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Abstract

Dynamical mean-field theory is a powerful physics tool used to analyze the typical be-
havior of neural networks, where neurons can be recurrently connected, or multiple
layers of neurons can be stacked. However, it is not easy for beginners to access the
essence of this tool and the underlying physics. Here, we give a pedagogical introduc-
tion of this method in a particular example of generic random neural networks, where
neurons are randomly and fully connected by correlated synapses and therefore the net-
work exhibits rich emergent collective dynamics. We also review related past and recent
important works applying this tool. In addition, a physically transparent and alternative
method, namely the dynamical cavity method, is also introduced to derive exactly the
same results. The numerical implementation of solving the integro-differential mean-
field equations is also detailed, with an illustration of exploring the fluctuation dissipa-
tion theorem.
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1 Introduction

Stochastic differential equations (SDEs) have a very wide range of applications in physics [1],
biology, neuroscience and machine learning (see many examples in understanding the brain
[2]). Recently, as the world-wide brain projects are being promoted, and the artificial intel-
ligence starts the fourth industrial revolution, understanding how cognition arises both for a
natural brain or an artificial algorithm (like Chat GPT) becomes increasingly important. Bet-
ter understanding leads to precise predictions, which is impossible without solid mathematical
foundation. Stochastic noise inherent in the neural dynamics can either stem from the algo-
rithm details (e.g, in stochastic gradient descent of a deep learning cost function [3], the noise
is anisotropic and changes with the training) or stem from unreliable synaptic transmission and
noisy background inputs [4]). Therefore, SDEs provide a standard tool to model the complex
dynamics common in complex systems.

In particular, one can write the SDE into a Langevin dynamics equation, and put the dy-
namics into the seminal Onsager-Machlup formalism [5], which introduces the concept of
action in a path-integral framework [6]. However, the form of the Onsager-Machlup action is
not amenable for calculating the quenched disorder average as commonly required in studying
typical behaviors of random neural networks. To overcome this drawback, a response field is
introduced and thus the correlation (spontaneous fluctuation) as well as the response function
can be easily derived (see below). This new field-theoretical approach is called the Martin-
Sigga-Rose-De Dominics-Janssen (MSRDJ) formalism [7–9]. The MSRDJ formalism has been
used to analyze the recurrent neural networks, e.g., studying the onset of chaos [10–12], and
to analyze deep neural networks in recent years [13–15]. We will next provide a detailed
explanation of this field-theoretical formalism.

The MSRDJ formalism bears concise mathematics, resulting in the mean-field description
of the original high dimensional stochastic dynamics. The same equation can also be derived
using a physically more transparent method, namely the dynamical cavity method [16–18].
In essence, a neuron is added into the system, and the associated impacts on other neurons
are seft-consistently derived using the linear response approximation. The dynamics of this
additional neuron bears the same characteristics with other neurons, thereby being a represen-
tative of the original high dimensional dynamics. In addition, the static version of this method
can be used to derive the fixed point solution of the dynamics [16, 18]. By numerically solv-
ing the intergro-differential equations involving the correlation and response functions, one
can further probe the fundamental fluctuation-dissipation relation in equilibrium dynamics,
which we shall show in the last section of this tutorial. All technical details are given in the
Appendices.
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2 Generic random neural networks

We consider a random neural network composed of N fully-connected neurons. The state of
each neuron in time t is characterized by the synaptic current x i(t), i = 1, . . . , N , which obeys
the following non-linear dynamical equation,

d x i(t)
d t

= −x i(t) + g
N
∑

j=1

Ji jφ j (t) +σξi(t), (1)

where g is the coupling strength and φ j(t) = φ
�

x j(t)
�

is the transfer function that trans-
forms current to firing rate. A Gaussian white-noise ξi(t) of zero mean and unit variance



ξi(t)ξ j(t ′)
�

= δi jδ(t− t ′) is introduced to model the stochastic nature of neural wiring (e.g.,
in cortical circuits [2]). The parameter σ serves as the noise strength. Each element Ji j of
the connection matrix is drawn from a Gaussian distribution with zero mean and variance
J2

i j = 1/N . In fact, Ji j may correlate with J ji for each pair of neurons. This asymmetric corre-
lation is thus characterized as follows,

Ji jJ ji =
η

N
, (2)

where η ∈ [−1,+1] describes the degree of asymmetry. In particular, the connections are fully
symmetric when η = 1 and fully asymmetric when η = 0 [19]. Besides, we set Jii = 0 to
remove all the self-coupling interaction.

