitioning protocol state (17). For integrable systems, as a matter of fact, results
for the cumulants were so far limited to the simpler case of homogeneous and station-
ary states, such as Eq. (128) and (129) for the NESS emerging at long times from the
partitioning protocol, as shown in Ref. [21]. We also checked that Eq. (158) is obtained
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Figure 3: Second cumulant in the partitioning protocol of the hard-rod gas.
The figure displays an excellent agreement between the numerical simulations and the
BMFT prediction. The latter for the second cumulant cpart2 of the particle current is
given by Eq. (158) with hθi∗ = 1 (red solid line). The numerical data are obtained by
computing the particle number second cumulant rescaled by the time T (blue points with
the corresponding statistical uncertainties’ bars). In the figure T ∈ [0.2, 15]. In the inset,
the data at long times, T ∈ [10, 15], are zoomed in to highlight the excellent agreement
therein between the BMFT prediction and the numerical simulations. The initial rods’
distribution present a step at x = 0 in the inverse temperature βl = 0.1 (x < 0) and
βr = 10 (x > 0). The rod length is a = 0.2, the initial length Lsize where the rods are
distributed is Lsize = 105, the number of rods initially on the left and right sides are
NL = 42610 and NR = 6007, respectively. A number M = 8.8 × 107 of independent
statistical samples has been used.

within the inhomogeneous version of the BFT theory. The numerical analysis of Fig. 3
thus also provides the first numerical confirmation of the inhomogeneous BFT, at least
for the cumulants on the ray ξ = 0 in the partitioning protocol. In more general cases the
inhomogeneous BFT requires additional checks since it does not assume any long-range
correlation on equal-time correlation functions. In passing, we mention that at interme-
diate times, T ∈ [4, 10] in the Figure, the numerical data are consistent with a power-law
relaxation to the Euler-scale prediction as a function time. This behavior might be related
to diffusive sub-leading, i.e., O(

√
ℓ), corrections to the BMFT action in Eq. (46) (see also

the discussion in Sec. 3.3). This effect goes therefore beyond the scope of the present
manuscript and its analysis is left for future investigations.

5.5 Dynamical correlation functions and universal long-range correla-
tions

We follow here the analysis of Subsec. 4.4. The action Sq̂i1 ,q̂i2
(x1, t1;x2, t2) whose saddle

point characterises the Euler scale dynamical correlation function is (cf. Eq. (96))

Scorr[ρ,H] := Fcorr[ρ] +

∫
S
dtdxHθ(x, t)(∂tρθ + ∂xjθ[ρ]), (159)

where Fcorr[ρ] = F [ρ(·, 0)]− (λ1h
θ
i1
ρθ(x1, t1)+λ2h

θ
i2
ρθ(x2, t2)). Following the same reason-

ing in the generic case, the set of MFT equations are given in Eq. (98), which for integrable
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systems read as

βθ(x, 0)− βθ
ini(x) +Hθ(x, 0) = 0, (160a)

Hθ(x, T ) = 0, (160b)

∂tβ
θ + A θ

ϕ ∂xβ
ϕ = 0, (160c)

∂tH
θ + A θ

ϕ ∂xH
ϕ + λhθi1δ(x− x1)δ(t− t1) = 0.

(160d)

The correlator is then given from Eqs. (97) and (148) by

Sq̂i1 ,q̂i2
(x1, t1;x2, t2) = − [(hi2)

dr;θχθ∂λϵ
θ](x2, t2)

∣∣∣
λ=0

. (161)

As in the case of the current fluctuations, let us derive the initial condition given in a
self-consistent way. Integrating both sides of the equation for Hθ(x, t) over [t1 − ε, t1 + ε],
we get

Hθ(x, t1 + ε)−Hθ(x, t1 − ε) = −λhθi1δ(x− x1). (162)

From the boundary condition Hθ(x, T ) = 0 it is clear that Hθ(x, t) = 0 for t > t1, hence we
obtain Hθ(x, t1−ε) = λhθi1δ(x−x1). In order to obtain the full time profile of Hθ(x, t), one

has to first move to the normal modes and invoke Gθ(x, t) = Gθ(Uθ(x, t; t1), t1), obtaining

Gθ(x, t) = λ
(
hdr;θ(x1, t1)δ(Uθ(x, t; t1)−x1)− ∂x1h

dr;θ(x1, t1)Θ(Uθ(x, t; t1)−x1)
)
Θ(t1− t),

(163)
where we defined h := hi1 . In particular, at time t = 0 we get

Gθ(x, 0) = λ
(
hdr;θ(x1, t1)

δ(x− uθ(x1, t1))

∂Uθ(uθ(x1, t1), 0; t1)
− ∂x1h

dr;θ(x1, t1)Θ(x− uθ(x1, t1))
)
, (164)

where we used t1 > 0 and x1 = Uθ(uθ(x1, t1), 0; t1). Notice that in Eqs. (163) and (164) we
have set the additive constant Gθ(−∞, t) to zero without loss of generality for the same
reason as after Eq. (143). In the previous equation, the derivative ∂Uθ(uθ(x1, t1), 0; t1) is
taken with respect to uθ(x1, t1). Transforming back to Hθ, one observes that the terms
can be reorganised nicely, which yields the following βθ(x, 0):

βθ(x, 0) = βθ
ini(x) + λ∂x1

(
(RT)θϕ(x1, t1)h

dr;ϕ(x1, t1)Θ(x− uϕ)
)
, (165)

where uϕ := uϕ(x1, t1). See the Appendix H.1 for the full profile of ∂λϵ
θ(x, t) at λ = 0 in

Eq. (229).
Before making a crucial observation in the inhomogeneous case, let us compute the

correlator for the homogeneous initial condition. Using (165), we have at λ = 0

∂λϵ
θ(x2, t2) = ∂λuθ∂y ϵθ(y, 0)

∣∣∣
y=uθ

+ (∂λϵ)(uθ, 0) = −(hi1)
dr;θδ(x2 − x1 − veffθ (t2 − t1)),

(166)

with uθ = uθ(x2, t2) in the previous equation. From Eq. (166), one immediately has

Sq̂i1 ,q̂i2
(x1, t1;x2, t2) = (hi1)

dr;θχθδ(x2 − x1 − veffθ (t2 − t1))(hi2)
dr;θ. (167)

This is precisely what we expect. In particular note that on the same time slice t1 = t2 = t,
the correlator is simply given by the local covariance matrix, i.e., Sq̂i1 ,q̂i2

(x1, t1;x2, t2) =

Ci1i2δ(x1 − x2) where Ci1i2 := (hi1)
dr;θχθ(hi2)

dr;θ.
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Next let us evaluate Sq̂i1 ,q̂i2
(x1, t;x2, t) with respect to an inhomogeneous initial con-

dition. To be more precise, it takes the following form:

Sq̂i1 ,q̂i2
(x1, t;x2, t) = Ci1i2(x1, t)δ(x1 − x2) + Ei1i2(x1, x2; t), (168)

where Ci1i2(x1, t) is the local covariance matrix, while Ei1i2(x1, x2; t) is a function that
goes to zero when |x1 − x2| ≫ 1 and it accounts for Euler-scaled long-range correlations.
The exact expression of Ei1i2 (see again Appendix H.1 for the details of the calculation)
can be obtained by first solving Eq. (229) self-consistently to obtain ∂λϵ

θ(x2, t)
∣∣
λ=0

and
plugging it into (161).

The existence of the long-range correlations can be in fact already inferred in the initial
condition (164). Namely, it is readily seen that the first term in the bracket amounts to the
local equilibrium correlator, while the second term gives long-range correlations. A phys-
ical interpretation of such long-range correlations is clear: two normal modes, which can
be identified with two particle-hole excitations [87], retain memories of their scattering, as
their trajectories would be severely affected by the density landscape around the position
where the scattering took place. The scattering picture also makes it evident that the fol-
lowing three conditions are needed for long-range correlations to be supported: interaction,
inhomogeneity, and multiple conservation laws. Indeed, were the system to have just a
single conservation law, the rotation matrix R would be trivialised, making the long-range
contribution in (164) vanish. The first two conditions also ensure that ∂x1h

dr;θ(x1, t1) has
a non-zero value at λ = 0, which implies that it contributes in ∂λϵ

θ(x2, t1)
∣∣
λ=0

.
In order to verify our predictions, we computed the dynamical correlation functions

Sq̂0,q̂0(x, t; 0, t) and Sq̂0,q̂0(x, t;−x, t) for the hard-rod model and we compared the results
with molecular dynamics simulations. In particular, we looked into two initial conditions:
two-modes bump-release and the partitioning protocol. In the latter, we implement the
very same inverse temperature partitioning initial condition that we used in Subsec. 5.4
for the calculation of the second cumulant cpart2 . It is worth to emphasize that in this case,
one has a continuum of normal modes since the velocity distribution is a Gaussian with
variance given by the inverse temperature. In the former, instead, the rods are released at
time t = 0 from the Gaussian density bump profile (sketched in the lower band of Fig. 1(a)
with q̂0 the particle density)

⟨q̂0(x, 0)⟩ℓ =
1 + 3e−(x/ℓ)2

3 + 3e−(x/ℓ)2
∈ [1/3, 2/3]. (169)

We consider the case where rods’ velocities can only take two values v = ±1 with the
same probability. In this case, therefore, the velocity distribution is supported on two
delta functions and one has a discrete set of velocities and, consequently, normal modes.
This choice of the velocity distribution is not only a drastic simplification for analytic
computations, but it also makes the existence of long-range correlations more evident.
According to the aforementioned scattering interpretation of long-range correlations, the
presence of a continuum set of normal modes would, indeed, cause correlations to spread
among all the normal modes through scattering events among all the rods’ velocities. This
is expected to make long-range correlations small and barely numerically detectable. In the
presence of two normal modes only, on the contrary, scattering events necessarily concern
rods with the opposite velocities +v and −v and the long-range correlations between the
two associated modes are enhanced. This makes also convenient to compute correlations
numerically by reducing the source of statistical error.

