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Abstract

Quasiperiodic systems are neither randomly disordered nor translationally invariant in
the absence of periodic length scales. Based on their incommensurate order, novel phys-
ical properties such as critical states and self-similar wavefunctions have been actively
discussed. However, in open systems generally described by the non-Hermitian Hamil-
tonians, it is hardly known how such quasiperiodic order would lead to new phenom-
ena. In this work, we show for the first time that the intertwined quasiperiodicity and
non-Hermiticity can give rise to striking effects: perfect delocalization of the critical
and localized states to the extended states. In particular, we explore the wave function
localization character in the Aubry-André-Fibonacci (AAF) model where non-reciprocal
hopping phases are present. Here, the AAF model continuously interpolates the two
different limit between metal to insulator transition and critical states, and the non-
Hermiticity is encoded in the hopping phase factors. Surprisingly, their interplay results
in the perfect delocalization of the states, which is never allowed in quasiperiodic sys-
tems with Hermiticity. By quantifying the localization via inverse participation ratio and
the fractal dimension, we discuss that the non-Hermitian hopping phase leads to del-
icate control of localization characteristics of the wave function. Our work offers (1)
emergent delocalization transition in quasiperiodic systems via non-Hermitian hopping
phase, (2) detailed localization control of the critical states, (3) experimental realization
of controllable localized, critical and delocalized states, using photonic crystals.
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1 Introduction

Quasiperiodic order, which is a novel spatial pattern without any periodic unit length scales,
has attracted interest from a wide range of physics disciplines [1–5]. In a quasiperiodic sys-
tem, not only the diffraction pattern [3,6], but also the electromagnetic and topological prop-
erties would be different from conventional periodic crystals [7–12]. This is mainly due to
the localized nature of their quantum states, which decay along a power-law scale and are
neither localized nor extended, so-called critical states [13–21]. The critical states arise from
the incommensurate self-similar quasiperiodic ordered structure [16, 17]. Theoretically, the
quasiperiodic systems and possible critical states in one-dimensional chains have been actively
studied in terms of the Aubry-André model [20, 22] and the Fibonacci quasicrystal [14, 16].
The critical states that emerge in these systems lead to the stable fractal magnon transmittance
which has advanced the field of magnonics [23–25]. In recent years, it has become possible
to artificially create quasicrystalline structures in the laboratory, such as metamaterials and
photonic crystals [26–31] and the potential for experimental applications using quasiperiod-
icity and critical states has been increased. However, how the quasiperiodic orders and their
critical states behave in the open systems is still poorly understood.

To understand open systems where energy is not conserved, the effective non-Hermitian
theory has been used as a theoretical framework by neglecting quantum jumps from the stan-
dard Lindblad equation [32–34]. In the last decade, there has been a growing interest in the
systems described by non-Hermitian Hamiltonians. For example, non-Hermitian Hamiltonians
have been widely used in exciton-polariton theory [35–37], photonics [38], and other opti-
cal systems [39]. More recently, researchers have developed non-Hermitian descriptions of
magnonic systems [40, 41]. These have been used to describe magnons in driven and dissi-
pative spintronic systems [41]. There is also a non-Hermitian tight-binding model with the
non-reciprocal hopping magnitudes that exhibits the Non-Hermitian Skin Effect (NHSE), the
massive condensation of bulk modes to the edge under the open boundary condition due to the
nonzero spectral area under the periodic boundary condition [32,42–55]. Such non-Hermitian
systems have been realized experimentally using photonic crystals, fiber optics, or electrical cir-
cuits [38,56–60]. Furthermore, the effect of non-Hermiticity in quasiperiodic systems has re-
cently been spotlighted in terms of the NHSE, parity-time symmetry and the topological phase
transitions [44, 61–66]. Nonetheless, it remains to be understood how such non-Hermiticity
could be used to manipulate drastic changes of the quantum states in quasiperidic systems.

In the current work, we study the system where both quasiperiodic order and non-Hermiticity
play an important role and discuss the striking result due to their interplay. In contrast to the
traditional non-Hermitian models explained by the Hatano-Nelson argument [47], here the
non-Hermiticity is taken into account as the non-reciprocal phase of the hopping parameters,
instead of the hopping magnitudes. As a representative example of the quasiperiodic order, we
study the Aubry-André-Fibonacci model [67], but note that our argument is generally appli-
cable to other types of quasiperiodic systems. We show that the interference arising from the
non-reciprocal hopping phases and the exceptional coalescence of the states controls the local-
ization of the wave function. Surprisingly, intertwined quasiperiodicity and non-Hermiticity
gives rise to a perfect delocalization without fractality of the wave function, which never oc-
curs in a quasiperiodic system with Hermiticity. Not only the emergence of delocalization, but
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Figure 1: Experimental control of localization characteristics in non-Hermitian op-
tical system with ring resonators. A simplified representation of the ring resonators
that make up the quasiperiodic pattern is shown in the sequence of red and blue
blocks. Two or more ring resonators with different resonance frequencies are ar-
ranged in a quasi-periodic fashion to form a photonic crystal. Here, the ring res-
onators which have two different resonance frequencies are drawn as red and blue
rings in the zoomed inset. Adjacent ring resonators are connected to each other
by two optical cables with optical isolator and phase shifter, depicted as the green
and black components in the zoomed inset, respectively. Each optical isolator allows
the transmission of light in left- and right-moving light only, respectively, and the
phase shifter adds the same phase on the transmitted wave. Thus, we have effec-
tive non-reciprocal hopping phase for the light. By arranging the ring resonators as
the Fibonacci quasicrystal, and manipulating the non-reciprocal hopping phase, θ
accumulated by the phase shifters, we can change the localization characteristics of
the wave function, ψ(x) from exponentially localized (black) to extended (blue) ex-
ploring critical states (yellow) in terms of θ . Two different decaying behaviors of the
localized and critical states are emphasized by the dotted and dashed lines indicating
the envelopes of the probability distributions, respectively. One could measure the
optical conductivity to read off the change of the light localization characteristics.

