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Abstract

We introduce a family of quantum field theories for fields carrying monopole and
dipole charges. In contrast to previous realizations, fields have quadratic two-derivative
kinetic terms. The dipole symmetry algebra is realized in a discretized internal space
and connected to the physical space through a background gauge field. We study
spontaneous symmetry breaking of dipole symmetry in 1+1 dimensions in a large-N
limit. The trivial classical vacuum is lifted by quantum corrections into a vacuum
which breaks dipole symmetry while preserving monopole charge. By means of a
Hubbard-Stratonovich transformation, heat-kernel and large-N techniques, we com-
pute the effective action for the low-energy modes. We encounter a fractonic immobile
Nambu-Goldstone mode whose dispersion characteristics avoid Coleman-Hohenberg-
Mermin-Wagner theorem independently of the large-N limit.
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1 Introduction

The spontaneous breaking of symmetries which depend on the coordinates is a topic which as
yet lacks a complete and systematic understanding. In general, no universal rules relate the
symmetry breaking pattern with the properties of the emerging low-energy Nambu-Goldstone
modes, neither about their precise number, nor about their dispersion relations [1, 2].

Multipole symmetries are a class of coordinate-dependent symmetries which combine an
internal (monopole) symmetry with suitable polynomial combinations of the spatial coordi-
nates. The monopole symmetry is an ordinary global symmetry whose conserved charge is
a scalar with respect to rotations. When a higher moment of the charge is also conserved,
like for instance dipole moment, quadrupole, etc., we have a multipole symmetry. Multipole
symmetries do not commute with translations since their charge densities depend explicitly
on the coordinates. These symmetries impose restrictions on the mobility of isolated charged
particles, thereby the theories enjoying multipole symmetries can have fractonic excitations.
Fractons have sparked a lot of interest because of their possible application to quantum
error correction in lattice models and extensions to field theories with unusual properties
like an extensive degeneracy of states and IR/UV mixing, see [3–6] for reviews on the topic.
It should be noted that they are not simply a theoretical curiosity, they can describe the
low-energy properties of defects in quantum elasticity, see [7–15] for an incomplete list of
references.

The spontaneous breaking of multipole symmetries has been recently investigated in
[16–20]. Since the momentum density is not invariant under a multipole transformation,
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multipole symmetries are in general spontaneously broken in thermal states with a hydro-
dynamic description (including momentum conservation) [21–29].

Generally, it is assumed that the spontaneous breaking of the monopole/multipole sym-
metries produces a single scalar Nambu-Goldstone mode ϕ, transforming as

δϕ = λ0 + λ1 ix
i + λ2 ijx

ixj + · · · , (1.1)

where λ0, λ1 i, etc. are constant coefficients corresponding to the monopole, dipole and
higher-moment transformations. It is interesting to appreciate that λ0 and λ1 i generate
the same symmetry as that characterizing Galileons in flat space [30, 31]. The most rele-
vant low-energy terms in the Nambu-Goldstone effective action invariant under all multipole
symmetries up to the M -th moment are

SM =

∫
dd+1x

[
1

2
(∂tϕ)

2 − κ2

2
(∂M+1ϕ)2

]
, (1.2)

where, for even M + 1, we have ∂M+1 = (∇2)
M+1

2 , while for odd M + 1 we have ∂M+1 =

(∇2)
M
2 ∂i and the spatial index is contracted such that the action is rotationally invariant.

This is a Lifshitz theory with dynamical exponent z =M +1, so that the Nambu-Goldstone
mode has a dispersion relation ω = κ|q|M+1. If the dimensionality of space is too low, then
a multipole-symmetry generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW)
theorem shows that spontaneous symmetry breaking is not possible in dimensions d ≤ 2z at
non-zero temperature. However, dipole symmetry breaking at zero temperature is allowed
even at d = 1 [32–35].

In a phase where not all the multipole symmetries up to order M of the UV theory are
spontaneously broken, the low-energy effective action is in general different from (1.2). For
instance, for M = 1, when the dipole symmetry is spontaneously broken but the monopole
symmetry is not, the order parameter is expected to have a spatial index and the Nambu-
Goldstone mode is expected to exhibit a linear dispersion relation [18,33,36,37].

Focusing on continuous models with monopole and dipole symmetry, the concomitant
spontaneous breaking of both symmetries follows in general the pattern described by Pretko
[36]. There is a scalar order parameter charged under both monopole and dipole transfor-
mations,

Φ → Φ′ = ei(λ0+λ1 ix
i)Φ . (1.3)

A dipole transformation is equivalent to a charge-dependent shift in momentum

Φ′(x) = eiλ1 ix
i

∫
ddq

(2π)d
eiqix

i

Φ̃(q) =

∫
ddq

(2π)d
eiqix

i

Φ̃(q − λ1) =

∫
ddq

(2π)d
eiqix

i

Φ̃′(q) , (1.4)

hence dipole symmetry is related to invariance under Galilean boost and UV/IR mixing.1

The transformation properties of Φ are such that there cannot be an ordinary kinetic term

1As discussed in [38], in this context the UV/IR mixing refers to the low-energy mixing among small and
high momenta, something which characterizes Galilean hydrodynamics as well.
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compatible with dipole symmetry and the theory is “non-Gaussian” around Φ = 0. In fact,
the terms in the action have to depend on the difference of two momenta. On the other
hand, when Φ acquires an expectation value, the effective theory for the Nambu-Goldstone
mode falls in the class shown in (1.2), since both monopole and dipole symmetries are broken
simultaneously. If one introduces a large number of fields transforming as in (1.3), it has
been shown that at high temperature the dipole symmetry may be broken without breaking
the monopole symmetry through the expectation value of a two-point function [37].

In [39] a different proposal for the realization of dipole symmetry was introduced, inspired
by [40]. The dipole symmetry is introduced as an internal symmetry that implies a shift
in momentum after a background field is turned on. Such background can be thought as
emerging from a spontaneous symmetry breaking which locks the internal to the external
space translations. Dipole symmetry is preserved by replacing ordinary derivatives by co-
variant derivatives and kinetic terms with the usual number of fields and derivatives are
allowed. There is no reason a priori to expect that previous analyses of dipole symmetry
breaking and the corresponding generalizations of CHMW theorem apply to this internal
realization of dipole symmetry. The goal of the present paper is to build working models for
the spontaneous breaking of dipole symmetry and examine in detail some of the questions
mentioned above. In particular, we are interested in the case where monopole symmetry
remains unbroken.

The paper is organized as follows. Section 2 describes the realization of the monopole
and dipole symmetries on charged scalar fields, with particular attention to the definition of
suitable covariant derivatives. Section 3 constitutes the core of the paper. It first discusses
a classical realization of the simultaneous breaking of monopole and dipole symmetries,
whose effects comply with standard Nambu-Goldstone expectations. Then a quantum model
where dipole symmetry is broken while preserving the monopole symmetry is thoroughly
analyzed. We apply several effective-field-theory techniques involving auxiliary Hubbard-
Stratonovich fields and the associated dualization, large-N and saddle-point approximations
and a heat-kernel expansion controlled by the scalar field mass, which sets the UV cut-off for
the low-energy description. We also discuss in depth the properties of the emerging Nambu-
Goldstone boson which is interestingly exotic: It is fractonic and completely immobile, a
characteristic which makes it evade standard CHMW-theorem arguments. As a consequence,
the symmetry breaking could occur also at zero temperature in 1+ 1 dimensions, regardless
of the large-N suppression effects to the fluctuations of the order parameter. In section 4
we analyze a similar model for spinless fermions and in section 5 we conclude. Technical
developments are detailed in the appendices.

2 Realization of dipole symmetry

Details about the algebra of generators of multipole symmetries in the context of fractons
was originally discussed in [41]. In the simplest scenario, the relevant generators are those
for spatial translations, Pi, the monopole charge Q0, and the dipole charge Qi

1. The only
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non-zero commutator is
i[Pi, Q

j
1] = δji Q0 . (2.1)

This was dubbed the monopole-dipole-momentum algebra (MDMA) in [22], and it coincides
with the centrally-extended Heisenberg algebra, as pointed out in [40].

The generators Pi can be the usual translation operators shifting the spatial coordinates
on which the fields depend

eia·Pϕ(t,x)e−ia·P = ϕ(t,x+ a) . (2.2)

As a consequence of the Stone-von Neumann theorem [42], all representations of the Heisen-
berg algebra are unitarily equivalent, thus the choice (2.2) does not reduce the generality
of the present analysis. Completing to a unitary representation of the MDMA algebra, we
have that the field ϕ(t,x) transforms as

eiλ0Q0ϕ(t,x)e−iλ0Q0 = eiλ0ϕ(t,x) , (2.3a)

eiλ1·Q1ϕ(t,x)e−iλ1·Q1 = eiλ1·xϕ(t,x) . (2.3b)

This leads to the type of action introduced by Pretko [36] where there is no quadratic term
with space derivatives (when rotational symmetry is preserved).

