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In media with only short-ranged couplings
and interactions, it is natural to assume that
physical responses must be local. Yet, we
discover that this is not necessarily true, even
in a system as commonplace as an electric
circuit array. This work reports the exper-
imental observation of non-local impedance
response in a designed circuit network con-
sisting exclusively of passive elements such
as resistors, inductors and capacitors (RLC).
Measurements reveal that the removal of
boundary connections dramatically affects the
two-point impedance between certain distant
nodes, even in the absence of any amplification
mechanism for the voltage signal. This non-
local impedance response is distinct from the
reciprocal non-Hermitian skin effect, affecting
only selected pairs of nodes even as the circuit
Laplacian exhibits universally broken spectral
bulk-boundary correspondence. Surprisingly,
not only are component parasitic resistances
unable to erode the non-local response, but
they in fact give rise to novel loss-induced
topological modes at sufficiently large system
sizes, constituting a new manifestation of the
critical non-Hermitian skin effect. Our findings
chart a new route towards attaining non-local
responses in photonic or electrical metamate-
rials without involving non-linear, non-local,
active or amplificative elements.

INTRODUCTION

Non-local or action-at-a-distance phenomena reveal
deep enigmatic mechanisms behind interesting physics,
from the onset of phase transitions [1, 2] to the causal-
ity structure of the universe [3–5]. The presence of
non-locality is especially intriguing when it emerges
unexpectedly from purely local couplings or interac-
tions, since that implies a hidden mechanism that
propagates information beyond intrinsic system length
scales. Such emergent non-locality has recently at-
tracted much attention in the context of non-Hermitian
bulk-boundary correspondence, where a single coupling
perturbation can modify the spectral properties and
topological states of the entire system [6–38]

Across existing literature on non-Hermitian lattices,
the reported non-local behavior can always be intu-
itively attributed to directed amplification [39]. Non-
Hermitian couplings with asymmetric amplitudes in
either direction lead to direction-dependent gain/loss,
and together give rise to a chain of amplifications that
propagates signals non-locally [39], as experimentally

demonstrated in various metamaterial platforms [7, 40–
46].

What is interesting and practical though challenging,
however, is achieving such non-local signal propagation
when there is no amplification at all. In this work,
we experimentally achieved this by detecting non-local
impedance response in an electrical circuit designed
with purely passive and reciprocal RLC components,
which would be easily integrated into chips for sensing
applications [47–52]. Specifically, we showed that in
our circuit, the impedance between two adjacent nodes
can be profoundly modified by cutting off a remote
connection, no matter how distant, against common
intuition. Unlike existing demonstrations of non-local
voltage responses with operational amplifiers [53], our
setup contains no intrinsic directionality. Its only non-
Hermitian components are the resistors, which are nei-
ther active nor chiral, and certainly incapable of caus-
ing a cascade of amplifications. Exactly how our non-
local response is achieved will be explained in the fol-
lowing.

RESULTS

Emergent non-locality without directed
amplification

To understand how our setup can exhibit non-local
responses with purely passive elements, we first review
the mechanism of directed amplification mechanism
that gives rise to extreme non-local sensitivity, and how
this non-locality is preserved even if the amplifications
in different directions cancel. Even though we are ul-
timately concerned with the impedance response, we
shall first illustrate how this non-local mechanism is di-
rectly observed from the state evolution under generic
non-Hermitian Hamiltonians.

Consider the simplest illustrative
Hatano-Nelson (HN) model [54] HHN =∑

x [t
+|x+ 1⟩⟨x|+ t−|x− 1⟩⟨x|], which amplifies

and propagates a state by asymmetric factors of |t−|
and |t+| towards the left and the right. If |t−/t+| < 1,
an arbitrary signal will be amplified by a factor of
approximately |t−/t+|x after propagating x states
towards the right (Top chain of Fig. 1a Left) [55].