In Fig. 4, we report the comparison between the BMFT prediction in Eqs. (132)-(138)
and the hard-rod simulations for the correlator Sq̂0,q̂0(x, t;−x, t). The analysis for the
correlator Sq̂0,q̂0(x, t; 0, t) from the same initial state (169) is reported in Fig. (1) of the
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Figure 4: Connected correlations from a bump release of the hard-rod gas. The
figure shows the rod-density equal-time connected correlation function Sq̂0,q̂0(x, t;−x, t)
evaluated at the macroscopic time t = 0.5 as a function of the macroscopic space coor-
dinate x. The initial state is the Gaussian density bump in Eq. (169). Also in this case,
the numerical results clearly show the existence of long-range correlations, also in this
case of order 10−2, with an evident collapse of the numerical data with respect to the
macroscopic length scale ℓ = 250, 500 and 1000. The theoretical prediction from BMFT
(red points) excellently predict the long-range correlations values, the discrepancies with
the numerical data being within the uncertainties’ bars. The parameters used in the nu-
merical simulations are rod length a = 1 and two possible and equally likely values of the
rods’ velocities v = ±1. One has M = 9.216 · 108, 2.1504 · 109 and 1.536 · 109 independent
statistical samples for the simulations at the scales ℓ = 250, 500 and 1000, respectively.
We shifted the data corresponding to the scales ℓ = 250 and 1000 by ±0.04 for the sake
of illustration purposes.

companion manuscript [24]. These are the first results showing the existence of long-range
Euler-scaled correlations in integrable models. We report numerical data for three different
scales ℓ = 250, 500 and 1000. The simulations, as in the case discussed in Subsec. 5.4 for
cpart2 , are done in infinite volume, with the rods initially distributed in a symmetric interval
[−Lsize, Lsize] around the origin, with Lsize = 10ℓ. The number N of rods used in the

simulations is therefore fixed by the initial density and Lsize as N =
∫ Lsize

−Lsize
dx ⟨q̂0(x, 0)⟩ℓ.

In particular, we have N = 2700, 5000 and 104 rods for the simulations at the scales ℓ =
250, 500 and 1000, respectively. The deterministic hard rod evolution from this fluctuating
initial condition is then implemented. Equal-time correlation functions are obtained by
performing the fluid-cell averaging as per Eq. (35), with the fluid cell length L = 0.05ℓ,
i.e., upon taking the Euler-scaling limit. The numerical estimate for the correlator is
eventually obtained by averaging over a large number M of independent realizations of
the initial rods’ configuration. A number M = 1.2288 · 109, 2.1504 · 109 and 2.1504 · 109
of independent statistical samples has been taken in Fig. (1) of Ref. [24] for the data
at the scales ℓ = 250, 500 and 1000, respectively. In the case of Fig. 4, the number
of samples taken is reported in the corresponding caption. The collapse of the data as
a function of ℓ is convincing, with the tiny differences among the different scales fully
within the uncertainties’ bars. This result remarkably confirms, at the numerical level, the
existence of Euler-scale correlations, i.e., correlations developing over times t and space
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regions x proportional to ℓ, with an amplitude decaying as ℓ−1. Moreover, the BMFT
result in Eqs. (132)-(138) particularized to the hard-rod model predicts the value of such
correlations with a very good agreement, despite of the small 10−2 order of magnitude
of the long-range correlations. The largest difference between the BMFT prediction and
the numerical result is, indeed, observable on the third decimal digit and it is always fully
within the statistical uncertainties’ bars. The latter are computed according to the same
method used in Subsec. 5.4 for cpart2 (see the Appendix I for the details). Our numerical
analysis thereby firmly corroborate the existence of long-range correlations in interacting
inhomogeneous fluids, and at the same time, the power of the BMFT in quantitatively
predicting this effect.

In the case of the partitioning protocol, the initial step is chosen in the very same way
as for the calculation of cpart2 in Fig. 3. In particular, we consider the case of a step initial
inverse temperature profile βi

ini(x) in Eq. (85) (again with the single multiplier associated
to the energy conserved charge being non-zero). The initial density profile therefore shows
a discontinuity at x = 0 as well, with ρ(βL) (ρ(βR)) the density for x < 0 (x > 0). Since
the partitioning protocol state is scale invariant, the numerical data for Sq̂0,q̂0(x, t; 0, t) and
Sq̂0,q̂0(x, t;−x, t) are obtained by performing the fluid-cell averaging in Eq. (35) with the
scale ℓ = 300 taken as the microscopic-simulation time. We have specifically computed
both the equal-time correlators Sq̂0,q̂0(x, 1; 0, 1) and Sq̂0,q̂0(x, 1;−x, 1) at the macroscopic
time t = 1 for x ∈ [−3,−1], for the same set of parameters in Fig. 3. We average, in this
case, over M = 109 independent realizations of the initial condition. Also in this case,
we numerically observe the existence of long-range correlations of order 10−2. This shows
that the presence of long-range correlations, caused by the emission of normal modes in
the past, is a robust phenomena present in different physically relevant out of equilibrium
scenarios. Crucially, the BMFT prediction of the correlator, evaluated from the special-
ization of Eqs. (132)-(138) to the partitioning initial state (see Sec. H.2 of the Appendix),
gives values of order 10−6. These values are no way compatible with the result from the
numerical analysis, whose statistical uncertainties are of order 10−3. The physical inter-
pretation of this discrepancies is clear as the partitioning protocol state does not show
large-scale variations. Microscopic correlations from the initial sharp inhomogeneity are
therefore produced at early times in addition to the Euler-scaled hydrodynamic correla-
tions discussed so far. These microscopic contributions to correlations, since are caused
by normal modes emitted in the past, do not vanish at long times, despite the partitioning
state rapidly relaxing to a large-wavelength state. This is in stark contrast to the cumulant
analysis of Subsec. 5.4, where we found that the initial microscopic contributions vanish at
long times. Our results further show that the microscopic, short-time, contribution to the
correlations is predominant, causing the numerically observed values to be much larger
than the BMFT prediction.

In all the cases where the initial state displays, on the contrary, long wavelengths vari-
ations (such as in the bump release protocol discussed previously), microscopic early time
contributions to the correlations are suppressed. Only Euler-scaled, universal, correlations
are therefore present. The latter are quantitatively predicted by our BMFT.

6 Conclusion and Outlook

In this manuscript we thoroughly discussed and further elaborated the results of the com-
panion work [24]. We extended the conventional diffusive MFT to describe the physics
controlled by rare but significant fluctuations, such as large deviations and the dynamical
correlation functions, at the Euler scale of hydrodynamics, in many-body systems sup-
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porting ballistic transport. The fundamental principle of the BMFT is the local relaxation
of fluctuations introduced in Sec. 3: fluctuations of mesoscopic observables (averages over
fluid cells) are encoded as classical random variables, functions of the fluctuating meso-
scopic conserved densities q(·, ·) on space-time S = R × [0, T ]. Their functional form is
entirely fixed by the maximal entropy states (Gibbs and generalised Gibbs ensembles)
of the model. This is a version of the Boltzmann-Gibbs principle of projection of lo-
cal observables onto local densities, but expressed in full generality in the context of the
Euler-scale physics. Local relaxation of fluctuations, combined with conservation laws of
the microscopic model, implies that the fluctuations in space-time originate from those
of the initial condition, as described by thermodynamics; initial fluctuations are simply
time-evolved in a deterministic way according to the Euler hydrodynamic equation. This
is a generalisation of the principle of local relaxation of averages, which is the cornerstone
of Euler hydrodynamics, to that of rare fluctuations. From this principle, the measure of
the space-time configuration of the fluctuating densities in Eq. (46) is derived. Equation
(46) is the basis of all the BMFT predictions.

The BMFT is similar in spirit to the conventional, diffusive MFT, in that it is a large-
deviation theory for space-time configurations based on an action formalism on conserved
densities. However, one cannot be obtained from the other. Instead, we conjecture in
Subsec. 3.3 a theory that describes both the ballistic and diffusive scale, where, in addition
to the ballistic scale, noise contributions are included to the currents at smaller scales. The
“zero-noise” limit of this theory, the limit where one concentrates on the ballistic scale,
recovers the BMFT; and the special case where no ballistic transport is present gives back
the conventional MFT.

The two main physical predictions of the BMFT that we focused on in this paper are
discussed in Sec. 4: the SCGF of the time-integrated current F (λ, T ) (14) in Subsecs. 4.1-
4.3, and the Euler scale correlation function Sq̂i1 ,q̂i2

(x1, t1;x2, t2) (22) in Subsecs. 4.4-4.7,
for arbitrary weakly-inhomogeneous initial state of the form (12). There are two main
observations.

One is that the existence of a time-reversal symmetry of the Euler hydrodynamics im-
ply, from the natural symmetry of the BMFT equations, the Gallavotti-Cohen fluctuation
theorem for transport in the partitioning protocol, as shown in Subsec. 4.3. This is one of
the most universal out-of-equilibrium properties of many-body systems.

Another one, explained in Subsec. 4.6 and in the companion manuscript [24], is the
existence of certain types of long-range correlations out of equilibrium. We show that
for the system to develop such long-range correlations, three conditions must be met: the
system must be interacting (nonlinear Euler hydrodynamics), it must admit more than one
conservation laws (more than one hydrodynamic velocity), and its initial condition must
be inhomogeneous (for instance, presenting large-wavelength variations). In particular,
long-range two-point correlations offer a clear way of distinguishing between interacting
and non-interacting models without the need for evaluating higher-point correlation or
response functions [22] or going to the diffusive scale [101].

The BMFT also gives access to more subtle information, such as the large-deviation
theory of fluctuations within fluid cells. It shows that, in certain situations, such fluctu-
ations are not given by those of the local maximal entropy state that corresponds to the
values of local densities solving the Euler hydrodynamics. We predict the scaled covariance
for TASEP, but further investigations would be necessary.

Importantly, only the Euler hydrodynamic data of the model – in particular the flux
Jacobian – is needed for the BMFT, and the predictions apply to any many-body sys-
tems, quantum or classical, deterministic or stochastic (so long as the hydrodynamics at
the Euler scale is nontrivial). We emphasise in particular that even in stochastic systems,
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the theory for the dynamics of fluctuations at the ballistic scale does not involve noise. In
these cases, the noise on the microscopic dynamics serves the principle of local relaxation
of fluctuations, and it stays true that fluctuations at the ballistic scale are obtained by
deterministic evolution (via the emerging Euler equation) of the initial large-scale fluctu-
ations.

Having these general predictions from the BMFT at our disposal, we focused on in-
tegrable systems, where a much more elaborate analysis can be carried out than in non-
integrable systems. We relied heavily on the machinery of GHD.