Instead of using this realization which directly involves the space coordinates, we introduce
a continuous set of complex fields ϕX⃗(t,x), labelled by a set of internal coordinates XI , that
are in a unitary Schröedinger representation of the Heisenberg group, namely

eiκ⃗·P⃗ϕX⃗(t,x)e
−iκ⃗·P⃗ = ϕX⃗+κ⃗(t,x) , (2.4a)

eiλ0Q0ϕX⃗(t,x)e
−iλ0Q0 = eiλ0ϕX⃗(t,x) , (2.4b)

eiλ⃗1·Q⃗1ϕX⃗(t,x)e
−iλ⃗1·Q⃗1 = eiλ⃗1·X⃗ϕX⃗(t,x) . (2.4c)

In principle, the space spanned by the internal coordinates XI can be of different dimension-
ality than the space spanned by the spatial coordinates xi, but the usual dipole symmetry
is recovered only when the internal and external spaces have the same dimensionality.

The symmetry (2.4) can be gauged by making the parameters of the transformations

{λ0, λ⃗1, κ⃗} dependent on the spacetime coordinates (t,x). Besides, it is possible to define a
covariant derivative

DµϕX⃗ = ∂µϕX⃗ − iaµϕX⃗ − i⃗bµ · X⃗ϕX⃗ − V⃗µ · ∇⃗XϕX⃗ , (2.5)

where, if Î is the unit vector in the I-th direction, we have

∂XIϕX⃗ = lim
ϵ→0

1

ϵ

(
ϕX⃗+ϵÎ − ϕX⃗

)
. (2.6)

The gauge fields {aµ, b⃗µ, V⃗µ} transform as [39]

δaµ = ∂µλ0 − V⃗µ · λ⃗1 + b⃗µ · κ⃗ , (2.7a)

δ⃗bµ = ∂µλ⃗1 , (2.7b)

δV⃗µ = ∂µκ⃗ . (2.7c)
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With these gauge transformations, DµϕX⃗ transforms in the same way as ϕX⃗ in (2.4).

There can be fields in other representations of the MDMA algebra, for instance we can
introduce fields χX⃗ that carry no monopole charge and have a dipole charge d⃗:

eiκ⃗·P⃗χX⃗(t,x)e
−iκ⃗·P⃗ = χX⃗+κ⃗(t,x) , (2.8a)

eiλ0Q0χX⃗(t,x)e
−iλ0Q0 = χX⃗(t,x) , (2.8b)

eiλ⃗1·Q⃗1χX⃗(t,x)e
−iλ⃗1·Q⃗1 = eiλ⃗1·d⃗χX⃗(t,x) . (2.8c)

Accordingly, the covariant derivative for χX⃗ reads

DµχX⃗ = ∂µχX⃗ − i b⃗µ · d⃗ χX⃗ . (2.9)

These fields are interesting because they allow us to write a different covariant derivative for
ϕX⃗ , if one restricts to constant κ2. Consider a field χI

X⃗
for each internal spatial dimension,

namely I ∈ {1, ..., d}. If each field χI
X⃗

carries a dipole charge d⃗I such that (d⃗I)
J = δJI , then

DµϕX⃗ = ∂µϕX⃗ − i aµϕX⃗ − i b⃗µ · X⃗ ϕX⃗ − ϕX⃗

∑
I

V I
µ logχI

X⃗
, (2.10)

defines a covariant derivative for ϕX⃗(t,x), under the restriction ∂µκ = 0.

Adopting either the covariant derivative (2.5) or (2.10), there is no obstruction to intro-
ducing quadratic derivative terms in the action with the internal realization of the symmetry
that we have just discussed. The connection to the usual definition of coordinate-dependent
dipole transformations emerges when the internal space spanned by the XI has the same
dimensionality as the real space spanend by the xi and there is a constant background field

V⃗0 = 0 , V J
i = δJi V . (2.11)

In this case there is a global symmetry transformation that leaves the gauge fields invariant

λ0 = V a · x , λ1 I = aI , (2.12)

with a a constant vector. Under this global transformation, the fields transform as

ϕX⃗ → eiV a·x+i⃗a·X⃗ϕX⃗ , (2.13)

which amounts to a simultaneous shift of the phase linear both in the internal and external
spatial coordinates.

In summary, the Schrödinger representation of the Heisenberg group in the internal space
provides an alternative realization of dipole symmetry. However, according to (2.4) and
(2.8), it involves a continuously-infinite number of fields because XI ∈ R, which makes
unclear whether this realization can be treated as an ordinary field theory. Such issue can be

2This is actually a case considered below for a system with one internal, discretized spatial direction.
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avoided by generalizing the construction to a finite number N of fields, obtained discretizing
and compactifying the internal coordinates. In the remainder of the paper, we work in a
large-N limit, so we use the expressions for the transformations and covariant derivatives of
the non-compact case, referring to a discrete though infinite number of fields. We discuss
the compact case with a finite number of fields in appendix A.

We discretize the internal coordinates, as well as the associated translations,

XI → nI , κI → kI , nI , kI ∈ Z , (2.14)

hence the set of fields is infinite and numerable. The transformations (2.7) and (2.8) keep the
same form also in the discretized case, they are obtained by simply replacing the continuous
internal coordinates and translations with discrete integer-valued vectors X⃗ → n⃗, κ⃗ → k⃗.
Importantly, since k⃗ is a vector of integers, δV⃗µ = 0. Moreover, the covariant derivative (2.5)
involves derivatives with respect to XI , which have to be replaced by a suitable discretized
version. Using the unit vector in the I-th direction Î, we have

Dµϕn⃗ = ∂µϕn⃗ − iaµϕn⃗ − i n⃗ · b⃗µϕn⃗ −
∑
I

V I
µ ϕn⃗

[
log(ϕ∗

n⃗ϕn⃗+Î)− log(ϕ∗
n⃗ϕn⃗)

]
. (2.15)

The continuous case is recovered by considering X⃗ = ϵ n⃗ and taking the limit ϵ → 0 such
that3

∂XIϕX⃗ = lim
ϵ→0

1

ϵ
ϕX⃗
[
log(ϕ∗

X⃗
ϕX⃗+ϵÎ)− log(ϕ∗

X⃗
ϕX⃗)

]
. (2.16)

The specific form of the logarithmic terms is chosen for later convenience. As we observed
already in the continuous case, if there is a set of fields χIn⃗ which are not charged under

monopole transformations but have dipole charge (d⃗I)
J = δJI , then one can define a covariant

derivative as
Dµϕn⃗ = ∂µϕn⃗ − iaµϕn⃗ − i n⃗ · b⃗µϕn⃗ −

∑
I

V I
µ ϕn⃗ log(χIn⃗) . (2.17)

For simplicity, in the remainder of the paper we restrict to the case of a single spatial and
internal direction.

3 Spontaneous breaking of the dipole symmetry

In the present section, we propose a model for bosonic complex scalar fields ϕn transforming
in the one-dimensional discrete version of (2.4). First, we discuss the case in which the sym-
metry breaking is enforced by a classical potential and both monopole and dipole symmetries
are broken simultaneously. Then, we consider the case in which the breaking is triggered by
quantum fluctuations and only dipole symmetry is broken.

3Reference [38] discusses the infinite volume limit at finite lattice spacing for theories with subsystem sym-
metries, a circumstance bearing a similarity to the discretization described here in the main text. Specifically,
they connect the non-commutation of the infinite-volume and the continuum limits to the UV/IR mixing.
Related comments, focused mainly on possible continuum descriptions (or lack thereof) for theories with
subsystem symmetries, are given in [43].
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3.1 Symmetry breaking with a classical potential

Let us consider a model with a classical Mexican-hat potential,

L =
N∑
n=1

[
−|Dµϕn|2 +m2

ϕ|ϕn|2 −
λϕ
2
|ϕn|4

]
, (3.1)

where we contract Lorentz indices with ηµν = diag (−1, 1) and

Dµϕn = ∂µϕn − Vµϕn [log (ϕn+1ϕ
∗
n)− log (ϕnϕ

∗
n)] . (3.2)

Actually, we are considering aµ = bµ = 0 and constant background field Vµ = (0, Vx). The
model (3.1) displays monopole and dipole global symmetries. The former transformation
corresponds to (λ0, λ1) = (α, 0) with constant α, namely

ϕn(t, x) → eiαϕn(t, x) . (3.3)

The latter transformation corresponds to (λ0, λ1) = (βxVx, β) with β constant,

ϕn(t, x) → eiβ(n+xVx)ϕn(t, x) . (3.4)

When the background Vµ is non-null, the dipole transformation (3.4) implies a shift in
momentum, δq = βVx. In fact, expanding ϕn in plane waves along the x direction,

ϕn(x) =

∫
dq

2π
eiqxϕ̃n(q) , (3.5)

and performing a dipole transformation, we have

ϕ′
n(x) = eiβ(n+xVx)

∫
dq

2π
eiqxϕ̃n(q) = eiβn

∫
dq

2π
eiqxϕ̃n(q − βVx) =

∫
dq

2π
eiqxϕ̃′

n(q) , (3.6)

with
ϕ̃′
n(q + βVx) = eiβn ϕ̃n(q) . (3.7)

We stress that the representation of dipole transformations described above is compatible
with having an ordinary relativistic and quadratic two-derivative kinetic term , in contrast
to the realization of [36]. The theory is nevertheless non-Gaussian due to the logarithmic
terms appearing in the covariant derivative.