Likewise, H†
HN would amplify a state by the same

factor towards the left (Bottom chain of Fig. 1a
Left). This is a classical manifestation of emergent
non-locality, since a small input signal can be amplified
to yield a very strong output signal arbitrarily far
away. Yet, amplification does not always need to

accompany non-locality. If the HHN and H†
HN chains
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FIG. 1. Constructing a non-local RLC circuit from
the cancellation of non-reciprocity. (a) Two Hatano-
Nelson chains individually experience non-local directed
amplification of states (Left). Coupling them can cancel
off the directed amplification whilst retaining the non-local
response. This inspires the design of our reciprocal lat-
tice with emergent non-locality, which is unitary equiva-
lent to the coupled HN chains (Right). (b) Schematic of
our designed reciprocal circuit with 8 unit cells spanned
by sublattices A and B, as described by J(k) from Eq. 2.
By appropriately configuring the switches SR1 to SR6 (see
Methods), one can tune the circuit between open and pe-
riodic boundary condition (OBC and PBC) configurations.
(c) The corresponding experimental circuit, with measured
two-point impedances significantly depending on whether
PBCs or OBCs are used. Component values are C = 1nF ,
L = 1mH, R = 5kΩ and r = 50kΩ.

interact through a coupling strength ∆ according to

H∆ = HHN⊗| ↑⟩+H†
HN⊗| ↓⟩+I⊗(| ↑⟩⟨↓ |+ | ↓⟩⟨↑ |)∆,

(1)
the exponentially large amplification of the states near
either end would effectively close up the two chains into
a “loop” that still experiences the non-local response
(Fig. 1a) [55], despite arising from a purely linear sys-
tem [56]. Importantly, because of the juxtaposition of
equal and opposite amplifications, this response is not
accompanied by any amplification.

The above-mentioned mechanism for amplification-
less non-local response can be adapted to electrical cir-
cuits if we consider a circuit Laplacian that is the ana-
log of H∆ [57–68]. Unlike a Hamiltonian which rep-
resents a time-evolution operator, a Laplacian J de-
scribes the steady-state relationship between the input
currents I and electrical potentials V across the nodes.
Explicitly, we write I = JV, which can be thought of
as the matrix form of Kirchhoff’s law, with the matrix
element Jij describing the linear relationship between
the input current at node i and the potential Vj at node
j.

Since our objective is to design a non-local response
circuit that does not even exhibit directed amplifica-

tion, its Laplacian must not explicitly contain HHN

and H†
HN, which harbor asymmetric terms. The most

direct way to construct such a circuit Laplacian is to
consider a basis-rotated version of H∆, such that the

asymmetric terms from HHN and H†
HN do not exist in-

dependently, but are combined to form reciprocal terms
(Fig. 1a Right). Physically, this implies that opera-
tional amplifiers will not be needed [55], and all non-
Hermiticity can be contained in passive lossy resistors.
A minimal RLC circuit with such non-locality is illus-
trated in Fig. 1b, and described by the Laplacian

J(k) = iωC

(
1 −eik

−e−ik 1

)
+

1

iωL

(
1 −e−ik

−eik 1

)
+
1

r

(
1 −1
−1 1

)
+

2− 2 cos k

R

(
1 0
0 1

)
, (2)

where k is the quasimomentum along its ladder-like
structure. Each unit cell consists of nodes A and B on
either side of the ladder, and resistors r and R connect
the nodes across and between the rungs respectively.
Capacitors C and inductors L connect across the ladder
diagonally and induce AC dynamics. At the resonance
frequency ω = ω0 = (LC)−1/2, its circuit Laplacian
simplifies to

J(k)|ω=ω0
=

2

R
[i(t sin k)σy + v(I− σx) + (1− cos k)I]

(3)

where σx, σy are the Pauli matrices and t = ω0RC =

R
√

C
L , v = R

2r are two independent dimensionless con-

trol parameters.
To relate this circuit to H∆, we perform an unitary

basis transformation U : σy → σ̃y = UσyU
−1 = σz

which preserves the spectrum, such that the Laplacian
is rotated into the form J(k)|ω=ω0 → J̃(k)|ω=ω0

= (2iω0C sin k)σz + r−1(I− σx) + 2R−1(1− cos k)I

=

(
2ω0Ce

ik + ξ(k) −r−1

−r−1 2ω0Ce
−ik + ξ(k)

)
(4)

where ξ(k) = r−1+2R−1−2(R−1+ω0C) cos k. In this
rotated basis, we evidently have two effective chains
coupled by ∆ = −r−1, each containing a recipro-
cal (symmetric) part ξ(k), and an asymmetric part
2ω0Ce

±ik = 2te±ik/R that supports equal and oppo-
site directed amplification. Expressed in this basis, our
Laplacian is clearly a realization of the non-reciprocity-
cancellation picture given in Fig. 1a, even though its ef-
fective chains contain (fictitious) capacitors with imagi-
nary capacitances −iC, and cannot be directly realized
without the basis rotation. From it, we can also inter-
pret the dimensionless parameter v = R/(2r) as the
effective interchain coupling strength, and the other
dimensionless parameter t = ω0RC as controlling the
effective coupling asymmetry for the hidden (cancelled)
directed amplification.