also their interplay leads to the control of critical states, implying potential applications.
Our main result is illustrated in Fig.1, with potential experimental implications. Here,

as an example of the quasiperiodic system, the two distinct ring resonators (red and blue
blocks) are arrayed in Fibonacci quasicrystalline patterns. Each ring resonator is connected by
the optical isolators and phase shifters which in principle controls the non-reciprocal hopping
phase, θ . (See the inset of Fig.1.) By changing the non-Hermiticity given by non-reciprocal
hopping phase, θ from 0 to π/2, one can explore general localization characteristics of the
wave functions from the localized (black) to critical (yellow) and extended ones (blue), as
represented on the top of the quasiperiodic arrays. Therefore, the non-Hermitian quasiperiodic
system can be used to manipulate quantum transport experiments.

The remainder of the article is organized as follows. In Sec.2 we describe our non-Hermitian
tight-binding Hamiltonian with non-reciprocal hopping phase. In Sec.3, by exemplifying the
Aubry-André-Fibonacci model, we analyze the change of the localization strength of the state,
which is given by the inverse participation ratio in terms of the non-reciprocal hopping phase.
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We show that the interference effect originated from the intertwined quasiperiodic potential
and non-reciprocal hopping phase gives rise to the change of the localization strength of the
states. Also, we show that the states are delocalized in the Fibonacci chain as the function of
non-reciprocal hopping phase. We explain that the exceptional hybridization of the eigenstates
leads to the change of the localization characteristics of the states. In Sec.4, we summarize
our works.

2 Non-Hermitian Hamiltonian with non-reciprocal hopping phase

Let us consider the tight-binding Hamiltonian with N -sites

H = HV +HT , (1)

HV =
N
∑

i=1

Vi |i〉 〈i| ,

HT = t
N−1
∑

i=1

(|i〉 〈i + 1|+ |i + 1〉 〈i|),

t = Teiθ ,

where Vi are non-uniform real-valued local potentials. t is the uniform complex-valued hop-
ping parameters, respectively. |i〉 represents the particle placed on the i-th site. The hopping
parameters are uniform complex-valued, t = Teiθ where T and θ are positive reals. The
strength of the non-Hermiticity is given by T sinθ , which is maximized when θ = π/2. Note
that the strength of the non-Hermiticity is depending on both hopping magnitude and the
non-reciprocal hopping phase. We will show that the non-Hermiticity encoded in the non-
reciprocal hopping phase changes the localization properties of the states compared to the
Hermitian counterparts given by θ = 0,π.

3 Delocalization in the non-Hermitian quasiperiodic chains

Given a finite hopping magnitude, T , we can change the localization characteristics of the
states as θ approaches π/2, where the strength of non-Hermiticity becomes maximum. To
understand how the non-Hermitian hopping phase factor allows to change the localization
of the states, let us consider the return probability, which measures the probability that the
particle placed at the i-th site will return to the i-th site. A smaller return probability indicates
that the state is more delocalized because the wave function is scattered. Using the path
integral idea, the return probability is given by the sum of the transition amplitudes from all
possible paths whose start and end points are the same as the i-th site. If the hopping phase
is non-reciprocal, there is destructive interference between the transition amplitudes.

More specifically, we denote Am as the transition amplitudes of the path traveling m steps.
In the discretized system, one can group the possible paths depending on the number of steps.
Then the return probability for the i-th site, Pi , is given by

Pi =

�

�

�

�

�

∞
∑

m=1

Am

�

�

�

�

�

2

(2)

Due to the non-reciprocal hopping phase, the phase difference between the transition ampli-
tudes arises. Specifically, for Am, the relative phase shift, mθ can be accumulated from HT .
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In this case, the return probability of the state becomes smaller compared to the Hermitian
case, indicating the delocalization of the state from the i-th site. On the other hand, the non-
reciprocal phase can also increase the return probability due to constructive interference with
respect to θ for some states. In this case, the delocalization is hindered by the interference
from the non-reciprocal hopping phase. Thus, the non-reciprocal hopping phase gives rise to
the state-dependent control of the localization properties.