We are interested in a background for Vµ which breaks Lorentz boosts. Nevertheless,
if there is spontaneous breaking of the monopole and dipole symmetries, we expect the
Nambu-Goldstone boson to display a linear dispersion relation. Let us explicitly show this
by considering configurations of the form

ϕn(t, x) = ϕ(0)n e
iθn(t,x) , (3.8)
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where ϕ(0)n are the values of the fields at the classical vacuum and θn are their phase fluctu-
ations. The potential obtained adding the non-derivative terms contained in |Dµϕn|2 reads

V =
N∑
n=1

[
V 2
x ϕ

2
(0)n

∣∣∣∣log(ϕ(0)(n+1)

ϕ(0)n

)
+ i (θn+1 − θn)

∣∣∣∣2 −m2
ϕϕ

2
(0)n +

λϕ
2
ϕ4
(0)n

]
. (3.9)

This potential is minimized when, for every n, we have ϕ(0)n = ϕ(0) =

√
m2
ϕ

λϕ
, and θn = θ.

The low-energy action for the phase amounts to

Sθ =
Nm2

ϕ

λϕ

∫
d2x

[
(∂tθ)

2 − (∂xθ)
2] . (3.10)

Therefore, the Nambu-Goldstone field θ displays a linear dispersion relation ω2 = q2, differ-
ently to what happens in other realizations of the dipole symmetry.

Since the dipole symmetry (3.4) involves the spatial coordinate, the model displays degen-
erate coordinate-dependent vacuum configurations. The family of vacuum configurations is
given by

ϕn(t, x) = ϕ(0)e
iαeiβ(n+xVx)eiθ(t,x) , (3.11)

where we have included the phase fluctuations θ(t, x). The constants α and β parameterize
a two-dimensional vacuum manifold. For β ̸= 0 the configuration (3.11) does not minimize
the potential V in (3.9), since θn+1 − θn = β ̸= 0, yet this is compensated by contributions
from derivative terms. Taking these latter into account, the vacua (3.11) are all degenerate
and the action for the Nambu-Goldstone field is given by (3.10), regardless of the specific
vacuum configuration.

The Nambu-Goldstone field θ(t, x) realizes the global monopole and dipole symmetries
non-linearly,

θ(t, x) −→ θ(t, x) + α + β(n+ xVx) . (3.12)

The low-energy action (3.10) is invariant under these transformations only modulo a total
spatial derivative term 2β∂xθ, which does not alter the equation of motion. According to
(3.11), the transformations (3.12) are the rigid zero modes that connect different degenerate
vacua. The Nambu-Goldstone particles corresponds to localized modulations of the Nambu-
Goldstone field θ(t, x), for which we can drop the total derivative terms in the action.

The presence of just a Nambu-Goldstone mode despite the breaking of two symmetries can
be expected a priori for two reasons. First, the rigid n-independent fluctuations about the
vacuum are described by a complex field whose modulus and phase encode the fluctuations of
the vacuum configuration ϕn(t, x). Since a constant in x and n-independent variation of the
modulus leads to a variation of the potential V while leaving the derivative terms unaffected,
this represents a gapped Higgs mode. The remaining phase mode is necessarily gapless,
according to the non-relativistic and spacetime generalizations of Goldstone theorem, which
imply the presence of at least one Nambu-Goldstone mode when one or more symmetries
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are spontaneously broken [2, 44]. Secondly, the generators Q0 and Q1 for the global broken
symmetries, respectively associated to α and β in (3.12), satisfy the following commutation
relation

[Π,Q1] = iβVxQ0 , (3.13)

where Π is the generator of the external spatial translations (i.e. the shifts in x). We recall
that Vx is a background field. Relying on the commutation relation (3.13), the present case
is formally analogous to the presence of an inverse Higgs constraint [45].

In the present subsection, we enforced the spontaneous symmetry breaking of the dipole
symmetry through the introduction of a classical potential. In the following, we discuss
the case in which the spontaneous breaking of the dipole symmetry at zero temperature is
triggered by quantum fluctuations.

3.2 Dipole symmetry breaking preserving monopole symmetry

We consider the action

L =
∑
n

(
−|Dµϕn|2 −m2

ϕϕ
∗
nϕn
)
− m2

σ

2N

(∑
n

ϕ∗
nϕn

)2

+

− λσ
4N3

(∑
n

ϕ∗
nϕn

)4

−
m2
χ

N

∣∣∣∣∣∑
n

ϕn+1ϕ
∗
n

∣∣∣∣∣
2

− λχ
2N3

∣∣∣∣∣∑
n

ϕn+1ϕ
∗
n

∣∣∣∣∣
4

, (3.14)

where m2
ϕ > 0 while m2

σ and m2
χ can have either sign. The action has a classical local

minimum at ϕn = 0, where all symmetries are unbroken. Below we show that, for some
choices of the parameters, the large-N quantum effective action associated to (3.14) can
develop a stable saddle point where dipole symmetry is broken spontaneously while monopole
symmetry is preserved.

3.2.1 Hubbard-Stratonovich transformation

We employ the Hubbard-Stratonovich transformation to express the action (3.14) into a more
suitable form, where terms involving self-interactions of ϕn are replaced by terms involving
Hubbard-Stratonovich auxiliary fields. We first identify non-quadratic terms in the action as
combinations of the local (in x) composite operators σn = ϕ∗

nϕn and χn = ϕn+1ϕ
∗
n. We then

promote these combinations into dynamical fields, introducing Lagrange multipliers τσn and
τχn to enforce the equivalence of the two partition functions,

Z =

∫
D ϕn e

iS[ϕn]

=

∫
DϕnDσnDχnDτσnDτχn exp

(
iS[ϕn, σn, χn] + i

∫ ∑
n

τσn(σn − ϕ∗
nϕn)

+ τ ∗χn(χn − ϕn+1ϕ
∗
n) + τχn(χ

∗
n − ϕ∗

n+1ϕn)
)
. (3.15)
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The transformed Lagrangian, including the Lagrange multipliers, reads

LHS =
∑
n

(
−|Dµϕn|2 −m2

ϕϕ
∗
nϕn
)
− m2

σ

2N

(∑
n

σn

)2

+

− λσ
4N3

(∑
n

σn

)4

−
m2
χ

N

∣∣∣∣∣∑
n

χn

∣∣∣∣∣
2

− λχ
2N3

∣∣∣∣∣∑
n

χn

∣∣∣∣∣
4

+
∑
n

[
τσn (σn − ϕ∗

nϕn) + τ ∗χn (χn − ϕn+1ϕ
∗
n) + τχn

(
χ∗
n − ϕ∗

n+1ϕn
)]

. (3.16)

Notice that the fields χn are charged under dipole symmetry while they are invariant under
monopole transformations. The fields σn are invariant under both symmetries.

The covariant derivative becomes

Dµϕn = dµϕn − Vµϕn log

(
|χn|
σn

)
, (3.17)

where, for later convenience, we introduced the notation

dµ ≡ ∂µ − iVµθn , (3.18)

with θn being the phase of χn.

3.2.2 Effective action

We first assume that there are vacuum configurations that do not break internal translations,
and introduce an n-independent ansatz for the auxiliary fields,

χn = χ̄ , σn = σ̄ , τχn = τχ , τσn = τσ . (3.19)

The Lagrangian simplifies to

LHS =
∑
n

[
−|Dµϕn|2 −

(
m2
ϕ + τσ

)
ϕ∗
nϕn − τ ∗χϕn+1ϕ

∗
n − τχϕ

∗
n+1ϕn

]
+

− N

(
m2
σ

2
σ̄2 +

λσ
4
σ̄4 +m2

χ|χ̄|2 +
λχ
2
|χ̄|4 − τ ∗χχ̄− τχχ̄

∗ − τσσ̄

)
. (3.20)

Integrating by parts the kinetic term leads to

−|Dµϕn|2 −→ ϕ∗
ndµd

µϕn − ξϕ∗
nϕn , (3.21)

where

ξ ≡ τσ +

(
Vx log

|χ̄|
σ̄

)2

. (3.22)
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The fields ϕn enter the Lagrangian (3.20) quadratically. They can be thus integrated out
to find a quantum effective action for the auxiliary fields. Crucially, the action for ϕn is
such that the dependence in the phase of χn only enters as an effective gauge field in the
‘covariant derivative’ dµ defined in (3.18). As we show explicitly below, this prevents terms
∼ |∂µχn|2 from appearing in the low-energy effective action.