We first computed cumulants associated with current fluctuations both in homogeneous
and step initial conditions, all of which perfectly agreed with hard-rods simulations.

We next computed the Euler-scale dynamical correlation function from general long-
wavelength initial condition. We specialised these to two inhomogeneous initial conditions:
the bump release and the partitioning protocol; the former is expected to be described by
the BMFT as it has smooth initial spatial variations, while the latter is generically not,
as with rough initial spatial variations, additional correlations are created by microscopic
processes, which are not universally set by Euler hydrodynamics. This turned out to indeed
be the case. For the bump release, we observed a very good agreement in Fig. 4 between
the analytic BMFT result and the numerical simulation. In the case of the partitioning
protocol, instead, disagreement is seen, with more correlations in the simulation; these are
interpreted as additional correlations that build up during the transient dynamics from
the initial step condition.

There are numerous avenues that can be pursued by applying the BMFT. One imme-
diate direction is to put the idea of local relaxation of fluctuations on a mathematically
more rigorous ground. As mentioned, this idea is closely related to the Boltzmann-Gibbs
principle, which in general states that, at an appropriately large scale, any fluctuating
fields that are functions of space-time can be replaced by some functional of fluctuating
density fields [26]. This statement has been proved for stochastic systems, see e.g., [27],
but it would be strongly desired to establish it also in Hamiltonian systems, and in the
generality of hydrodynamics with many conservation laws.

Another direction, along the line of further checking the validity the BMFT, is to
compute the whole large deviation function F (λ, T ) and compare it with numerical simu-
lations of classical systems, such as the hard rods. This would, moreover, allow us to verify
the equivalence between the BMFT and the homogeneous BFT beyond the perturbative
argument in Subsec. 4.2.

It would also be satisfying to reproduce our predictions for integrable systems by
focusing on analytically tractable models such as the box-ball system [102, 103] (see in
particular [43] for the exact computations of the cumulants). Concerning non-integrable
systems, such as the TASEP and anhamornic chains, wherein hyperbolicity of the hydrody-
namic system generically amounts to shocks, it is of paramount importance to investigate
large deviations and dynamical correlations using the BMFT. Within this perspective, it
would be illuminating to discern any possible qualitative differences between integrable
and non-integrable systems. It would be also interesting to work out a solvable stochastic
exclusion process with multiple species, e.g., Arndt-Heinzl-Rittenberg model [104], to see
if our predictions on the long-range correlations can be microscopically confirmed.

The BMFT as formulated here can also be extended to describe ballistic large devi-
ations more generally, such as under time evolution with long-wavelength, low-frequency
variations of external fields and coupling parameters [105–107], and with initial condi-
tions that already include long-range correlations such as those appearing after quantum
quenches [95,108,109]. As suggested in [20], ballistic fluctuations are connected to objects
called “twist fields”, which have many interesting applications, including for the study of
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entanglement [110]; this is another area where the BMFT may offer new insight.
It is also tempting to go beyond the BMFT by including the subleading corrections in

the measure as in Subsec. 3.3, in particular (63). Importantly, the onset to the stationary
value of cpart2 observed in Fig. 3 would be captured by the BMFT with diffusive correc-
tions. More interestingly, we should study the cases where subleading corrections to the
ballistic transport are superdiffusive. In such a situation one can try to incorporate these
corrections perturbatively, which amounts to the inclusion of fluctuations around the sad-
dle point. Such fluctuations are generally controlled by the determinant of the Hessian of
the action, which tantalisingly suggests a connection with determinantal structures that
are often found in systems that belong to the KPZ universality class [111]. We also assert
that the BMFT with diffusive corrections applied to spin transport in the gapped and
isotropic XXZ spin-1/2 chain might shed some light on the recently discovered apparent
breakdown of large-deviation principles in the model [112–114].

Another promissing direction is to generalise the idea of the (B)MFT to study the
dynamics that is strongly influenced by quantum fluctuations. As we have seen, the
underlying idea of the BMFT is the propagation of initial fluctuations, which are, in
the present case, dominated by the thermal ones; quantum fluctuations are in general
controlled by different scales. We would need to combine the ideas of quantum GHD [115]
with the (B)MFT path-integral formalism.

Finally, some of the predictions from the BMFT, e.g., the exact cumulant (158), could
be observed in the state-of-the-art cold atom experiments. Indeed, in a recent experiment
[116], the full counting statistics of spin transport in the isotropic XXZ spin-1/2 chain was
experimentally studied using a quantum gas microscope.
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A The measure for the initial state

In this section we derive the generating function Eq. (44) for the Euler-scale equal-time cor-
relations of conserved densities for the initial state (12) (generalising (16) to x-dependent
parameter λ(x)). We write

〈
exp

∫
R
dxλi(x/ℓ)q̂i(x)

〉
ℓ

=
µ
[
exp ℓ

∫
R dx (λi(x)− βi

ini(x))q̂i(ℓx)
]

µ
[
exp−ℓ

∫
R dxβi

ini(x)q̂i(ℓx)
] , (170)
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where all charge densities are evaluated at time 0. We then apply δ
(
ℓ−1 log •

)
/δλi(x) on

this expression, in the limit ℓ → ∞:

δ

δλi(x)
lim
ℓ→∞

ℓ−1 log

〈
exp

∫
R
dxλi(x/ℓ)q̂i(x)

〉
ℓ

= ⟨q̂i(ℓx)⟩ℓ = qi[βini(x)− λ(x)]. (171)

In the quantum case, this last calculation must be argued for more carefully because
of non-vanishing commutation relations. We write for instance ℓ

∫
R dxβi(x)q̂i(ℓx) =

ℓ
∫
R dxβi(x)qi(ℓx) = L

∑
k∈Z β

i(xk)qi(ℓxk) where the sum is over the fluid cell at posi-
tions xk = kL/ℓ and of size L/ℓ (in macroscopic coordinates), and here we take fluid
cell averaging in space only. Because the fluid cells are large, by locality of the densities,
commutators vanish. For neighbouring cells, the only nontrivial case, the calculation is as
follows

[qi(ℓxk), qj(ℓxk+1)] =
1

L2

∫ L

0
dy

∫ L

0
dz [q̂i(ℓxk + y), q̂j(ℓxk + z + L)]

=
1

L2

∫ L

L−ℓmicro

dy

∫ ℓmicro

0
dz [q̂i(ℓxk + y), q̂j(ℓxk + z + L)],

(172)

where we used the fact that commutators of local observables are nonzero only at mi-
croscopic distances. Therefore ||[qi(ℓxk), qi(ℓxk+1)]|| ≤ 2ℓ2micro/L

2 ||q̂i|| ||q̂j || → 0. The
variables qi(ℓxk) are commuting macroscopic variables in the sense introduced by von
Neumann in the context of his quantum ergodicity theorem (see, e.g., [84]).

From (171) and the condition at λ(x) = 0, and from the definition of the free energy
f [β], we deduce that〈

exp

∫
R
dxλi(x/ℓ)q̂i(x)

〉
ℓ

≍ exp ℓ

(∫
R
dx
(
f [β

ini
(x)]− f [β

ini
(x)− λ(x)]

))
. (173)

This shows (44).

B Thermodynamics of hard-rods system

The hard-rods model is a classical many-body system, describing a gas of identical rods
(we set the rods’ mass to 1) with length a. The rods propagate freely until they experience
elastic pairwise collisions, where the velocities get exchanged. The system has an infinite
number of conservation laws labelled by the velocities θ and hence is integrable. The
hard-rods system occupies a vital position amongst integrable systems from the viewpoint
of GHD. This is partly because one of the key insights offered by GHD is that, on the
Euler scale, a fluid of integrable systems can be thought of as a gas of tracer particles
of hard-rods (with velocity-dependent jumps) [28, 76]. Here, velocity tracers are quasi-
particles assigned to each rod, which propagate along straight line trajectories (in the
space-time diagram) interspersed with jumps of length a at each collision. The single
particle eigenvalue of the energy, Eθ, momentum, pθ, and particle number, Nθ, are the
ones of a classical Galilean particle

Eθ =
θ2

2
, pθ = θ, Nθ = 1. (174)

The scattering phase shift equals (we follow the notation convention of Ref. [28])

T θ
ϕ = −a, (175)
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which amounts to the following integral equation for the pseudo-energy (124)

ϵθ = βθ + a

∫
R

dϕ

2π
exp
(
−ϵϕ

)
, (176)

where we used nθ = e−ϵθ/(2π) in hard-rods. Thanks to this particularly simple form of
the phase shift, the description of hard-rods is substantially simplified. For instance, the
dressing operation simply gives, for any aθ,

adr;θ = aθ − a(1− aρ)

∫
R
dϕnϕa

ϕ, (177)

where the density of rods satisfies ρ/ρtot =
∫
R dϕnϕ with ρtot := 1− aρ. Accordingly, the

effective velocity reads

veffθ =
θ − aj

ρtot
, (178)

where j := ρtot
∫
R dϕϕnϕ. A simplification also occurs for the characteristics Uθ(x, t; s),

which is now determined by∫ Uθ(x,t;s)

−∞
dy ρtot(y, s) + (θ − aj−)(t− s)=

∫ x

−∞
dy ρtot(y, t), (179)

where j− = limx→−∞ j(x, 0).

C Hydrodynamic response theory

In this section we shall review the basics of the hydrodynamic response theory, and in
particular articulate under which circumstances it is valid. The underlying idea of the
hydrodynamic response theory is that an initial local entropy-maximised state (12) prop-
agates in time while keeping its form intact, and that perturbations of this state generate
Euler-scale correlation functions.

Suppose the system is initially in a local entropy-maximised state labelled by La-
grange multipliers βj(x, 0) = βj

ini(x). We then let the system evolve in time. According
to Euler hydrodynamics, βj(x, t) satisfy (11). In order to access dynamical correlation
functions, the insertion of a mesoscopic (fluid-cell averaged) conserved density qi1(x1, t1)
is obtained by performing a small perturbation of the state at the space-time (x1, t1):
βi1(x1, t1) 7→ βi1(x1, t1) + δβi1(x1, t1). The way the Euler hydrodynamic solution changes
for a (possibly different) conserved density qi2(x2, t2), at a later time t2 > t1, gives
the correlation between qi1(x1, t1) and qi2(x2, t2). A similar principle holds for higher-
point functions: for the n-point Euler-scale function, one looks at the way the Euler-
scale (n − 1)-point function Sq̂i2 ,...,q̂in

(x2, t2; · · · ;xn, tn) changes under the perturbation

βi1(x1, t1) 7→ βi1(x1, t1) + δβi1(x1, t1); this is referred to as nonlinear response as, by
induction, it requires focusing on the (n − 1)th power of perturbations of the original
hydrodynamic solution.