To illustrate the state-dependent control of the localization strength with a concrete ar-
gument, we consider a toy model consisting of two different atoms, A and B, arranged in
an alternating way, i.e. ABABAB · · · . This can be understood as the 1/1-approximant of the
Fibonacci chain, which we discuss in Sec.3.2 [21]. With periodic boundary conditions, the
Hamiltonian in momentum space is given by the 2× 2 matrix below

H(k) =

�

VA t(1+ e−ika)
t(1+ eika) VB

�

(3)

where a is the distance between the atoms, k is the momentum, and VA and VB are the local
potentials of the A and B atoms, respectively. The eigenvectors given by

|v±(k)〉=
1
N±

�

2t(1+ e−ika)
∆V ±

p

∆V 2 + 16t2 cos2 ka/2

�

(4)

where ∆V = VB − VA which is assumed to be positive without loss of generality. N± is a
normalization constant. In the eigenstates, ∆V 2 + 16t2 cos2 ka/2 indicates the interference
between the potential difference and hopping contributions. Note that this interference ef-
fect is the result of the local potential gradient, ∆V and the non-reciprocal hopping phase θ
in t = Teiθ . Furthermore, the relative probability amplitude at B sublattices is reduced (in-
creased) as the function of θ for v+(−)(k). This is because the return probability for the B atoms
of v+(−)(k) is reduced (enhanced) due to the state-dependent phase difference between ∆V
and

p

∆V 2 + 16t2 cos2 ka/2. This is a typical example of the state-dependent control of local-
ization characteristics as the result of the interplay between the unflatten potential distribution
and the non-Hermiticity.

The result of the interference effect between the non-uniform potential and the non-reciprocal
hopping phases, can be understood with the effective potential distribution, Veff

i . Here, Veff
i

is the deformed on-site potential which leads to the same probability distribution of the given
state assuming θ = 0. In general, the effective potential is the state-dependent, distinguishing
between different momentum k from Eq.(4). Surprisingly, however, when the hopping mag-
nitude T is larger than ∆V

4cos(Ka/2) for a given momentum K , the probability amplitude at the B
sublattices of v±(k ≤ K) and their localization strengths are saturated at θ = π/2 as the same
value regardless of the sign difference in Eq.(4) and momentum k ≤ K . Thus, the effective
potential becomes uniformly periodic for every v±(k ≤ K). In particular, in this case the prob-
ability distribution for k ≤ K becomes uniform, and thus indistinguishable from a uniformly
periodic chain with no potential gradient. This shows that if the finite hopping magnitude
is sufficiently large compared to the potential difference, the effect of the potential gradient
would be washed out by the interference effect arising from the non-reciprocal hopping phase.
In other words, the non-reciprocal hopping phase deforms Vi to the uniform effective potential
Veff

i such that ∆Veff = 0. Such a delocalization of the states would be achieved delicately
for each momentum k by increasing T . Thus, a non-reciprocal hopping phase provides a high
controllability of the localization strength for each state.

Note that when T = ∆V
4cos(Ka/2) , v+(K) coalesces into v−(K). This coalescence is a unique

feature of the non-Hermitian system, so-called an exceptional point (EP). When the states
coalesce, the right and left eigenstates become orthogonal to each other, and hence the phase
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Figure 2: (a) State-dependent localization transition at θ = π/2 for the alternating
periodic chain. For each value of k, the blue region indicates that the wave function is
uniformly distributed regardless of the atomic species, the same as for the uniformly
periodic chain. Yellow region indicates that the wave function has skewed probability
amplitude between A and B atoms. The probability distributions for each case are
drawn schematically. For the Hermitian case, the blue region does not appear for
finite T . (b) |〈σz〉| of the eigenstates on the complex energy plane at θ = π/2.
Here, we set T =∆V and VA = −VB. The zero |〈σz〉|, which indicates the uniformly
distributed wave function, appears with the pure imaginary energies.

rigidity, r(k) = |〈v+(k)L|v+(k)R〉| becomes zero [68,69]. Here the subscripts L and R stand for
the left and right eigenstates. Thus, the phase rigidity can be used to indicate the delocalization
phase transition where the probability distribution becomes perfectly uniform.

Fig.2 (a) shows the phase diagram depending on the presence and absence of the ∆V
effect on the state at θ = π/2. Here the order parameter is given by |〈σz〉|, where σz is
the Pauli matrix acting on the wave function of the A and B sublattices in Eq.(4). Note that
the order parameter |〈σz〉| measures the difference between the probabilities on the A and B
sublattices. The yellow region indicates that the probability distribution for A and B atomic
species is different due to the potential difference, ∆V . In contrast, the blue region indicates
that for each k the probability distribution of v±(k) is completely uniform and independent of
the atomic species. The phase boundary is given by the zero phase rigidity for each k values.
Note that when θ = 0, hermitian system, the blue region is impossible for any k and finite
T . This is because the non-reciprocal hopping phase could induce the delocalization of the
states by interference effect instead of just increasing the mobility of the particle. Fig.2 (b)
illustrates the order parameter, |〈σz〉| on the complex energy plane at T = ∆V and θ = π/2.
Remarkably, the zero values of |〈σz〉| appears only for the complex valued energies. This is
because the energy eigenvalues of the Hamiltonian, Eq.(3) are given by

Ek,± =
1
2
(VA+ VB ±

Æ

∆V 2 + 16t2 cos2(ka/2)). (5)

Hence, at θ = π/2, the energy becomes complex if and only if T is larger than ∆V
4cos(ka/2) , which

is the blue region of Fig.2 (a).
In terms of the hopping phase, one can explore different localization characteristics, not

only exponentially localized or uniformly extended, but also power-law decaying critical states
depending on Vi . To show the high controllability of the localization characteristics of the
states, we consider the quasi-periodic systems in one-dimensional space. We study the Aubry-
André Fibonacci model and discuss the effect of non-Hermiticity induced by non-reciprocal
hopping phase. This model includes the Fibonacci quasicrystal limit, where both exponen-
tially localized and critical wave functions exist. We emphasize that our discussion can be
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generalized to other systems or to the randomly disordered systems [70–72] (see Appendix A
for detailed information).