Defining
∆2 = m2

ϕ + ξ , (3.23)

a standard calculation of the one-loop determinant (see appendix B) gives the low-energy
effective Lagrangian for homogeneous (in n) configurations4

Leff =
1

48πm4
ϕ

[
(∂tξ)

2 + 2∂tτ
∗
χ∂tτχ

]
− Veff , (3.24)

where

Veff =
m2
σ

2
σ̄2 +

λσ
4
σ̄4 +m2

χ|χ̄|2 +
λχ
2
|χ̄|4 − τ ∗χχ̄− τχχ̄

∗ +

−

[
ξ −

(
Vx log

|χ̄|
σ̄

)2
]
σ̄ − ∆2

4π
log

(
∆2

Λ2

)
+ g(|τχ|2,∆2) . (3.25)

The symbol Λ indicates a dynamically generated scale. For small values of |τχ|2
∆2 , the last

term can be expanded to quadratic order (see appendix B for details)

g(|τχ|2,∆2) = − |τχ|2

64π∆2
+O

(
|τχ|4

∆4

)
. (3.26)

3.2.3 Saddle point equations and symmetry-breaking solution

In the large-N limit, the partition function is dominated by configurations that extremize
the effective action

Z =

∫
DσnDχnDξnDτχn eiNSeff [σ,χ,ξ,τχ] ∼ eiNSeff [σ̄0,χ̄0,ξ0,τχ0] , (3.27)

where, as already mentioned, we define the effective action factorizing a factor of N . The
saddle point equations that determine these configurations are Euler-Lagrange equations

4We define the effective action, so Leff and Veff as well, extracting an N factor, as we write in (3.27).
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obtained by varying (3.24) with respect to the auxiliary fields

1

24πm4
ϕ

∂2t ξ0 −
1

4π

[
log

(
e∆2

Λ2

)
− 4π

∂g

∂∆2

]
= σ̄0 , (3.28a)

1

24πm4
ϕ

∂2t τχ0 +
∂g

∂τχ∗0
= χ̄0 , (3.28b)

−ξ0 + V 2
x log

(
|χ̄0|
σ̄0

)[
log

(
|χ̄0|
σ̄0

)
− 2

]
+m2

σσ̄0 + λσσ̄
3
0 = 0 , (3.28c)

−τχ0 + V 2
x

σ̄0
χ̄0

log

(
|χ̄0|
σ̄0

)
+m2

χχ̄0 + λχ|χ̄0|2χ̄0 = 0 . (3.28d)

This system of equations admits time-independent solutions that break dipole symmetry
(|χ| ≠ 0) for some range of values of the parameters in the effective potential. An analytic
approximation to such solutions can be found if |τχ0| is small, so that g(|τχ0|

2,∆2|) can be
approximated by the simple form written in (3.26).

We introduce the following parameterization for χ, σ and Vx,
5

|χ̄0|
σ̄0

= e−β+2 , σ̄0 =
1− α

64πβ
e2β−4 , V 2

x = m2
ϕ(1− α)v , (3.29)

where 0 < α < 1. In order for the approximation (3.26) to be valid, we take 1 − α ≪ 1.
Assuming that a solution exists, we solve the system (3.28) for m2

χ, Λ
2, ξ0 and τχ0, expanding

in 1−α. Then we fixm2
σ so that the solution can be stable under time-dependent fluctuations

(absence of tachyons). Stability corresponds to the values of β and v corresponding to the
shaded region of Figure 1.

Following the procedure described above, we fix the parameters of the potential to

m2
σ

m2
ϕ

≃ −4π

[
1 +

32e4−2ββ (β2 − 3β + 2) v

2β − 3

]
+ δµσ , (3.30a)

m2
χ

m2
ϕ

≃ −64π [1− v(β − 2)β] +

−

{
4π
[
16e4vβ(2β − 1)(β − 2)2 + e2β(3− 2β)

]
e4β(2β − 3)

+O (δµσ)

}
(1− α) , (3.30b)

Λ2

m2
ϕ

≃ e+

[
ev(β − 2)2(2β − 1)

2β − 3
+O (δµσ)

]
(1− α) , (3.30c)

where 0 < δµσ ≪ 1 is a small parameter. The solutions for the fields ξ0 and τχ0 up to order

5Here, α and β are different than the parameters in (3.11) and (3.12). No confusion should arise.
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(1− α) are then given by

ξ0
m2
ϕ

≃ −(4π − δµσ)e2β(2β − 3)− 64e4π(β − 2)2β(2β − 1)v

64πe4β(2β − 3)
(1− α) , (3.31a)

τχ0
m2
ϕ

≃ −1− α

β
eβ−2 . (3.31b)

Note that the solutions do not depend on the quartic couplings λσ and λχ, up to this
order. However, without the quartic couplings the effective potential would not be bounded
from below, since m2

σ < 0 and m2
χ < 0. Even introducing them, it is not guaranteed that

the solution we have found is a global minimum. This is not an issue, since tunneling is
suppressed by the large-N limit. We can thus neglect non-perturbative instabilities.

3 4 5 6 7 8 9

�

0.01

0.02

0.03

0.04

v

β

v

Figure 1: Values of β and v for which the dipole-symmetry-breaking solution is stable.

Although we have traded four dimensionless parameters in the potential (m2
σ,m

2
χ,Λ

2 and
V 2
x in units of m2

ϕ) by other four parameters, (α, β, v and δµσ), there is some degree of fine-
tuning when we expand with respect to V 2

x /m
2
ϕ ≪ 1, taking into account that v is relatively

small in the allowed range shown in Figure 1. Because of this, the values of the parameters
for which solutions exist remains close to the values

m2
σ ≃ −4πm2

ϕ , m2
χ ≃ −64πm2

ϕ , Λ ≃ em2
ϕ . (3.32)

3.2.4 Ground state and Nambu-Goldstone modes

We have found a stable large-N saddle point of the quantum effective action which breaks
spontaneously the dipole symmetry while preserving monopole symmetry. As we discussed,
classical minima of the energy break both symmetries, with a single scalar Nambu-Goldstone
mode with linear dispersion relation. Remarkably, when monopole symmetry is unbroken,
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we find that the Nambu-Goldstone mode does not have a linear dispersion relation. This
key point is shown and discussed in detail below.

In the case at hand, the Nambu-Goldstone mode is the phase θ of the dipole-charged field
χ̄. On general grounds, the low-energy theory describing the Nambu-Goldstone dynamics is
symmetric with respect to shifts of θ. The potential (3.25) is thereby independent of θ and
the low-energy Lagrangian for θ involves derivatives terms only.

A one-loop calculation (see appendix B) gives the following Lagrangian density at the
leading and next-to-leading orders in m̃ϕ

LNG =
V 2
x

240 π m̃4
ϕ

[
10 m̃2

ϕ(∂tθ)
2 − (∂x∂tθ)

2 + (∂2t θ)
2
]
. (3.33)

Here m̃2
ϕ = m2

ϕ + ξ0, where ξ0 is the background value of ξ. Note the V 2
x in front of the

action, one can understand its origin in that there is a global dipole symmetry only when
Vx ̸= 0.

The Lagrangian (3.33) does not involve terms with only spatial derivatives of the Nambu-
Goldstone field. Indeed, every term involves at least two time derivatives. As we argue
in appendix B below (B.21), this is actually true at any order in the heat-kernel expan-
sion. Hence, the low-energy action for the Nambu-Goldstone field θ features an emergent
subsystem symmetry with respect to arbitrary spatial profiles f(x), namely

θ(t, x) → θ(t, x) + f(x) . (3.34)

From the low-energy perspective, the spatial profile of the Nambu-Goldstone field resembles
a gauge redundancy. More specifically, the symmetry (3.34) prevents the Nambu-Goldstone
to propagate, leading to immobile fractonic behavior.

The equation of motion up to this order are

10 m̃2
ϕ ∂

2
t θ + ∂2t ∂

2
xθ − ∂4t θ = 0 . (3.35)

In principle, the corresponding dispersion relation presents two branches

ω2 = 0 , (3.36)

ω2 = q2 − 10m̃2
ϕ , (3.37)

but the branch (3.37) is beyond the low energy approximation ω2, q2 ≪ m2
ϕ that we used to

derive the effective action.