The dynamical mean-field theory (DMFT) equation of this generic model is easy to acquire
when the asymmetric correlation is absent i.e., η= 0 [10,20]. In this case, when we consider
the limit N → ∞, the input current each neuron receives via the coupling g

∑N
j=1 Ji jφ j (t)

converges to a Gaussian field according to the central limit theorem. Therefore, the complex
network dynamics can be simplified to an effective single-neuron dynamics,

ẋ(t) = −x(t) + γ(t) +σξ(t), (3)

where γ(t) is the effective Gaussian noise with covariance 〈γ(t)γ(t ′)〉= g2C(t, t ′)+σ2δ(t−t ′).
The auto-correlation of firing rates C(t, t ′) is self-consistently defined as

C(t, t ′) = 〈φ(t)φ(t ′)〉, (4)

thereby closing the DMFT equation. Note that · (or E[·] in the following) and 〈·〉 represent
the quenched-disorder average and thermal average (over different noise trajectories), respec-
tively.

However, when the asymmetric correlation between connections is present, the mean-
field description can not be obtained directly from the central limit theorem. This is because
in the summation of the afferent currents, a non-negligible correlation between Ji j and φ j(t)
emerges via J ji when η 6= 0, and thus the central limit theorem breaks down. In the following
sections, we introduce two powerful physics tools to tackle this challenge and derive the DMFT
equation for generic random neural networks of an arbitrary asymmetric correlation level.

3 Dynamical mean-field theory

3.1 Generating functional formalism

We first introduce the generating functional formalism and then unfold the derivation fol-
lowing the standard procedure. The main idea of this method is to recast the original high-
dimensional dynamical equation to the path integral formalism. Here, we consider the MSRDJ
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path integral. The moment-generating functional with a specific action corresponding to the
dynamical equation can be written out explicitly, which is helpful to reduce the dynamics to a
low-dimensional mean-field description.

First, we add a perturbation ji(t) to the original dynamical equation [Eq. (1)],

ẋ i(t) = −x i(t) + g
∑

j=1

Ji jφ j(t) + ji(t) +σξi(t), i = 1, . . . , N , (5)

which will be useful in the following derivation. Then, we discretize the dynamical equations
under the Ito convention [21],

x i[t]− x i[t − 1] = −x i[t − 1]h+ g
∑

j=1

Ji jφ j[t − 1]h+ ji[t − 1]h+σξi[t], (6)

where h is a time interval between two consecutive time steps, and [t] indicates the discrete
time index. The white noise ξi[t] =

∫ t
t−h ξi(s)ds becomes a Wiener process with the following

statistics,



ξi[t]ξ j[t
′]
�

=

∫ t

t−h

∫ t ′

t ′−h




ξi(s)ξ j(s
′)
�

ds ds′

=

∫ t

t−h

∫ t ′

t ′−h
σ2δi jδ(s− s′)ds ds′

= δi jδt t ′σ
2h,

(7)

where δi j is a Kronecker delta function. Because of the Markovian property, we introduce the
joint distribution of the currents {x (t)}Tt=1 across time and space by Dirac delta functions,

P
�

{x (t)}Tt=1

�

=

∫

∏

i,t

p(ξi[t])dξi[t]δ

�

x i[t + 1]− x i[t] + x i[t]h

− g
∑

j=1

Ji jφ j[t]h− ji[t]h−σξi[t]

�

,

(8)

where the initial current state x [0] can be arbitrarily chosen, which does not influence the
derivation, and T denotes the length of the trajectory.

We next represent these delta functions by their Fourier integral asδ(x) = 1
2πi

∫ i∞
−i∞ d x̃ e− x̃ x ,

P
�

{x (t)}Tt=1

�

=
∏

i,t

�∫

p (ξi[t])dξi[t]

∫ i∞

−i∞

d x̃ i[t]
2πi

exp

�

− x̃ i[t]
�

x i[t + 1]− x i[t] + x i[t]h

− g
∑

j=1

Ji jφ j[t]h− ji[t]h−σξi[t]
�

��

=
∏

i,t

�∫ i∞

−i∞

d x̃ i[t]
2πi

exp

�

− x̃ i[t]
�

x i[t + 1]− x i[t] + x i[t]h

− g
∑

j=1

Ji jφ j[t]h− ji[t]h−
σ2

2
x̃ i[t]h

�

��

,

(9)
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where Eq. (7) is used to derive the last equality. Hence, we can formally define the moment-
generating functional of the stochastic dynamics,