3.1 Aubry-André-Fibonacci model

Aubry-André-Fibonacci (AAF) model [67] is 1D chain with quasi-periodically modulated Vi
given by,

Vi(β) = −λ
tanh[β cos(2παi +ϕ)− β cos(πα)]

tanhβ
. (6)

Hereϕ is the phase shift, indicating the global spatial translation of the potential, which we set
to ϕ = 0. α is the golden section, (1+

p
5)/2. With respect to β , the model deforms continu-

ously from the Aubry-André model [20] (β → 0) to the Fibonacci limit [67] (β →∞), which
we discuss in Sec.3.2. The Aubry-André model has been actively studied for the metal-insulator
transition with respect to T/λ in the incommensurate ordered systems [61,63,67]. Given β ,
we investigate the localization strength of the states as a function of the non-reciprocal phase,
θ and T/λ. Specifically, we quantify the localization strength using the inverse participation
ratio (IPR), which is defined for a normalized state ψ as

IPR(ψ) =
∑

i

|ψ(i)|4. (7)

Note that the amount of localization for the wave function,ψ, can be quantified by the IPR [44,
73, 74]. In the spectrum, the maximum (minimum) value of the IPR indicates the maximally
(minimally) localized state. Let us refer to these states in the spectrum as maximally localized
and maximally extended states, respectively. Also, the average localization strength for entire
states in the spectrum is given by the mean IPR (MIPR), defined by

MIPR=
1
N

N
∑

k=1

IPR(ψk), (8)

where ψk is the k-th eigenstate. The delocalization (localization) can be captured by the
reduction (enhancement) of MIPR [44].

Before illustrating the results, we briefly review the localization properties of the Hermitian
AAF model under the open boundary condition (OBC). Under OBC, the Hermitian AAF model
possesses at least one exponentially localized state regardless of finite T and λ 6= 0. Thus,
the maximally localized state in AAF models is exponentially localized regardless of T/λ and
β [75]. For example, when β = 0, the fraction of localized states among the eigenstates
changes drastically at the boundary of T/λ= 1/2 from 1 to∼ 1/N , where N is the finite system
size. This change is known as the metal-insulator phase transition, where the insulating and
metallic phases refer to T/λ < 1/2 and T/λ > 1/2 regimes, respectively [20]. For nonzero β ,
there are only a few delocalized states for T/λ < 1/2. For example, at β = 2.5, the delocalized
state exists even for T = 0.05λ.

Now, we explore the non-Hermitian AAF model, where non-Hermiticity is induced by the
non-reciprocal hopping phase θ . For different β , Fig.3 and Fig.4 represent the IPR change
and illustrate the localization and delocalization as a function of θ . First of all, for β = 0,
Fig.3 (a) shows that the MIPR decreases as θ gets closer to π/2 regardless of T , and thus the
delocalization of the state is generally observed. Fig.3 (b) shows each state on the complex
energy plane and their IPR at T = 0.2λ and θ = π/2. Note that when the IPR of the state is
relatively large, the energy of the state remains real-valued, while the energies of the states
with smaller IPR values are mostly complex-valued. This is because the non-Hermiticity is
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Figure 3: Changes of localization strength in the non-Hermitian AAF model for β = 0
as a function of θ . (a) Suppression of MIPR as θ approaches π/2, for both T = 0.2λ
(black curve) and T = 2λ (red curve). (b) log(IPR) of the states on the complex
energy plane at T = 0.2λ and θ = π/2. Smaller log(IPR) values appear mostly with
the complex-valued energies. The red square and blue star indicate the maximally
localized and maximally extended states in (c) and (d), respectively. Landscape of
log(IPR) for (c) maximally localized state and (d) maximally extended state. For
T < 0.5λ, (c) the localization strength of the maximally localized state increases in
terms of IPR enhancement as θ gets closer to π/2. (d) The maximally extended state
shows the decrease of the IPR as a function of θ . (c,d) In contrast, for T ≥ 0.5λ, both
maximally localized and maximally extended states are delocalized as θ approaches
π/2.
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driven by non-reciprocal hopping phase, which does not affect on the energy of strongly lo-
calized states. Here, the maximum and minimum values of the IPR are emphasized as the red
square and blue star, respectively (See Fig.3 (b-d)). Figs.3 (c) and (d) illustrate that T < 0.5λ
and T ≥ 0.5λ show different behavior in the localization strength for each state. In particu-
lar, for T < 0.5λ, the IPR of the maximally localized state increases as θ approaches π/2 as
shown in Fig.3 (c). Whereas, Fig.3 (d) shows that, for T < 0.5λ, the IPR of the maximally
extended state decreases as θ gets closer to π/2. Thus, the change in the localization strength
is different depending on the states. This observation supports that the change of the local-
ization strength is different for each state when the strength of the non-Hermiticity, T sinθ
is small. On the other hand, for T ≥ 0.5λ, the non-Hermiticity generally leads to the delo-
calization of each state. Fig.3(c) and (d) show that both the maximum and minimum values
of the IPR decrease as θ approaches π/2. This indicates that the states are delocalized due
to the non-reciprocal hopping phase. In particular, although the maximally localized state is
still exponentially localized for T ≥ 0.5λ under OBC, its localization strength given by the IPR
decreases as a function of θ , unlike the case of T < 0.5λ.

