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We present effective field theories for dipole symmetric topological matters that can be described
by the Chern-Simons theory. Unlike most studies using higher-rank gauge theory, we develop a
framework with both U(1) and dipole gauge fields. As a result, only the highest multipole symme-
try can support the 't Hooft anomaly. We show that with appropriate point group symmetries, the
dipolar Chern-Simons theory can exist in any dimension and, moreover, the bulk-edge correspon-
dence can depend on the boundary. As two applications, we draw an analogy between the dipole
anomaly and the torsional anomaly and generalize particle-vortex duality to dipole phase transi-
tions. All of the above are in the flat spacetime limit, but our framework is able to systematically
couple dipole symmetry to curved spacetime. Based on that, we give a proposal about anomalous
dipole hydrodynamics. Moreover, we show that the fracton-elasticity duality arises naturally from
a non-abelian Chern-Simons theory in 3D.
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1. INTRODUCTION

In recent years, there has been increasing interest among condensed matter and high energy physicists in one
family of novel phases of matter that is characterized by fractons — excitations with restricted mobility [1-5]. As
a simple example of the restricted mobility, a system with both charge/mass and dipole moment/center of mass
conservation forbids single-particle dynamics and only allows the charge to move by inserting a dipole moment. Such
kinetic constraint results in a fruitful unconventional phase of matter, including ergodicity breaking [6, 7], dipole
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condensation [8-12], and (breakdown of) dipole hydrodynamics [13-21]'. Experiment [22] shows strong evidence
about several above features making the universality class reliable. The study of fractons also triggers a new type
of symmetry, the subsystem symmetry, that only acts on a sub-dimensional manifold of the whole spacetime [23, 24]
(see also a review [25]). A continuum quantum field theory for fracton has been developed showing exotic features
like exponentially large ground-state degeneracy and UV /IR-mixing [26].

Inspired by a series of seminal works of Michael Pretko [27-29], a higher-rank gauge theory has been developed to
describe fractonic matters [30] and is used to generalize the topological Chern-Simons field theory [31-33]. However,
the higher-rank Chern-Simons theory has two major disadvantages. First, this theory requires substantial insight to
write down a gauge invariant action?, and lacks a systematic way to classify what kind of Chern-Simons terms that can
be written down based simply on the symmetries we have. Second, this theory is unable to couple to curved spacetime
consistently [34, 35], and it is unclear as to how to characterize the deviation from a gauge invariant theory on the
curved spacetime, although progress has been made recently [19, 36, 37]. The ability to define a Chern-Simons theory
on a generic spacetime reflects its topological nature, which seems to be lacking in the higher-rank Chern-Simons
theory.

In this paper, we want to study the interplay between fracton-like multipole symmetry [38] and topology by
developing a Chern-Simons theory for both the U(1) and dipole gauge fields: (A, Af), following [19]. Before moving
on, let us clarify our notations. We denote u,v = t,x,y, z,... for the physical spacetime, o, = t,x,y,z,... for
the internal spacetime, and use 4,j and a,b to indicate their spatial subspace, respectively. The n-multipole gauge
field can be written as Aj1""“", but, for our purpose, we restrict our attention to dipole symmetry. The set of gauge
fields for dipole symmetry is analogous to scalar-and-vector charge theory [39, 40], and the internal index indicates
whether it behaves as a scalar or vector under rotational symmetry. Diplole symmetry further requires a nontrivial
coupling between scalar and vector charges. Under U(1) («) and dipole (£%) gauge transformations, the two gauge
fields transform as, in the flat spacetime limit,

Au(t,2) = At ) + Dualt,z) + 0,uE" (t ), (1.1a)
Al(t,x) — ALt ) + 0,8 (L, z), (1.1b)
and we see that A, transform nontrivially under the dipole shift {*. By setting £ = —§"*0;«, they combine to form

a symmetric higher-rank gauge theory with (A, A;;), and whose gauge transformation reads A; — A; + Orar, A;; —
A;j — 0;0;0. However, we emphasize that it is unnecessary to reduce the dipole gauge theory to the higher-rank
gauge theory for the latter overshadows many properties of the original dipole gauge theory for several reasons. For
example, first, the scalar and vector charges are mixed under higher-rank gauge theory and combined to form an
effective symmetric tensor charge. This change of the underlying degrees of freedom is an unwanted feature for the
purpose of constructing an effective field theory as their transformations under rotational symmetry are altered®.
Second, the higher-rank gauge fields are unable to be expressed as differential forms. Unlike it, our set of gauge fields
is manifestly invariant under diffeomorphism and can be expressed as 1-forms: A = A,dz*, A® = A%dz". Now,
recall that the conventional Chern-Simons theory is built upon differential forms of gauge fields for a scalar charge,
our dipole gauge theory is thus better suited to generalize the Chern-Simons theory than the high-rank gauge theory.

In Section 2, we discuss the dipolar Chern-Simons theory in even spatial dimensions and its boundary ’t Hooft
anomaly. Using the dipole gauge fields, we can write down most generally in D = 2n + l-spacetime a dipolar
Chern-Simons theory
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where fq 45,4, is an invariant tensor for the underlying (discrete) rotational symmetry. The coefficient Cy, is
shown in Appendix A to be quantized for a compact dipole symmetry. From construction, the Chern-Simons term
is guaranteed to be invariant under rotational symmetry, and invariant under gauge transformations up to a total
derivative term. Interestingly, we find the dipolar Chern-Simons theory can also exist in odd spatial dimensions (see
[41]), which is impossible for conventional scalar charge Chern-Simons theory. In Section 3, we detail such construction
and study its boundary anomaly. Due to breaking continuous rotational symmetry to some discrete subgroups, we
show how the boundary anomaly depends on the direction of the boundary. This will provide a novel example where
bulk-edge correspondence displays a dependence on the boundary itself.

1 One might notice that some of them are hydrodynamics of dipole superfluid. This is because, when momentum conservation is present,
dipole symmetry must be broken [19].

2 If it is reduced from a f-term [29] in one-higher dimension, the construction of the #-term is still nontrivial.

3 For example, it was shown in [19] that the dipole current in dipole hydrodynamics will have anti-symmetric components that must
couple to the anti-symmetric part of the dipole gauge field. Such coupling is disallowed in the symmetric higher-rank gauge theory.



In Section 4, we show that the torsional anomaly in U(1) quantum Hall state can be identified as a dipole-like
anomaly. Intuitively, momentum is like a (time-reversal odd) vector charge, so it shares many similarities with dipole
symmetry. The torsional anomaly provides a mechanism to generate gapless modes in the quantum Hall state.

Conventional particle-vortex duality is captured by a mixed Chern-Simons term between dynamical and background
gauge fields. In Section 5, we generalize it to dipole phase transitions that were reported recently in [42]. We study
the mixed Chern-Simons term that incorporates either a dipole symmetry or a dipole symmetry breaking and show
how the Lifshitz theory emerges from it.