Z[j, j̃|J] =
∏

i,t

�∫ ∞

−∞
dx i[t]exp

�

j̃i[t]x i[t]h
�

�

P
�

{x (t)}Tt=1

�

=
∏

i,t

�∫ ∞

−∞
dx i[t]

∫ i∞

−i∞

d x̃ i[t]
2πi

exp
�

j̃i[t]x i[t]h+ ji[t] x̃ i[t]h
�

�

exp









−h
∑

i,t

x̃ i[t]

 

x i[t + 1]− x i[t]
h

+ x i[t]− g
∑

j=1

Ji jφ j[t]−
σ2

2
x̃ i[t]

!











,

(10)

where j̃ and j are two types of source fields, whose physical meaning would be clear below. The
source j could be an external perturbation to which the response is measured by the response
field x̃ , which allows one to compute the linear response function by taking the correlation
with x (see below). Taking the continuous limits of T → ∞ and h → 0 at the same time,
we obtain h

∑T
t=0 f (t) =

∫

f (t)dt, and limh→0
x i[t+1]−x i[t]

h = ẋ i(t). We also introduce the

notations
∏

i,t dx i[t]
h→0
→ Dx and

∏

i,t
d x̃ i[t]

2πi
h→0
→ D x̃ for simplicity. Under the continuous

limit, the moment generating functional reads,

Z[j, j̃|J] =
∫

Dx (t)D x̃ exp

�

−S[x , x̃ |J] +
N
∑

i=1

∫

j̃i(t)x i(t)d t +
N
∑

i=1

∫

ji(t) x̃ i(t)d t

�

, (11)

where the action of the dynamical equation is naturally introduced as,

S[x , x̃ |J] =
N
∑

i=1

∫

x̃ i(t)

 

ẋ i(t) + x i(t)− g
N
∑

j=1

Ji jφ j(t)−
σ2

2
x̃ i(t)

!

d t. (12)

It is easy to verify that when N → ∞, the out-of-equilibrium behavior is independent
of the realization of the disorder [22]. We thus focus on the typical behavior of the self-
averaging dynamical partition function Z[j, j̃|J]. This partition function is simpler compared to
its equilibrium counterpart, as the zero source generating functional is identical to one. In the
dynamical setting, taking the average of Z[j, j̃|J] over P(J) is sufficient to get the thermal and
disorder averaged two-point functions, such as correlation and response. This is in contrast
to the equilibrium spin glass theory where a replica trick is commonly applied to obtain the
disorder anverage of the free energy function [20]. In fact, computing the average ofEJZ[j, j̃|J]
reduces to computing EJ exp (−S[x , x̃ |J]). To proceed, we decompose the connection into
symmetric and asymmetric parts [19],

Ji j = J s
i j + kJ a

i j , (13)

where J s
i j = J s

ji and J a
i j = −J a

ji , both of which follow the centered Gaussian distribution with
the same variance,

J s
i jJ

s
i j = J a

i jJ
a
i j =

1
N

1
1+ k2

. (14)

Under this decomposition, it is easy to derive that,

Ji jJi j =
1
N

, Ji jJ ji =
1
N

1− k2

1+ k2
, (15)

which gives k2 = (1−η)/(1+η).
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Now, we can deal with the term involving Ji j ,

∑

i 6= j

x̃ i(t)Ji jφ j(t)

=
∑

i 6= j

x̃ i(t)
�

J s
i j + kJ a

i j

�

φ j(t)

=
∑

i< j

¦

J s
i j

�

x̃ i(t)φ j(t) + x̃ j(t)φi(t)
�

+ kJ a
i j

�

x̃ i(t)φ j(t)− x̃ j(t)φi(t)
�

©

.

(16)

Then, carrying out the average over J s
i j and J a

i j leads to

EJs ,Ja exp

 

∫

dt
∑

i< j

¦

J s
i j

�

x̃ i(t)φ j(t) + x̃ j(t)φi(t)
�

+ kJ a
i j

�

x̃ i(t)φ j(t)− x̃ j(t)φi(t)
�

©

!

= exp

 

g2

2N

∑

i 6= j

∫∫

��

x̃ i(t)φ j(t) x̃ i(t
′)φ j(t

′)
�

+η
�

x̃ i(t)φ j(t) x̃ j(t
′)φi(t

′)
�	

dt dt ′
!