In the above, what was achieved is the design of a
RLC circuit that has similar non-local properties as
coupled effective chains with oppositely canceled di-
rected amplification. From its effective model, it is for
sure that it exhibits modified spectral bulk-boundary
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FIG. 2. Selective non-local impedance response and its persistence in the large system limit. (a) The 2-point
impedance measured across all pairs of nodes of our N = 8-unit cell circuit, plotted as a ratio ZPBC/ZOBC between PBC
and OBC scenarios. Within either the A or B ladders (left two plots), ZPBC/ZOBC ≈ 1 (light blue), implying no nontrivial
effect from the boundary connections. However, ZPBC/ZOBC ≈ 6 ≫ 1 (red) for the impedance across all inter-ladder pairs
(rightmost plot), indicative of the non-local influence from boundary connections. (b) PBC and OBC impedance ratios
extrapolated to larger system sizes, across various types of intervals: A and B nodes of the ⌈N

2
⌉th unit cell (Middle Inter),

1st unit cell (Edge Inter), 1st and Nth unit cells (Edge-to-edge Inter); AA or BB nodes of the ⌊N
2
⌋th and ⌈N

2
⌉th unit cells

(Middle Intra), 1st and 2nd unit cells (Edge Intra), 1st and Nth unit cells (Edge-to-edge Intra). Evidently, ZPBC/ZOBC

is significantly higher than unity (dashed line) even for large N , further establishing that the boundary connections affect
faraway impedances non-locally.

correspondence i.e. that perturbing a “boundary” cou-
pling can significantly affect the spectrum of the entire
lattice [6–9, 11, 69]. However, it has never been proven
that the directly measurable impedance response also
exhibits similar sensitivity, particularly when the di-
rected amplification channels cancel. Below, we shall
verify the affirmative by showing experimental data on
its non-local current response.

Non-local impedance response measurements

To probe non-local impedance response, we build a
circuit represented by Laplacian J(k) (Fig. 1c), and
measure the two-point impedance Zij between all sets
of nodes i, j for both periodic and open boundary con-
ditions (PBCs and OBCs), as elaborated in the Meth-
ods section. We used N = 8 unit cells, with capacitors
C = 1nF , inductors L = 1mH and resistors R = 5kΩ
and r = 50kΩ, giving rise to dimensionless parameters
t = ωRC = 5 and v = R/(2r) = 0.05.
Under PBCs, the first and last unit cells of the ladder

are connected in a translation-invariant manner; under
OBCs, their disconnected connections are grounded.
Going from PBCs to OBCs amount to the elimination
of the two end-to-end connections, which would naively
seem like a tiny perturbation in a long ladder with large
number of unit cells N .

Yet, our experimental measurements reveal that
changing the boundary connections indeed has a dra-
matic non-local impact: Fig. 2a shows the ratio be-
tween the measured PBC and OBC impedances ZPBC
and ZOBC across all pairs of nodes on our fabricated
N = 8 ladders. When the two nodes i ∈ {A} and
j ∈ {B} belong to different sides of the ladder i.e. dif-
ferent sublattices, the ratio is substantially higher than
unity (red pixels in the rightmost plot). In other words,
removing the boundary connections between the 1st
and 8th unit cells always significantly affect the two-
point impedance across the ladder, even if the measure-
ment is taken across two nodes that are furthest from
the boundaries (i.e. 4A and 4B).

Selectivity of non-local impedance response

Interestingly, the boundary connections only affect
the impedance non-locally across the circuit ladder, not
across the nodes within the same ladder. As seen in the
left two plots in Fig. 2a, the ratio ZPBC/ZOBC is close
to unity (light blue) if the two nodes are on the same
ladder, except when the nodes are at the boundaries
themselves. Intuitively, this is because in an impedance
measurement between two nodes of the same ladder,
most of the current takes the most direct route within
that ladder, and is not affected by the hidden non-
reciprocity in the inter-ladder couplings.