All of the above are defined in the flat spacetime limit. In Section 6, we develop effective field theories toward
a curved spacetime dipolar Chern-Simons theory. In Section 6.1, we generalize (1.2) to curved spacetime with the
help of dipole Goldstone. We then move further to consider a pure gauge theory in 3D spacetime in Section 6.2. By
treating the dipole symmetry in an equal footing as the spacetime symmetry, we arrive at a non-abelian Chern-Simons
theory following the canonical construction of topological 3D gravity [43-46]. The resulting topological field theory
is a generalized Wen-Zee term [47], and we will show that it enriches present understandings of “fracton-elasticity
duality” [48-50] (see also a review [51]).

2. DIPOLE ANOMALY IN ONE SPATIAL DIMENSION

We start by proposing a boundary anomalous theory and then search for a bulk Chern-Simons theory that cancels
the boundary anomaly.
Denote the compact phase variables for charge and dipole moment as ¢, ¢”. In d = 1, ¢* is like a scalar charge.
Under U(1) and dipole symmetry transformations, they shift by
o(x) = () + a — z€% (mod 27), (2.1a)
67(2) = 6" (x) + €°. (2.1b)

Consider a D = 1 + 1 system described by a real-time action that is invariant under the above global symmetry
2 _ En
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In the action, we did not include the kinetic part (9;¢%)? as the system is not in the symmetry broken phase; see
Section 5 for dipole symmetry breaking. The C-term, which has the first-order time derivative, will be responsible
for the anomaly in the system. The Noether current is obtained by allowing «(t,z) and £*(¢,x) to be spacetime
dependent. This leads to, to the leading order in «, &%,

0S8 = /dzx X0t p(Orax — xOE”Y) — Kp(0pd + 7)) (Opx — 20:E7) — 20017 0:E" + kO™ OE”

= / A2z JHO,o + JPO,ET, (2.3)
from which we identify the currents as

Ji=n=x8p, J®=—-K,(0.0+¢), J. =kdo,—an, J®=-200,p,—xJ. (2.4)
Notice that the dipole current jjj has a component proportional to zJ* that describes the orbital part of the dipole
moment. Now, we try to gauge the action (2.2) by adding the corresponding gauge fields A,,, Aj,. The gauged action
is given by

S[6.6%, A, 47] = 16,07~ [ &z (4, + LA

2 1 T T T X/ )2 K’n A )2
+ [ d°z §At (KA} —2CA%) + §(At — 2 AY)* — T(Az —z A, (2.5)

where the second line is some suitable counterterm. Under gauge transformations ¢ — ¢ + o — z€%, ¢* — ¢* + &7
and A, — A, + 0y, A — A7 + 0,£", the gauged action changes by

SS[A, A% a, %] = / A2z CE™ (0, AT — 8,A%). (2.6)



It is impossible to completely remove this anomalous gauge transformation by adding further local counterterms,
therefore, (2.2) encounters a 't Hooft anomaly. 't Hooft anomaly can be canceled by a bulk Chern-Simons theory.
Consider the Chern-Simons term in D = 2 + 1*

Scs|A*] = C/d3x P AL O, AL (2.7)
Suppose the action is only defined on y < 0. Under a gauge transformation, the Chern-Simons action changes by
0Scs|A*; €8] = C’/d?’x P, (£70, A7)
= C/dzw §¥e"PO, A = —6S. (2.8)

Hence, a gauge invariant theory is a sum of the Chern-Simons action (2.7) and the boundary action (2.2).
The dipolar Chern-Simons theory in (2.7) is anisotropic, i.e. it does not involve the y-dipole. If, instead, we have
an isotropic dipolar Chern-Simons theory

Ses[A”] = C / &z P AL, A (2.9)

for a = x,y, its boundary must also be anomalous in terms of the y-dipole moment ¢¥. However, since we put the
boundary at y = 0, the ¢¥ is out of the plane. This implies that if looking at the line y = 0, ¢¥ would move like
an unconstrained charge since its dipole moment can always be preserved. Therefore, the 't Hooft anomaly for the
y-dipole is identical to that for U(1) charge without dipole symmetry. Nevertheless, this out-of-plane dipole anomaly
will be important for the discussion in Section 3.

The Chern-Simons theory (2.9) has appeared in [31] in a different manner. They used higher-rank gauge fields
(A, Aij) to construct it as

SycslAi, A = C / &3z (a‘inkAf - 2Ateij8i8kA§) . (2.10)

By taking A? = 9, A; and identifying the physical with the internal spacetime, we find (2.9) reduces to (2.10). This
is consistent with the gauge fixing discussed below (1.1) in order to reduce the dipole gauge fields to the higher-rank
gauge fields. Several remarks follow. First, the way the higher-rank gauge theory is used to construct (2.10) does not
have a direct generalization to our most general Chern-Simons theory in (1.2). Second, the length (L) dimension of
each field is different in the two theories. For (2.10), they have [4;;] = L~! and [A;] = LY [31]. However, we have
[As] = [Au] = L~! and the dimensional analysis is taken with respect to the physical spacetime only. The latter

principle further indicates that [6%] = L~! and [¢°] = L® because ef, = §% is a 1-form field and z* lives in the internal
spacetime. A

The action variation (2.3) leads to a conservation of dipole current as d,,J% = 0. This is not written in the canonical
way where dipole current is not conserved (see [19]), and this is because J# contains the orbital dipoles. To have the
non-conservation of dipole current, we define the intrinsic dipole current J# = jg‘; + xJ*, and then the dipole Ward
identity changes to 9,J% = J*. Along with it is the change of the U(1) gauge field A, = /Alﬂ — x A, which then
transforms as

A, — A+ 00— 20,E° = Ay + 00" + 6,67 (2.11)

This agrees with (1.1). Now, combining (2.3) and (2.8), we obtain the anomalous equations of motion
o J* =0, (2.12a)
Oy = J* + Ce" Fy,, (2.12b)

where Fj, = 0, A7 — 0, A},
The boson action (2.2) indicates that ¢* is gapped [42]: by the change of variable ¢*' = ¢* + 0,0, the K,-term
generates a mass term for ¢, so we can set ¢ = 0, and obtain (up to higher derivative corrections)

"~ —0:9. (2.13)

4 We are informed that Leo Radzihovsky has constructed a similar Chern-Simons term for vector charge theory in an unpublished work.



This is also clear from the equation of motion (2.12b) that in the absence of the external field, we have J* ~ O(9°¢,,),
so using (2.4), we find (2.13) to the leading derivative order. Now, keeping the next-leading derivative order, we have
T 2 0, JE & 200,0%¢. Using 0, J* = 0, we arrive at the chiral equation

X0ip + 20934 = 0. (2.14)

Upon Fourier transformation, we obtain a cubic chiral mode
w=——k:. (2.15)

It was recognized that the damped anomalous chiral mode in d = 1 will flow to the Kardar-Parisi-Zhang (KPZ)
universality class [52]. To study dissipation, one needs to construct an effective field theory on a Schwinger-Keldysh
contour. This has been done recently in [15] though for different purposes. According to [15], the cubic chiral mode
would experience a quartic dissipation forming a damped mode w ~ k2 — ik%. However, nonlinearity is relevant in
d = 1. By a zeroth-order scaling analysis, the true dissipative fixed point is predicted to be w ~ k3 —ikZ with 2z ~ 7/2,
which, a priori, does not belong to the KPZ class [15]. Therefore, our dipolar Chern-Simons theory provides a concrete
example to realize the novel universality class beyond KPZ.

