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Abstract

Quasiperiodic systems are neither randomly disordered nor translationally invariant in
the absence of periodic length scales. Based on their incommensurate order, novel phys-
ical properties such as critical states and self-similar wavefunctions have been actively
discussed. However, in open systems generally described by the non-Hermitian Hamil-
tonians, it is hardly known how such quasiperiodic order would lead to new phenom-
ena. In this work, we show for the first time that the intertwined quasiperiodicity and
non-Hermiticity can give rise to striking effects: perfect delocalization of the critical
and localized states to the extended states. In particular, we explore the wave function
localization character in the Aubry-André-Fibonacci (AAF) model where non-reciprocal
hopping phases are present. Here, the AAF model continuously interpolates the two
different limit between metal to insulator transition and critical states, and the non-
Hermiticity is encoded in the hopping phase factors. Surprisingly, their interplay results
in the perfect delocalization of the states, which is never allowed in quasiperiodic sys-
tems with Hermiticity. By quantifying the localization via inverse participation ratio and
the fractal dimension, we discuss that the non-Hermitian hopping phase leads to del-
icate control of localization characteristics of the wave function. Our work offers (1)
emergent delocalization transition in quasiperiodic systems via non-Hermitian hopping
phase, (2) detailed localization control of the critical states. In addition, we suggest an
experimental realization of controllable localized, critical and delocalized states, using
photonic crystals.

Contents

1 Introduction 2

2 Non-Hermitian Hamiltonian with non-reciprocal hopping phase 4

3 Delocalization in the non-Hermitian quasiperiodic chains 5
3.1 Aubry-André-Fibonacci model 7
3.2 Fibonacci quasicrystal 11

4 Discussion and Conclusion 13

A Control of localization in the uniformly random disordered chain 15

B Localization length change in the Fibonacci quasicrystal with small hopping
magnitude regime 16

1



SciPost Physics Submission

References 17

1 Introduction

Quasiperiodic order, which is a novel spatial pattern without any periodic unit length scales,
has attracted interest from a wide range of physics disciplines [1–5]. In a quasiperiodic sys-
tem, not only the diffraction pattern [3,6], but also the electromagnetic and topological prop-
erties would be different from conventional periodic crystals [7–12]. This is mainly due to
the localized nature of their quantum states, which decay along a power-law scale and are
neither localized nor extended, so-called critical states [13–21]. The critical states arise from
the incommensurate self-similar quasiperiodic ordered structure [16, 17]. Theoretically, the
quasiperiodic systems and possible critical states in one-dimensional chains have been actively
studied in terms of the Aubry-André model [20, 22] and the Fibonacci quasicrystal [14, 16].
The critical states that emerge in these systems lead to the stable fractal magnon transmittance
which has advanced the field of magnonics [23–25]. In recent years, it has become possible
to artificially create quasicrystalline structures in the laboratory, such as metamaterials and
photonic crystals [26–31] and the potential for experimental applications using quasiperiod-
icity and critical states has been increased. However, how the quasiperiodic orders and their
critical states behave in the open systems is still poorly understood.

To understand open systems where energy is not conserved, the effective non-Hermitian
theory has been used as a theoretical framework by neglecting quantum jumps from the stan-
dard Lindblad equation [32–34]. In the last decade, there has been a growing interest in the
systems described by non-Hermitian Hamiltonians. For example, non-Hermitian Hamiltonians
have been widely used in exciton-polariton theory [35–37], photonics [38], and other opti-
cal systems [39]. More recently, researchers have developed non-Hermitian descriptions of
magnonic systems [40, 41]. These have been used to describe magnons in driven and dissi-
pative spintronic systems [41]. There is also a non-Hermitian tight-binding model with the
non-reciprocal hopping magnitudes that exhibits the non-Hermitian skin effect, the massive
condensation of bulk modes to the edge under the open boundary condition due to the nonzero
spectral area under the periodic boundary condition [32, 42–55]. Such non-Hermitian sys-
tems have been realized experimentally using photonic crystals, fiber optics, or electrical cir-
cuits [38, 56–60]. Furthermore, the effect of non-Hermiticity in quasiperiodic systems has
recently been spotlighted in terms of the non-Hermitian skin effect, parity-time symmetry and
the topological phase transitions [44, 61–66]. Nonetheless, it remains to be understood how
such non-Hermiticity could be used to manipulate drastic changes of the quantum states in
quasiperidic systems.

In the current work, we study the system where both quasiperiodic order and non-Hermiticity
play an important role and discuss the striking result due to their interplay. In contrast to the
traditional non-Hermitian models explained by the Hatano-Nelson argument [47], here the
non-Hermiticity is taken into account as the non-reciprocal phase of the hopping parameters,
instead of the hopping magnitudes. As a representative example of the quasiperiodic order, we
study the Aubry-André-Fibonacci model [67], but note that our argument is generally appli-
cable to other types of quasiperiodic systems. We show that the interference arising from the
non-reciprocal hopping phases and the exceptional coalescence of the states controls the local-
ization of the wave function. Surprisingly, intertwined quasiperiodicity and non-Hermiticity
gives rise to a perfect delocalization without fractality of the wave function, which never oc-
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Figure 1: A proposal for an experimental control of localization characteristics in
non-Hermitian optical system with ring resonators. A simplified representation of
the ring resonators that make up the quasiperiodic pattern is shown in the sequence
of red and blue blocks. Two or more ring resonators with different resonance fre-
quencies are arranged in a quasi-periodic fashion to form a photonic crystal. Here,
the ring resonators which have two different resonance frequencies are drawn as red
and blue rings in the zoomed inset. Adjacent ring resonators are connected to each
other by two optical cables with optical isolator and phase shifter, depicted as the
green and black components in the zoomed inset, respectively. Each optical isolator
allows the transmission of light in left- and right-moving light only, respectively, and
the phase shifter adds the same phase on the transmitted wave. Thus, we have ef-
fective non-reciprocal hopping phase for the light. By arranging the ring resonators
as the Fibonacci quasicrystal, and manipulating the non-reciprocal hopping phase,
θ accumulated by the phase shifters, we can change the localization characteristics
of the wave function, ψ(x) from exponentially localized (black) to extended (blue)
exploring critical states (yellow) in terms of θ . Two different decaying behaviors of
the localized and critical states are drawn by the dotted and dashed lines indicating
the envelopes of the probability distributions, respectively. One could measure the
optical conductivity to read off the change of the light localization characteristics.