This selective non-local impedance response is main-
tained even if we extrapolate to much longer circuit
chains, where the boundary couplings will ordinarily
give rise effects that are even more negligible. As evi-
dent in Fig. 2b, as the chain length N increases, the ra-
tio ZPBC/ZOBC of impedances across the middle of the
ladders (red asterisked) remains significantly greater
than unity. Since the middle unit cell is furthest from
the boundaries, the fact that the presence(absence) of
boundary connections can lead to significantly differ-
ent ZPBC(ZOBC) of a long circuit is clear evidence of
non-local response. By contrast, the PBC and OBC
impedance between any two points within the same
ladder converge towards each other in the large N limit
(blue, Intra), signifying the lack of non-local influence
from the boundary couplings. Perhaps most surpris-
ingly, the inter-ladder impedance across the same edge
(red circled) or across different edges (red squared) are
not as strongly affected by PBCs or OBCs as compared
to that involving middle unit cell nodes, even though
it is the edge nodes that are directly connected by the
boundary couplings. This suggests that the hidden di-
rected amplification is manifested as more strongly far
away, rather than in the proximity of the OBC cutoff.
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FIG. 3. Laplacian spectrum of our circuit and emergent topological modes from parasitic resistances. (a)
The OBC and PBC Laplacian spectra of our circuit with N = 8 unit cells, which are very different due to the non-locality of
boundary connections. Empirically measured parameters are C = 1nF , L = 1mH, R = 5kΩ and r = 50kΩ, with parasitic
resistances Rpc = 2Ω and Rpl = 17Ω. (b) At a large (N = 50) system size, topological modes (isolated circles) emerges
in our circuit as the coupling δv = t2(Rpc + Rpl)/2R from parasitic resistances is increased: while a near-zero topological
eigenvalue appears when δv equals the coupling v = 0.05 from the resistors, an additional topological eigenvalue appears
in the point gap beyond δv = 0.08. Their spatial profiles are manifestly boundary-localized, as presented for δv = 0.15
when the topological modes become well-separated from other eigenmodes.

Reciprocal non-Hermitian skin effect

We would like to clarify the distinction between se-
lective non-local impedance response and the break-
down of spectral bulk-boundary correspondence due to
the reciprocal non-Hermitian skin effect [6, 11, 13, 20,
38]. Shown in Fig. 3a are the completely different PBC
and OBC Laplacian spectra of our circuit, which in-
dicates broken spectral bulk-boundary correspondence
due to the “hidden” asymmetric couplings of a recip-
rocal system. However, having very different PBC and
OBC spectra does not imply that impedance response
is equally sensitive to the boundary connections. Ex-
plicitly, the impedance Zij between two nodes i and j is
related to the Laplacian eigenspectrum and eigenstates
via[64]

Zij =
∑
µ

||ψµ(i)− ψµ(j)||2

zµ
. (5)

Here Jψµ = zµψµ, µ = 1, ..., 2N , and the biorthog-
onal norm [9, 15] is used since the Laplacian is non-
Hermitian. Typically, Zij is contributed by many µ
terms of comparable magnitudes, and the spatial gra-
dients ψµ(i)− ψµ(j) of the eigenstates can conspire to
produce approximately equal PBC and OBC Zij even
if their spectra {zµ} are significantly different. Excep-
tions would be “topolectrical resonance” contributions
from zµ ≈ 0 eigenvalues - but note that in our case
(Fig. 3a), the almost vanishing PBC zµ arises from
the arbitrariness of the reference voltage, and possesses
an uniform eigenstate that does not contribute to the
impedance.

Size-dependent topological phase crossover from
parasitic resistances

Usually, we expect inevitable parasitic resistances in
the circuit components to erode experimental signa-

tures, such that they must be minimized in order to
have meaningful results. Yet, unexpectedly, parasitic
resistances not only do not significantly threaten the
non-local signatures in our fabricated circuit, but in
fact stabilize enigmatic topological modes which ap-
pear when the OBC circuit is sufficiently long.
This unusual size-controlled topological phase

crossover is a manifestation of the critical non-
Hermitian skin effect [55], which has so far never been
experimentally observed. Physically, it arises due to
the highly non-linear scaling of the effective inter-chain
couplings as N increases. Even though the “bare” cou-
pling is always ∆ = −r−1, corresponding to a weak
v = R/2r = 0.05 when put into dimensionless form,
the exponentially large “virtual” non-Hermitian skin
modes from the hidden directed amplification renor-
malizes their effective strengths to far larger values
which are exponentially increasing with N . As such,
we expect the same circuit to be in different regimes
corresponding to effectively weak and strong coupling
at small and large N respectively.
The qualitative crossover between these two regimes

occurs when the energetics within a single chain is com-
parable to the effective inter-chain coupling strength.
For our circuit in particular, the effective coupling de-
pends on the product of the bare coupling given by (see
Eq. 10 in Methods)

v + δv cos k = v +
t2(Rpc +Rpl)