In the presence of dipole symmetry, the U(1) chiral anomaly is forbidden. This can be seen through both boundary
and bulk theories. The boundary chiral boson action for U(1) anomaly must take 0;¢(9,¢+ ¢*) to preserve the dipole
symmetry. According to (2.13), the anomalous charge flow is gapped and charges cannot propagate by themselves, so
such a term gives trivial dynamics at the boundary. From the perspective of the bulk, there is no gauge invariant U(1)
Chern-Simons theory under gauge transformation (1.1). For example, if U(1) gauge transformation is preserved, we
can have [ e#PA,,0,A,, but it is not dipole gauge invariant. If considering a mixed gauge interaction [ e**?(A,,d,A,—
2AM6,,37A$), it fixes the dipole gauge transformations of the first term but, at the same time, generates more terms
under both U(1) and dipole gauge transformations. This fact can already be generalized to systems that preserve
multipole symmetries, and in that case, only the highest multipole symmetry can support the 't Hooft anomaly.

3. DIPOLE ANOMALY IN TWO SPATIAL DIMENSIONS

Since U(1) Chern-Simons theory only exists in even spatial dimensions, U(1) anomaly can only occur in odd spatial
dimensions. This is no longer true for dipolar Chern-Simons theory and dipole anomaly together with an appropriate
discrete rotational symmetry. To see it, consider D = 3 + 1 spacetime, and introduce the vielbein ej;. Here, ej;
transforms as a vector under rotational symmetry. It is important to work in flat spacetime ej; = d;; such that the
vielbein is not a truly gauge field; we will come back to gauging both dipole and spacetime in Section 6.2. Combining

the two 1-forms 4;; and Af,, we can construct the following Chern-Simons theory

(e}
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where fgpe is a totally symmetric invariant tensor under a discrete rotational symmetry. In the following, we will
consider two different point group symmetries, construct bulk dipolar Chern-Simons theories, and study their corre-
sponding boundary anomalies. Note, this perspective is the inverse of that taken in Section 2.

3.1. Tetrahedral dipole anomaly

Consider a three-dimensional fluid with tetrahedral symmetry [53]. There exists a dipolar Chern-Simons term
Scs = Cr / d*z eP7 A%, ALSS fye (3.2)

with zTyz = Ezy = mi = szy = 1. While the dipolar Chern-Simons term breaks time-reversal symmetry, it does
not break parity in all three directions. By contrast, a U(1) Chern-Simons term breaks parity in every direction.

Suppose putting boundary at z = 0, the dipolar Chern-Simons theory under gauge transformation changes by

§Scs(z=0) = Cr / dtdadydz €770,,(£%9, ALSS ) = Cr / dtdady €°¢"0, AL 1, (3.3)



where capital letters I, J run over the two-dimensional boundary. Manipulating in a reverse way as Section 2, we find
the chiral boson action

Sio0°] = [ ardsdy (0107 — L2016 + 612 - Orel? 01016 5 + 5 (016 (3.4

By varying the action with respect to the boson fields and using ¢; ~ —0;¢, we arrive at the equations of motion

X0:i¢ —207(9; — 97)¢ = 0,
KO- + 2CT(0F — 82)¢ = 0. (3.5)

Upon Fourier transformation, it leads to two modes

2
o= T2 - (3.)

The two counterpropagating modes form a time-reversal pair. Since the tetrahedral group is symmetric in exchanging
x,y, z, the boundary anomaly at x = 0 or y = 0 will be similar. However, the anomaly does differ if the boundary is
located in an arbitrary direction. To see it, we rotate the invariant tensor through fT e = RY, fbcd, where RY is the
rotation matrix along y. Parametrizing the rotation matrix by #, we have

T,R _ (T,R _ ¢T,R _ ¢T,R _
zey ~— Jzyxr T Jxyz T Jxzy T COos 97
TR fTE_ _fTR_ (TR g,
T,R _ (T,R _
yrz ~ Jyzx T L. (37)
Then, the chiral boson action at z = 0 is given by
St60"] = [ atdody S0 — 7 @10+ 0r)? - Crel? 060016 S5 + 5 (0107 (33)

Varying the action, we obtain
x0:¢ — C(2cos 00 — (cosh + 1)0;)@ +2CT sin 0(92 — &ﬁ;)aﬁ =0
kOrp, + Cr(2cos 002 — (cos O + 1)8§)¢ +2CTsin00,¢, = 0. (3.9)

When 6 = 0, we recover (3.6). However, as soon as 6 # 0, the boundary modes changes, to the leading order in
wavevectors, as

201 [ kP , 0
~ B 1
w N ( ez + ki cot 5 (3.10a)
9k i
~ @kz. (3.10b)

The two modes are now chiral and break the time-reversal symmetry as well as the parity of z and z, but preserve
the parity of y. This is consistent with the rotated invariant tensor, or equivalently the rotated boundary, that the
bulk dipolar Chern-Simons theory is invariant under the parity of y.

3.2. Triangular dipole anomaly
Consider a two-dimensional (z-y plane) triangular symmetry [54, 55]. There exists a dipolar Chern-Simons term

Scs =Ca / x P AL, ALSE f5 (3.11)

with f be = 0axOp, + 0ayof,, where 0¥ are three Pauli matrices. There is another invariant tensor f e = 0ax0f, —
day0i, corresponding to rotating the triangle by 180 degrees, and the two invariant tensors are related by €4q fab:: = fdAbc.
This dipolar Chern- Simons term breaks time-reversal symmetry and parity of x and z but preserves the parity of y
due to the oddity of f e under y — —y.



Let us first consider putting a boundary at y = 0. Under the gauge transformation, (3.11) changes by
§Scs(y =0) = Cha / dtdadydz €77 9,629, A% fi)) = Ca / dtdadz €7€°0, AL fip.. (3.12)

The corresponding chiral boson action is given by

S16.6%) = [ dtdndz F(010)* = 5016+ 61)? — Ca0i60.0 5, + 5 (01" (3.13)

where I = z, z. Varying the action and using ¢; =~ —0;¢, we arrive at the equations of motion

Xat(b - QCAaLazQSy = 07
KOy + 2070, = 0. (3.14)

Upon Fourier transformation, it leads to two modes

l4c?
w =+ —2|kpks|. (3.15)
KX

Similar to the tetrahedral dipole anomaly, the counterpropagating modes here are quadratic.
If the boundary is at x = 0, the action changes by

8Scs(r =0) = Cna / dtdzdydz €779, (€9, AS5LfL) = / dtdydz €7PY¢*9, A® faby. (3.16)
The corresponding chiral action is given by
al __ X 2 Kn a b K a\2
S6,0% = [ dtdydz X (@16)* = S (016 + 61)* — Cadld"0:8" £y, + 5(000")?, (3.17)
Varying the action and using ¢; ~ —3J;¢, we arrive at the equations of motion
X0hp —2C70;,0.¢ = 0,
KOy — 2Cp0, ¢, = 0. (3.18)
Upon Fourier transformation, it leads to two chiral modes
20
212k, (3.19)
X
2
w= —&kz, (3.20)

with both linear and cubic dispersion relations. As promised by the bulk dipolar Chern-Simons theory, the chiral
modes are odd under parity of z but even under parity of y.