The low-energy effective Lagrangian (3.33) contains terms with higher time derivatives,
such as (∂2t θ)

2. Relying on the fact that they are sub-leading with respect to the dominant
kinetic term (∂tθ)

2, one can iteratively solve the equation of motion relegating the higher
derivative terms to a neglected reminder, thus avoiding the issues related to Ostrogradsky
instability [46, 47]. Note that this argument relies on the assumption of convergence of the
heat-kernel expansion [48].
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The branch (3.36) is an exactly flat band [33] whose flatness is due to the shift symmetry
(3.34). It is fractonic in the sense that the propagation speed is exactly zero, so it corresponds
to a mode that is immobile and can have an arbitrary spatial profile. In the context of
effective theories of elasticity, this characteristics can be related to plasticity.

A similar situation arises from gradient-Mexican-hat models for the dynamical breaking
of spatial translations, where the minimization of the potential implies (at least) an emer-
gent subsystem symmetry and the associated Nambu-Goldstone mode is indeed a fractonic
immobile phonon with ω2 = 0. When the emergent symmetry (3.34) is valid only at leading
order in the derivative expansion, the Nambu-Goldstone dispersion ω2 = 0 can be deformed
by higher-order corrections in the momenta which lead to propagation [49,50].

3.2.5 Avoiding the Coleman-Hohenberg-Mermin-Wagner theorem

The CHMW theorem states that thermal (or quantum) fluctuations of the order parameter
in three (two) or less spacetime dimensions are so large that they spoil the ordered vacuum.
As a result, it is often claimed that there cannot be spontaneous symmetry breaking in these
theories.

Let us recall one version of the argument. Assume that a symmetry is broken, in two
dimensions and at zero temperature, by a scalar order parameter Φ. In principle, there
would be a Nambu-Goldstone boson θ, which corresponds to fluctuations of the phase of the
order parameter

Φ = ⟨|Φ|⟩ eiθ . (3.38)

Its low-energy effective action would be that of an ordinary massless field

S =
f 2

2

∫
d2x

[
(∂tθ)

2 − (∂xθ)
2
]
, (3.39)

where f is a constant normalization factor. The strength of the quantum fluctuations of the
order parameter is conveniently analyzed through the ratio

ρ(t, x) =
⟨ei(θ(t,x)−θ(0,0))⟩
⟨eiθ(t,x)⟩⟨e−iθ(0,0)⟩

= e
1
2
⟨{θ(t,x),θ(0,0)}⟩ , (3.40)

where we have used the fact that the action for the Nambu-Goldstone boson is Gaussian.
If the symmetry is spontaneously broken, cluster decomposition in a local theory yields the
factorization

⟨ei(θ(0,x)−θ(0,0))⟩ → ⟨eiθ(0,x)⟩⟨e−iθ(0,0)⟩ , (3.41)

at large space separations [43]. Therefore, one expects the ratio defined in (3.40) to approach
one

lim
|x|→∞

ρ(0, x) = 1 . (3.42)

On the other hand, if the correlations do not decay fast enough at long distances, ρ(0, x)
could be vanishing. It can be shown that for a massless field one gets

ρ(0, x) = (µ|x|)−1/πf2 |x|→∞−−−−→ 0 , (3.43)
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where µ is an arbitrary scale. The physical picture is that fluctuations are so strong that
they destroy the ordered phase and there is no spontaneous symmetry breaking, namely
⟨Φ⟩ = 0.

The anti-commutator in the exponent of (3.40) equals the sum of the Wightman correlators
D>(t, x) = ⟨θ(t, x)θ(0, 0)⟩ and D<(t, x) = ⟨θ(0, 0)θ(t, x)⟩ which, for a massless field, satisfy

(∂2t − ∂2x)D
≶(t, x) = 0 . (3.44)

The solutions are logarithmic functions that lead to the behaviour in (3.43).

Let us now study the effective low-energy theory for the Nambu-Goldstone modes de-
scribed in subsection 3.2.4. We have the Lagrangian in (3.33) and the Wightman correlators
for the Nambu-Goldstone field θ(t, x) satisfy(

10m̃2
ϕ∂

2
t + ∂2t ∂

2
x − ∂4t

)
D≶(t, x) = 0 . (3.45)

We work at low energy and momenta with a UV cut-off Λ0 < 10m̃2
ϕ. In this regime, the first

term in (3.45) dominates, reducing to the usual case (3.44), except for the absence of the
spatial derivative term.

From the action (3.33), the retarded correlator is the solution to the equation

K∂2tDR(t, x) = δ(t)δ(x) , K =
NV 2

x

12πm̃2
ϕ

, (3.46)

satisfying DR(t ≤ 0, x) = 0. The solution is

DR(t, x) =
t

K
Θ(t)δ(x) . (3.47)

On the other hand, the retarded correlator is expressed in terms of the Wightman functions
as

DR(t, x) = iΘ(t) ⟨[θ(t, x), θ(0, 0)]⟩ = iΘ(t) [D>(t, x)−D<(t, x)] . (3.48)

The Fourier transform in time then gives

D̃R(ω, x) =

∫ ∞

−∞
dt eiωtDR(t, x) =

1

π
P
∫ ∞

−∞
dω′ Im D̃R(ω

′, x)

ω′ − ω
+ i Im D̃R(ω, x) , (3.49)

where

Im D̃R(ω, x) =
1

2

[
D̃>(ω, x)− D̃<(ω, x)

]
. (3.50)

In (3.49) we recognize the Kramers-Kronig relation between the real and imaginary parts of
the correlator. A direct calculation gives

Im D̃R(ω, x) = − π

K
δ′(ω)δ(x) . (3.51)
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Using now the properties D̃>(ω < 0, x) = 0, D̃<(ω > 0, x) = 0, and D<(−t,−x) = D>(t, x),
we obtain

D>(t, x) = − it

2K
δ(x) , D<(t, x) =

it

2K
δ(x) . (3.52)

Thus, the expectation value for the Nambu-Goldstone anti-commutator reads

⟨{θ(t, x), θ(0, 0)}⟩ = D>(t, x) +D<(t, x) = 0 . (3.53)

Therefore, from (3.40) and (3.53), we get

lim
|x|→∞

ρ(0, x) = 1 . (3.54)

As a result, our model admits spontaneous symmetry breaking at zero temperature, despite
being defined in two spacetime dimensions.

4 Fermionic model with spontaneous breaking

In the present section, we propose another model that displays spontaneous dipole-symmetry
breaking and no monopole-symmetry breaking at zero-temperature. The matter sector now
involves fermionic (i.e. anticommuting) complex scalar fields ψn transforming in the irre-
ducible representation (2.4) and dipole fields χn transforming in the representation (2.8).
Given its anticommuting character, ψn satisfies

ψnψ
′
m = −ψ′

mψn , (ψnψ
′
m)

∗ = (ψ′
m)

∗ψ∗
n . (4.1)

The covariant derivatives of these fields can be written (we consider the case aµ = bµ = 0)
as

Dµψn = ∂µψn − Vµψn logχn , (4.2a)

Dµχn = ∂µχn − ibµχn . (4.2b)

Let us consider the Lagrangian

Ln = −|Dµψn|2 −m2
ψ|ψn|2 − |Dµχn|2 −m2

χ|χn|2 , (4.3)

where, similarly to what we have done in section 3, we assume that the mass parameters
mψn are the same for each n.

4.1 Effective potential

We integrate out the fields ψn so to obtain an effective action for the dipole fields χn. The
computation is analogous to that of subsection 3.2 (more details can be found in appendix
B). The fermionic Lagrangian after integration by parts is

Lψn = ψ∗
ndµd

µψn − (m2
ψ + ξn)ψ

∗
nψn , (4.4)
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where now

ξn = (Vx log |χn|)2 + Vx
∂x|χn|
|χn|

. (4.5)

The effective action for the dipole fields χn is defined through

ei
∑
n Seff[χn] =

∫
Dψ ei

∑
n

∫
d2xLn[ψn,χn]

= ei
∑
n

∫
d2x(−|Dµχn|2−m2

χ|χn|2)
∫
Dψ ei

∑
n

∫
d2xψ∗

n(dµdµ−m2
ψ−ξn)ψn

= ei
∑
n

∫
d2x(−|Dµχn|2−m2

χ|χn|2)
N∏
n=1

det
(
dµd

µ −m2
ψ − ξn

)
, (4.6)

where Dψ indicates integration over all the fields ψn and ψ∗
n. Notice that, since we are

working with anticommuting fields ψn, the functional determinant appears with a positive
power. Because of that, the resulting potential takes the same form of the second to last
term in (3.25), but for a sign (see appendix B for details),

∆Veffn(χn) =
∆2
n

4π
log

(
∆2
n

Λ2

)
, ∆2

n = V 2
x (log |χn|)2 +m2

ψ . (4.7)

The symbol Λ represents a physical scale of the theory. Including as well the mass term, the
effective potential reads

Veffn(χn) =
1

2
m2
χ|χn|2 +

∆2
n

4π
log

(
∆2
n

Λ2

)
. (4.8)

We have N copies of the same effective action, so, for an n-independent configuration χn = χ̄,
the total effective potential is

NVeff(χ̄) =
N∑
n=1

Veffn(χ̄) = N

[
1

2
m2
χ|χ̄|2 +

∆2

4π
log

(
∆2

Λ2

)]
. (4.9)

With the obvious notation ∆2 = V 2
x (log |χ̄|)2 +m2

ψ.