≈ exp





g2

2N

∫ ∫





∑

i

x̃ i(t) x̃ i(t
′)
∑

j

φ j(t)φ j(t
′) +η

∑

i

x̃ i(t)φi(t
′)
∑

j

φ j(t) x̃ j(t
′)



dt dt ′



 .

(17)
Note that, we have added back the negligible diagonal term (i = j) to arrive at the last equality.
Then, we define Z[j, j̃] = EJZ[j, j̃|J], the average moment-generating functional is given by

Z[j, j̃] =

∫

Dx (t)D x̃ exp

�

−S0[x , x̃ ] +
σ2

2
x̃ · x̃ + j̃ · x + j · x̃

+
g2

2N

∫ ∫





∑

i

x̃ i(t) x̃ i(t
′)
∑

j

φ j(t)φ j(t
′) +η

∑

i

x̃ i(t)φi(t
′)
∑

j

φ j(t) x̃ j(t
′)



dt dt ′
�

,

(18)
where S0[x , x̃ ] = x̃ ·[ẋ + x ] is called the free action. f ·g =

∑N
i=1

∫

fi(t)gi(t)dt is introduced
for compactness. From Eq. (18), we have to introduce two auxiliary overlaps,

Q1(t, t ′) =
g2

N

∑

j

φ j(t)φ j(t
′),

Q2(t, t ′) =
g2η

N

∑

j

φ j(t) x̃ j(t
′),

(19)

which converges to (scaled) Gaussian fields due to the central limit theorem when N is suffi-
ciently large. Thus, we can insert these order parameters into Eq. (18) by the Fourier integral
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representation of Dirac delta functions,

δ

 

−
N
g2

Q1(t, t ′) +
∑

j

φ j(t)φ j(t
′)

!

=
1

2π

∫

DQ̂1(t, t ′)exp





∫ ∫

Q̂1(t, t ′)

 

−
N
g2

Q1(t, t ′) +
∑

j

φ j(t)φ j(t
′)

!

dt dt ′



 ,

δ

 

−
N
g2

Q2(t, t ′) +η
∑

j

φ j(t) x̃ j(t
′)

!

=
1

2π

∫

DQ̂2(t, t ′)exp





∫ ∫

Q̂2(t, t ′)

 

−
N
g2

Q2(t, t ′) +η
∑

j

φ j(t) x̃ j(t
′)

!

dt dt ′



 .

(20)

Finally, we can re-express the averaged moment-generating functional as

Z[j, j̃] =

∫ ∫

DXDQexp

�

−
N
g2

Q̂1 ·Q1 −
N
g2

Q̂2 ·Q2 − S0[x , x̃ ] +
σ2

2
x̃ · x̃ + j̃ · x + j · x̃

+
1
2

∫ ∫

∑

j

x̃ j(t)Q1(t, t ′) x̃ j(t
′)dt dt ′ +

1
2

∫ ∫

∑

j

x̃ j(t)Q2(t, t ′)φ j(t
′)dt dt ′

+

∫ ∫

∑

j

φ j(t)Q̂1(t, t ′)φ j(t
′)dt dt ′ +η

∫ ∫

∑

j

φ j(t)Q̂2(t, t ′) x̃ j(t
′)dt dt ′

�

,

(21)

where DX ≡ DxD x̃ , and DQ ≡
�

N
2πg2

�2
DQ1(t, t ′)DQ̂1(t, t ′)DQ2(t, t ′)DQ̂2(t, t ′), and we

also introduce new notations,

Q̂1 ·Q1 =

∫ ∫

Q̂1(t, t ′)Q1(t, t ′)dt dt ′ ,

Q̂2 ·Q2 =

∫ ∫

Q̂2(t, t ′)Q2(t, t ′)dt dt ′ .

(22)

We can now remark that the averaged moment-generating functional is completely factorized
over neurons, which implies that the original complex dynamics with N interacting neurons
is captured by a mean-field one-neuron system subject to a correlated Gaussian noise. More
compactly, we recast the averaged moment-generating functional as