curs in a quasiperiodic system with Hermiticity. Not only the emergence of delocalization, but
also their interplay leads to the control of critical states, implying potential applications.

Fig.1 illustrates our main results with sketch of potential experimental implications. Here,
as an example of the quasiperiodic system, the two distinct ring resonators (red and blue
blocks) are arrayed in Fibonacci quasicrystalline patterns. Each ring resonator is connected
by the optical isolators [68] and phase shifters which in principle controls the non-reciprocal
hopping phase, θ . (See the inset of Fig.1.) By changing the non-Hermiticity given by non-
reciprocal hopping phase, θ from 0 to π/2, we suggest that one can explore general localiza-
tion characteristics of the wave functions from the localized (black) to critical (yellow) and
extended ones (blue), as represented on the top of the quasiperiodic arrays. Therefore, the
non-Hermitian quasiperiodic system can be used to manipulate quantum transport experi-
ments.

The remainder of the article is organized as follows. In Sec.2 we describe our non-Hermitian
tight-binding Hamiltonian with non-reciprocal hopping phase. In Sec.3, by exemplifying the
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Aubry-André-Fibonacci model, we analyze the change of the localization strength of the state,
which is given by the inverse participation ratio in terms of the non-reciprocal hopping phase.
We show that the interference effect originated from the intertwined quasiperiodic potential
and non-reciprocal hopping phase gives rise to the change of the localization strength of the
states. Also, we show that the states are delocalized in the Fibonacci chain as the function of
non-reciprocal hopping phase. We explain that the exceptional hybridization of the eigenstates
leads to the change of the localization characteristics of the states. In Sec.4, we summarize
our works.

2 Non-Hermitian Hamiltonian with non-reciprocal hopping phase

Let us consider the tight-binding Hamiltonian with N -sites

H = HV +HT , (1)

HV =
N
∑

i=1

Vi |i〉 〈i| ,

HT = t
N−1
∑

i=1

(|i〉 〈i + 1|+ |i + 1〉 〈i|),

t = Teiθ ,

where Vi are non-uniform real-valued local potentials. t is the uniform complex-valued hop-
ping parameters, respectively. |i〉 represents the particle placed on the i-th site. The hopping
parameters are uniform complex-valued, t = Teiθ where T and θ are positive reals. The
strength of the non-Hermiticity is given by T sinθ , which is maximized when θ = π/2. Note
that the strength of the non-Hermiticity is depending on both hopping magnitude and the
non-reciprocal hopping phase. We will show that the non-Hermiticity encoded in the non-
reciprocal hopping phase changes the localization properties of the states compared to the
Hermitian counterparts given by θ = 0,π.

One of the most important quantity used in the non-Hermitian systems is the phase rigidity,
which is defined by

r(ψk) = | 〈ψ
(L)
k |ψ

(R)
k 〉 |. (2)

Here, the superscripts L and R stand for left and right eigenstates of the non-Hermitian Hamil-
tonian, and the subscript k is the index of eigenstate. Unlike the Hermitian systems where
the phase rigidity is always 1, it could be less than one, and even vanished in the non-
Hermitian systems. Particularly, when two distinct eigenstates coalesce, the phase rigidity
becomes zero [69, 70]. This unique characteristics of the non-Hermitian system is called an
exceptional point. Thus, one can use the phase rigidity to quantify the coalesence of the states
in the non-Hermitian system.

We quantify the localization strength of the state by using the inverse participation ratio
(IPR), which is defined for a normalized state ψ as

IPR(ψ) =
∑

i

|ψ(i)|4. (3)

Note that the amount of localization for the wave function,ψ, can be quantified by the IPR [44,
71, 72]. In the spectrum, the maximum (minimum) value of the IPR indicates the maximally
(minimally) localized state. Let us refer to these states in the spectrum as maximally localized
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and maximally extended states, respectively. Also, the average localization strength for entire
states in the spectrum is given by the mean IPR (MIPR), defined by

MIPR=
1
N

N
∑

k=1

IPR(ψk), (4)

where ψk is the k-th eigenstate. The delocalization (localization) can be captured by the
reduction (enhancement) of MIPR [44].