We can further consider an arbitrary boundary perpendicular to the xz-y plane. Instead of rotating the coordinate,
we rotate the invariant tensor through fﬁf’ = Rap fbAC ;- Parametrizing the rotation matrix by 6, we have

AR
facd -

= 0q,0(cosO0r; —sin00Z;) + b4 y(sin o, + cosfo?,;) = cos focd —sin Gf(fc;. (3.21)

Let the boundary be at y = 0, so the action changes by

§Scs(y =0) = Ca / dtdadydz €779,(€°9, AL fi2F) = Ca / dtdzdz €77¢°9, A fop . (3.22)
The corresponding chiral boson action is given by
a X 2 K’ﬂ a9 b K a\2
S[p,¢%] = [ dtdzdz 5(3@) - 7(3I¢+¢1) — Cp0i6°0.0" fo 1 + §(at¢ )7 (3.23)

Varying the action and using ¢; =~ —0;¢, we arrive at the equations of motion

x0: — 2C A sin Gaiaqu —2Ca c0s80,0.¢y =0,



KOppy — 2CA sin 00, ¢y + 2C cos80,0,¢ = 0. (3.24)

When 6 = 0, we get back (3.15). However, when 6 # 0, it will lead to two chiral modes (to the leading order in
wavevector)

2Ca 4
~ z 325
xsinf * (3.25)
9 .
wa _2Casmb, (3.26)
K
It is consistent with (3.19) when setting § = 7/2.
If the boundary is at z = 0, the action changes by
6Scs(z=0)=Cp / dtdadydz €77 9,629, A%t fio)) = Ca / dtdady "*1¢°0, AL f2,. (3.27)
The corresponding chiral boson action is given by
K, a k a
S[p, 9" = /dtdydz %(3@)2 - 7(3@ +¢1)? — Cae'’ 0,0 31¢bf£ﬂ + 5(3@ )% (3.28)
Varying the action and using ¢; =~ —0J;¢, we arrive at the equations of motion
XOu¢ + 2Cn (03 — 30;0,)p = 0. (3.29)
Upon Fourier transformation, it leads to a single chiral mode
2C
w= —TA(ki — 3k2k,) (3.30)

with cubic dispersion relation. As promised by the bulk dipolar Chern-Simons theory, the chiral mode is odd under
parity of x but even under parity of y. The dipolar Chern-Simons term does not involve the z-dipole that is out of
the plane, so there is no linear-dispersing mode.

3.3. Boundary-dependent bulk-edge correspondence

When the boundary is orthogonal to the direction along which the parity is preserved by the bulk dipolar Chern-
Simons theory, the boundary gapless modes will form a time-reversal pair. These modes have a different universal
behavior from the chiral modes at other boundaries. For instance, they are quadratically dispersing and counter-
propagating against each other®. In fact, unlike the chiral modes, those non-chiral modes are protected by additional
symmetries. They are protected by the parity normal to the boundary. Since the bulk is even under the parity normal
to the boundary, the out-of-plane gapless mode is forbidden in the equation of motion. Hence, the out-of-plane dipole
has to couple to the charge, which is bonded to the in-plane dipole, to form a paired mode. We further justified
it by considering symmetry-breaking perturbations. This is amount to choosing different boundaries. We have seen
that as soon as the parity normal to the boundary is not a symmetry of the bulk, the non-chiral modes will become
two chiral modes with different dispersion at the leading order in wavevectors. In a word, the non-chiral modes at
specific boundaries correspond to some symmetry-protected topological (SPT) bulk, while the chiral modes at generic
boundaries correspond to a more general bulk that does not require additional symmetries, like quantum Hall state
for example. Moreover, observe that such non-chiral modes cannot happen in a single-specie fluid, like the U(1) chiral
anomaly, and is instead carried by a mixture of the dipole moments that are in the plane and out of the plane. There-
fore, we suggest calling it the mizred anomaly between the in-plane dipole moment and out-of-plane dipole moment.
As a result, we find that the dipole anomaly with point group symmetries would violate the conventional bulk-edge
correspondence: a single bulk dipolar Chern-Simons theory may lead to different boundary anomalies at different
boundaries®, and, at the same time, these different boundary anomalies would correspond to either SPT or a generic
bulk depending on whether there is an additional symmetry that is protecting the boundary modes.

5 This type of boundary anomalous flow is similar to the quantum spin Hall edge state, but the symmetries that protect them are different.
6 Similar observations have been made in a recent work about subsystem anomaly [56]. In the meantime, it was noticed that a single
boundary anomaly may correspond to different bulk fracton models [57-59].



Following the analysis at the end of Section 2 and assuming isotropy, the zeroth-order dissipative fixed point for the
cubic chiral modes in d = 2 would be z =~ 4. This is equal to the subdiffusive scaling at the linear level, so d = 2 is the
critical dimension. On the other hand, the zeroth-order dissipative fixed point for the quadratic modes in d = 2 would
be z &~ 3. This is still below z = 4 from linear analysis, so we anticipate a new dissipative fixed point. In a word, a
single bulk dipolar Chern-Simons theory could support different dissipative fixed points on different boundaries.

As a final remark, the gapless edge modes would lead to UV/IR mixing [26]. For example, taking k, — k, = 0 in
(3.6), the low energy state w = 0 talks to both small wavevector k, + k, < 1 and large wavevector k; + k, > 1. This
type of dispersion relation is also relevant for the exciton Bose liquid [60, 61].

4. ANALOGY TO TORSIONAL ANOMALY IN U(1) QUANTUM HALL STATE

In this section, we take a detour to consider a U(1) quantum Hall state in D = 2 4+ 1 without dipole symmetry.
However, there is an emergent nonlinear dipole-like symmetry on the Lowest Landau level (LLL) as recently discussed
in [62]. This is realized as the volume-preserving diffeomorphism (VPD). Consider a spatial Lie derivative

Lol = X' 0rel + 0,X ¢, (4.1)

Xi€u =
and 9;x" = 0 for VPD. Notice that the linear term 9,x'6¢ looks just like the dipole gauge transformation in (1.1).
By coupling to the background U(1) gauge field A, and fixing A; = —%Beijxj, we arrive at the equations of motion
(in the flat spacetime limit) [62]

8" =0
8,»T; = Beainéib. (42)

This coincides with the hydrodynamic equations under a magnetic field and in the LLL limit by letting m — 0. Let
us now introduce a Chern-Simons term in D = 3 4+ 1 mimicking (3.1):

Storsion = O//d4l' euypgezauez(sgfabca (43)

and we find that this is the generalized torsional Chern-Simons theory [63, 64]. Under the nonlinear diffeomorphism
(4.1), (4.3) changes by