The potential is depicted in Figure 2. For small values of |χ̄|, it diverges to positive infinity
due to the logarithmic term. For large values of |χ̄|, instead, the mass term dominates,
leading again to a positive divergence. Thereby, in the intermediate region, the potential
features a global minimum. The model is hence guaranteed to exhibit spontaneous breaking
of the dipole symmetry, triggered by the quantum fluctuations.

Since the dipole-symmetry-breaking configuration is a global minimum of the effective
potential, for what concerns the stability of the vacuum, we do not need to assume the
large-N limit, in contrast to the bosonic case of section 3. However, as we show in subsection
4.2, the dispersion relation for the Nambu-Goldstone mode in this fermionic model is linear
at small momenta as in the standard case. This is basically due to the fact that χn are
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dynamical fields and so the model Lagrangian includes a bare kinetic term for them. As a
result, the CHMW theorem applies and there would not be spontaneous symmetry breaking
in 1 + 1 dimensions. Here we need to assume the large-N limit in order to suppress the
fluctuations of the Nambu-Goldstone boson that would otherwise spoil the ordered vacuum
configuration.

1 2 3 4 5
|�|

0.20

0.25

0.30

0.35

(Ve�,T=0)/m�
2

_

Figure 2: Effective potential for the fermionic model. Here we conveniently chose
(mχ/mψ)

2 = 0.002, (Vx/mψ)
2 = 0.1, (Λ/mψ)

2 = 0.1.

4.2 Ground state and Goldstone modes

Having found that the fermionic model is characterized by an effective potential for the dipole
field χ̄ that is minimized by a dipole-symmetry-breaking configuration |χ̄| ≠ 0, at low energy
the physics is captured by the small fluctuations θ around this vacuum configuration. The
Nambu-Goldstone field θ, defined as the phase of χ̄, enters the effective action only through
derivative terms. Unlike the bosonic model of section 3, the dipole field χ̄ is dynamical at
tree level. The Nambu-Goldstone action includes standard derivative terms as in (3.10). In
addition to these, there are derivative terms coming from the one-loop determinant in (4.6)
(see appendix B for more details). All in all, the Nambu-Goldstone Lagrangian reads

LNG =

(
1− V 2

x

24πm̃2
ψ

)
(∂tθ)

2 − (∂xθ)
2 − V 2

x

240πm̃4
ψ

[
(∂2t θ)

2 − ∂2t θ∂
2
xθ
]
. (4.10)

Here m̃2
ϕ = m2

ϕ + ξ0, where ξ0 is the background value of ξ, defined in (4.5).

The equation of motion derived from this Lagrangian is(
1− V 2

x

24πm̃2
ψ

)
∂2t θ − ∂2xθ +

V 2
x

240πm̃4
ψ

(
∂4t θ − ∂2t ∂

2
xθ
)
= 0 . (4.11)
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Going to Fourier space, the dispersion relation is

−

(
1− V 2

x

24πm̃2
ψ

)
ω2 + q2 +

V 2
x

240πm̃4
ψ

(
ω4 − ω2q2

)
= 0 , (4.12)

which, being quadratic in ω2, features two branches. One is analogous to the higher branch
encountered in (3.37); as such, it should not be considered in the low-energy theory. The
dispersion relation of the relevant, lower branch is

ω = c1q + c3q
3 +O(q5) , (4.13)

where

c1 =
(
1− v2x

)−1/2
, c3 =

v4x (1− v2x)
−5/2

20m̃2
ψ

, v2x ≡
V 2
x

24πm̃2
ψ

. (4.14)

Since in the present fermionic model the dipole field χ̄ is dynamical, the dispersion relation
(4.13) of the Nambu-Goldstone field θ is not as exotic as that arising in the bosonic model
(3.36). Indeed, at small momenta, it looks linear, with the speed of sound lowered by a
quantum correction. As a result, the CHMW theorem holds in this case. To wit, in the
fermionic model, the quantum fluctuations would spoil the ordered vacuum. As already
mentioned, this can be avoided by taking the large-N limit which suppresses the quantum
fluctuations.

5 Conclusions

The present analysis introduces novel families of field theories, for either bosons or fermions,
that are symmetric under dipole transformations and have ordinary (quadratic and with two
derivatives) kinetic terms. We studied thoroughly some concrete examples that feature a
spontaneous breaking of the dipole symmetry, with or without a concomitant breaking of
monopole symmetry. The dispersion relations for the emerging Nambu-Goldstone modes
differ from those encountered in other models studied before in the literature. Remarkably,
we find a fractonic Nambu-Goldstone mode characterized by full immobility in a quantum
model which preserves monopole symmetry. Such fractonic character of the low-energy mode
evades the CHMW theorem in two spacetime dimensions at zero temperature. Therefore,
the low-energy properties of systems with multipole symmetries are sensitive to the details
of the symmetry realization and there might not be a universal effective description. Beyond
the specific interest regarding multipole symmetry breaking, we provided a working counter-
example to Coleman expectation. The exotic fractonic character of the Nambu-Goldstone
mode being the crucial ingredient to escaping CHMW theorem. It would be interesting to
explore the relationship of our result with possibly similar conclusions found in the context
of non-Fermi liquids, where the avoidance of CHMW theorem is argued on the basis of
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a vanishing spectral weight for the gapless Nambu-Goldstone mode in the limit of small
momenta [51].

The models analyzed in the present paper can be coupled to dynamical gauge fields for
the monopole and dipole symmetries.6 Besides, it would be interesting to extend the present
analysis to three spacetime dimensions. With these extensions, one could address the low-
energy description of dynamic elastic defects within the particle-vortex dual formulation
proposed in [39] pursuing thus on the program reviewed in [14, 15] and recently revived by
the connection to fractons [7].
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A Generalization to a finite number of fields

Besides discretizing the internal space directions, in order to further reduce the set of fields
to a finite number N , a possibility is that the discretized internal coordinates take values in
ZN . This is akin to making the internal directions compact. It should be noted that in more
than one dimensions this is not unique, as we could discretize a compact space in different
ways, analogous to having different crystalline configurations. The compactification of the
internal spatial directions does not lead to any modification of the gauge transformations or
in the form of the covariant derivatives, but we should enforce

nI + kI → (nI + kI)modN . (A.1)

In one dimension, ϕn⃗ → ϕn, it is also possible to generalize the transformations to a finite
number of fields keeping n as an ordinary integer, rather than a ZN -valued variable, with
0 ≤ n ≤ N − 1. For convenience in the presentation, we henceforth replace n = N with
n = 0.

6The gauge structure of fracton theories has recently received attention in itself, see for example [52,53].
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The finite transformations of the fields are the following:

eik Pϕn(t, x)e
−ik P = ϕn+k(t, x) , (A.2a)

eiλ0Q0ϕn(t, x)e
−iλ0Q0 = exp

(
iλ0 cos

2πn

N

)
ϕn(t, x) , (A.2b)

eiλ1Q1ϕn(t, x)e
−iλ1Q1 = exp

(
iλ1

N

2π
sin

2πn

N

)
ϕn(t, x) , (A.2c)

where the trigonometric expressions encode the periodicity of the compactified space. More
specifically, in the regime n≪ N , we recover a constant phase for the monopole transforma-
tion and an n-linear phase for the dipole transformation. The gauge fields Vµ are invariant
under all gauge transformations and aµ and bµ transform as usual under monopole and dipole
gauge transformations

δaµ = ∂µλ0 − Vµλ1 , (A.3a)

δbµ = ∂µλ1 . (A.3b)

However, their transformation under translations is modified into

aµ → cos
2πk

N
aµ +

N

2π
sin

2πk

N
bµ , (A.4a)

bµ → cos
2πk

N
bµ −

N

2π
sin

2πk

N
aµ . (A.4b)

The covariant derivative takes the form

Dµϕn = ∂µϕn − i cos
2πn

N
aµ ϕn − i

N

2π
sin

2πn

N
bµϕn

− Vµ ϕn
1

N
π
sin 2π

N

[
cos

2π

N
log
(
ϕ∗
N−n ϕn

)
− log

(
ϕ∗
N−n+1 ϕn−1

)]
.