3 Delocalization in the non-Hermitian quasiperiodic chains

Given a finite hopping magnitude, T , we can change the localization characteristics of the
states as θ approaches π/2, where the strength of non-Hermiticity becomes maximum. To
understand how the non-Hermitian hopping phase factor allows to change the localization
of the states, let us consider the return probability, which measures the probability that the
particle placed at the i-th site will return to the i-th site. A smaller return probability indicates
that the state is more delocalized because the wave function is scattered. Using the path
integral idea, the return probability is given by the sum of the transition amplitudes from
all possible paths whose start and end points are the same as the i-th site. If the hopping
phase is non-reciprocal, there is destructive interference between the transition amplitudes.
This interference originated from the non-reciprocal hopping phase essentially gives rise to
the delocalization of the state by reducing the return probability. On the other hand, the non-
reciprocal phase can also lead to the constructive interference with respect to θ for some states.
In this case, the delocalization is hindered by the interference from the non-reciprocal hopping
phase. Thus, the non-reciprocal hopping phase gives rise to the state-dependent control of the
localization properties. Moreover, in the non-Hermitian systems, such interference effect leads
to the unconventional coalesence of the states which have different localization characteristics,
so-called exceptional points. Hence, before and after this exceptional point, the localization
characteristics would be changed drastically as we will demonstrate.

To illustrate the state-dependent control of the localization strength with a concrete ar-
gument, we consider a toy model consisting of two different atoms, A and B, arranged in
an alternating way, i.e. ABABAB · · · . This can be understood as the 1/1-approximant of the
Fibonacci chain, which we discuss in Sec.3.2 [21]. With periodic boundary conditions, the
Hamiltonian in momentum space is given by the 2× 2 matrix below

H(k) =

�

VA t(1+ e−ika)
t(1+ eika) VB

�

(5)

where a is the distance between the atoms, k is the momentum, and VA and VB are the local
potentials of the A and B atoms, respectively. The eigenvectors given by

|v±(k)〉=
1
N±

�

2t(1+ e−ika)
∆V ±

p

∆V 2 + 16t2 cos2 ka/2

�

(6)

where ∆V = VB − VA which is assumed to be positive without loss of generality. N± is a
normalization constant. In the eigenstates, ∆V 2 + 16t2 cos2 ka/2 indicates the interference
between the potential difference and hopping contributions. Note that this interference ef-
fect is the result of the local potential gradient, ∆V and the non-reciprocal hopping phase θ
in t = Teiθ . Furthermore, the relative probability amplitude at B sublattices is reduced (in-
creased) as the function of θ for v+(−)(k). This is because the return probability for the B atoms
of v+(−)(k) is reduced (enhanced) due to the state-dependent phase difference between ∆V
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and
p

∆V 2 + 16t2 cos2 ka/2. This is a typical example of the state-dependent control of local-
ization characteristics as the result of the interplay between the unflatten potential distribution
and the non-Hermiticity.

The result of the interference effect between the non-uniform potential and the non-reciprocal
hopping phases, can be understood with the effective potential distribution, Veff

i . Here, Veff
i

is the deformed on-site potential which leads to the same probability distribution of the given
state assuming θ = 0. In general, the effective potential is the state-dependent, distinguishing
between different momentum k from Eq.(6). Surprisingly, however, when the hopping mag-
nitude T is larger than ∆V

4cos(Ka/2) for a given momentum K , the probability amplitude at the B
sublattices of v±(k ≤ K) and their localization strengths are saturated at θ = π/2 as the same
value regardless of the sign difference in Eq.(6) and momentum k ≤ K . Thus, the effective
potential becomes uniformly periodic for every v±(k ≤ K). In particular, in this case the prob-
ability distribution for k ≤ K becomes uniform, and thus indistinguishable from a uniformly
periodic chain with no potential gradient. This shows that if the finite hopping magnitude
is sufficiently large compared to the potential difference, the effect of the potential gradient
would be washed out by the interference effect arising from the non-reciprocal hopping phase.
In other words, the non-reciprocal hopping phase deforms Vi to the uniform effective potential
Veff

i such that ∆Veff = 0. Such a delocalization of the states would be achieved delicately
for each momentum k by increasing T . Thus, a non-reciprocal hopping phase provides a high
controllability of the localization strength for each state.

Note that when T = ∆V
4 cos(Ka/2) , v+(K) coalesces into v−(K), and hence the phase rigidity

defined in Eq.(2) for v±(K) becomes zero. Thus, the unconventional coalesence of the states
due to the non-Hermiticity is happened when the state is uniformly delocalized. It turns out
that the vanishment of the phase rigidity indicates the delocalization transition.

Fig.2 (a) shows the phase diagram depending on the presence and absence of the ∆V
effect on the state at θ = π/2. Here the order parameter is given by |〈σz〉|, where σz is
the Pauli matrix acting on the wave function of the A and B sublattices in Eq.(6). Note that
the order parameter |〈σz〉| measures the difference between the probabilities on the A and B
sublattices. The yellow region indicates that the probability distribution for A and B atomic
species is different due to the potential difference, ∆V . In contrast, the blue region indicates
that for each k the probability distribution of v±(k) is completely uniform and independent of
the atomic species. The phase boundary is given by the zero phase rigidity for each k values.
Note that when θ = 0, hermitian system, the blue region is impossible for any k and finite
T . This is because the non-reciprocal hopping phase could induce the delocalization of the
states by interference effect instead of just increasing the mobility of the particle. Fig.2 (b)
illustrates the order parameter, |〈σz〉| on the complex energy plane at T = ∆V and θ = π/2.
Remarkably, the zero values of |〈σz〉| appear only for the complex valued energies. This is
because the energy eigenvalues of the Hamiltonian, Eq.(5) are given by