Next we consider the case of nonzero β , exemplifying β = 2.5, which shows significant
changes in the localization strength in the T < 0.5λ regime, compared to the case of β = 0.
We observe the state localization with respect to θ when T < 0.5λ. The black curve of Fig.4(a)
shows that the MIPR for T = 0.2λ is enhanced with non-trivial θ . This enhancement of the
MIPR is quite general for the regime T < 0.5λ. In detail, Fig.4(c) and (d) show the enhance-
ment of the IPR of the maximally localized and extended states as θ approaches π/2 for small
T < 0.5λ regime. In particular, Fig.4(c) shows that the extended states disappear in the spec-
trum due to the non-reciprocal hopping phase. Thus, each state is exponentially localized,
similar to the case of β = 0. It is because when T is small, the modulation of the potential
distribution due to the hopping phase is weak, and hence the effective potential distribution
resulting from the interference effect is similar to the case of β = 0 rather than uniformly peri-
odic. Fig.4 (b) illustrates the log(IPR) on the complex energy plane for T = 0.2λ and θ = π/2.
Here, the red square and blue star indicate the maximally localized and extended states. The
strongly localized states have the real-valued energies, while the less localized states have
the complex-valued energies. This supports that the localization for the T < 0.5λ regime is
strongly affected by the non-reciprocal hopping phase. For T ≥ 0.5λ, on the other hand, the
red curve in Fig.4 (a) shows the delocalization of the states in terms of MIPR suppression as θ
approaches π/2. Note that for T ≥ 0.5λ regime, the delocalization of the states is a common
signature with the β = 0 case (see Figs.4 (c) and (d)).

Comparing Fig.3 and Fig.4, one can conclude that the non-reciprocal hopping phase can
either increase or decrease the localization strength depending on the state and the potential
distribution dependent on β . This implies that the non-reciprocal hopping phase allows for
different control of the localization strength. Nevertheless, we find that when the hopping
magnitude is sufficiently strong, the delocalization of the states is generally induced. This is
because the non-Hermitian interference effect which leads to the effective potential is uniform,
and hence for T greater than some critical hopping magnitude, say Tc , the interference in terms
of θ uniformly washes out the effects of the potential gradient on the probability distribution,
as we demonstrated in the example of an alternating periodic chain.

The general delocalization of states in AAF models for large T could be also understood
in terms of state hybridization between delocalized states. When T is large, the Hermitian
Hamiltonian possesses delocalized states whose probability distribution is locally non-uniform.
Then, the non-reciprocal hopping phase induces the hybridization between these delocalized
states, which compensates the local difference of probability amplitudes. For example, in the
case of an alternating periodic chain, the difference of the probability amplitude at the A and B
sublattices in |v+(k)〉 and |v−(k)〉 is compensated as θ approaches π/2. In particular, after the
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Figure 4: Changes in localization strength in the AAF model for β = 2.5 as a func-
tion of θ . (a) The MIPR for small hopping magnitudes increases for non-trivial θ , as
shown in black curve for T = 0.2λ. Whereas, it monotonically decreases for large
hopping as θ approaches π/2, as presented in red curve for T = 2λ. (b) log(IPR) of
the states on the complex energy plane at T = 0.2λ and θ = π/2. The states having
large log(IPR) values admit the real-valued energies, while the states with relatively
small log(IPR) values have the complex-valued energies. The red square and blue
star indicate the maximally localized and maximally extended states in (c) and (d),
respectively. Landscape of log(IPR) for (c) maximally localized state and (d) maxi-
mally extended state. For T < 0.5λ, (c,d) the localization strengths of the maximally
localized and maximally extended states increase in terms of IPR enhancement as θ
approaches π/2. In particular, the sky region in (d) indicates the exponentially local-
ized states. (c,d) In contrast, for T ≥ 0.5λ, both maximally localized and maximally
extended states are delocalized as θ approaches π/2, similar to the case of β = 0.
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Figure 5: Change of the localization characteristics of the states in the Fibonacci qua-
sicrystal. The landscape of fractal dimensions of the states for (a) maximum value
of IPR and (f) minimum value of IPR, corresponding to the maximally localized and
maximally extended state, respectively. (b-d) Evolution of the localization character-
istics of the maximally localized state for (b) θ = 0, (c) θ = 17π/36 and (d) θ = π/2,
respectively, with T = 13V . The fractal dimensions are (b) D2 = 0, (c) D2 = 0.411
and (d) D2 = 1. As the phase approaches the maximum value of non-Hermiticity at
θ = π/2, the localization characteristics of the states change from the exponentially
localized state (b) to the extended state (d), where intermediate power-law decaying
critical states (c) appear at intermediate θ . (e) The phase rigidity of the maximally
localized state. Along the boundary where the fractal dimension changes rapidly in
Fig. (a), the phase rigidity also drops steeply in Fig. (e). (g-h) Evolution of the
localization characteristics of the maximally extended state for (g) θ = 0 and (h)
θ = π/2, respectively, with T = 13V . The fractal dimensions are (g) D2 = 0.915 and
(h) D2 = 1. The localization properties change from the self-similar critical state (g)
for the Hermitian case to the uniformly oscillating extended state (h) for the maxi-
mally non-Hermitian case. See the main text for further details.

coalescence of |v+(k)〉 and |v−(k)〉 at θ = π/2, the local probability difference between A and
B sites is fully compensated. The coalescence of states is a unique feature of the non-Hermitian
system [68,76]. Thus, such anomalous state hybridization is another key mechanism leading
to the delocalization of states. Moreover, this kind of delocalization of states is observed from
the weak localization in randomly disordered systems. In particular, for sufficiently large finite
T , as θ approaches π/2, the MIPR decreases, and hence the delocalization of the state is
induced (see Appendix A for detailed information).