3 Storsion = C” /d4:1: ervre (X"aiegayef, + 8ltxi5§’6,,ez + eza,,(xi&ez + 8pxi5§’)) 8% fabe
— / A @07 (\1 0,0, + DX 62GE,) 5C Fve
- / dia @078 G 5E fane = O, (4.4)

where we approximated the spacetime to have constant torsion Gf,, = d,e; — dyej, and to be close to the flat limit,
and in the last step we used VPD. To obtain the boundary anomaly, let us consider a triangular symmetry in the z-y
plane, and place the boundary at z = 0. The boundary terms from (4.4) are given by

0Storsion = O//dgx GHZPCBZ(Xia’ieZ + aﬂXi(S?)fabc + €7re l5aGbpfabc = Cl/djx erre l6aGbpfabc (45)

The first term vanishes because fgp. is fully symmetric. Then, the torsional Chern-Simons term changes the equations
of motion in (4.2) to

" =0
0;T} = BeayJ 03 + C'e"° G, fave- (4.6)

Consequently, rather than being subdiffusive [65], the U(1) quantum Hall state under torsional anomaly will develop
a cubic dispersing chiral mode just like in (3.30).
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5. GENERALIZED PARTICLE-VORTEX DUALITY WITH DIPOLE SYMMETRY

Particle-vortex duality typically maps between particle excitations in one theory and vortex excitations in another
theory. The conventional particle-vortex duality describes a mapping between the following two models:

XY model : S = /d?’x\(ﬁu —i4,)9|* + V(®) (5.1a)
~ -~ 1
Higgs model : S = /d?’x\(ﬁu —ia,)®)? + V() + EEHVPAHGVQI” (5.1b)

where A, is the background gauge field. The essence of the particle-vortex duality is realized through the mixed
Chern-Simons term involving the dynamical gauge field a,, which reveals that the charge density associated with @
is equal to the flux density da/2mw. Therefore, the Goldstone mode of spontaneously symmetry broken XY model is
identified with the dual photon in the Higgs model. The exact same idea can be generalized to spontaneously broken
dipole symmetry: the dipole symmetry acts just like a U(1) symmetry for dipole moments. Imagine dipole shifts on
the dipole scalar field #¢ — $%€” | where a = 1,2,... are just labels. Then, we can immediately write down the
particle-vortex duality for dipoles:

dipole — XY model : S = Z / d*2]0, 8 — 1AL |* + V(%) (5.2a)
dipole — Hi del : S = Ba]0, B — 0B + T (B) + P 479, 0 2b
ipole — Higgs model : S = Z 20, —iay @*|" + V ( )+%e novay. (5.2b)

Note there are no U(1) degrees of freedom in these dipole models. A more interesting scenario is to include U(1)
symmetry. However, since we can not have the U(1) Chern-Simons term in the presence of dipole symmetry, including
U(1) symmetry will not bring about additional duality in terms of the flux attachment. To have a non-trivial duality,
we need to condense the dipole first, and then study the remaining U(1) phase transition; such U(1) symmetry
breaking has been studied in [42], and the condensed phase was argued to be Lifshitz-like.

Let us call the dipole Goldstone %, and it transforms under the dipole shift as

P =+ £ (5.3)

It is useful to define the modified U(1) gauge fields
Bu [‘pa] = Au - ,TQAZ - 6ua90a7 (543,)
bu [‘Pu] = &u - xaAﬁ - 6ua()0a7 (54b)

where Aw a,, transform as normal U(1) gauge field like in Section 2. We propose a new type of particle-vortex duality
mediated by dipole Goldstone:

©*—XY model : S = /d3x|(aﬂ — 1B, (@)@ + (Dup® — A%)? + V (D), (5.5a)
. S |
¢“—Higgs model : §' = / d*z|(8 — by [p])BI? + (80" — AL)? + V(D) + 5. " Bule10ub,[2%]. (5.5b)

Both models have a global dipole symmetry: the shift & — de~*"¢" is canceled by the shift of —2aAf, — Ouap® in
(5.4), and the Chern-Simons term in (5.5b) is invariant up to a total derivative. Like (5.1), ¢*—XY model has a U(1)
global symmetry, while *—Higgs model has a U(1) gauge symmetry.

There are two phases in p*—XY model: ¢) unbroken U(1), and i) spontaneously broken U(1). Case i has gapped
& excitations but linear-dispersing gapless ¢®. In case i, we can parametrize the scalar field as ® = pe'?, and neglect

the massive excitations of p. The low-energy theory becomes
Sty roten = [ €2 0,6+ 8,0 + (0,6°) = [ & 010 + (00,01 (5.6)
where we used the fact that the dipole Goldstone is gapped by the U(1) Goldstone: 9,,¢ = —0,,¢*. The low-energy

excitations are w ~ k2 and thus is Lifshitz-like. In this phase, the theory also has vortex excitations. Unlike the usual
superfluid vortex, the U(1) vortex here is given by [8]

— fdxi 2%0;0,¢ = — ]{dxi 0i(2°0,9) + j{dxi i =2mn, n € Z. (5.7)
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On dimensional ground, such a vortex is gapped since it is logarithmically confined.

Let us now look at the ¢*—Higgs model, which also has two phases: 4) unbroken U(1) gauge symmetry, and i)
broken U(1) gauge symmetry. In case ¢, the dynamical gauge field b, will support dual photon ¢ excitations. To see
it, we ignore the coupling to the field ¢ and introduce the Maxwell term. The partition function reads

: 1 1 v ~a
Z = /Dbexp (l/d?)l' — @fa — EGM pdya@ pr)

. 1 1, a 1 .
= /DfDU exXp <1/d31' — @fa — Eﬁ“ p(s,uaw fl/P + EGH pO'aHfup> y (58)
where f,, = 0,b, — 0,b,, and o is a Lagrangian multiplier implementing the Bianchi identity ¢***0, f,, = 0. Using
the equation of motion

2
P = =2 (D0 + 808" (5.9)

we can integrate out f,, to obtain an effective action

2
Sdual photon = /de 89?(8#0 + 5}“1()5&)2' (510)

Compared to (5.6), we identify o with ¢ as the hallmark of the particle-vortex duality. Adding back the dipole
Goldstone dynamics, we get the Lifshitz scaling at low energy. In the meantime, the @ excitations are gapped and
their interactions are mediated by the Coulomb interaction. In d = 2, Coulomb energy has logarithmic divergence,
so it matches the vortex excitations in the p®*—XY model. Therefore, case i in $®—Higgs model is dual to case i in
©*—XY model.

One may wonder if the dipole Goldstone in the dual theory is still “gapped” when the dynamical gauge field is
turned off. Naively, this would lead to a linear-dispersing dipole Goldstone that is in tension with the Lifshitz theory.
Thanks to the Chern-Simons term in (5.5b), the correct low-energy theory in the dual picture is given by

1 can ~ -
St = [ @5 = eng 0 + (0.5, (511)

where we neglected the second-order time derivatives. This theory has a Lifshitz fixed point w ~ k2. The first-order
time derivative term indicates that ¢® and ¢Y are canonically conjugate to each other reminiscent of the Heisenberg
ferromagnet [66]. In fact, the analogy is not a coincidence — dipole moment of vorticity (recall the dual theory is a
theory of vortex) does not commute with itself: [67]

{Di, D} = —e;;1, (5.12)

where {, } is the Poisson bracket, and I" is the total vortex. Think of I" as the total spin, the dipole moment has an
identical algebra as the Heisenberg ferromagnet, and importantly, it allows for the first-order time derivative term to
appear in (5.11). Thus the two linear-dispersing Goldstone will couple together to form a single quadratic-dispersing
Goldstone. To summarise, the Chern-Simons term in (5.5b) plays two roles in the dual theory. First, it generates the
usual flux attachment to relate the gauge vortex o to the real particle @. Second, it reflects the non-commutativity
of dipole moments in_the dual picture and leads to a Lifshitz fixed point.