Ek,± =
1
2
(VA+ VB ±

Æ

∆V 2 + 16t2 cos2(ka/2)). (7)

Hence, at θ = π/2, the energy becomes complex if and only if T is larger than ∆V
4cos(ka/2) , which

is the blue region of Fig.2 (a).
In terms of the hopping phase, one can explore different localization characteristics, not

only exponentially localized or uniformly extended, but also power-law decaying critical states
depending on Vi . To show the high controllability of the localization characteristics of the
states, we consider the quasi-periodic systems in one-dimensional space. We study the Aubry-
André Fibonacci model and discuss the effect of non-Hermiticity induced by non-reciprocal
hopping phase. This model includes the Fibonacci quasicrystal limit, where both exponen-
tially localized and critical wave functions exist. We emphasize that our discussion can be
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Figure 2: (a) State-dependent localization transition at θ = π/2 for the alternating
periodic chain. For each value of k, the blue region indicates that the wave function is
uniformly distributed regardless of the atomic species, the same as for the uniformly
periodic chain. Yellow region indicates that the wave function has skewed probability
amplitude between A and B atoms. The probability distributions for each case are
drawn schematically. For the Hermitian case, the blue region does not appear for
finite T . (b) |〈σz〉| of the eigenstates on the complex energy plane at θ = π/2.
Here, we set T =∆V and VA = −VB. The zero |〈σz〉|, which indicates the uniformly
distributed wave function, appears with the pure imaginary energies.

generalized to other systems or to the randomly disordered systems [73–75] (see Appendix A
for detailed information).

3.1 Aubry-André-Fibonacci model

Aubry-André-Fibonacci (AAF) model [67] is 1D chain with quasi-periodically modulated Vi
given by,

Vi(β) = −λ
tanh[β cos(2παi +ϕ)− β cos(πα)]

tanhβ
. (8)

Hereϕ is the phase shift, indicating the global spatial translation of the potential, which we set
to ϕ = 0. α is the golden section, (1+

p
5)/2. With respect to β , the model deforms continu-

ously from the Aubry-André model [20] (β → 0) to the Fibonacci limit [67] (β →∞), which
we discuss in Sec.3.2. The Aubry-André model has been actively studied for the metal-insulator
transition with respect to T/λ in the incommensurate ordered systems [61,63,67]. Given β ,
we investigate the localization strength of the states as a function of the non-reciprocal phase,
θ and T/λ.

Before illustrating the results, we briefly review the localization properties of the Hermitian
AAF model under the open boundary condition (OBC). Under OBC, the Hermitian AAF model
possesses at least one exponentially localized state regardless of finite T and λ 6= 0. Thus,
the maximally localized state in AAF models is exponentially localized regardless of T/λ and
β [76]. For example, when β = 0, the fraction of localized states among the eigenstates
changes drastically at the boundary of T/λ= 1/2 from 1 to∼ 1/N , where N is the finite system
size. This change is known as the metal-insulator phase transition, where the insulating and
metallic phases refer to T/λ < 1/2 and T/λ > 1/2 regimes, respectively [20]. For nonzero β ,
there are only a few delocalized states for T/λ < 1/2. For example, at β = 2.5, the delocalized
state exists even for T = 0.05λ.

Now, we explore the non-Hermitian AAF model, where non-Hermiticity is induced by the
non-reciprocal hopping phase θ . For different β , Fig.3 and Fig.4 represent the IPR change
and illustrate the localization and delocalization as a function of θ . First of all, for β = 0,
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Figure 3: Changes of localization strength in the non-Hermitian AAF model for β = 0
as a function of θ . (a) Suppression of MIPR as θ approaches π/2, for both T = 0.2λ
(black curve) and T = 2λ (red curve). (b) log(IPR) of the states on the complex
energy plane at T = 0.2λ and θ = π/2. Smaller log(IPR) values appear mostly with
the complex-valued energies. The red square and blue star indicate the maximally
localized and maximally extended states in (c) and (d), respectively. Landscape of
log(IPR) for (c) maximally localized state and (d) maximally extended state. For
T < 0.5λ, (c) the localization strength of the maximally localized state increases in
terms of IPR enhancement as θ gets closer to π/2. (d) The maximally extended state
shows the decrease of the IPR as a function of θ . (c,d) In contrast, for T ≥ 0.5λ, both
maximally localized and maximally extended states are delocalized as θ approaches
π/2.

8



SciPost Physics Submission

Fig.3 (a) shows that the MIPR decreases as θ gets closer to π/2 regardless of T , and thus the
delocalization of the state is generally observed. Fig.3 (b) shows each state on the complex
energy plane and their IPR at T = 0.2λ and θ = π/2. Note that when the IPR of the state is
relatively large, the energy of the state remains real-valued, while the energies of the states
with smaller IPR values are mostly complex-valued. This is because the non-Hermiticity is
driven by non-reciprocal hopping phase, which does not affect on the energy of strongly lo-
calized states. Here, the maximum and minimum values of the IPR are emphasized as the red
square and blue star, respectively (See Fig.3 (b-d)). Figs.3 (c) and (d) illustrate that T < 0.5λ
and T ≥ 0.5λ show different behavior in the localization strength for each state. In particu-
lar, for T < 0.5λ, the IPR of the maximally localized state increases as θ approaches π/2 as
shown in Fig.3 (c). Whereas, Fig.3 (d) shows that, for T < 0.5λ, the IPR of the maximally
extended state decreases as θ gets closer to π/2. Thus, the change in the localization strength
is different depending on the states. This observation supports that the change of the local-
ization strength is different for each state when the strength of the non-Hermiticity, T sinθ
is small. On the other hand, for T ≥ 0.5λ, the non-Hermiticity generally leads to the delo-
calization of each state. Fig.3(c) and (d) show that both the maximum and minimum values
of the IPR decrease as θ approaches π/2. This indicates that the states are delocalized due
to the non-reciprocal hopping phase. In particular, although the maximally localized state is
still exponentially localized for T ≥ 0.5λ under OBC, its localization strength given by the IPR
decreases as a function of θ , unlike the case of T < 0.5λ.