The non-reciprocal hopping phase can control the localization strength of the states of AAF
models in different ways, either increasing or decreasing the localization strength. This opens
up new experimental applications of AAF models. For example, based on the result of the case
of T < 0.5λ for β = 2.5, one can control the localization characteristics from the mixture of
extended and localized states to the perfectly localized spectrum. On the other hand, when
T > 0.5λ, the non-Hermiticity induces the delocalization of the states. Thus, depending on
the hopping magnitude, one can either promote or suppress the mobility of the particle as a
function of the non-reciprocal hopping phase.
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3.2 Fibonacci quasicrystal

Now let us consider the β →∞ limit of the AAF model, the Fibonacci quasicrystal [31, 77].
In detail, the Fibonacci quasicrystal consists of two different atoms, A and B, which have on-
site potentials VA and VB, respectively. By using the successive substitution maps, A → AB
and B → A, one obtains the Fibonacci arrangement of the atoms, such as ABAABABABAA · · ·
[12, 25]. For the Hermitian system under OBC, it is known that there are both exponentially
localized states and critical states in the Fibonacci quasicrystal, independent of the finite hop-
ping magnitude, T [62,78,79]. Thus, one could ask whether non-Hermiticity with a uniform
complex-valued hopping parameter enhances the delocalization of the states in the Fibonacci
quasicrystal and eventually gives rise to the extended states for a finite hopping magnitude
under the OBC.

To quantify the localization characteristics of the wave function, we use both the inverse
participation ratio (IPR) and the fractal dimension of the state. Although a larger IPR indi-
cates stronger localization, the value of the IPR alone is insufficient to determine the detailed
localization characteristics and scaling behavior of the wave function, since the IPR is an av-
eraged quantity over space [16, 73]. Thus, we study the system size dependence of the IPR,
which gives the spatial distribution of the wave function. In particular, it is known that for
sufficiently large system size N , the IPR exhibits scaling behavior as N−D2 , where D2 is called
the fractal dimension [16, 21, 80]. An exponentially localized state has D2 = 0 and a uni-
formly extended state has D2 = 1. The critical states have the intermediate fractal dimensions
0< D2 < 1 [16,80].

Fig.5(a) and (f) show the landscapes of the fractal dimension of the maximally localized
state and the maximally extended state, respectively, as a function of the magnitude and phase
of the hopping parameter T and θ . The potential difference between atoms A and B is given
by VA − VB = 2V . As θ approaches π/2, the fractal dimensions of the maximally localized
or maximally extended states increase, indicating the delocalization of the states. In detail,
Fig.5 (b)-(d) show that for sufficiently large T (T > 10V in Fig.5 (a)), how the localization
characteristics of the maximally localized state are controlled from the exponentially localized
to the sinusoidally extended one in terms of θ . In the Hermitian case, the fractal dimension of
the maximally localized state remains zero, corresponding to the exponentially localized state,
regardless of the value of T (see Fig.5 (a) and (b)). However, in the non-Hermitian cases, the
fractal dimension of the maximally localized state becomes non-zero. Fig.5 (c) shows the wave
function of the maximally localized state for θ = 17π/36 with T = 13V (red square in Fig.5
(a)). In this case, the wave function shows the critical state with a power law decay, and
the fractal dimension D2 = 0.411. Moreover, Fig.5 (d) shows the perfectly delocalized wave
function with D2 = 1 for θ = π/2 with T = 13V (red triangle in Fig.5 (a)). It is surprising that
for sufficiently large but finite hopping magnitude, the maximally localized state become an
extended state with D2 = 1. In this case, every eigenstate has D2 = 1, which is never allowed
in the Hermitian system for any finite hopping magnitude T and non-zero V .

The reason why we can universally achieve D2 = 1 even with finite hopping magnitude
in the Fibonacci quasicrystal is as follows. The non-reciprocal hopping phase controls the
localization of the states by forming a non-trivial interference between the hopping and the
potential contributions of the state, which arise from the hopping parameters and the spatial
potential gradient, respectively. If T is sufficiently large, the interference becomes destructive
as θ approaches π/2. Consequently, the potential contribution can be canceled out by the
hopping contribution. As a result, the non-Hermiticity leads to the delocalization of the states
by effectively blinding the spatial potential gradient such as the quasiperiodic structures with
the destructive interference. This allows us to achieve the uniformly extended state even in
the presence of the spatial potential gradient with finite hopping magnitudes.