Lastly, in case i1, @ acquires an expectation value, so the U(1) gauge symmetry is broken, and the dual photon o
becomes massive. This results in b, = 0, so the dipole Goldstone becomes linear-dispersing. This phase is thus dual
to case ¢ in *—XY model.

6. DIPOLAR CHERN-SIMONS THEORY ON CURVED SPACETIME

In D =241, the usual U(1) Chern-Simons theory can be written in the differential form f ANF, where FF =dA is
the two-form field strength. In this way, the U(1) Chern-Simons term is invariant under U(1) gauge transformation
in a generic closed manifold, and the integral does not depend on the metric meaning it is a topological field theory.
However, a naive generalization to dipolar Chern-Simons theory like [ A® A F°f,, with F* = dA® is not correct
because this term is not invariant under the dipole gauge transformation on curved spacetime [19]

A% A% 4 V7,60 (6.1)
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where V£ = 0,6 + wzbfl’, and wy, is the spin connection. It turns out that it is impossible to find a dipole field
strength that is invariant under (6.1) since any vector charge gauge field will necessarily encounter the Ricci curvature
when computing its own “curvature”. The reason is that the dipole algebra is “non-abelian” in spacetime:

[Py, De] = —iQdpc (6.2a)
[Pa, Loe] =1 (8acPs — davPe) (6.2b)
[Da, Lve] = i(64e Db — danDe) (6.2c)
[Loc, Lae] =1 (0paLce — ObeLed — 0caLlve + dceLba) (6.2d)

where P, generates translation symmetry, D, generates dipole symmetry, and L, generates SO(d) rotational sym-
metry.

To build a gauge invariant theory on curved spacetime, we need to either cancel (6.1) by coupling to matter fields
or treat the dipole symmetry as a part of the spacetime symmetry in (6.2). The former is presented in Section 6.1
to include dipole Goldstones in the dipolar Chern-Simons theory. The latter leads to a non-abelian Chern-Simons
theory in Section 6.2.

Before constructing the field theories, we review some necessary ingredients of the vielbein formalism; for a complete
analysis of dipole symmetry on curved spacetime, we refer readers to [19]. The covariant derivative is defined as

0 _
Vel =0,e Fwep, (6.3a)
Vel =0,e +W;w@y F/fl, o (6.3b)

where I'f), is the Christoffel connection, and wpyp 18 the spin connection for space only. Since the spin connection and

the Christoffel connection are not independent, and it is more natural to treat the spin connection as the gauge field
for spatial rotational symmetry (see (6.14)), we impose the metric compatibility condition

Ve =0, (6.4)

such that the Christoffel connection can be expressed in terms of the spin connections and the vielbeins. We will
further fix the temporal component of the vielbein to be 62 = (52 since the time translation generator is central in the

dipole algebra (6.2) so its gauge field eg is decoupled from the theory we are interested in. Now, the vielbein is full
rank, and its inverse is defined through

ey =05, eneq =70, (6.5)

6.1. Couple to dipole Goldstone

Define the dipole field strength as [19]
Fi, = 0,A, — 0,A; + waAfi - w,‘ijZ. (6.6)
It transforms under dipole shift (6.1) as Fi, — Fjj, + R“bwfb, with

b b b b, d b d
R cuv = OpWye — al/w,uc + WpdWoe = WydWpe (67)

the curvature tensor. In order to have a gauge-invariant field strength, we introduce the dipole Goldstone ©° that
transforms under dipole shift as

O = T 4 £ (6.8)
The gauge-invariant field strength is defined as

Fe, =Ff, — R%,,¢" (6.9)

wr =

Now, [ A® A FPf., is still not gauge-invariant, but transforms as

5 / ATNFbfoy = / d*z0, (eewgaﬁgp fab> - / & etV (GWPFSP) Fabs (6.10)
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where VL =V, + 2F[’:w], and we used V, fqsp = 0. While the first term is a boundary term, the second term needs

an additional term p*V/, (e“"pﬁ'ybp) to cancel it. Collecting the above results, we arrive at the final gauge-invariant

dipolar Chern-Simons term:
Scs = C/dgx e {e“"pAZFybp + cpaVL <e””pF~’ybp)} Sfab- (6.11)

The inclusion of the dipole Goldstone makes physical sense — when dipoles want to form cyclotron motions in the
quantum Hall phase on the curved spacetime, due to the kinetic constraint, the dipoles must be generated out of the
condensate.

We expect that (6.11) is relevant to the construction of parity-violating dipole hydrodynamics generalizing [19].
This is a useful starting point since there is no known dipolar anomaly on curved spacetime to our knowledge. One
can then follow the analysis of [68] in a reverse way to determine various parity-odd transport coefficients in terms of
the coefficient C' [69].

6.2. Non-abelian Chern-Simons theory of 3D gravity: fracton-elasticity duality and beyond

We follow the non-relativistic construction in [43, 44] to build a non-abelian Chern-Simons theory based on (6.2);
see also the original proposal of relativistic 3D Chern-Simons gravity in [45, 46]7. A non-abelian Chern-Simons theory
is given by®

Sos=C [ (A/\dAJrigA/\AAA), (6.12)
M3

where the trace encodes a non-degenerate invariant bilinear form on the dipole algebra. The crucial difference from
the Galilean algebra in [43, 44] is that we are allowed to turn off the time-translation generator H, which is central
in the dipole algebra, and the invariant bilinear form is already non-degenerate without further central extensions.
This can be seen by observing that the bilinear form D, P, — %QeabLab is invariant and commutes with all the
generators. Hence, we are interested in the following non-degenerate bilinear form

1
<Da7 Pb> = €ab, <Q> Lab> = _iealr (613)

The gauge field A is locally given by a dipole-algebra-valued one-form

1
A=e"P, + 5uﬂbLab + A°D, + AQ, (6.14)

where we can identify ej; as the vielbein, wﬁb as the spin connection, Ay, as the dipole gauge field and A, as the U(1)

gauge field. First, we have

—ANA=e" AW Py — e A A%Q + A% A wP? Dy + w A wb Ly, (6.15)
The two-form curvature is then defined as

F=dA+iAANA=R*(P)P, + R*(D)D, + R*(L)La, + R(Q)Q, (6.16)

where the field strengths are given by

R*(P) = de® + w® A eb, (6.17a)
RY(D) = dA® +w® A A, (6.17h)
R®(L) = dw™ + w™ A w, (6.17¢)
= +e" NA".
R(Q)=dA+e* NA® 6.17d

7 After this work was completed and posted, we learned that the Carrollian gravity [70] has a similar structure as our dipole gravity
due to their isomorphic algebra [36]. We anticipate that the Carrollian gravity is relevant to gauging the spacetime dipole symmetry
proposed by [71] (see [72]).