2R
cos k, (6)

and a renormalization factor that increases rapidly
with system size N . As δv contributes to a sublat-
tice modulation δv ± it, it gives rise to Su-Schrieffer-
Heeger (SSH)-like topological modes whenever the ca-
pacitors and inductors harbor sufficiently large para-
sitic resistances Rpc and Rpl. Shown in Fig. 3b are
the Laplacian spectra for three illustrative δv at fixed
N = 50. The two topological modes start to emerge at
δv = 0.05 and 0.08 respectively, and become more dis-
tinctively isolated and spatially well-defined at larger
δv. In Fig. 8 in the Methods, the emergence of topolog-
ical modes is documented across different system sizes
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FIG. 4. OBC and PBC switching in our circuit. (a) Schematic of our circuit, with six gaps SR1 to SR6 that can be
used to “switch” between open and periodic boundary conditions. (b) The OBC configuration is implemented by replacing
SR1 and SR2 with resistors R, SR4, SR5 and SR6 by dissipationless wires and SR3 left disconnected. (c) The PBC
configuration is implemented by replacing SR2 and SR3 with resistors R, and all the others left disconnected. (d) The full
circuit board with the switches highlighted. Components used are rated C = 1nF , L = 1mH, R = 5kΩ and r = 50kΩ.

N for δv = 0.1, first appearing at N = 20 and be-
coming more distinct beyond that. In all cases, these
size-controlled isolated modes only exist in the OBC
and not PBC spectra, further confirming that they re-
sult from the critical non-Hermitian skin effect.

DISCUSSION

Resistors, capacitors and inductors (RLC) are the
simplest of electronic components, but yet in this work,
we demonstrated theoretically and experimentally that
they lead to enigmatic non-local impedance responses.
While this was achieved through careful circuit de-
sign that appealed to a virtual directed amplification
mechanism, qualitatively similar non-local responses
should occur as long as non-reciprocity from LC phase
delay is appropriately juxtaposed with resistive loss.
Unique to electrical circuit platforms (and not photonic
or acoustic media for instance), this non-locality in
the impedance is distinct from the breakdown of spec-
tral bulk-boundary correspondence from the reciprocal
non-Hermitian skin effect, since the impedance between
some pairs of nodes (such as our measured intra-ladder
impedance) can remain almost unchanged by the re-
moval of distant connections, even as the Laplacian
spectrum has already been drastically modified.

As a robust non-Hermitian phenomenon, the non-
local impedance response is comfortably robust against
reasonable levels of parasitic resistances of the or-
der of O(10)%. Perhaps surprisingly, such parasitic
resistances in the capacitive and inductive elements
even lead the fortuitous appearance of real topological
modes at sufficiently large system sizes. These loss-
induced topological modes emerges when the effect of
time-reversal and (virtual) sublattice symmetry break-
ing from the parasitic resistive loss is compounded over
many unit cells, and constitutes a fresh new manifes-
tation of the critical skin effect.

Based purely on basic electrical circuit elements, our
non-local mechanism is compatible with current tech-
nology for applications such as sensing[47–52]; its ex-
clusive use of RLC elements make it area-friendly, func-
tional stable and easily integrated into a chip. Be-
sides, if we drop our lumped circuit assumption, our

approach can be used to construct passive microwave
circuits with non-local responses, with the promise of
superior performance in impedance matching and tun-
ing and as resonators, power dividers and directional
couplers and filters compared to current microwave en-
gineering designs. This would inspire new microwave
technology from state-to-art physics [70, 71], and we
leave it for future investigations.

METHODS

PBC/OBC circuit setup and measurements

Shown in Fig. 4a is the full schematic of our fab-
ricated circuit with N = 8 unit cells. It assumes a
ladder configuration, with resistors R = 5kΩ connect-
ing successive nodes, resistors r = 50kΩ forming the
rungs, and capacitors C = 1nF as well as inductors
L = 1mH diagonally connecting adjacent nodes in the
opposite rung.