Although the maximally localized state remains exponentially localized as D2 = 0 regard-
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less of θ when T is small (T ® 4V in Fig.5 (a)), the non-Hermiticity increases the localization
length of the state. It turns out that the interference arising from the non-reciprocal hopping
phase induces the penetration of the wave function into the bulk of the system. Thus, even
with a small T , we can manipulate the localization strength of the state with respect to the
non-reciprocal hopping phase. See Appendix B for detailed information on controlling the
localization length.

The strong state hybridization and coalescence are also important for understanding the
change in the scaling properties of the state. To capture this, we compute the phase rigid-
ity of the maximally localized state, given by r(Ψ) = |〈ΨL|ΨR〉|, where Ψ is the maximally
localized state [68, 69]. The subscripts L and R denote the left and right eigenstates, respec-
tively. Note that r(Ψ) = 1 for the Hermitian case, while r(Ψ) ≤ 1 for the non-Hermitian case,
because the right eigenstates could be non-orthogonal to each other. At the EPs where the
multiple right eigenstates coalesce, the phase rigidity vanishes [68, 76]. Fig.5 (e) shows the
landscape of phase rigidity. Comparing Fig.5 (a) and (e), the phase rigidity suddenly drops
at the boundaries where the change in localization characteristics occurs. Thus, when the lo-
calization characteristics change, the maximally localized state strongly hybridizes with other
critical or extended states by passing through the EPs [68]. This leads to delocalization of the
scaling behavior of the maximally localized state.

Now let us take a look at the maximally extended state. In the Hermitian system, the
maximally extended state has the fractal dimension D2 < 1 for any finite T due to the fractal
structure of the Fibonacci quasicrystal [78]. However, Fig.5 (f) shows that the non-Hermiticity
can increase the fractal dimension of the maximally extended state as D2 = 1. Comparing the
wave functions for the maximally extended states at θ = 0 (Fig.5 (g)) and π/2 (Fig.5 (h)), one
can see the disappearence of the fractality in the wave function due to the non-Hermitianity. It
turns out that the non-reciprocal phase factor of the hopping parameters induces delocalization
by shielding the detailed structure of the lattice, such as the Fibonacci pattern, through the
interference effect, rather than simply increasing the mobility of the particle.

One can ask how the localization strength of the other states changes as the strength of
the non-Hermiticity increases. For a given finite T ≥ 0.2V , we generally see that the MIPR
decreases as θ gets closer to π/2 in the Fibonacci quasicrystal. Thus, non-Hermiticity leads
to the delocalization of states (see Appendix C.). Note that in the Fibonacci quasicrystal, even
for the small T regime, most of the states are critical states, which are delocalized as a power-
law scaling. Thus, the hybridization of the eigenstates of the Hermitian Hamiltonian due to
the non-reciprocal hopping phase occurs mainly between pairs of critical states in a way to
compensate the power-law decaying probability amplitudes. This gives rise to the general
delocalization tendency in terms of the non-reciprocal hopping phase.

4 Discussion and Conclusion

Over the past decade, advances in photonics and electronics have made it possible to ex-
perimentally realize open systems, described as various effective non-Hermitian Hamiltoni-
ans. However, how non-Hermiticity controls localization properties of the wavefunctions, is
hardly understood. In this work, we show that the localization of wavefunctions, including
quasi-periodic structures and disordered chains, is tuned in non -Hermitian system with non-
reciprocal hopping phase. We show that the non-Hermiticity imposed by the non-reciprocal
hopping phase does not cause a skin effect, but can dramatically change wave function local-
ization, even inducing general delocalization with sufficiently strong non-Hermiticity. While
the non-Hermitian skin effect depends strongly on the boundary conditions, the delocalization
induced by the non-reciprocal hopping phase does not depend on the specific boundary con-
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ditions. We show that there are two main mechanisms by which the non-reciprocal hopping
phase changes the localization properties of the wave function.

The first mechanism is through interference between transition probability amplitudes.
The non-reciprocal hopping phase imposes a nontrivial phase difference between the transi-
tion probability amplitudes given by different paths. This nontrivial phase causes destructive
interference between the transition probability amplitudes, which is impossible in the Her-
mitian system, and results in eigenstates being able to spread further in space. The effect of
this interference grows with increasing magnitude of the hopping parameter, as well as with
non-reciprocal hopping phases, and leads to delocalization of the wave function in general.

Another mechanism is the coalescence of the eigenstates through the exceptional points.
In terms of phase rigidity, we clarify that the localized (either exponentially or critically) state
merges to the delocalized state at the boundary points where the localization characteristics
given by the fractal dimension are drastically changed [cf. comparison between Fig.5 (a) and
(e)]. Thus, the states are delocalized when passing through the exceptional point. Remark-
ably, this is different from the case of the skin effect, where the presence of the exceptional
point leads to macroscopic localization. Thus, our study extends the role of non-Hermitian ex-
ceptional points from the traditional skin effect to drastically changing the fractal dimension
of the states.

We provide a novel way to control the localization of quantum states by using non-Hermiticity.
Our non-Hermitian model, whose non-Hermiticity is originated from the non-reciprocal phase
of the hopping parameter, has no specific directional preference. It is important to note that,
depending on the state, the localization can be enhanced or reduced as a function of the non-
reciprocal hopping phase and the magnitude of the hopping parameter. In this way, one can
finely control over the localization of the states. In particular, for exponentially localized states
or critical states present in quasicrystalline systems, the non-Hermiticity induces a perfect de-
localization of the states, resulting in the disappearence of the fractality. Using the Fibonacci
quasicrystal as an example, we have shown that non-Hermiticity can indeed change the local-
ization characteristics between localized, critical and uniformly extended states. Again, this
is due to the interference between transition amplitudes with respect to the non-reciprocal
hopping phase and hybridization of the states through the exceptional points, In this way,
they compensate for the non-uniform amplitudes of the probabilities and lead to the delo-
calization of the states in a regime of strong non-Hermiticity. Our work opens the utility of
non-Hermiticity for high controllability of the localization characteristics.