Z[ j, j̃] =

∫

DQexp
�

N f (Q, Q̂, x , x̃)
�

,

f (Q, Q̂, x , x̃) =−
1
g2

Q̂1 ·Q1 −
1
g2

Q̂2 ·Q2 + log Z̄[ j, j̃],

Z̄[ j, j̃] =

∫

DX exp
�

L
�

Q, Q̂, x , x̃
��

,

L
�

Q, Q̂, x , x̃
�

=− S0[x , x̃] +
σ2

2
x̃ · x̃ + j̃ · x + j · x̃ +

1
2

x̃ TQ1 x̃ +
1
2

x̃ TQ2φ +φ
T Q̂1φ +ηφ

T Q̂2 x̃ ,

(23)
where Z̄[ j, j̃] is the effective moment generating functional for one-neuron system, which will
be mathematically clear at the end of the derivation. Thus, x , x̃ , j, j̃, X are the mean-field
counterpart of their original meaning in the high dimensional space. Accordingly, we have
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f · g =
∫

f (t)g(t)d t. In addition, we define the new notation involving {Q, Q̂} in terms of the
quadratic form as f TQg =

∫ ∫

f (t)Q(t, t ′)g(t)dt dt ′. In N →∞, we estimate asymptotically
the averaged dynamical partition function by applying the Laplace method,

Z[ j, j̃] =

∫

DQexp
�

N f (Q, Q̂, x , x̃)
�

≈ exp
�

N f (Q?, Q̂?, x , x̃)
�

, (24)

where {Q?, Q̂?} maximizes the dynamical action f . We thus have,

δ f (Q, Q̂, x , x̃)

δQ̂1(t, t ′)
= 0→ Q?1(t, t ′) = g2




φ(t)φ(t ′)
�

L ,

δ f (Q, Q̂, x , x̃)
δQ1(t, t ′)

= 0→ Q̂?1(t, t ′) =
g2

2




x̃(t) x̃(t ′)
�

L ,

δ f (Q, Q̂, x , x̃)

δQ̂2(t, t ′)
= 0→ Q?2(t, t ′) = g2η




φ(t) x̃(t ′)
�

L ,

δ f (Q, Q̂, x , x̃)
δQ2(t, t ′)

= 0→ Q̂?2(t, t ′) =
g2

2




x̃(t)φ(t ′)
�

L ,

(25)

where,

〈O〉L =
∫

O(X )exp[L(X )]DX

Z̄[ j, j̃]
. (26)

This average can be seen as the dynamical mean field measure provided by Z̄[ j, j̃] in the one-
neuron system, in analogy with the replica analysis in equilibrium spin glass theory [20]. In
the following text, we will omit the subscript L for simplicity.

Now we come to the physical meaning of the dynamics order parameters. First, it is easy
to find that Q?1(t, t ′) is related to the auto-correlation function, which is

C(t, t ′) =
1
N

∑

i

〈φi(t)φi(t
′)〉 → 〈φ(t)φ(t ′)〉, (27)

and Q?1(t, t ′) = g2C(t, t ′). Second, Q̂?1(t, t ′)will always vanish because δn

δ j(t1)···δ j(tn)
Z[j, 0]|j=0= 0

[see Eq. (10)]. In other words, these response fields do not propagate. Finally, Q?2(t, t ′) and
Q̂?2(t, t ′) bear exactly the same physical meaning, which relates to the response function,

R(t, t ′) =
1
N

∑

i

δ〈φi(t)〉
δ ji(t ′)

�

�

�

�

j=0
, (28)

where the average is taken under the path probability, i.e.,

R(t, t ′) =
1
N

∑

i

δ〈φi(t)〉
δ ji(t ′)

�

�

�

�

j=0
=

1
N

∑

i

〈φi(t) x̃ i(t
′)〉 → 〈φ(t) x̃(t ′)〉. (29)

This relation bears the similarity with the linear response relation (e.g., susceptibility and fluc-

tuation) in equilibrium statistical physics. Thus, Q?2(t, t ′) = g2ηR(t, t ′) and Q̂?2(t, t ′) = g2

2 R(t ′, t).
Moreover, the response function R(t, t ′) will vanish once t < t ′ because of the causality that
perturbations in a later time do not affect the present and past states. In addition, the equal
time response function R(t, t) also vanishes under the Ito convention [21]. It is now clear
that the term Q2 · Q̂2 vanishes because of the causality and the Ito convention (note that
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R(t, t ′)R(t ′, t) = 0). Finally, we achieve the final form of the moment generating functional,

Z[ j, j̃] =
N
∏

i

Z̄[ j, j̃] =
�

Z̄[ j, j̃]
�N

,

Z̄[ j, j̃]∝
∫

DX exp
�

−S0[x , x̃] + j̃ · x + j · x̃ +
1
2

x̃ T Γ x̃ +ηg2 x̃ T Rφ
�

=

∫

DX exp
�

−S[x , x̃] + j̃ · x + j · x̃
�

,

(30)

where Γ (t, t ′) = g2C(t, t ′) +σ2δ(t − t ′), and the effective action (decomposed into free and
interation parts) reads,