(A.5)

Taking N → ∞ with n, k finite, one recovers the expressions for the non-compact case.
When doing this one should consider ϕN−n = ϕ−n.

A possible alternative to the realization given in (A.3) is:

δaµ = ∂µλ0 + Vµλ0

(
1− cos

2π

N

)
− Vµλ1

(
1 + sin

2π

N

)
, (A.6a)

δbµ = ∂µλ1 − Vµλ0
2π

N
sin

2π

N
+ Vµλ1

2π

N

(
1− cos

2π

N

)
. (A.6b)

Together with the covariant derivative

Dµϕn = ∂µϕn − i cos
2πn

N
aµ ϕn − i

N

2π
sin

2πn

N
bµϕn

− Vµ ϕn [log (ϕ∗
n ϕn+1)− log (ϕ∗

n ϕn)] .
(A.7)
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It is not completely straightforward to generalize this to a larger number of dimensions. A
possibility is to introduce additional monopole gauge fields, one for each direction aIµ. The
expressions for the transformations of the fields are

eik⃗·P⃗ϕn⃗(t,x)e
−ik⃗·P⃗ = ϕn⃗+k⃗(t,x) , (A.8a)

eiλ0Q0ϕn(t,x)e
−iλ0Q0 = exp

(
iλ0

1

N

∑
I

cos
2πnI

N

)
ϕn⃗(t,x) , (A.8b)

eiλ⃗1·Q⃗1ϕn⃗(t,x)e
−iλ⃗1·Q⃗1 = exp

(
i
∑
I

λI1
N

2π
sin

2πnI

N

)
ϕn⃗(t,x) . (A.8c)

The transformations of the gauge fields under monopole, dipole and translations in the I-th
direction are

δaIµ = ∂µλ0 − V⃗µλ⃗1 , (A.9a)

δ⃗bµ = ∂µλ⃗1 , (A.9b)

aIµ → cos
2πkI

N
aIµ +

2π

N
sin

2πkI

N
bIµ , (A.9c)

bIµ → cos
2πkI

N
bIµ −

N

2π
sin

2πkI

N
aIµ , (A.9d)

aJ ̸=Iµ → aJ ̸=Iµ , (A.9e)

bJ ̸=Iµ → bJ ̸=Iµ . (A.9f)

And the covariant derivative for these transformations is

Dµϕn⃗ = ∂µϕn⃗ − i
1

N

∑
I

cos
2πnI

N
aIµ ϕn⃗ − i

∑
I

N

2π
sin

2πnI

N
bIµϕn⃗ (A.10)

−
∑
I

Vµ ϕn⃗
1

N
π
sin 2π

N

[
cos

2π

N
log
(
ϕ∗
n⃗+(N−2nI)Î

ϕn⃗

)
− log

(
ϕ∗
n⃗+(N−2nI+1)Î

ϕn⃗−Î

)]
.

When N → ∞, these also become the same as for the non-compact case, provided one
identifies the monopole field as

aµ =
1

N

∑
I

aIµ . (A.11)

B One-loop computations

In the present appendix, we provide some details on the computations of the effective actions
for the bosonic and fermionic models discussed, respectively, in sections 3 and 4.
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B.1 Bosonic model

After introducing Hubbard-Stratonovich fields, our bosonic model is described by the La-
grangian (3.20), which we report here for convenience,

LHS =
∑
n

[
−|Dµϕn|2 −

(
m2
ϕ + τσ

)
ϕ∗
nϕn − τ ∗χϕn+1ϕ

∗
n − τχϕ

∗
n+1ϕn

]
+

− N

(
m2
σ

2
σ̄2 +

λσ
4
σ̄4 +m2

χ|χ̄|2 +
λχ
2
|χ̄|4 − τ ∗χχ̄− τχχ̄

∗ − τσσ̄

)
. (B.1)

The second line in (B.1) gives a classical contribution to the effective action for the Hubbard-
Stratonovich fields and the Lagrange multipliers, while the quantum contribution comes from
evaluating the determinant arising from the Gaussian integrals in ϕn, which can be written
as7

N∆Seff = i tr log
[(
dµdµ −∆2

)
1N +BN

]
. (B.2)

Here,

∆2 ≡ m2
ϕ + ξ ≡ m2

ϕ + τσ +

(
Vx log

|χ̄|
σ̄

)2

, (B.3)

the symbol 1N denotes the identity matrix in N dimensions and BN denotes the following
N ×N -matrix

BN =



0 τχ 0 0 · · ·
τ ∗χ 0 τχ 0

. . .

0 τ ∗χ 0 τχ
. . .

0 0 τ ∗χ 0
. . .

...
. . . . . . . . . . . .


. (B.4)

To compute the effective potential, we take constant field configurations, while, in order
compute the derivative terms of the effective action, we use the heat-kernel approach.

Effective potential

Let us consider constant field configurations. From (B.2) we get

N

∫
d2x∆Veff = −iN tr log

[(
dµdµ −∆2

)]
− i tr log

[
1N +

BN

dµdµ −∆2

]
. (B.5)

We perform the computation in Euclidean signature compactifying the time direction on a
circle with length β = 1/T . We then take the zero-temperature limit T → 0. Since here we

7We use the notation tr for the trace over spacetime and internal space, while Tr will indicate the trace
over the internal space only. We also recall that Seff, Leff and Veff are defined extracting a factor of N .
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are dealing with bosonic fields, we impose periodic conditions. In Euclidean signature, (B.5)
reads

N

∫
d2x∆Veff = N tr log

[(
−didi +∆2

)]
+ tr log

[
1N +

BN

−didi +∆2

]
. (B.6)

Let us first consider the first contribution, we have explicitly

tr log(−didi +∆2) = T

∫
dq

2π
log

[
∞∏

k=−∞

[
(2πTk)2 + Ω2

q

]]
, (B.7)

where Ω2
q ≡ (q−Vxθ)2+∆2. We subtract the contribution of a free field dividing each factor

in the argument of the log by (2πT )2 + ω2
q with ω2

q = q2 +m2
ϕ,

∞∏
k=−∞

(2πTk)2 + Ω2
q

(2πTk)2 + ω2
q

=
sinh2

(
Ωq
2T

)
sinh2

( ωq
2T

) . (B.8)

Dropping the contribution that is independent of χ, one then finds (neglecting also another
constant term)

T

∫
dq

2π
log

[
sinh2

(
Ωq

2T

)]
=

∫
dq

2π

[
Ωq + 2T log

(
1− e−Ωq/T

)]
. (B.9)

The first term inside the square bracket can be identified as the zero-temperature contribu-
tion. We can evaluate it explicitly according to

Ωq =
µ

Γ(−1/2)
lim
ϵ→0

[
− 2√

ϵ
+

∫ ∞

0

dτ(τ + ϵ)−3/2e−(τ+ϵ)Ω2
q/µ

2

]
, (B.10)

where µ is a renormalization scale. Then, dropping the 1√
ϵ
divergent term, the integral over

q gives ∫
dq

2π
Ωq = −µ2

4π
lim
ϵ→0

∫ ∞

0

dτ(τ + ϵ)−2e−(τ+ϵ)∆2/µ2 . (B.11)

Pursuing on, the integral over τ gives∫
dq

2π
Ωq ∼ − µ2

4πϵ
+

∆2

4π
(− log ϵ+ 1− γE)−

∆2

4π
log

(
∆2

µ2

)
+O(ϵ) . (B.12)

Eventually, plugging this into (B.9) and suitably choosing the dynamically-generated scale
Λ, we find that the first contribution to the one-loop effective potential in (B.6) is

∆Veff 1,T=0 = −∆2

4π
log

(
∆2

Λ2

)
. (B.13)
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Let us now consider the second contribution in (B.6), recalling that BN is given by (B.4).
For small values of |τχ|/∆2, using that TrBN = 0 and TrB2

N = 2N |τχ|2 at large N , we have

tr log

[
1N +

BN

−didi +∆2

]
≈ −N |τχ|2 tr

1

(didi +∆2)2
(B.14)

= −N |τχ|2T
∑
k

∫
dq

2π

1

[(2πTk)2 + q2 +∆2]2

= −N |τχ|2
∫

dq

2π

[√
∆2+q2

T
+ sinh

(√
∆2+q2

T

)]
csch2

(√
∆2+q2

2T

)
8 (∆2 + q2)3/2

= −N |τχ|2
∫

dq

2π

[
1

64

1

(q2 +∆2)3/2
+O

(
e−

√
q2+∆2/T

)]
.