Importantly, our theoretical study could be studied by the photonic crystal [43] or electrical
circuits similar to other open system models governed by the Lindblad master equation or
the effective non-Hermitian Hamiltonian. In particular, we propose an experimental setup to
demonstrate the control of the localization of the wave function in the quasiperiodic system as
shown in Fig.1. By changing the phase accumulated by the phase shifter, one can explore the
different localization characteristics of the wave functions from the exponentially localized to
the critical or extended states. The electric circuit or acoustic lattice are also possible platforms
to demonstrate localization control in terms of the non-reciprocal phase of the transporting
waves [60]. Thus, our work helps to exploit the different localization properties of the wave
functions in experiments such as quantum transport.

While we consider the one-dimensional systems, as an interesting future work, one can
generalize our model to higher-dimensional systems such as two- or three-dimensional lat-
tices [81–83], or even to the multi-frequency driven Floquet systems with synthesized dimen-
sions [84, 85]. We suspect that similar delocalization phenomena would occur in the higher-
dimensional lattices due to the non-reciprocal phases of the hopping parameter. In such a
case, the state-dependent control of localization strength and the emergence of subdimen-
sional fractality can also be discussed.
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Figure 6: MIPR as a function of the phase of the non-Hermitian hopping parameter,
θ , in the randomly disordered system. The degree of disorder is 50%. The system
size, N = 233, and the hopping parameter value, T = 4V .
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A Control of localization in the uniformly random disordered chain

Here we consider the randomly disordered chain where the on-site energies have a 50% level
of disorder. Specifically, the random on-site energies are between -1.5V and −0.5V . Figure.6
shows that the localization is suppressed as the non-Hermicity increases even for the ran-
domly disordered system. The MIPR decreases as θ becomes π/2, which corresponds to the
maximum strength of the non-Hermiticity for a given hopping magnitude T . Thus, the delo-
calization is induced by the non-reciprocal hopping phases in the randomly disordered chain
system.

B Localization length change in the Fibonacci quasicrystal with
small hopping magnitude regime

Here we consider the Fibonacci quasicrystal with the small hopping magnitude, T regime. The
localization length is drastically controlled by the strength of the non-Hermiticity, although the
fractal dimension is always zero for the maximally localized state with the maximum value
of the IPR in the small T regime. In detail, let us define the localization length, ξ, of the
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Figure 7: (a) The localization length (ξ defined in eq.(9)) changes as a function
of the non-reciprocal hopping phase (θ). Here, the unit of the localization length
is the atomic spacing between neighboring atoms. The non-Hermiticity induces the
delocalization, so the localization length increases as the non-Hermiticity becomes
stronger. (b) Comparison of the probability distribution of the maximally localized
states for (blue) θ = π/2 and (red) θ = 0 in the logarithmic scale. The linear scaling
in the figure indicates the exponential decay. The smaller slope indicates the larger
localization length for the non-Hermitian case. The hopping magnitude is T = 3V .
The system size is N = 987.

exponentially localized state as follows.

ξ=
q

〈 x̂2〉 − 〈 x̂〉2 (9)

where x̂ is the position operator and 〈Ô〉 is the expectation value of the operator, Ô.For T = 3V
we show the variance of the localization length as a function of the non-reciprocal phase of
the hopping parameter, θ . Recall that the uniform non-Hermitian hopping parameter is given
by t = Teiθ . Fig.7 (a) shows that the localization length increases drastically as θ approaches
π/2. Thus, although the localization characteristics of the maximally localized state are ex-
ponentially decaying for any θ with small T , the localization length could be manipulated in
terms of the non-reciprocal hopping phase. Fig.7 (b) compares the probability distribution of
the maximally localized states for θ = 0 (red) and θ = π/2 (blue) in the logarithmic scale.
The different slopes show that in the non-Hermitian case the wave is able to penetrate more
into the bulk.

C Delocalization trend in terms of the non-Hermiticity

In this section, we consider how the localization strength of states other than the maximally
localized or extended states changes with respect to the non-reciprocal hopping phase. We
quantify the localization strength in terms of the mean IPR (MIPR) in the spectrum for this
purpose. Fig.8 shows the MIPR as a function of the phase of the hopping parameter, θ , for
different hopping magnitudes T in the Fibonacci quasicrystal. For the general T , the MIPR
decreases as θ gets closer to π/2. Thus, the localization strength in the spectrum is suppressed
in the Fibonacci quasicrystal due to the non-Hermiticity.
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Figure 8: The mean value of the IPR (MIPR) of the spectrum as the function of the
strength of the non-Hermiticity given by the phase angle of the hopping parameter, θ .
At θ = π/2, the non-Hermiticity becomes maximum for given T . The MIPR which
is the amount of the localization in the spectrum decreases as the non-Hermiticity
becomes stronger.
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