8 The level C is in general not quantized due to noncompact spacetime symmetries, but its precise value will not be important in our
discussions.
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The dipole field strength R%(D) and the Ricci curvature tensor R**(L) agree with (6.6) and (6.7), respectively. Note
that in D = 2+ 1, we can write

w = we, (6.18)

50 w A w’ = 0 is trivial. Now, consider a four-dimensional manifold M*. A topological invariant is given by,
according to (6.13),

/ U%fAfﬁzi/ qw%dA1+w“AAﬂA(mﬁ+w“Aeﬂ1@A+eCAAﬂAdw“
M4 M4 2
:/ d [eapA* Ade® — AN dw — A* Aw Ae?]. (6.19)
M4

Because of the closed form, the integral can be reduced to its 3D boundary M? = dM*, which is by definition the
Chern-Simons action (6.12):

Scs=C | €wR*(D)ANe®—ANdw=C [ €uA* AR (P)—AAdw. (6.20)
M3 M3

From the construction, (6.20) is automatically invariant under the non-abelian gauge transformation 6.4 = dA+iAA
A. As a remark, the gauge transformation in (1.1) is precisely the flat spacetime limit of this non-abelian gauge
transformation. Interestingly, the second term itself in (6.20) is known as the U(1) Wen-Zee term [47], thus, for
reasons we shall shortly explain, we call (6.20) the dipolar Wen-Zee term. Before a detailed linear response analysis,
several remarks follow. The term w Adw (known as the second Wen-Zee term) can be generated by allowing a bilinear
form (Jup, Jed) = €ap€ea [44], but we neglect it as it decouples from the dipole symmetry. We also neglected the
gravitational Chern-Simons term due to framing anomaly [73]. There is no dipolar Chern-Simons term A% A dA®
because the bilinear form §°°D,D; does not commute with P, (see Section 6.1 for dipolar Chern-Simons theory on
curved spacetime).

Let us first review the conventional Wen-Zee term. A linear response analysis gives a shift to the charge density
§S/6Ag = —C€" d;w; and the spin current responses 6.5/dw, = —Ce*?9, A,. Knowing the vortex in solids corresponds
to defects of rotational symmetry which are described by curvature, or disclination [74], we find a correspondence
that each charge/boson is attached by a flux of the spin connection, i.e. the curvature, and at the same time, each
vortex/spin is attached by a flux of U(1) gauge fields, i.e. the magnetic field. Notice that the former statement of
flux attachment is equivalent to the usual particle-vortex duality (see Section 5), while the latter gives topological
responses in the particle picture. To see it, we note that the Hall viscosity is equal to the spin density through
Ny = %80 [62, 75], where so = 05/dwy = —CB®. Therefore, the Wen-Zee term nontrivially relates the particle-vortex
duality to the topological responses with the same quantized coefficient C'.

Now, let us look at (6.20). First, the shift of the dipole density is given by

0Scs
5A

= Ceave RY;(P). (6.21)

The flux of the torsion field strength €%/ Rfj (P) corresponds to the dislocation density, which also corresponds to the
defects of translational symmetry [74]. In the meantime, the shift to the charge density is again given by
0Scs
0 Ao

= —Ce90w;. (6.22)

These give rise to the fracton-elasticity duality proposed by [48]!: (6.21) gives rise to the dipole-dislocation duality,
where the dipole gets attached by torsion flux, which corresponds to dislocation in elasticity theory; (6.22) gives rise
to the charge-disclination duality, where the charge gets attached by curvature flux, which corresponds to disclination
in elasticity theory. Moreover, the same coefficient C' in (6.21) and (6.22) implies that a dislocation is a bound state
of two equal and opposite disclinations in accordance with [48].

Next, like the conventional Wen-Zee term, (6.20) also generates topological responses. We can define a spin current

0Scs
dwy,

= CeP ALl — CevPD, A, (6.23)

1_6S _ab
2 30.e €“ep;.

7

9 Quickly, we have wg ~ %eabeflateib where we used 62 = 58 and F:o =0, so it gives a nonzero Hall viscosity ng =

10 We thank Leo Radzihovsky for discussions about it.
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and a stress-tensor

0Scs
5eg

= —Ceqpe"’ R (D). (6.24)

Working in flat spacetime afterward, we find a Hall viscosity

1 155@5 C

=50 = = — (A%, — €70;A; 6.25
= 580 2 dwo 2(6 i%aj — € J)v ( )
a stress density
5SCS i b

Pstress,a — (588 = *CEabE JaiAj, (626)

and a Hall elasticity

16Scs w c.

K= 5 208 etbey, — 25,600, A, 6.27
M= 0 gey © T T e g (6:27)

Both stress density and Hall elasticity are new topological responses absent in the conventional quantum Hall state,
and they are present in the dipolar quantum Hall state due to the translational defects, i.e. dislocations. Defining an
effective U(1) magnetic field Beg = €79;A; — ¢ A¢8,;, a dipole magnetic field BY;) = €79; A% and a dipole electric
field B, = €79, A5, we can rewrite the Hall viscosity, stress density, and Hall elasticity as''

C
nH = _§Beﬂ”a (6.28a)
Pstress,a — _Ceangip; (62813)
c ic
Ky = _EEdipdic' (6.28¢)

Hence, the effective U (1) magnetic flux generates the Hall viscosity, the dipole magnetic flux generates stress density,
and the trace of dipole electric field generates the Hall elasticity'?. These relations go beyond the fracton-elasticity
duality. In fact, this justifies calling (6.20) the dipolar Wen-Zee term since it nontrivially relates the fracton-elasticity
duality to the topological responses with the same quantized coefficient C'.

One may wonder whether the dipolar Wen-Zee term (6.20) would lead to a boundary anomaly. In the case of a single
U(1) Wen-Zee term, the gauge transformation on a manifold with a boundary can be canceled by a local boundary
counterterm [77], which implies that the U(1) Wen-Zee term does not necessitate boundary anomaly. To see it, we
introduce the embedding function X*(oc4) where o4 are coordinates on OM?. Then, we can define the projection
Ple] = eZdJA by the pullback e} = daX*"ej,. The local counterterm is given by the extrinsic one-form curvature
K'3 at the boundary satisfying Plw] + K = d® where @ is a boundary zero-form, such that fMg ANdw+ f6M3 ANK
is U(1) gauge invariant. However, we find a similar calculation does not carry over to the action (6.20). Consider a
dipole gauge transformation given by A = £*D,, then §A® = d£% 4 €*“wé¢ and §A = e*£?, thus the action changes by

0Scs = / €apd€® A deb + €%w A deb — €% Adw — dEC Aw A e
M3
= / d (eabgadeb — WA ea)
M3
= / €ap€® N P[R(P)). (6.29)
oM

Observing that P[R%(P)] = dP[e?] + eap Plw] A Ple’] = dP[e?] + €4 (d® — K) A P[e’], we realize that there exists no
local counterterms that can cancel (6.29). Therefore, in a generic curved spacetime, the dipolar Wen-Zee action (6.20)
contains a boundary anomaly. However, in certain special manifolds, (6.29) could be canceled by counterterms. One

11 Ideally, one wish to have the background fields being constant in order for the responses to be well-defined. This would require dipole
and U(1) gauge fields to be linear and quadratic in coordinates, respectively.