Next we consider the case of nonzero β , exemplifying β = 2.5, which shows significant
changes in the localization strength in the T < 0.5λ regime, compared to the case of β = 0.
We observe the state localization with respect to θ when T < 0.5λ. The black curve of Fig.4(a)
shows that the MIPR for T = 0.2λ is enhanced with non-trivial θ . This enhancement of the
MIPR is quite general for the regime T < 0.5λ. In detail, Fig.4(c) and (d) show the enhance-
ment of the IPR of the maximally localized and extended states as θ approaches π/2 for small
T < 0.5λ regime. In particular, Fig.4(c) shows that the extended states disappear in the spec-
trum due to the non-reciprocal hopping phase. Thus, each state is exponentially localized,
similar to the case of β = 0. It is because when T is small, the modulation of the potential
distribution due to the hopping phase is weak, and hence the effective potential distribution
resulting from the interference effect is similar to the case of β = 0 rather than uniformly peri-
odic. Fig.4 (b) illustrates the log(IPR) on the complex energy plane for T = 0.2λ and θ = π/2.
Here, the red square and blue star indicate the maximally localized and extended states. The
strongly localized states have the real-valued energies, while the less localized states have
the complex-valued energies. This supports that the localization for the T < 0.5λ regime is
strongly affected by the non-reciprocal hopping phase. For T ≥ 0.5λ, on the other hand, the
red curve in Fig.4 (a) shows the delocalization of the states in terms of MIPR suppression as θ
approaches π/2. Note that for T ≥ 0.5λ regime, the delocalization of the states is a common
signature with the β = 0 case (see Figs.4 (c) and (d)).

Comparing Fig.3 and Fig.4, one can conclude that the non-reciprocal hopping phase can
either increase or decrease the localization strength depending on the state and the potential
distribution dependent on β . This implies that the non-reciprocal hopping phase allows for
different control of the localization strength. Nevertheless, we find that when the hopping
magnitude is sufficiently strong, the delocalization of the states is generally induced. This is
because the non-Hermitian interference effect which leads to the effective potential is uniform,
and hence for T greater than some critical hopping magnitude, say Tc , the interference in terms
of θ uniformly washes out the effects of the potential gradient on the probability distribution,
as we demonstrated in the example of an alternating periodic chain.

The general delocalization of states in AAF models for large T could be also understood
in terms of state hybridization between delocalized states. When T is large, the Hermitian

9



SciPost Physics Submission

Figure 4: Changes in localization strength in the AAF model for β = 2.5 as a func-
tion of θ . (a) The MIPR for small hopping magnitudes increases for non-trivial θ , as
shown in black curve for T = 0.2λ. Whereas, it monotonically decreases for large
hopping as θ approaches π/2, as presented in red curve for T = 2λ. (b) log(IPR) of
the states on the complex energy plane at T = 0.2λ and θ = π/2. The states having
large log(IPR) values admit the real-valued energies, while the states with relatively
small log(IPR) values have the complex-valued energies. The red square and blue
star indicate the maximally localized and maximally extended states in (c) and (d),
respectively. Landscape of log(IPR) for (c) maximally localized state and (d) maxi-
mally extended state. For T < 0.5λ, (c,d) the localization strengths of the maximally
localized and maximally extended states increase in terms of IPR enhancement as θ
approaches π/2. In particular, the sky region in (d) indicates the exponentially local-
ized states. (c,d) In contrast, for T ≥ 0.5λ, both maximally localized and maximally
extended states are delocalized as θ approaches π/2, similar to the case of β = 0.
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Hamiltonian possesses delocalized states whose probability distribution is locally non-uniform.
Then, the non-reciprocal hopping phase induces the hybridization between these delocalized
states, which compensates the local difference of probability amplitudes. For example, in the
case of an alternating periodic chain, the difference of the probability amplitude at the A and B
sublattices in |v+(k)〉 and |v−(k)〉 is compensated as θ approaches π/2. In particular, after the
coalescence of |v+(k)〉 and |v−(k)〉 at θ = π/2, the local probability difference between A and
B sites is fully compensated. The coalescence of states is a unique feature of the non-Hermitian
system [69,77]. Thus, such anomalous state hybridization is another key mechanism leading
to the delocalization of states. Moreover, this kind of delocalization of states is observed from
the weak localization in randomly disordered systems. In particular, for sufficiently large finite
T , as θ approaches π/2, the MIPR decreases, and hence the delocalization of the state is
induced (see Appendix A for detailed information).

The non-reciprocal hopping phase can control the localization strength of the states of AAF
models in different ways, either increasing or decreasing the localization strength. This opens
up new experimental applications of AAF models. For example, based on the result of the case
of T < 0.5λ for β = 2.5, one can control the localization characteristics from the mixture of
extended and localized states to the perfectly localized spectrum. On the other hand, when
T > 0.5λ, the non-Hermiticity induces the delocalization of the states. Thus, depending on
the hopping magnitude, one can either promote or suppress the mobility of the particle as a
function of the non-reciprocal hopping phase.