S[x , x̃] = x̃ · [ ẋ + x]−
1
2

x̃ T Γ x̃ −ηg2 x̃ T Rφ. (31)

The first line of Eq. (30) clearly illustrates that the N -neuron interactive system degrades
to N factorized one-neuron effective systems. And equation (31) further suggests that the
dynamical mean-field description of the N -neuron dynamics exists [from Eq. (12)], i.e.,

ẋ(t) = −x(t) +ηg2

∫ t

0

R(t, t ′)φ(t ′)dt ′ + γ(t), (32)

where 〈γ(t)γ(t ′)〉 = g2C(t, t ′) + σ2δ(t − t ′). When η = 0, Eq. (32) reduces to Eq. (3).
It is interesting that the spatially correlated asymmetric connections between neurons in the
N -neuron system are transformed into accumulated interactions of dynamics history in the
one-neuron (mean-field description) system. The underlying physics is more transparent in
the cavity framework introduced later.

The MSDRJ formalism allows one to derive integro-differential equations involving re-
sponse and correlation functions. For example, we could compute the dynamical equations of

mean-field correlation function∆(t, t ′) = 〈x(t)x(t ′)〉 and response functionχ(t, t ′) = δ〈x i(t)〉
δ ji(t ′)

�

�

�

j=0
for currents. First, we consider two identities,

δx(t ′)
δ x̃(t)

= 0,
δx(t ′)
δx(t)

= δ(t − t ′). (33)

Then, we take the path average over the probability defined by Eq. (30),

­

δx(t ′)
δ x̃(t)

·

=

∫

DX
δx(t ′)
δ x̃(t)

exp (−S[x , x̃])

=

∫

DX x(t ′)
δS[x , x̃]
δ x̃(t)

exp (−S[x , x̃])

=

�

x(t ′)

�

ẋ(t) + x(t)−
∫

Γ (t, s) x̃(s)ds−ηg2

∫

R(t, s)φ(s)ds

��

= 0,

(34)

where the integral by parts is used to derive the second equality. This relation will immediately
give rise to,

∂

∂ t
∆(t, t ′) = −∆(t, t ′) + g2

∫ t ′

0

χ(t ′, s)C(t, s)ds+σ2χ(t ′, t) +ηg2

∫ t

0

R(t, s)



x(t ′)φ(s)
�

ds.

(35)
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Similarly, the other identity in Eq. (33) leads to,

∂

∂ t
χ(t, t ′) = −χ(t, t ′) +δ(t − t ′) +ηg2

∫ t

t ′
R(t, s)R(s, t ′)ds. (36)

These integro-differential equations are particularly difficult to solve, e.g., no closed form so-
lutions exist except at η = 0. In general, an perturbative expansion of the non-linear transfer
function may be required [12].

3.2 Dynamical cavity approach

In this section, we introduce the dynamical cavity approach, which is more physically trans-
parent (like its static counterpart [20]). The dynamical cavity approach gives exactly the same
DMFT equation that is based on the moment generating functional method. Our starting point
is still the N -neuron stochastic dynamics,

ẋ i(t) = −x i(t) + g
∑

j=1

Ji jφ j(t) + ji(t) +σξi(t), i = 1, . . . , N , (37)

where the Gaussian noise ξi(t) has the variance



ξi(t)ξ j(t ′)
�

= δi jδ(t − t ′). Connections
Ji j are drawn from the centered Gaussian distribution with the variance 1

N as well as the
covariance Ji jJ ji =

η
N .

First, we add a new neuron into the original system, such that we have a new synaptic
current x0(t) together with the corresponding connections (J0i , Ji0), for i = 1, . . . , N . As a
result, all the neurons in the original system will be affected by this new neuron. We regard
this impact as a small perturbation in the large network limit. We can thus apply the linear
response theory as follows,

φ̃i(t) = φi(t) +
N
∑

k=1

∫ t

0

δφi(t)
δ jk(s)

�

�

�

�

j=0
jk(s)ds

= φi(t) +
N
∑

k=1

∫ t

0

Rik(t, s) [gJk0φ0(s)]ds ,

(38)

where Rik(t, s) = δφi(t)
δ jk(s)

�

�

�

j=0
defines the linear response function, and the small perturbation is

given by jk(s) = gJk0φ0(s). Then, we can write down the dynamical equation of x0(t),