12 Tt is interesting to see the relation with odd crystals [76].

13 The precise definition can be found in [77].



16

such example is when both the intrinsic and the extrinsic curvature vanish, i.e. w = K = 0, and, one can show that
(6.29) can be canceled by the boundary term [, s €apA® A Ple’]. As a remark, the boundary anomaly from (6.29)
will lead to the violation of dipole conservation in the following way:

OaJt = Jhena + eareB RY 5(P). (6.30)

Finally, let us come back to the 3D gravity interpretation of (6.20). It is suggested that such 3D gravity can be
helpful for the study of 2D non-relativistic field theory [44] through holographic duality [78]. For our case, the dipole
algebra (6.2) was recently realized as the infinite mass limit of the Galilean algebra [19]. Therefore, we hope that the
3D gravity derived in (6.20) would be useful in studying the so-called “flat band” models [79], which corresponds to
infinite single-particle mass, through a field theory perspective.

7. OUTLOOK

In this paper, we have constructed various dipolar Chern-Simons theories to describe topological responses for
systems that conserve dipole symmetry. Our construction highlights a subtle issue of the problem: there is no need to
impose a Lagrangian multiplier to reduce the dipole gauge theory to a higher-rank gauge theory. As a consequence,
only the highest multipole symmetry can support a Chern-Simons term and its corresponding 't Hooft anomaly.

An important lesson from this effective field theory construction is how to couple dipole symmetry to curved
spacetime. Chronologically, it takes us three steps to understand this structure. First, we should think of the two
indices of dipole gauge field Aj, as playing different roles under symmetries, in contrast to symmetric tensor gauge
fields A;; of which the two indices are equivalent. In particular, the internal index a indicates that the dipole gauge
field transforms as a vector under rotational symmetry, and the spacetime index p implies that it is a 1-form that is
invariant under diffeomorphism. This structure significantly simplifies the construction of the dipolar Chern-Simons
theory and allows us to see the effect of discrete rotational symmetry in unconventional bulk-edge correspondence.
Second, our dipole gauge theory is in fact analogous to the vielbein e? that is used to gauge the spacetime symmetries
[54]. Notice that on the one hand, the momentum is a time-reversal-odd vector charge, and the stress tensor is sourced
by the vielbein; on the other hand, the dipole is a vector charge and its dipole current is sourced by the dipole gauge
fields. This analogy carries over to the Chern-Simons theory. As we have shown, the torsional (vielbein) Chern-Simons
theory can be similarly constructed using our approach. Moreover, this analogy promotes the third step of developing
a consistent field theory on curved spacetime. Specifically, we should treat the dipole symmetry and the spacetime
symmetry on an equal footing. This results in a non-abelian group symmetry. We emphasize that this non-abelian
group symmetry is so far an unknown feature in higher-rank gauge theory, based on which people argued that dipole
symmetry is inconsistent with a generic curved spacetime [34, 35]. As we have shown, dipole symmetry can survive
on curved spacetime so long as there are dipole Goldstones or defects in geometry that could support it. Importantly,
a careful analysis of coupling dipole symmetry to defects in geometry by a non-abelian Chern-Simons theory gives
rise to a more comprehensive understanding of the fracton-elasticity duality [48].

Looking forward, we anticipate that our method can be generalized to subsystem symmetries. Recent work [56]
studied the boundary anomaly with both continuous and discrete subsystem symmetries, but only adopt the perspec-
tive from boundary anomalous theory to bulk Chern-Simons theory. Understanding the rotational symmetry for those
gauge fields will help to build the bulk theory directly and facilitate the analysis of bulk-edge correspondence. We
expect our boundary-dependent bulk-edge correspondence would potentially extend the classification of SPT phases.
In the meantime, it is possible to compare our theory to the one obtained by integrating out fermions in some micro-
scopic dipole-symmetric fermionic models, possibly generalizing [80]. It is also interesting to quantize the theory in
Section 6.2 following [43, 46], so that a topological quantum field theory or quantum gravity with dipole symmetry
can be established.
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Appendix A: Level quantization in the dipolar Chern-Simons theory

We follow [81] to derive the level quantization for the dipolar Chern-Simons theory. Similar derivation was done in
[31].

For the purpose of this section, we take the dipole symmetry to be a compact U (1) symmetry for the corresponding
dipole moment living in the internal space. Imaging adiabatically moving a dipole moment pointing at 7 along a
closed loop in the presence of the dipole gauge fields. Due to the single-particle dynamics governed by [ d¢ 9,2 A%,
the relative phase it picks up is

at = j{A?dxi. (A1)

Now, threading a magnetic dipole flux through a sphere, and requiring consistency on the relative phase, the minimum
such flux is given by

/ B = 27, (A2)
S2

where B¢ = €% 0; A%, and 7 indicates the direction of the magnetic dipole moment.
Consider the thermal partition function Z[Af] = exp(iS[Af.]) of (1.2) with isotropic coupling fu.» = dap. Let the

Euclidean time be periodic, 7 ~ 7 4+ 3, and take the large dipole gauge transformation £* = —2”777”7 the temporal
dipole gauge field transforms as
2
AS - AS+ %r (A3)

while A? remains invariant. Now, take A% to be constant, and thread the minimum flux to a sphere, (1.2) becomes
S =4nCyBAGT*. (A4)
Thus, under the large dipole gauge transformation, the action changes by
58 = 812C,. (A5)
In order for the partition function to remain the same, we must have

_k
T 4r’

This is the quantized level for dipolar Chern-Simons theory. To generalize to anisotropic cases, we should just require
that the single-particle dynamics obey [ dt 9,27 A%F° f,p, so the relative phase it picks up becomes ay = ¢ fapAbda?,
which leads to flux fS2 Bf,, = 2m7%. For the partition function to be invariant under the large dipole gauge
transformation, we get the same condition as in (A6).

To see the quantization of (3.1), one can imagine that the dipole moment is moving on a closed two-dimensional
manifold. It will pick up a phase

Qg = %Ab A 5cfabcv (A7)

where we used the differential forms A® = Aﬁdx” and 6¢ = 67 dat but assumed flat spacetime. This will lead to the
minimum flux on a 3-sphere as

/ €9°0; Ab fupe = 2m°. (A8)
S?:

Similarly, in order for the partition function to be invariant under the large dipole gauge transformation, we must
have

k

:E’

Cs ke Z. (A9)

Several remarks follow. First, one can further couple the theory to additional dynamical gauge fields to obtain
fractional numbers in the coefficient mimicking the fractional quantum Hall effect. Second, the level quantization
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requries the symmetry to be compact. In Section 6.2, both the dipole symmetry and the translational symmetry are
noncompact, so the level there is in general not quantized.
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