Thus, the two-point function Sq̂i1 ,q̂i2
(x1, t1;x2, t2), according to the hydrodynamic re-

sponse theory, is given by

Sq̂i1 ,q̂i2
(x1, t1;x2, t2) = − δqi2(x2, t2)

δβi1(x1, t1)
. (180)

This means that qi2(x2, t2) is evaluated in the state which is, at t1, described by

βi(x, t1)
∣∣∣
linear response

= βi(x, t1)− λδ i
i1δ(x− x1), (181)
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and that the derivative is with respect to λ, after which λ = 0 is taken. This idea
is generalised to perturbations of the hydrodynamic solution o(x2, t2) for an arbitrary
observable ô(x2, t2), by considering o(x2, t2) as a function of qi(x2, t2)’s and using the
chain rule for differentiation. The idea is further generalised, somewhat formally, by
assuming that for every observable ô(x, t), there is an associated Lagrange multiplier βô

which we can perturb in order to insert that observable.
These response principles naturally lead to (26) and (28). But in addition, as men-

tioned, implicit in response theory is that the form (12) stays valid for all times – this
is how one can justify modifying the parameter βi1(x1, t1), at time t1, in order to insert
qi1(x1, t1) for instance. And thus, in particular, as a direct consequence of (181), the ini-
tial condition for (28) is the delta-function form Sq̂i,q̂j (x1, t1;x2, t1) = Cij(x1, t1)δ(x1−x2),
which in general disagrees with the long-range correlations found in the BMFT if t1 > 0.

We will now see how the linear-response principles are in fact in disagreement with the
BMFT, even though (26) and (28) are correct.

In order to see this, we recall that in the BMFT, we consider, much like in linear
response theory, Lagrange multipliers βi(x, t) that evolve according to the Euler equation.
The insertion of a conserved density qi1(x1, t1) is also obtained by modifying the state
appropriately. However, we point out that the modification is not given by (181). Indeed,
the result (110) states that the Lagrange multipliers at time t1 have the form

βi(x, t1)
∣∣∣
BMFT

=
(
Uλ(t1, 0)βini

)i
(x)− λδ i

i1δ(x− x1). (182)

Recall that Uλ(t, t
′) is the linear evolution operator that transports a quantity along the

λ-dependent fluid of the BMFT, Eqs. (107) and (108). Note also that at λ = 0 the BMFT
simply gives for βi(x, t) the Euler hydrodynamics from the initial state βi

ini(x). Thus we
can write

βi(x, t1) =
(
U0(t1, 0)βini

)i
(x). (183)

We can now see clearly the difference between the linear response (181) and the BMFT

(182): it lies in the first term, which is
(
U0(t1, 0)βini

)i
(x) in the linear response theory,

and
(
Uλ(t1, 0)βini

)i
(x) in the BMFT.

Therefore, linear response and the BMFT agree for the Euler-scale two-point functions
only in non-interacting models (in which case Uλ(t, t

′) is independent of λ), at t1 = 0 (as
Uλ(0, 0) = 1), or in homogeneous states (as Uλ(t1, 0)βini = βini). This further suggests
that nonlinear response theory is incorrect (higher-point functions are not given by linear
response principles) even in homogeneous states, if the model is interacting and at least two
of the times are greater than zero. Indeed, as explained above, nonlinear response theory
is obtained from considering two-point functions in inhomogeneous, perturbed states.

D The inhomogeneous ballistic fluctuation theory

For ease of notation, here and in the rest of the appendices, we will occasionally use “dr”
and “eff” as subscripts. We will use upper and lower indices for uθ, rθ, T , and veff liberally
too.

The inhomogeneous BFT, developed in Ref. [23], was devised to generalise the BFT
to long-wavelength inhomogeneous initial states, and built on the linear response theory
developed in [19] for integrable systems, which in particular assumes (180). The inhomoge-
neous BFT turns out to predict that there are in general two contributions to Euler-scaled
correlations Sq̂i,q̂j (x, t; y, t

′) (22) and cumulants cn (24) determined by a direct and an in-
direct propagator. In particular, focusing on the Euler-scaled second cumulant c2 defined
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in Eq. (24) one has

c2(T )=
2

T

∫ T

0
dt2

∫ t2

0
dt1
(
Γ(0,t1)→(0,t2)

)θ
ϕ
veff,ϕ(0, t1)h

dr,ϕ
i∗

(0, t1)χθ(0, t2)v
eff
θ (0, t2)h

dr
i∗,θ(0, t2),

(184)
where we symmetrized the two-point function as it is invariant under the exchange t1 ↔ t2.
The propagator Γ can be split, as anticipated, into the direct and indirect part as(

Γ(y,τ ′)→(x,τ)

)θ
ϕ
= δ

(
y − Uθ(x, τ, τ

′)
)
δθϕ +

(
∆(y,τ ′)→(x,τ)

)θ
ϕ
. (185)

The first term on the right hand side is the direct propagator and it depends on the
single rapidity θ whose associated normal mode propagates between the two space-time
points (y, t′) and (x, t) correlations refer to, as sketched in Fig.1b. This contribution is
present even in the simpler case of homogeneous GGE states. The indirect propagator
∆(y,τ ′)→(x,τ), instead, necessarily requires an inhomogeneous fluid background and inter-
actions among normal modes. The indirect propagator encodes the perturbation of the
trajectory of the normal mode with rapidity θ due to the interaction with normal modes
with a different rapidity ϕ, not necessarily connecting the space-time points (y, t′) and
(x, t). As a consequence, the indirect propagator depends on all the rapidities.

Before giving the expression for the indirect propagator ∆(y,τ ′)→(x,τ), we consider the
specialization of Eq. (184) to the partitioning protocol, discussed in Sec. 5.3. In this case,
as explained in the main text after Eq. (130), the state depends only the ray and therefore
equation (184) can be rewritten as

cpart2 =
2

T

∫ T

0
dt2

∫ t2

0
dt1
(
Γ(0,t1)→(0,t2)

)θ
ϕ
veff,ϕhdr,ϕi∗

χθv
eff
θ hdri∗,θ

= 2

∫ 1

0
da (Γa)

θ
ϕ v

eff,ϕhdr,ϕi∗
χθv

eff
θ hdri∗,θ, (186)

where the state-dependent functions reported without space-time arguments are meant
henceforth in this Subsection to be evaluated on the ray ξ = x/t = 0. In the second
equality, we used the scaling property of the propagator Γ(

Γ(0,ατ ′)→(ατ)

)θ
ϕ
=

1

α

(
Γ0,τ ′→0,τ

)θ
ϕ
, (187)

which is valid since the partitioning protocol initial state is invariant under space-time
rescaling transformations. We further defined Γa = Γ0,a→0,1 (omitting the space point
x = 0 for brevity), with 0 < a < t1/t2 < 1. It is immediate to evaluate the contribution

cpart,dir2 of the direct propagator in Eq. (185) to the second cumulant

cpart,dir2 = 2

∫ 1

0
daχθ(v

eff
θ hdr,θi∗

)2δ (Uθ(0, 1, a)) = χθ |veffθ | (hdr;θi∗
)2, (188)

where we used that δ (Uθ(0, 1, a)) = δ(a − 1)/|veffθ | and the regularization Θ(0) = 1/2 of
the Heaviside step function. Equation (188) is readily recognized as (158). In order to
conclude to proof of (158), we therefore need to show that the indirect propagator ∆ in
Eq. (185) gives zero contribution to cpart2 .

This requires more work as the expression of the indirect propagator ∆ is given through
an integral equation. We report the latter equation for the specific case of the partitioning
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protocol (see Refs. [19,23,31] for the general discussion) This indirect propagator satisfies

(∆a,ξ)
θ
ϕ v

eff,ϕhdr,ϕi∗
=

2π aeff,θ(Uθ(ξ, 1, a)/a)

[
[Wa,ξv

eff,θhdr,θi∗
]+

∫ ξ

−∞
dζ
(
ρtot,θ(ζ)fθ(ζ)[(∆a,ζ)

θ
ϕ v

eff,ϕhdr,ϕi∗
]
)∗dr

(ζ)

]
,

(189)

with the notation ∆(0,τ ′)→(x,τ) = τ−1∆(0,a)→(ξ,1) ≡ τ−1∆(a,ξ) from the scaling property
(187). Here and below ξ, ζ are rays, and a = t1/t2 as above (more precisely, a = t1 with
t2 = 1). In the previous equation, we denoted with h∗dr,θ(ζ) = hdr,θ(ζ)−hθ, where dressing
operation is performed with respect to the state on the ray ζ for a generic function hθ of
the rapidity. The operator Wa,ξ is defined as

[Wa,ξv
eff,θhdr,θi∗

] = −Θ
(
Uθ(ξ, 1, a)

)
(ρtot,θfθveff,θhdr,θi∗

)∗dr(0)

+

∫ ξ

−∞
dζ

ρtot,γ(ζ)nγfγ
(
T dr
)θ,γ

(ζ)veff,γhdr,γi∗

|∂γUγ(ζ, 1, a)|
∣∣∣
γ=θ∗(ζ,a)

, (190)

where Uθ∗(ζ,a)(ζ, 1, a) = 0 that is θ∗(ζ, a) is the rapidity for which the characteristic at time
1 passing by ζ, at time a passes by 0. We assumed monotonicity of the characteristic Uθ

with respect to the rapidity variable, but otherwise there is a sum over values of θ∗(ζ, a).