To demonstrate non-local impedance responses, we
design the circuit to be easily switchable between OBC
and PBC configurations (Fig. 4b and c), such that 2-
point impedance data under OBCs and PBCs can be
readily compared. This is achieved through “switches”
labeled SR1 to SR6 in the schematic as well as the
photograph of the printed circuit board (Fig. 4d).

To implement OBCs or PBCs, SR1 to SR6 are to be
substituted with resistors R, wires of negligible resis-
tance, or simply left empty. For OBCs, SR1 and SR2
(yellow) are replaced by resistors R, and SR3 (white)
is left disconnected. SR4, SR5 and SR6 (red) are re-
placed by dissipationless wires. This grounds the edge
unit cells, yielding the OBC configuration of Fig. 4b.
For PBCs (Fig. 4c), SR2 and SR3 are replaced by dis-
sipationless wires, and SR1, SR4, SR5 and SR6 are
disconnected. This restores the boundary connections
of the PBC configuration of Fig. 4c.

Since the exact resonance frequency ω0 is not a pri-
ori known due to component uncertainty, we sweep
through the relevant AC frequency range and identify
ω0 from the impedance peak. The two-point impedance
between any two nodes is measured by connecting an
LCR meter across the nodes.
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(a) Periodic boundaries (b) Open boundaries

FIG. 5. Empirical determination of parasitic resis-
tances. Experimentally measured impedances across all
2N(N − 1)/2 + N = 8 × 7 × 2/2 + 8 = 64 unique pairs
of nodes (orange) are compared with the impedances com-
puted from Eq. 10 (blue), with effective parasitic resistances
adjusted to Rpc = 2Ω, Rpl = 17Ω such that the fit is opti-
mal.

Circuit simulations were performed with the
Cadance virtuoso software. A sinusoidal signal with
magnitude 1V was connected across nodes to measure
their 2-point impedance, with the resonant AC fre-
quency f0 = 2πω0 determined by searching across the
range 150kHz ∼ 170kHz.

Parasitic resistances and accurate modeling of our circuit
Laplacian

To accurately model our circuit, it is necessary to as-
sume some level of parasitic resistance in each capacitor

and inductor. Through measurements on single compo-
nents, it was found that using capacitors of C = 1nF
and inductors of L = 1mH minimizes the effects of
parasitic resistances while keeping the resonance fre-
quency in the order of ω0 = (LC)−1/2 = 106s−1,
which is convenient for measurements. By adding serial
parasitic resistances to them in our simulations, and
comparing the simulated and experimentally measured
impedances across all pairs of nodes (Fig. 5), we found
that it suffices to assume a common serial parasitic re-
sistance Rpc and Rpl to all capacitors and inductors
respectively:

iωC → iωC

1 + iωCRpc
(7)

1

iωL
→ 1

Rpl + iωL
(8)

where Rpc = 2Ω and Rpl = 17Ω. These parasitic resis-
tance values optimize the fit between the experimental
and simulated impedances, with magnitude and argu-
ment discrepancies respectively smaller than 4% and
2% respectively for most data points. To recall, the
other component parameters are C = 1nF , L = 1mH,
R = 5kΩ, r = 50kΩ, such that the resonance frequency
is f0 = ω0/2π = 159.15kHz, and t = ω0RC = 5,
v = R/(2r) = 0.05. Note that with these empirically
parameters, the parasitic corrections to the C and L
are very small, of the order of 0.2% and 1.7% respec-
tively.

Substituting Eq. 8 into Eq. 2 of the main text, we
arrive at the experimental circuit Laplacian

Jexp(k) =
iωC

1 + iωCRpc

(
1 −eik

−e−ik 1

)
+

1

Rpl + iωL

(
1 −e−ik

−eik 1

)
+

1

r

(
1 −1
−1 1

)
+

2− 2 cos k

R

(
1 0
0 1

)
. (9)

At resonance, such that ω = ω0 = 1√
LC

= 106,

Jexp(k)|ω=ω0
=

iω0C

1 + iω0CRpc
(I− cos kσx + sin kσy) +

1

Rpl + iω0L
(I− cos kσx − sin kσy) +

1

r
(I− σx) +

2− 2 cos k

R
I

≈ 2

R
[i(t sin k)σy + v(I− σx) + (1− cos k)I] + iω0C

(
1

1 + iω0RpcC
− 1

1 +
Rpl

iω0L

)
[I− σx cos k]

≈ 2

R
[i(t sin k)σy + v(I− σx) + (1− cos k)I] + (ω0C)

2(Rpc +Rpl)[I− σx cos k]

=
2

R

[
i(t sin k)σy + v(I− σx) + (1− cos k)I+

t2(Rpc +Rpl)

2R
(I− σx cos k)

]
, (10)

where t = ω0RC = R
√

C
L = 5 and v = R/2r = 0.05.