As a result, in the zero-temperature limit we find

tr log

[
1N +

BN

−didi +∆2

]
≈ −N |τχ|2

64π∆2
. (B.15)

Derivative terms

To find the derivative terms explicitly, we adopt the heat-kernel approach, which consists in
an expansion in powers of 1/mϕ (see for instance [48,54]). It relies upon the identity

N∆Leff = i ⟨x| log
[(
dµdµ −∆2

)
1N +BN

]
|x⟩ = −i

∫ ∞

0

dτ

τ
H(x, τ) , (B.16)

where we have introduced the heat kernel

H(x, τ) ≡ ⟨x| exp
(
−τ
[(
dµdµ −∆2

)
1N +BN

])
|x⟩ . (B.17)

Equation (B.16) holds after removing an irrelevant infinite constant.

The one-loop effective action exhibits derivative terms for the fields ξ and |τχ| and for
the Nambu-Goldstone field θ defined as the phase of the dipole-symmetry field χ. For the
stability analysis it will be enough to consider only time dependence. Then, these derivative
terms are given by the following terms in the heat-kernel expansion

Hkin(τ, x) = i
e−m

2
ϕτ

48π
τ 2Tr

[
(∂tξ 1+ ∂tBN)

2]
= i

e−m
2
ϕτ

48π
τ 2
[
N (∂tξ)

2 + 2N∂tτ
∗
χ ∂tτχ

]
, (B.18)

where we remind the reader that the field ξ has been defined in (B.3). We also used that
TrBN = 0 and TrB2

N = 2N |τχ|2 at large N . As a result, the kinetic terms in the low-energy
effective Lagrangian read

NLkin =
1

48πm4
ϕ

[
N (∂tξ)

2 + 2N∂tτ
∗
χ∂tτχ

]
. (B.19)
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Let us consider the derivative terms for the Nambu-Goldstone field θ. Recalling the form
of the covariant derivative

Dµϕn = dµϕn − Vµϕn log

(
|χn|
σn

)
, dµ ≡ ∂µ − iVµθn , (B.20)

and that we are considering θn = θ (see discussion below (3.9)), we understand that θ enters
the low-energy effective action only through terms involving the covariant derivative dµ.
Since we expand around a background configuration, χ̄ = χ̄0+ χ̄′, we have ξ = ξ0+ ξ̃, where
ξ0 is given by (B.3) evaluated on the background configuration. We then define m̃2

ϕ = m2
ϕ+ξ0.

Given that [ξ̃, θ] = 0, the heat-kernel expansion does not produce interaction terms be-
tween the fluctuation fields ξ̃ and θ. Thus, the relevant terms in the low-energy action which
involve the Nambu-Goldstone field θ read (see [48] for the derivation of the heat kernel
expansion)

HNG(x, τ) = iNτ
e−m̃

2
ϕτ

48π

{
[dµ, dν ][d

µ, dν ] +
τ

15

(
4[dρ, [dµ, dν ]][d

ρ, [dµ, dν ]] +

+ [dν , [dµ, d
ν ]][dρ, [d

µ, dρ]] + 6[dρ, [d
ρ, [dµ, dν ]]][d

µ, dν ]
)
+O(τ 2)

}
. (B.21)

The gauge invariance of the original action (B.1) is preserved at each individual order of the
heat kernel expansion. This implies that the covariant derivative dµ can only appear through
commutators with itself in nested structures which at their core have a commutator [dµ, dν ].
Jointly with the fact that the background Vµ is only spatial, Vµ ∝ δxµ, the inner commutators
always produce a term ∂tθ. Hence, each Nambu-Goldstone field θ is always acted upon by
(at least) one time derivative.

Evaluating the first terms of the large m̃2
ϕ expansion of the heat kernel (B.21) and using

(B.16), we find the leading contributions to Lagrangian density for the Nambu-Goldstone
field,

LNG =
V 2
x

240 π m̃4
ϕ

[
10 m̃2

ϕ(∂tθ)
2 − (∂x∂tθ)

2 + (∂2t θ)
2
]
. (B.22)

B.2 Fermionic model

The effective potential for the fermionic model is found from∫
d2x∆Veff = i tr log

[(
dµdµ −∆2

)]
, (B.23)

which, in Euclidean signature, becomes∫
d2x∆Veff = − tr log

[(
−didi +∆2

)]
. (B.24)
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For fermionic fields, we need to impose antiperiodic boundary conditions along the time
circle. We have

− tr log(−didi +∆2) = −T
∫

dq

2π
log

[
∞∏

k=−∞

[
(πT (2k + 1))2 + Ω2

q

]]
, (B.25)

where Ω2
q = (q − Vxθ)

2 +∆2. Evaluating the sum over Matsubara frequencies, we find

∞∏
k=−∞

[πT (2k + 1)]2 + Ω2
q

[πT (2k + 1)]2 + ω2
q

=
cosh2

(
Ωq
2T

)
cosh2

( ωq
2T

) . (B.26)

Dropping the contribution that is independent of χ, one then finds (dropping another con-
stant as well)

∆Veff = T

∫
dq

2π
log

[
cosh2

(
Ωq

2T

)]
=

∫
dq

2π

[
Ωq + 2T log

(
1 + e−Ωq/T

)]
. (B.27)

As a result, in the zero-temperature limit, we eventually obtain

∆Veff,T=0 =
∆2

4π
log

(
∆2

Λ2

)
. (B.28)

Derivative terms

The derivative terms in the fermionic model can be computed again using the heat-kernel
approach. Because of the anticommuting nature of the fermionic fields, we now have

∆Leff = −i ⟨x| log
(
dµdµ −m2

ϕ − ξ
)
|x⟩ = i

∫ ∞

0

dτ

τ
H(x, τ) , (B.29)

where the heat kernel reads

H(x, τ) ≡ ⟨x| exp
(
−τ
[
dµdµ −m2

ϕ − ξ
])

|x⟩ . (B.30)

The quantum corrections to the Nambu-Goldstone effective Lagrangian is still found by
evaluating (B.21). Including also the classical contributions, it reads

LNG =

(
1− V 2

x

24πm̃2
ψ

)
(∂tθ)

2 − (∂xθ)
2 − V 2

x

240πm̃4
ψ

[
(∂2t θ)

2 − ∂2t θ∂
2
xθ
]
, (B.31)

where m̃2
ϕ = m2

ϕ + ξ0, with ξ0 being the background value of ξ.

29



References

[1] H. Watanabe, “Counting Rules of Nambu–Goldstone Modes,” Ann. Rev. Condensed
Matter Phys. 11 (2020) 169–187, arXiv:1904.00569 [cond-mat.other].

[2] D. Naegels, “An introduction to Goldstone boson physics and to the coset
construction,” 10, 2021. arXiv:2110.14504 [hep-th].

[3] R. M. Nandkishore and M. Hermele, “Fractons,” Ann. Rev. Condensed Matter Phys.
10 (2019) 295–313, arXiv:1803.11196 [cond-mat.str-el].

[4] M. Pretko, X. Chen, and Y. You, “Fracton Phases of Matter,” Int. J. Mod. Phys. A
35 no. 06, (2020) 2030003, arXiv:2001.01722 [cond-mat.str-el].

[5] K. T. Grosvenor, C. Hoyos, F. Peña Benitez, and P. Surówka, “Space-Dependent
Symmetries and Fractons,” Front. in Phys. 9 (2022) 792621, arXiv:2112.00531
[hep-th].

[6] A. Gromov and L. Radzihovsky, “Fracton Matter,” arXiv:2211.05130

[cond-mat.str-el].

[7] M. Pretko and L. Radzihovsky, “Fracton-Elasticity Duality,” Phys. Rev. Lett. 120
no. 19, (2018) 195301, arXiv:1711.11044 [cond-mat.str-el].

[8] L. Radzihovsky and M. Hermele, “Fractons from vector gauge theory,” Phys. Rev.
Lett. 124 no. 5, (2020) 050402, arXiv:1905.06951 [cond-mat.str-el].

[9] A. Gromov and P. Surówka, “On duality between Cosserat elasticity and fractons,”
SciPost Phys. 8 no. 4, (2020) 065, arXiv:1908.06984 [cond-mat.str-el].

[10] Y. Hirono and Y.-H. Qi, “Effective field theories for gapless phases with fractons via a
coset construction,” Phys. Rev. B 105 no. 20, (2022) 205109, arXiv:2110.13066
[cond-mat.str-el].

[11] L. Radzihovsky, “Quantum smectic gauge theory,” Phys. Rev. Lett. 125 no. 26, (2020)
267601, arXiv:2009.06632 [cond-mat.str-el].

[12] P. Surówka, “Dual gauge theory formulation of planar quasicrystal elasticity and
fractons,” Phys. Rev. B 103 no. 20, (2021) L201119, arXiv:2101.12234
[cond-mat.str-el].

[13] J. Gaa, G. Palle, R. M. Fernandes, and J. Schmalian, “Fracton-elasticity duality in
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