We have further denoted with
(
T dr
)θ,ϕ

(ζ, λ, γ) (with two upper indices to emphasize that
no rapidity integration is performed inside the ζ integral) the differential scattering kernel
dressed with respect to the state n(ζ). In Eq. (189), we have also introduced the effective
acceleration aeffθ [19], which encodes the inhomogeneity of the initial state as

aeffθ (ξ) =
∂ξnθ(ξ)

2πρθ(ξ)fθ(ξ)
=

δnθ

2πρθ(ξ)fθ(ξ)
δ(veffθ (ξ)− ξ)

(
1− ∂veffθ (ξ)

∂ξ

)
=

δnθ

2πρθ(ξ)fθ(ξ)
δ(veffθ (ξ)− ξ), (191)

in the second step we used Eq. (130) for the state nθ(ξ) in the partitioning protocol and
δnθ = nR,θ − nL,θ. Importantly, in the partitioning protocol, the effective acceleration
contains a delta function that enforces the constraint that the ray ξ must be equal to ξ∗θ
defined as

ξ∗θ : veffθ (ξ∗θ ) = ξ∗θ . (192)

The ray derivative of the effective velocity evaluated at ξ∗ accordingly vanishes

∂veffθ (ξ)

∂ξ

∣∣∣
ξ=ξ∗∗

= 0, since ∂ξv
eff
θ (ξ)ρtotθ (ξ) = (ξ − veffθ (ξ))∂ξρ

tot
θ (ξ). (193)

The last equation follows from the fact that the total density of states ρtotθ (assumed to
be strictly positive) satisfies the same GHD equation as ρθ (written in terms of the ray
ξ = x/t coordinate). We used this property in the third equality in Eq. (191).

One can see that the effective acceleration, according to its definition, vanishes when
the state n is homogeneous. In the latter case, therefore, the indirect propagator ∆
vanishes and cumulants are solely determined by the direct contribution of Eq. (185). In
this case, we, indeed, recover the prediction from the homogeneous BFT theory discussed
in the text. For the second cumulant, in particular, one has (188) in agreement with
Eq. (128). We now, however, show that for the partitioning protocol initial inhomogeneous
state the structure of the effective acceleration in (191) allows to show that the indirect
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propagator vanishes for c2(T ). Since the effective accelaration aeffθ has to be computed in
Eq. (189) along the characteristic curve Uθ(ξ, 1, a), we exploit the identity

∂Uθ(x, τ, τ ′)

∂τ ′
=

∂(τ ′Uθ(x/τ ′, τ/τ ′, 1))

∂τ ′

= Uθ(x/τ ′, τ/τ ′, 1)− x

τ ′
∂Uθ(x/τ ′, τ/τ ′, 1)

∂(x/τ ′)
− τ

τ ′
∂Uθ(x/τ ′, τ/τ ′, 1)

∂(τ/τ ′)

= veffθ (Uθ(x/τ ′, τ/τ ′, 1)), (194)

where the first equality follows from the scaling property Uθ(x, τ, τ ′) = τ ′Uθ(x/τ ′, τ/τ ′, 1)
valid for the partitioning protocol state, while in the third equality directly follows upon
differentiating with respect to τ ′ the integral equation (135) for Uθ(x, τ, τ ′). Inserting the
expression for Uθ(x/τ ′, τ/τ ′, 1) from (194) into the expression for the effective acceleration
in (190), one has that the latter can be rewritten as

aeffθ (Uθ(ξ/a, 1/a, 1)) =
1

2π
δnθ

δ(veffθ (ξ)− ξ)

ρθ(ξ)fθ(ξ)
=

1

2π
δnθ

δ(ξ − ξ∗θ )

ρθ(ξ)fθ(ξ)
, (195)

with ξ∗θ defined in (192). In order to eventually compute c2(T ) from (186) one needs to
know ∆a,ξ=0 from (189) and, therefore aeffθ (Uθ(0, 1/a, 1)). The latter readily follows from
the previous equation

aeffθ (Uθ(0, 1/a, 1)) =
1

2π
δnθ

δ(veffθ (ξ))

ρθfθ
=

1

2π
δnθ

δ(θ − θ∗)

|∂θveffθ |ρθfθ
, with veff(θ∗) = 0. (196)

The effective acceleration determining the integral equation for ∆a,ξ=0 is therefore sup-
ported only on the rapidity θ∗ such that the effective velocity veffθ on the ray ξ = 0 is
zero. Inserting the expression (196) into (189) and eventually into Eq. (186), one readily
recognizes that the indirect contribution to c2 vanishes because of effective velocity veffθ
factor appearing into the integral (186). Therefore, we conclude that c2(T ) is exactly given
by Eq. (188), which remarkably depends solely on thermodynamic quantities dependent
on the state ξ = 0. This constitutes the derivation of the result in Eq. (158) of the main
text within the inhomogeneous BFT formalism.

In order to compute higher cumulants and the whole scaled-cumulant generating func-
tion F (λ, T ) one needs to solve the inhomogeneous BFT flow equation, which describes
the flow of space-time dependent Lagrange multipliers β(x, t), in the manifold of inho-
mogeneous GGE states β(x, t) 7→ β(x, t, λ). This equation generalizes Eq. (79) to long-
wavelength initial states (12) by embodying the effect of indirect correlations among nor-
mal modes as per the indirect propagator ∆. This equation has been reported in Ref. [23]
and it relies on the results of Ref. [19] for integrable systems. As such, the inhomogeneous
BFT is at present limited to the latter class of systems, differently from its homoge-
neous counterpart in Eq. (79). We do not report the equation here as the investigation
of higher order cumulants is left for future works. Here it is sufficient to say that from
the solution of the flow equation, the SCGF F (λ, T ) in Eq. (14), is eventually retrieved

as F (λ, T ) =
∫ λ
0 dλ′ ∫ T

0 dt ji∗(0, t, λ
′)/T , with ji∗(0, t, λ

′) = ⟨ȷ̂i∗(0, 0)⟩β(0,t,λ′), which is re-

markably similar to the result from BMFT in Eq. (78).
It is here fundamental to emphasize that, given our findings about the existence of

long-range Euler-scaled correlations, the inhomogeneous version of BFT still requires more
checks. As a matter of fact, this theory is based on Eq. (180) and therefore by construction
it does not account for the long-range contribution to correlations generated by normal
modes coherently emitted at the past from the inhomogeneity (see the discussion in Ap-
pendix C). That being said, in the present manuscript, we numerically verified that the
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inhomogeneous BFT gives the correct second cumulant cpart2 in Eq. (158) for the parti-
tioning protocol on the ray ξ = x/t = 0 (see the discussion in Subsec. 5.4 of the main
text and Fig. 3). This a consequence of the fact that the contribution to current-current
correlators stemming from the correlations between normal modes in both the inhomoge-
neous BFT and the BMFT vanishes because the fluid velocity of the normal mode that
propagates along the ray ξ = 0 is zero (see Eq. (196)). The result for cpart2 provides the
first confirmation of the validity of the inhomogeneous BFT, at least for cumulants in the
partitioning protocol. The effect of the presence of long-range correlations on higher-order
cumulants and on the scaled-cumulant generating function F (λ, T ), requires, however,
a more in-depth analysis and numerical checks which would shed light on the relation
betwen the BMFT and the inhomogeneous BFT and the limits of validity of the latter.
Regarding correlations functions, instead, whenever the contribution from the long-range
Euler scaled correlations is present, we expect the BFT and the BMFT to predict different
results, the latter of which is deemed to be correct.

E Non-canonical mesoscopic fluctuations out of equilib-
rium: TASEP

The TASEP is a classical stochastic exclusion process defined on a lattice, where parti-
cles hop only towards one direction randomly, subject to hard-core exclusion [117]. Its
hydrodynamics is well-known and is given by the inviscid Burgers equation

∂tρ(x, t) + ∂x[ρ(x, t)(1− ρ(x, t))] = 0, (197)

where ρ(x, t) is the particle density. Its conjugate variable β(x, t) is then determined by
∂β/∂ρ = −1/(ρ(1 − ρ)), which yields β[ρ] = − log(ρ/(1− ρ)). The rest of the MFT
equations (98) carries over, except having only one component with the flux Jacobian
replaced by v[ρ] := 1 − 2ρ. Following the same argument as after Eq. (109) in Sub-
sec. 4.6, we have H(x, t1) = λδ(x − x1). Defining the characteristic curve U(x, t; t1) by
x = v[β(U(x, t; t1), t1)](t−t1)+U(x, t; t1) so thatH(x, t) = H(U(x, t; t1), t1), the full profile
ofH can be given byH(x, t) = λδ(U(x, t; t1)−x1). Further introducing u(x, t) := U(x, t; 0)
and invoking β(x2, t1) = β(u(x2, t1), 0), we therefore have, at λ = 0,

∂λβ(x2, t1) = (∂λβ)(u, 0) + ∂λu∂uβ =
(∂λβ)(u, 0)

1 + ∂v(u, 0)t1
, (198)

where we used ∂λu = −(t ∂βv(∂λβ)(u, 0))/(1+∂v(u, 0)t) and we denote by ∂ the derivative
of the function with respect to its spatial argument. Since (∂λβ)(u(x2, t1), 0) = −δ(x1−x2),
it turns out that the nontrivial interaction as well as the initial homogeneity amounts to
a change of the local covariance matrix rather than long-range correlations:

Sq̂0,q̂0(x1, t1;x2, t2) =
δ(x1 − x2)

1 + ∂v(u, 0)t1
C00(x1, t1), (199)

where C00[ρ] = ρ(1−ρ). Of course, it is a well-known fact that the TASEP could generically
develop shocks [118], but at least up to the time when it starts developing shocks, the above
correlation function is expected to be valid. The inevitable appearance of a shock also
prevents the correlator from having the vanishing weight when t1 → ∞. The change of
the local weight suggests an intriguing phenomenon in the TASEP, which is that the fluid
cells cannot be thought of as being described by the local Gibbs distribution e−β(x,t)Q0 ,
as the weight differs from what one obtains from this distribution, i.e., C00(x, t). Clearly

60



SciPost Physics Submission

this phenomenon persists even for other one-component systems whose hydrodynamics are
controlled by the hyperbolic equation of type ∂tρ+ f(ρ)∂xρ = 0 for an arbitrary function
f(ρ). We therefore expect that the lack of long-range correlations in systems that have
only one conservation law to be generically true.