3.2 Fibonacci quasicrystal

Now let us consider the β →∞ limit of the AAF model, the Fibonacci quasicrystal [31,78]. In
detail, the Fibonacci quasicrystal consists of two different atoms, A and B, which have onsite
potentials VA and VB, respectively. From Eq.(8), VA = λ and VB = −λ. By using the successive
substitution maps, A→ AB and B → A, one obtains the Fibonacci arrangement of the atoms,
such as ABAABABABAA · · · [12, 25]. For the Hermitian system under OBC, it is known that
there are both exponentially localized states and critical states in the Fibonacci quasicrystal,
independent of the finite hopping magnitude, T [62,79,80]. Thus, one could ask whether non-
Hermiticity with a uniform complex-valued hopping parameter enhances the delocalization of
the states in the Fibonacci quasicrystal and eventually gives rise to the extended states for a
finite hopping magnitude under the OBC.

To quantify the localization characteristics of the wave function, we use both the IPR and
the fractal dimension of the state. Although a larger IPR indicates stronger localization, the
value of the IPR alone is insufficient to determine the detailed localization characteristics and
scaling behavior of the wave function, since the IPR is an averaged quantity over space [16,71].
Thus, we study the system size dependence of the IPR, which gives the spatial distribution of
the wave function. In particular, it is known that for sufficiently large system size N , the IPR
exhibits scaling behavior as N−D2 , where D2 is called the fractal dimension [16, 21, 81]. An
exponentially localized state has D2 = 0 and a uniformly extended state has D2 = 1. The
critical states have the intermediate fractal dimensions 0< D2 < 1 [16,81].

Fig.5(a) and (f) show the landscapes of the fractal dimension of the maximally localized
state and the maximally extended state, respectively, as a function of the magnitude and phase
of the hopping parameter T and θ . The potential difference between atoms A and B is given
by VA − VB = 2V . From Eq.(8), V = λ. As θ approaches π/2, the fractal dimensions of
the maximally localized or maximally extended states increase, indicating the delocalization
of the states. In detail, Fig.5 (b)-(d) show that for sufficiently large T (T > 10V in Fig.5
(a)), how the localization characteristics of the maximally localized state are controlled from
the exponentially localized to the sinusoidally extended one in terms of θ . In the Hermitian
case, the fractal dimension of the maximally localized state remains zero, corresponding to the

11



SciPost Physics Submission

Figure 5: Change of the localization characteristics of the states in the Fibonacci qua-
sicrystal. The landscape of fractal dimensions of the states for (a) maximum value
of IPR and (f) minimum value of IPR, corresponding to the maximally localized and
maximally extended state, respectively. (b-d) Evolution of the localization charac-
teristics of the maximally localized state for (b) θ = 0, (c) θ = 17π/36 and (d)
θ = π/2, respectively, with T = 13V . V = (VA− VB)/2 is the difference between two
kinds of the on-site energies, VA and VB in the Fibonacci quasicrystal model. Here,
VA = 1 and VB = −1. The fractal dimensions are (b) D2 = 0, (c) D2 = 0.411 and (d)
D2 = 1. As the phase approaches the maximum value of non-Hermiticity at θ = π/2,
the localization characteristics of the states change from the exponentially localized
state (b) to the extended state (d), where intermediate power-law decaying critical
states (c) appear at intermediate θ . (e) The phase rigidity of the maximally localized
state. Along the boundary where the fractal dimension changes rapidly in panel (a),
the phase rigidity also drops steeply in panel (e). (g-h) Evolution of the localiza-
tion characteristics of the maximally extended state for (g) θ = 0 and (h) θ = π/2,
respectively, with T = 13V . The fractal dimensions are (g) D2 = 0.915 and (h)
D2 = 1. The localization properties change from the self-similar critical state (g) for
the Hermitian case to the uniformly oscillating extended state (h) for the maximally
non-Hermitian case. See the main text for further details.

exponentially localized state, regardless of the value of T (see Fig.5 (a) and (b)). However,
in the non-Hermitian cases, the fractal dimension of the maximally localized state becomes
non-zero. Fig.5 (c) shows the wave function of the maximally localized state for θ = 17π/36
with T = 13V (red square in Fig.5 (a)). In this case, the wave function shows the critical
state with a power law decay, and the fractal dimension D2 = 0.411. Moreover, Fig.5 (d)
shows the perfectly delocalized wave function with D2 = 1 for θ = π/2 with T = 13V (red
triangle in Fig.5 (a)). It is surprising that for sufficiently large but finite hopping magnitude,
the maximally localized state become an extended state with D2 = 1. In this case, every
eigenstate has D2 = 1, which is never allowed in the Hermitian system for any finite hopping
magnitude T and non-zero V .

The reason why we can universally achieve D2 = 1 even with finite hopping magnitude
in the Fibonacci quasicrystal is as follows. The non-reciprocal hopping phase controls the
localization of the states by forming a non-trivial interference between the hopping and the
potential contributions of the state, which arise from the hopping parameters and the spatial
potential gradient, respectively. If T is sufficiently large, the interference becomes destructive
as θ approaches π/2. Consequently, the potential contribution can be canceled out by the
hopping contribution. As a result, the non-Hermiticity leads to the delocalization of the states
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by effectively blinding the spatial potential gradient such as the quasiperiodic structures with
the destructive interference. This allows us to achieve the uniformly extended state even in
the presence of the spatial potential gradient with finite hopping magnitudes.