Going from the 1st to the 2nd line, we made the approx-
imation that iω0C/(1+ iω0CRpc)

−1+(Rpl+ iωL)
−1 ≈

iω0C+(iωL)−1, which holds because ω0RpcC ≪ 1 and
Rpl/iω0L≪ 1. This is also used to simplify line 3 from

line 2.

Comparing with Eq. 3 of the main text, the addi-
tional term from the parasitic resistances is the right-
most term containing (I − σx cos k), with coefficient
t2(Rpc+Rpl)

2R ≈ 0.0475 that is comparable in magnitude
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(a) (b)

FIG. 6. Scaling of impedance ratio ZPBC/ZOBC against N and t. (a) Simulation results of ZPBC/ZOBC vs N ,
N = 8, 10, ..., 30, comparing between ideal cases without parasitic resistances, and non-ideal cases with parasitic resistances
empirically obtained as Rpc = 2Ω and Rpl = 17Ω. While this inter-ladder impedance ratio is consistently lower for the
non-ideal case, the center-to-center interval still consistently exhibits a ratio larger than unity, signifying response non-
locality. (b) Center-to-center ZPBC/ZOBC at N = 8 (across the A and B nodes of the 4th unit cell) and its almost linear

dependence on t = ωRC ≈ RC/
√
LC = R/1000. v = R/2r = 0.05 is kept constant.

with the other symmetric (σx) inter-ladder coupling v.

Scaling behavior of circuit

Extrapolation to longer circuit ladders

Here, we present further results on the scaling behav-
ior of the two-point impedance. As shown in Fig. 6a,
the inter-ladder impedance ratio ZPBC/ZOBC decreases
universally as the system size N increases. However,
the ratio does not converge to unity when the two
points are at the center of the ladders, but to an asymp-
totic value that is significantly larger than one, im-
plying the robustness of the non-local response even
with the empirically extracted parasitic resistances in-
cluded (“non-ideal” case). In general for inter-ladder
intervals, larger ZPBC/ZOBC ratios exist either across
nearby points, or if one or both of the points are near
the edge (Fig. 7).

Interestingly, at the fixed system size of N = 8, the
non-local response is almost linearly proportional to
t = ω0RC = R

√
C/L, as shown in Fig. 6b. This is

because t can be interpreted as the “hidden” coupling
asymmetry of the effective two HN-chain model. In the
limit of large t i.e. large C and/or small L, we expect
a vastly larger ZPBC vs. ZOBC across the ladders, and
that limit could be further employed to generate very
strong non-local response.

Emergent topological mode at large system sizes

Here, we provide more detailed plots of the Lapla-
cian spectrum of our circuit as N increases, such as to
substantiate our discussion of the size-dependent topo-
logical phase crossover. In Fig. 8, the emergence of
two real topological modes - one near 0 and the other
in the point gap - is clearly observed as N increases
from 20 to 150. This provides further evidence that

(a) (b) (c)

0

2

4

6

(d) (e) (f)

0

2

4

6

FIG. 7. Two-point impedance ratios ZPBC/ZOBC in
longer circuit arrays. (a-c) Intra-ladder impedance ra-
tios for N = 9, 17 and 25 respectively. (d-f) Inter-ladder
impedance ratios also for N = 9, 17 and 25 respectively.
The circuit dimensionless parameters are t = 5, v = 0.05
and δv = 0.0475 as obtained from our experimental setup.

parasitic losses in our circuit gives rise to the critical
non-Hermitian skin effect in the form of a topological
crossover.

Data availability – The data that support the find-
ings of this study are available from the corresponding
author upon reasonable request.

END NOTES
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FIG. 8. Emergence of topological modes as system size is increased. (a-f) Shown are the PBC (green) and OBC
(black) spectra for δv = 0.1 and system sizes N = 20, 30, 40, 60, 100 and 150 respectively. Other parameters are set at
t = 5 and v = 0.05 as in our experiment. Budding topological modes (isolated small black circles) start to emerge at
N = 20 along the real line, and become more and more isolated and distinct as N increases. Beyond N = 60, one of them
gravitates towards 0, and the other is well within the point gap of the spectrum.
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