F The MFT flow equation for current fluctuations in inte-
grable systems

The initial condition (144) allows us to write down the flow equation for ϵθ(x, t). Since
ϵθ(x, t) = ϵ(uθ(x, t), 0), we have

∂λϵ
θ(x, t) = ∂λu

θ ∂yϵ
θ(y, 0)

∣∣∣
y=uθ(x,t)

+ (∂λϵ
θ)(uθ(x, t), 0)

= λhθdr(u
θ(x, t), 0)Θ(uθ(x, t), 0) + ∂λu

θ ∂xϵ
θ(x, 0)

∣∣∣
x=uθ(x,t)

− (R−T)θα(u
θ(x, t), 0) ∂λ

[
λ(RT)αϕ(0, T )Θ(x− uϕ(0, T ))hϕdr(0, T )

]
. (200)

The treatment of ∂xϵ(x, 0) depends on the initial condition we choose. For the most of
the cases, we can simply use the boundary condition of the MFT equations and get

∂xϵ(x, 0) = λhθdr(0, 0)δ(x) + (R−T)θϕ(x, 0)∂xβ
ϕ
ini(x)− λδ(x− uθ(0, T ))hθdr(0, T ). (201)

Having a quantity whose argument is x = t = 0 could however cause problems in some
situation, such as the partitioning protocol. In such a case one needs to take a detour by
first obtaining ϵθ(x, 0) by differentiating βθ(x, 0) with respect to λ, obtaining

ϵθ(x, 0)= ϵθini(x)

+

∫ λ

0
dλ′
[
hθdr(x, 0)Θ(x)− (R−T)θα(x, 0)

× ∂λ′

(
λ′(RT)αϕ(0, T )Θ(x− uϕ(0, T ))hϕdr(0, T )

)]
,

(202)

from which one obtains ∂xϵ
θ(x, 0). Therefore the flow equation in a generic inhomogeneous

case or in the partitioning protocol is given by (200) with (201) or (202), respectively.

G Third cumulant in the homogeneous case

In this section we shall explain how one can obtain c3 using the flow equation (147). Recall
that what we have to evaluate is

c3 =
1

T

∫ ∞

0
dx

∫
R
dθ hθ∂2

λ (ρθ(x, T )− ρθ(x, 0))|λ→0 . (203)

For that, we first note

∂2
λρθ(x, t) = −∂2

λϵ
ϕ(x, t)(R−T)ϕθ(x, t)χϕ(x, t)− ∂λϵ

ϕ(x, t)∂λ((R
−T)ϕθ(x, t)χϕ(x, t)). (204)

Let us start with ∂2
λϵ

ϕ(x, t). Using (147) we have

∂2
λϵ

ϕ(x, t)
∣∣∣
λ→0

= 2
[
∂λh

ϕ
dr(0, 0)

∣∣∣
λ→0

Θ(uϕ(x, t))− ∂λh
ϕ
dr(0, T )

∣∣∣
λ→0

Θ(rϕ(x, t))
]

+ 2hϕdr

[
∂λu

ϕ(x, t)
∣∣∣
λ→0

δ(uϕ(x, t))− ∂λr
ϕ(x, t)

∣∣∣
λ→0

δ(rϕ(x, t))
]
. (205)
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Note

∂λh
ϕ
dr(0, 0)

∣∣∣
λ→0

= ∂λϵ
γ(0, 0)|λ→0

∂

∂ϵγ
hϕdr = −(T dr)ϕγnγfγhγdr ∂λϵ

γ(0, 0)|λ→0 , (206)

where we recalled that hϕdr = (R−T)ϕγhγ . Defining Θ(0) := 1/2, ∂λϵ
γ(0, 0) is simply

∂λϵ
γ(0, 0)|λ→0 = hγdr

(
1

2
−Θ(vγ)

)
= −1

2
sgn vγeffh

γ
dr. (207)

Likewise

∂λϵ
γ(0, T )|λ→0 = hγdr

(
Θ(−vγ)− 1

2

)
= −1

2
sgn vγeffh

γ
dr. (208)

Combining these we can compute the first line in (205)

2
[
∂λh

ϕ
dr(0, 0)

∣∣∣
λ→0
Θ(uϕ(x, t))− ∂λh

ϕ
dr(0, T )

∣∣∣
λ→0
Θ(rϕ(x, t))

]
=sgn vγeff(T

dr)ϕγnγfγ(h
γ
dr)

2
(
Θ(x−vϕefft)−Θ(x−vϕeff(t−T ))

)
. (209)

Next we deal with the second line in (205). For that note first

∂λr
ϕ(x, t)

∣∣∣
λ→0

(p′)ϕdr =

∫ x

−∞
dy ∂λ(p

′)ϕdr[n(y, t)]

∣∣∣∣
λ→0

−
∫ rϕ(x,t)

−∞
dy ∂λ(p

′)ϕdr[n
T (y)]

∣∣∣∣∣
λ→0

.

(210)
Furthermore∫ x

−∞
dy ∂λ(p

′)ϕdr[n(y, t)]

∣∣∣∣
λ→0

=
∂(p′)ϕdr
∂ϵγ

∫ x

−∞
dy ∂λϵ

γ [n(y, t)]|λ→0

= −∂(p′)ϕdr
∂ϵγ

hγdr

∫ x

−∞
dy
(
Θ(y − vγeff(t− T ))−Θ(y − vγefft)

)
,

(211)

and∫ rϕ(x,t)

−∞
dy ∂λ(p

′)ϕdr[n
T (y)]

∣∣∣∣∣
λ→0

= −∂(p′)ϕdr
∂ϵγ

hγdr

∫ rϕ(x,t)

−∞
dy
(
Θ(y)−Θ(y − vγeffT )

)
. (212)

Clearly ∂λr
ϕ(x, T )

∣∣
λ→0

= 0 and

∂λr
ϕ(x, 0)

∣∣∣
λ→0

= hγdr
∂

∂ϵγ
log
(
p′
)ϕ
dr

∫ x

−∞
dy
(
Θ(y) + Θ(y + vϕeffT )−Θ(y + vγeffT )−Θ(y + (vϕeff − vγeff)T )

)
,

(213)

which entails

δ(rϕ(x, 0))∂λr
ϕ(x, 0)

∣∣∣
λ→0

= hγdr
∂

∂ϵγ
log
(
p′
)ϕ
dr

(
vγeffΘ(−vγeff) + vϕγΘ(−vϕγ)− vϕΘ(−vϕeff)

)
δ(x+ vϕeffT )

= − hγdr
ρtotϕ

(T dr)ϕγχγ

(
vγeffΘ(−vγeff) + vϕγΘ(−vϕγ)− vϕeffΘ(−vϕeff)

)
δ(x+ vϕeffT ), (214)

62



SciPost Physics Submission

where vϕγ = vϕeff − vγeff . In the same way, one can also show that ∂λu
ϕ(x, 0)

∣∣
λ→0

= 0 and

δ(uϕ(x, T ))∂λu
ϕ(x, T )

∣∣∣
λ→0

= − hγdr
ρtotϕ

(T dr)ϕγχγ

(
vγeffΘ(vγeff) + vϕγΘ(vϕγ)− vϕeffΘ(vϕeff)

)
δ(x− vϕeffT ). (215)

Next we turn to the second term in (204). This is easier than the first term because we
merely need to evaluate

∂λϵ
ϕ(x, t)∂λ((R

−T)ϕθ(x, t)χϕ(x, t))
∣∣∣
λ→0

= ∂λϵ
ϕ(x, t)

∣∣∣
λ→0

∂λϵ
γ(x, t)|λ→0

∂

∂ϵγ
((R−T)ϕθχϕ)

= hϕdrh
γ
drΘ

ϕ(x, t)Θγ(x, t)
∂

∂ϵγ
((R−T)ϕθχϕ), (216)

where Θϕ(x, t) := Θ(x− vϕeff(t− T ))−Θ(x− vϕefft). Notice

∂

∂ϵγ
((R−T)ϕθχϕ)

= −χϕ(T
dr)ϕγnγfγ(R−T)γθ − (R−T)ϕθnϕfϕ(T

dr)ϕγχγ − (R−T)ϕθχϕ(1− 2nϕ)δ
ϕ
γ . (217)

Plugging this into (216), we get

∂λϵ
ϕ(x, t)∂λ((R

−T)ϕθ(x, t)χϕ(x, t))
∣∣∣
λ→0

=

− 2(R−T)γθh
ϕ
drh

γ
drχϕ(T

dr)ϕγnγfγΘϕ(x, t)Θγ(x, t)− (R−T)ϕθ(h
ϕ
dr)

2χϕ(1− 2nϕ)(Θ
ϕ(x, t))2.

(218)

Having all the relevant terms at our disposal, we are in the position to compute c3. Let
us first compute the nondiagonal contributions, which read

(R−T)γθh
ϕ
drh

γ
drχϕ(T

dr)ϕγnγfγ
1

T

∫ ∞

0
dx

×
(
− sgn vγeff

(
Θ(x− vϕeffT )−Θ(x)− (Θ(x)−Θ(x+ vϕeffT ))

)
+ 2

(
vϕeffΘ(vϕeff)− vϕγΘ(−vϕγ)− vγeffΘ(vγeff)

)
δ(x− vγeffT )

+ 2
(
vϕΘ(−vϕeff)− vϕγΘ(vϕγ)− vγeffΘ(−vγeff)

)
δ(x+ vγeffT )

+ 2(Θ(x)−Θ(x− vϕeffT ))(Θ(x)−Θ(x− vγeffT ))

− 2(Θ(x+ vϕeffT )−Θ(x))(Θ(x+ vγeffT )−Θ(x))
)
. (219)

It’s easier to work out each building block. The first one is

− 1

T
sgn vγeff

∫ ∞

0
dx
(
Θ(x− vϕeffT )−Θ(x)− (Θ(x)−Θ(x+ vϕeffT ))

)
= sgn vγeff |vδeff |.

(220)

The second one is

1

T

∫ ∞

0
dx
((

vϕeffΘ(vϕeff)−vϕγΘ(−vϕγ)−vγeffΘ(vγeff)
)
δ(x−vγeffT )

+
(
vϕeffΘ(−vϕeff)−vϕγΘ(vϕγ)−vγeffΘ(−vγeff)

)
δ(x+vγeffT )

)
=
(
vϕeffΘ(vϕeff)− vϕγΘ(−vϕγ)

)
Θ(vγeff) +

(
vϕeffΘ(−vϕeff)− vϕγΘ(vϕγ)

)
Θ(−vγeff)− vγeff .