ẋ0(t) = −x0(t) + g
∑

j 6=0

J0 jφ̃ j(t) + j0(t) +σξ0(t)

= −x0(t) + g
N
∑

j=1

J0 j

�

φ j(t) +
N
∑

k=1

∫ t

0

R jk(t, s) [gJk0φ0(s)]ds

�

+ j0(t) +σξ0(t)

= −x0(t) + g
N
∑

j=1

J0 jφ j(t) +σξ0(t) + g2

∫ t

0

∑

jk

J0 jR jk(t, s)Jk0φ0(s)ds+ j0(t),

(39)

where the fourth term captures how the asymmetric correlation affects the current state of
the new neuron through the response function. The bare field without the effects of synaptic
correlation is separated out as follows,

γ0(t) = g
N
∑

j=1

J0 jφ j(t) +σξ0(t), (40)

10
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which becomes the centered Gaussian field whose variance is given by

〈γ0(t)γ0(t
′)〉= g2C(t, t ′) +σ2δ(t − t ′), (41)

where C(t, t ′) = 1
N

∑

jφ j(t)φ j(t ′) is the population averaged auto-correlation function.
The computation of the fourth term in Eq. (39) requires us to estimate

∑

jk J0 jR jk(t, s)Jk0
which is subject to central limit theorem by construction. We first consider the diagonal part
∑

j J0 jR j j(t, s)J j0, which will converge asymptotically to its mean because of the negligible

variance (of the order 1/
p

N),

EJ

∑

j

J0 jR j j(t, s)J j0 =
η

N

∑

j

R j j(t, s). (42)

Then, we turn to the non-diagonal part
∑

j 6=k J0 jR jk(t, s)Jk0, whose mean is zero due to J0 jJk0 = 0,
and we should thus consider the fluctuation given by

EJ

∑

j 6=k

∑

j′ 6=k′
J0 jJ0 j′Jk0Jk′0R jk(t, s)R j′k′(t, s) =

∑

j 6=k

J2
0 jJ

2
k0R2

jk(t, s)∼
1
N

, (43)

where we assume that R jk(t, s) is of the order O(1/
p

N) for j 6= k, as in the equilibrium limit,
the response function has the exactly the same magnitude order with the correlation function
(O(1/

p
N) in fully connected mean-field models), and a proof for a dynamical system is shown

in Ref. [16]. Therefore, the contribution from the non-diagonal part can be neglected when N
is large, and the dynamical equation of x0(t) is thus simplified as,

ẋ0(t) = −x0(t) + γ(t) + g2η

∫ t

0

R(t, s)φ0(s)ds+ j0(t), (44)

where the population averaged response function R(t, s) = 1
N

∑

i
δφi(t)
δ ji(s)

�

�

�

j=0
.

The added neuron x0(t) is not special, and its dynamics is a representative of the typical
behavior of other neurons. Therefore, we could omit the subscript 0, and write down the
mean-field dynamics as follows,

ẋ(t) = −x(t) + γ(t) + g2η

∫ t

0

R(t, s)φ(s)ds , (45)

where γ(t) is the effective noise with the temporally correlated variance,

〈γ(t)γ(t ′)〉= g2C(t, t ′) +σ2δ(t − t ′). (46)

Finally, to close this self-consistent equation, we further assume that in the large N limit,
the population average of the correlation and response functions converge to their path aver-
age (with respect to the noise trajectories and the initial conditions). More precisely,

C(t, t ′) =
1
N

∑

j

φ j(t)φ j(t
′) = 〈φ(t)φ(t ′)〉,

R(t, t ′) =
1
N

∑

i

δφi(t)
δ ji(t ′)

�

�

�

�

j=0
=
­

δφ(t)
δ j(t ′)

·

�

�

�

�

j=0
,

(47)

which leads to the same Eq. (32) that has been previously derived from the moment generating
functional. Note that the last equality in the above response function is equivalent to the
definition in Eq. (28) [23].
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4 Numerical and theoretical analysis

4.1 Numerical solution of the DMFT equations

In general, the DMFT equation does not have a closed-form solution (e.g., for η 6= 0). There-
fore, we have to solve the equation numerically. In fact, solving the self-consistent DMFT equa-
tion [Eq. (32)] is more challenging compared to the counterpart of an equilibrium system. The
main reason is that the self-consistent iteration involves time-dependent function (C(t, t ′) and
R(t, t ′)) rather than scalar variables like overlaps in spin glass theory. Note that the two-point
correlation could relax towards the Edwards-Anderson order parameter in mean-field spin
glass models [24]. Following the previous work [16], we give the numerical implementation
details of solving the DMFT equations for the generic random neural networks below. Codes
are available at the Github link [25].