Although the maximally localized state remains exponentially localized as D2 = 0 regard-
less of θ when T is small (T ® 4V in Fig.5 (a)), the non-Hermiticity increases the localization
length of the state. It turns out that the interference arising from the non-reciprocal hopping
phase induces the penetration of the wave function into the bulk of the system. Thus, even
with a small T , we can manipulate the localization strength of the state with respect to the
non-reciprocal hopping phase. See Appendix B for detailed information on controlling the
localization length.

The strong state hybridization and coalescence are also important for understanding the
change in the scaling properties of the state. To capture this, we compute the phase rigidity,
r(Ψ) of the maximally localized state. Remind that r(Ψ) = 1 for the Hermitian case, while
r(Ψ)≤ 1 for the non-Hermitian case, because the right eigenstates could be non-orthonormal
to each other. Fig.5 (e) shows the landscape of phase rigidity. Comparing Fig.5 (a) and (e), the
phase rigidity suddenly drops at the boundaries where the change in localization characteris-
tics occurs. Thus, when the localization characteristics change, the maximally localized state
strongly hybridizes with other critical or extended states by passing through the exceptional
point [69]. This leads to delocalization of the scaling behavior of the maximally localized state.

Now let us take a look at the maximally extended state. In the Hermitian system, the
maximally extended state has the fractal dimension D2 < 1 for any finite T due to the fractal
structure of the Fibonacci quasicrystal [79]. However, Fig.5 (f) shows that the non-Hermiticity
can increase the fractal dimension of the maximally extended state as D2 = 1. Comparing the
wave functions for the maximally extended states at θ = 0 (Fig.5 (g)) and π/2 (Fig.5 (h)), one
can see the disappearence of the fractality in the wave function due to the non-Hermiticity. It
turns out that the non-reciprocal phase factor of the hopping parameters induces delocalization
by shielding the detailed structure of the lattice, such as the Fibonacci pattern, through the
interference effect, rather than simply increasing the mobility of the particle.

One can ask how the localization strength of the other states changes as the strength of
the non-Hermiticity increases. For a given finite T ≥ 0.2V , we generally see that the MIPR de-
creases as θ gets closer to π/2 in the Fibonacci quasicrystal (See Fig.6). Thus, non-Hermiticity
leads to the delocalization of states. In detail, Fig.6 shows the MIPR as a function of the phase
of the hopping parameter, θ , for different hopping magnitudes T in the Fibonacci quasicrystal.
For the general T , the MIPR decreases as θ gets closer to π/2. Thus, the localization strength
in the spectrum is suppressed in the Fibonacci quasicrystal due to the non-Hermiticity. Note
that in the Fibonacci quasicrystal, even for the small T regime, most of the states are critical
states, which are delocalized as a power-law scaling. Thus, the hybridization of the eigenstates
of the Hermitian Hamiltonian due to the non-reciprocal hopping phase occurs mainly between
pairs of critical states in a way to compensate the power-law decaying probability amplitudes.
This gives rise to the general delocalization tendency in terms of the non-reciprocal hopping
phase.

4 Discussion and Conclusion

Over the past decade, advances in photonics and electronics have made it possible to ex-
perimentally realize open systems, described as various effective non-Hermitian Hamiltoni-
ans. However, how non-Hermiticity controls localization properties of the wavefunctions, is
hardly understood. In this work, we show that the localization of wavefunctions, including
quasi-periodic structures and disordered chains, is tuned in non -Hermitian system with non-
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Figure 6: The mean value of the IPR (MIPR) of the energy spectrum as the function
of the strength of the non-Hermiticity given by the phase angle of the hopping param-
eter, θ in the Fibonacci quasicrystal model. At θ = π/2, the non-Hermiticity becomes
maximum for given T/V , where T is the hopping magnitude and V = (VA− VB)/2 is
the difference between two kinds of the on-site energies, VA and VB in the Fibonacci
quasicrystal model. Here, VA = 1 and VB = −1. The MIPR (Eq.(4)) which is the
amount of the localization in the spectrum decreases as the non-Hermiticity becomes
stronger.

reciprocal hopping phase. We show that the non-Hermiticity imposed by the non-reciprocal
hopping phase does not cause a skin effect, but can dramatically change wave function local-
ization, even inducing general delocalization with sufficiently strong non-Hermiticity. While
the non-Hermitian skin effect depends strongly on the boundary conditions, the delocalization
induced by the non-reciprocal hopping phase does not depend on the specific boundary con-
ditions. We show that there are two main mechanisms by which the non-reciprocal hopping
phase changes the localization properties of the wave function.

The first mechanism is through interference between transition probability amplitudes.
The non-reciprocal hopping phase imposes a nontrivial phase difference between the transi-
tion probability amplitudes given by different paths. This nontrivial phase causes destructive
interference between the transition probability amplitudes, which is impossible in the Her-
mitian system, and results in eigenstates being able to spread further in space. The effect of
this interference grows with increasing magnitude of the hopping parameter, as well as with
non-reciprocal hopping phases, and leads to delocalization of the wave function in general.