(221)
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The third one turns out to be the same as the first one, namely

1

T

∫ ∞

0

(
(Θ(x)−Θ(x− vϕeffT ))(Θ(x)−Θ(x− vγeffT ))

− (Θ(x+ vϕeffT )−Θ(x))(Θ(x+ vγeffT )−Θ(x))
)

= Θ(vγeff)Θ(vϕ)min(vγeff , v
ϕ
eff) + Θ(−vγeff)Θ(−vϕeff)max(vγeff , v

ϕ
eff). (222)

Hence, the nondiagonal terms add up to

sgn vγeff |vδeff |+ 2
(
Θ(vγeff)Θ(vϕeff)min(vγeff , v

ϕ
eff) + Θ(−vγeff)Θ(−vϕeff)max(vγeff , v

ϕ
eff)
)

+ 2
((

vϕeffΘ(vϕeff)− vϕγΘ(−vϕγ)
)
Θ(vγeff) +

(
vϕeffΘ(−vϕeff)− vϕγΘ(vϕγ)

)
Θ(−vγeff)− vγeff

)
,

(223)

which turns out to be 3|vδeff |sgn v
γ
eff . We then have

c3 = hθ(hdr;ϕ)2
(
sϕχϕ|veffϕ |(R−T)ϕθ + 3(R−T)γθnϕfϕ|veffγ |sϕχγ(T

dr)γϕ
)

= hθ(hdr;ϕ)2
(
sϕχϕ|veffϕ |(R−T)ϕθ + 3(R−T)γθfϕ|veffγ |sϕχγ(R

−1)ϕγ − 3fϕ|veffϕ |χϕ(R
−T)ϕθ

)
= χϕ|veffϕ |hdr;ϕ

(
sϕf̃ϕ(h

dr
ϕ )2 + 3[sf(hdr)

2]drϕ

)
, (224)

which coincides with the known c3 from Ref. [21].

H Dynamical correlation functions in integrable systems

In this Appendix, we provide details on the calculations of dynamical correlation functions
from inhomogeneous states in integrable systems. In Appendix H.1, we detail the deriva-
tion of the full profile of ∂λϵ

θ(x, t), with particular emphasis on the application to equal
time correlations and hence to the appearance of Euler-scaled long-range correlations. In
the Appendix H.2, we specialize the analysis to the hard-rod model from the partitioning
protocol inhomogeneous initial state.

H.1 General cases

We start with the general formula for Sq̂i1 ,q̂i2
(x1, t1;x2, t2) evaluated with respect to an

arbitrary initial condition βini(x). Using (165) and ∂λϵ
θ(x2, t2) = ∂λu

θ∂y ϵθ(y, 0)
∣∣
y=uθ +

(∂λϵ)(u
θ, 0), the correlator is given by

Sq̂i1 ,q̂i2
(x1, t1;x2, t2) = −

∫
R
dθ hθi2(R

−T)θϕ(x2, t2)χϕ(x2, t2)∂λϵ
ϕ(x2, t2)

∣∣∣∣
λ=0

. (225)

The task therefore is to compute ∂λϵθ(x2, t2). To this end recall first that

βθ(x, 0) = βθ
ini(x)− λ

(
(RT)θϕ(x1, t1)h

ϕ
dr(x1, t1)

δ(x− uϕ(x1, t1))

∂Uϕ(uϕ(x1, t1), 0; t1)

+ ∂
(
(RT)θϕ(x1, t1)h

ϕ
dr(x1, t1)

)
Θ(x− uϕ(x1, t1))

)
. (226)

Recall that here ∂ without subscript implies that it acts as the spacial derivative with re-
spect to the space argument of a function. The previous equation implies that ∂λϵθ(x2, t2)
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satisfies

∂λϵ
θ(x2, t2)

= − hθdr(x1, t1)

∂Uθ(uθ(x1, t1), 0; t1)
δ(uθ(x2, t2)− uθ(x1, t1)) + ∂λu

θ(x2, t2)∂ϵini(u
θ(x2, t2))

+ (R−T)θϕ(u
θ(x2, t2), 0)∂

(
(RT)ϕα(x1, t1)h

α
dr(x1, t1)

)
Θ(uθ(x2, t2)− uα(x1, t1)). (227)

Note that ∂λu
θ(x, t) satisfies

∂λu
θ(x, t)ρθtot(u

θ(x, t), 0)

= −
∫ uθ(x,t)

−∞
dy ∂λρ

θ
tot(y, 0) +

∫ x

−∞
dy ∂λρ

θ
tot(y, t)

= −
∫ uθ(x,t)

−∞
dy (R−T)θϕ(y, 0)χϕ(y, 0)∂λϵ

ϕ(y, 0) +

∫ x

−∞
dy (R−T)θϕ(y, t)χϕ(y, t)∂λϵ

ϕ(y, t).

(228)

The case of equal-time correlations, i.e., t1 = t2 = t, is of particular interest. In this case
the flow equation becomes

∂λϵ
θ(x2, t) = −hθdr(x1, t)δ(x1 − x2) + ∂λu

θ(x2, t)∂ϵini(u
θ(x2, t))

+ (R−T)θϕ(u
θ(x2, t), 0)∂

(
(RT)ϕα(x1, t)h

α
dr(x1, t)

)
Θ(uθ(x2, t)− uα(x1, t)).

(229)

Clearly the first term accounts for the local covariance matrix weight Ci1i2(x1, t) that de-
pends on the local state, whereas the rest of the terms contribute to long-range correlations,
which amounts to Ei1i2(x1, t) given by Eqs. (132) and (133). To be more precise, let us
assume that ∂λϵ

θ(x2, t) takes the following form: ∂λϵ
θ(x2, t) = E0(x1, t)δ(x1 − x)+ E(x, t),

where E(x, t) is a regular function that contains no delta-function. Then plugging this
into (229) with (228), it is readily seen that E0(x1, t) has to be E0(x1, t) = −hθdr(x1, t),
and E(x, t) satisfies the integral equation (133) (together with Eqs. (134)-(138)). Since
the integral equation has the unique solution, which can also be verified numerically, the
above ansatz is justified.

H.2 Partitioning protocol in the hard-rod gas

As mentioned in the main text in Subsec. 5.5, in the partitioning protocol, the long-range
correlations have two origins: one is the same as other protocols, i.e., correlations between
normal modes, and another is due to early time dynamics controlled by non-universal
micsroscopic physics. While the latter, on the basis of the numerical analysis we carried
out, gives the dominant contribution, it is interesting to see how the former contribution
can be exactly computed in this case. To better illustrate it, let us focus on the system
of hard rods (see Appendix B) and choose the particle density for both densities in the
correlator: i1 = i2 = 0. Moreover we set x2 = 0. The flow equation (229) then reads

∂λϵ
θ(0, t) = −ρtot(0)δ(x1)− ∂λu

θ(0, t)δϵθδ(uθ(0, t))

+
1

t

(
− aρtotR δnαδ(ξ1 − ξ∗(α))ρtot(ξ1)Θ(−vθeff(0))

+
(
(R−T)θα(u

θ, 0) + aρtot(u
θ, 0)nα(ξ1)

)
ρ′tot(ξ1)Θ(uθ(0, t)− uα(x1, t))

)
,

(230)
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where δϵθ = ϵθR − ϵθL and δnθ = nθ
R − nθ

L. To proceed, we note

(R−T)θα(u
θ, 0)Θ(uθ(0, t)− uα(x1, t))

= Θ(−x1)− aρtot(u
θ, 0)nα(u

θ, 0)Θ(uθ(0, t)− uα(x1, t)), (231)

and

(nα(u
α(x1, t), 0)− nα(u

θ(0, t), 0))Θ(uθ(0, t)− uα(x1, t)) = δnαΘ(−vθeff(0))Θ(ξ∗(α)− ξ1).
(232)

Furthermore,

ρtotR ∂ξ1(ρtot(ξ1)δn
αΘ(ξ∗(α)− ξ1)) = ρtotR ∂ξ1(ρtot(ξ1)(n

α(ξ1)− nα
R))

= ρtotR ρ′(ξ1)− ρRρ
′
tot(ξ1)

= ρ′(ξ1). (233)

Using these the flow equation is now simplified to

∂λϵ
θ(0, t)

= −ρtot(0)δ(x1)− ∂λu
θ(0, t)δϵθδ(uθ(0, t)) +

1

t

(
ρ′tot(ξ1)Θ(−x1) + aρ′(ξ1)Θ(−vθeff(0))

)
.

(234)

Next we turn to the term that involves ∂λu
θ. When λ = 0 and uθ(0, t) = 0 we have,

ρtot(0)∂λu
θ(0, t) =

∫ 0

−∞
dy ∂λρtot(y, t)−

∫ 0

−∞
dy ∂λρtot(y, 0)

= −
∫ t

0
ds ∂λv

θ(0, s) = −aρtot(0)ρϕ(0)v
eff
ϕ (0)

∫ t

0
ds ∂λϵ

ϕ(0, s), (235)

which gives the full ∂λϵ
θ(0, t)

∂λϵ
θ(0, t) = −ρtot(0)δ(x1) +

1

t
Eθ(ξ1) + aδϵθδ(uθ(0, t))ρϕ(0)v

eff
ϕ (0)

∫ t

0
ds ∂λϵ

ϕ(0, s), (236)

where

Eθ(ξ1) := ρ′tot(ξ1)Θ(−x1) + aρ′(ξ1)Θ(−vθeff(0))

= aρ′(ξ1)
(
Θ(x1)Θ(−veffθ (0))−Θ(−x1)Θ(veffθ (0))

)
. (237)

The term −ρtot(0)δ(x1) on the right hand side of Eq. (236) gives from Eq. (161) the local
covariance matrix C00(0, t) weight of the delta function in (168) (see also the discussion
after Eq. (229)). The remaining terms determine the Euler-scaled long-range correlations
E00(x1, 0; t). Let us focus on this contribution and suppose x1 ̸= 0. It is then clear
that solving the integral equation (236) recursively, the term containing δ(x1), which is t-
independent, merely acquires the multiplicative factor tδ(uθ(0, t)). The latter is zero, hence
the delta-correlated term remains the same. As for the other source term 1

t Eθ(ξ1), it is
clear that the iteration truncates after the second term because veffθ∗(0) = 0. In conclusion,
we have

∂λϵ
θ(0, t) = −ρtot(0)δ(x1)+

1

t
Eθ(ξ1)+ aδϵθδ(uθ(0, t))ρϕ(0)v

eff
ϕ (0)

∫ t

0
ds

1

s
Eϕ(x1/s), (238)
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which gives

E00(x1, 0; t) = −ρtot(0)ρθ(0)

(
1

t
Eθ(ξ1) + aδϵθδ(uθ(0, t))ρϕ(0)v

eff
ϕ (0)

∫ t

0
ds

1

s
Eϕ(x1/s)

)
,

(239)
provided x1 ̸= 0. Note again that the result above does not agree with numerical simula-
tions we carried out, or to be more precise, it only gives the contribution that originates
from hydrodynamics. But as we explained in the main text, the predominant contribu-
tion to the Euler scale correlator Sq̂0,q̂0(x1, t; 0, t) in the partitioning protocol stems from
the transient physics that takes place at the early stage of the dynamics, which is not
accounted for by hydrodynamics. One can, however, try to smear out the initial step
function while keeping the asymptotic values of the distribution unchanged, in which case
the correlator from BMFT is expected to agree with numerical simulations.