Another mechanism is the coalescence of the eigenstates through the exceptional points.
In terms of phase rigidity, we clarify that the localized (either exponentially or critically) state
merges to the delocalized state at the boundary points where the localization characteristics
given by the fractal dimension are drastically changed [cf. comparison between Fig.5 (a) and
(e)]. Thus, the states are delocalized when passing through the exceptional point. Remark-
ably, this is different from the case of the skin effect, where the presence of the exceptional
point leads to macroscopic localization. Thus, our study extends the role of non-Hermitian ex-
ceptional points from the traditional skin effect to drastically changing the fractal dimension
of the states.

We provide a novel way to control the localization of quantum states by using non-Hermiticity.
Our non-Hermitian model, whose non-Hermiticity is originated from the non-reciprocal phase
of the hopping parameter, has no specific directional preference. It is important to note that,
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depending on the state, the localization can be enhanced or reduced as a function of the non-
reciprocal hopping phase and the magnitude of the hopping parameter. In this way, one can
finely control over the localization of the states. In particular, for exponentially localized states
or critical states present in quasicrystalline systems, the non-Hermiticity induces a perfect de-
localization of the states, resulting in the disappearence of the fractality. Using the Fibonacci
quasicrystal as an example, we have shown that non-Hermiticity can indeed change the local-
ization characteristics between localized, critical and uniformly extended states. Again, this
is due to the interference between transition amplitudes with respect to the non-reciprocal
hopping phase and hybridization of the states through the exceptional points, In this way,
they compensate for the non-uniform amplitudes of the probabilities and lead to the delo-
calization of the states in a regime of strong non-Hermiticity. Our work opens the utility of
non-Hermiticity for high controllability of the localization characteristics.

Our theoretical work could be studied by the photonic crystal [43] or electrical circuits sim-
ilar to other open system models governed by the Lindblad master equation or the effective
non-Hermitian Hamiltonian. In particular, we suggest an experimental setup to demonstrate
the control of the localization of the wave function in the quasiperiodic system as shown in
Fig.1. By changing the phase accumulated by the phase shifter, one can explore the differ-
ent localization characteristics of the wave functions from the exponentially localized to the
critical or extended states. The electric circuit or acoustic lattice are also possible platforms
to demonstrate localization control in terms of the non-reciprocal phase of the transporting
waves [60]. Thus, our work helps to exploit the different localization properties of the wave
functions in experiments such as quantum transport.

While we consider the one-dimensional systems, as an interesting future work, one can
generalize our model to higher-dimensional systems such as two- or three-dimensional lat-
tices [82–84], or even to the multi-frequency driven Floquet systems with synthesized dimen-
sions [85, 86]. We suspect that similar delocalization phenomena would occur in the higher-
dimensional lattices due to the non-reciprocal phases of the hopping parameter. In such a
case, the state-dependent control of localization strength and the emergence of subdimen-
sional fractality can also be discussed.
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A Control of localization in the uniformly random disordered chain

Here we consider the randomly disordered chain where the on-site energies have a 50% level
of disorder. Specifically, the random on-site energies are between −1.5V and −0.5V . Fig-
ure.7 shows that the localization is suppressed as the non-Hermicity increases even for the
randomly disordered system. The MIPR decreases as θ becomes π/2, which corresponds to
the maximum strength of the non-Hermiticity for a given hopping magnitude T . Thus, the
delocalization is induced by the non-reciprocal hopping phases in the randomly disordered
chain system.
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Figure 7: MIPR as a function of the phase of the non-Hermitian hopping parameter,
θ , in the randomly disordered system. The degree of disorder of the on-site poten-
tial energy is 50%. The system size, N = 233, and the hopping parameter value,
T = 4V = 4.

B Localization length change in the Fibonacci quasicrystal with
small hopping magnitude regime

Here we consider the Fibonacci quasicrystal with the small hopping magnitude, T regime. The
localization length is controlloed by the strength of the non-Hermiticity, although the fractal
dimension is always zero for the maximally localized state with the maximum value of the IPR
in the small T regime. In detail, let us define the localization length, ξ, of the exponentially
localized state as follows.

ξ=
q

〈 x̂2〉 − 〈 x̂〉2 (9)

where x̂ is the position operator and 〈Ô〉 is the expectation value of the operator, Ô. For T = 3V
we show the variance of the localization length as a function of the non-reciprocal phase of
the hopping parameter, θ . Recall that the uniform non-Hermitian hopping parameter is given
by t = Teiθ . Fig.8 (a) shows that the localization length increases drastically as θ approaches
π/2. Thus, although the localization characteristics of the maximally localized state are ex-
ponentially decaying for any θ with small T , the localization length could be manipulated in
terms of the non-reciprocal hopping phase. Fig.8 (b) compares the probability distribution of
the maximally localized states for θ = 0 (red) and θ = π/2 (blue) in the logarithmic scale.
The different slopes show that in the non-Hermitian case the wave is able to penetrate more
into the bulk.
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Figure 8: (a) The localization length (ξ defined in Eq.(9)) changes as a function
of the non-reciprocal hopping phase (θ) in the Fibonacci quasicrystal model. Here,
the unit of the localization length is the atomic spacing between neighboring atoms,
which is set to be 1. The non-Hermiticity induces the delocalization, so the local-
ization length increases as the non-Hermiticity becomes stronger. (b) Comparison
of the probability distribution of the maximally localized states for (blue) θ = π/2
and (red) θ = 0 in the logarithmic scale. The linear scaling in the figure indicates
the exponential decay. The smaller slope indicates the larger localization length for
the non-Hermitian case. The hopping magnitude is T = 3V = 3. The system size is
N = 987.
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