I Numerics: hard-rod model simulations

In this Appendix we provide details about the numerical simulations of the hard-rod model.
For the numerical simulations with the partitioning protocol initial state, we focused on
the case where the initial state presents a jump in the inverse temperature βi

ini at x = 0:

βi
ini(x) = δiī(βLΘ(−x) + βRΘ(x)), (240)

which corresponds to the initial inhomogeneous state in Eq. (17) with the set C containing
only the energy qī conserved charge (and βi

0 = 0 otherwise). In the previous equation
ī is then the index corresponding to the energy conserved charge and the thermal state
is identified by the source term βθ

L,R = βL,Rθ
2/2 in Eq. (120). The thermal occupation

function nθ
βL,R

can be obtained by solving (176) with this source term, which turns out to

admits a closed expression (see, e.g., Ref. [21]) in terms of the Lambert functionW (z) [119]:

nθ
βL,R

=
e
−ϵθβL,R

2π
=

e−βL,Rθ2/2

2π
e−W (ad(βL,R)), (241)

where d(β) = 1/
√
2πβ. The thermal quasi-particle density ρθ,βL,R

is readily obtained from
Eq. (241) and it reads as

ρθ,βL,R
= fθ(βL,R)ρ(βL,R), (242)

where the rods spatial density ρ(β) can also be expressed solely in terms of the Lambert
function

ρ(βL,R) =
W (ad(βL,R))

a[1 +W (ad(βL,R))]
, (243)

and fθ(β) is the velocity distribution

fθ(β) =

√
βL,R
2π

e−βθ2 . (244)

From the previous equation, it is evident that for a thermal state, the rods velocity dis-
tribution is a Gaussian with variance 1/β and mean µ zero. It is also possible to consider
velocity distribution with a non zero mean simply replacing θ → θ−µ in Eq. (244), which
corresponds to a boosted thermal distribution. In the simulations we always consider the
case of µ = 0.

The numerical simulations are done in infinite volume, but the rods are initially dis-
tributed in a symmetric interval [−Lsize/2, Lsize/2] around the origin. In the numerical
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simulations, in addition to the discontinuity of the density at x = 0, there are, as a conse-
quence, two depletion zones, where the density of rods jumps to zero, which move inwards
as time elapses. The numerical results, as a consequence, deviate from the BMFT pre-
dictions in proximity of the depletion zones. The initial left ([−Lsize/2, 0]) and right half
([0, Lsize/2]) spatial distributions of rods are given in Eq. (242) with inverse temperature
βL and βR, respectively. Rods’ velocities are sampled from the Gaussian distribution in
Eq. (244) with βL for the rods initially in the left half, and with βR for the rods initially
in the right one. The number N of rods used in the simulations is then fixed by the initial
size Lsize, by the rod length a and the inverse temperatures βL,R (according to the density
ρ(βL,R) in Eq. (243)). We emphasize that stochasticity in the simulations is only due to
the initial condition according to Eqs. (240), (243) and (244), while the time evolution
is purely deterministic according to the hard-rod dynamics. Numerical results are even-
tually obtained by averaging over a large number M of independent realizations of the
rods’positions and velocities.

Regarding the cumulants’ analysis in the partitioning protocol we focus on the second
cumulant cpart2 for particle transport (single particle eigenvalue Nθ = 1 in Eq. (174)), as
explained in Subsec. 5.4 of the main text. The second cumulant cpart2 provides a nontrivial
test of the BMFT predictions as it probes fluctuations of the time-integrated particle
current Ĵ(T ) beyond the mean value, described, instead, by the first cumulant cpart1 . One
expects, in particular, higher cumulants to be more sensible to rare events with very
rapidly moving rods. As a consequence, for the numerical calculation of cpart2 , we exploit a
large initial size Lsize = 105 in order to be able to observe the Euler-scale predictions from
BMFT before the boundary effects due to the aforementioned depletion zones become
visible. The cumulant is numerically evaluated by computing the number N+ and N− of
rods on x > 0 and x < 0, respectively. We do this both at the initial time 0, getting N±(0)
and at a variable observation time T , with result N±(T ). The numerical value of cpart2

is then obtained by computing the connected average of the transferred particle charge
∆N(T ) and rescaling it by the time duration T > 0:

cpart2 (T ) = T−1
〈
∆N(T )2

〉c
= T−1(

〈
∆N(T )2

〉
− ⟨∆N(T )⟩2), (245)

with

∆N(T ) =
N+(T )−N−(T )

2
− N+(0)−N−(0)

2
. (246)

Because of the continuity equation (6), it is immediate to verify that Ĵ(T ) = ∆N(T ) and
therefore the expression for cpart2 (T) in Eq. (245) coincides with the one given in Eq. (15)
of the main text for c2(T ) in the long time limit T → ∞. The averages ⟨•⟩ in Eq. (245)
are done with respect to the initial partitioning inhomogeneous and non-stationary state
in Eqs. (240). In the numerical simulations, averages ⟨•⟩ of an observable A are computed
as the sample mean Ā over the independent realizations A(i), with i = 1, 2 . . .M , of the
initial rods’distribution as

Ā =
1

M

M∑
i=1

A(i). (247)

This applies, for instance, both to A1(T ) = ∆N(T ) and A2(T ) = ∆N(T )2 in Eq. (245).
The resulting expression obtained for cpart2 (T ) is plotted in Fig. 3 of the main text. The
statistical uncertainty U(A) on the sample mean Ā is computed as the empirical standard
deviation [120]

A = Ā± U(A), U(A) =
1√
M

√√√√ 1

M − 1

M∑
i=1

(A(i) − Ā)2, (248)
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which quantifies the dispersion of the samples Ai around the sample mean Ā. Note that
the empirical standard deviation U(A) drops as 1/

√
M as M increases as a consequence

of the central limit. For the calculation of the uncertainty on cpart2 (T ), we use the model
for the propagation of uncertainties, see, e.g., Ref. [120], which assign to cpart2 (T ) the
uncertainty U(cpart2 (T )) determined from the uncertainties U(A1,2) as follows

U(cpart2 (T )) =

N∑
i=1

∣∣∣∂cpart2 (T )

∂Ai

∣∣∣
Ai=Āi

U(Ai) =
1

T
(U(A2) + 2Ā1U(A1)). (249)

The previous equation has been used for the calculation of the error bars in Fig. 3, where
M = 8.8 · 107 samples have been used. Note that Eq. (249) leads to an excess estimation
of U(cpart2 (T )) since the contributions from the uncertainties U(A1,2) are summed in abso-
lute value and therefore the possibility of a partial compensation of the the uncertainties
U(A1,2) is a priori excluded (cf., the discussion in Ref. [120]). The error bars in Fig. 3,
which affect the third decimal digit, thereby show an excellent agreement between the
numerical result for cpart2 at long times and the BMFT prediction of Eq. (131), with the
discrepancy between the two visible only on the fourth decimal digit and utterly within
the error bars.

We conclude by reporting the formulas used for the calculation of the uncertainties’bars
in Fig. (1) of Ref. [24] and in Fig. 4. The equal-time two-point correlator Sq̂0,q̂0(x, t; 0, t)
(and analogously for Sq̂0,q̂0(x, t;−x, t)) is numerically obtained from Eq. (22) particularized
the density conserved charge q̂0

Sq̂0,q̂0(x, t; 0, t) = lim
ℓ→∞

ℓ ⟨q0(ℓx, ℓt)q0(0, ℓt)⟩cℓ , (250)

with
⟨q0(x, t)q0(0, t)⟩cℓ = ⟨q0(x, t)q0(0, t)⟩ℓ − ⟨q0(x, t)⟩ℓ ⟨q0(0, t)⟩ℓ . (251)

In the numerical simulations, the fluid cell mean in Eq. (251) is implemented as in Eq. (35),
thereby averaging only in space (see the discussion after Eq. (23) in the main text). The
terms C2((x, t)) = ⟨q0(x, t)q0(0, t)⟩ℓ, C1(x, t) = ⟨q0(x, t)⟩ℓ and C1(0, t) = ⟨q0(0, t)⟩ℓ appear-
ing on the r.h.s. of Eq. (251) are evaluated in the numerical simulations by sample mean,
as per Eq. (247). The statistical uncertainty U(Sq̂0,q̂0(x, t; 0, t)) of the connected correlator
in Eq. (250) is obtained from the uncertainties U(C2(x, t)), U(C1(x, t)) and U(C1(0, t)) as

U(Sq̂0,q̂0) =
∣∣∣∂U(Sq̂0,q̂0)

∂C2(x, t)

∣∣∣
C̄2(x,t)

U(C2(x, t))

+
∣∣∣∂U(Sq̂0,q̂0)

∂C1(x, t)

∣∣∣
C̄1(x,t)

U(C1(x, t))

+
∣∣∣∂U(Sq̂0,q̂0)

∂C1(0, t)

∣∣∣
C̄1(0,t)

U(C1(0, t)). (252)

In the previous equation we dropped the arguments of Sq̂0,q̂0(x, t; 0, t) for the sake of
brevity. From Eqs. (250) and (251) one has

U(Sq̂0,q̂0(x, t; 0, t)) = ℓ
(
U(C2(x, t)) + C̄1(0, t)U(C1(x, t)) + C̄1(x, t)U(C1(0, t))

)
. (253)

The Euler-scaling limit in Eq. (250), which requires infinite variation lengths ℓ → ∞, is
taken by considering large values of ℓ = 250, 500 and 1000. The previous equation, with
the aforementioned values for the macroscopic length scale ℓ, has been used in Fig. (1) of
Ref. [24] and in 4 to compute the uncertainties’bars.
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