The iteration scheme works in discrete time steps, and we must set a duration T (ms) as
well as a time interval∆t(ms) for discretization. The time is measured in units of millisecond.
In the beginning of the iteration, we initialize the self-consistent function matrix C[t, t ′] and
R[t, t ′], whose dimensions are both (T/∆t) × (T/∆t). In each iteration, we carry out the
following steps:

1. Draw M samples of noise trajectories {γa[t]}Ma=1 from the multivariate Gaussian distribu-
tion N (0, g2C[t, t ′]+σ2/∆t), where the emergence of∆t is the result of discretization
for the Dirac delta function.

2. For these noise trajectories, run M corresponding current trajectories independently by
a direct discretization,

xa[t + 1] = (1−∆t)xa[t] + γa[t]∆t + g2η∆t2
t
∑

s=0

R[t, s]φa[s]. (48)

3. Calculate the self-consistent functions, in which the auto-correlation function C[t, t ′] is
calculated by 1/M

∑

aφa[t]φa[t ′] and the response function is calculated by integrating
the dynamics Eq. (36),

χa[t + 1, t ′] = (1−∆t)χa[t, t ′] +δt,t ′ +ηg2∆t2
t
∑

s=t ′
Riter[t, s]Ra[s, t ′], (49)

where the superscript a is the trajectory index, and the response function is computed
by R[t, t ′] = φ′(x[t])χ[t, t ′]. Here Riter[t, s] refers to the response function estimated
from the last iteration step. After running the dynamics, we compute the new response
function χ[t, t ′] = 1/M

∑

a χ
a[t, t ′].

An alternative way to compute the response function is using the Novikov’s theorem (see
Appendix A [26]). We do not apply this formula in the iteration, as it needs much more
trajectories for the convergence.

We compare the observables obtained from the direct simulation of N -neuron dynamics
[Eq. (1)] and the mean-field solution for the one-neuron dynamics [Eq .(32)] to check the
effectiveness of the DMFT. Besides the correlation function and response function, we also
compare the observable of mean firing-rate m(t) = 〈φ(t)〉, which is also an important quantity
of the current system. The curves show an excellent agreement for each observable [Figure.
(1)], where the curve for the temporal integration is computed from 100 independent runs.
For the response function, the argument is selected to be the time difference, as R(t − t ′) is
our focus in the steady state where the time-translation invariance holds. Note that R(0) = 0

12
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Figure 1: Comparison between observables obtained from direct simulation (color
curves) and iterative mean-field solution (dash curves). The parameters set
{g,η,σ,φ,∆t, t ′} is {0.2,0.5, 0.1, tanh, 0.1(ms), 10(ms)}. Inset: relative differences
vs N .

is a direct result of the Ito convention. The inset shows the relative differences between two
types of observables, computed by,

‖m̂ −m‖2
‖m‖2

,





Ĉ −C






F

‖C‖F
,





R̂−R






F

‖R‖F
, (50)

where hated variables represent the simulation results, while the non-hated ones are DMFT
results, and the subscripts 2 and F means the `2 norm and Frobenius norm respectively. The
relative differences decrease as N grows, which meets our expectation that the DMFT equation
predicts the typical behavior of the dynamics under the large network limit.

4.2 Analysis of fixed point solutions

In this section, we derive the fixed point solution of the DMFT equation. Under a special choice
of model parameters, we could even obtain the analytic fixed point solution in the mean-field
description. We then focus on the noise-free case of σ = 0 with the dynamics:

ẋ(t) = −x(t) + γ̂(t) + g2η

∫ t

0

R(t, t ′)φ(t ′)dt ′ + j(t), (51)

where j(t) is a perturbation and γ̂(t) is the noise-free effective field with the variance,

〈γ̂(t)γ̂(t ′)〉= g2C(t, t ′). (52)

We assume that the dynamics converges to a fixed point ( ẋ(t) = 0). In the steady state, we
get R(t, t ′) = R(t − t ′) to simplify the integral term,

∫ t

0

R(t, t ′)φ(t ′)dt ′ =

∫ t

0

R(u)φ(t − u)du
t→∞
−→

∫ ∞

0

R(u)φ(∞)du= Rintφ
∗, (53)

where Rint =
∫∞

0 R(u)du is the integrated response function and ∗ indicate the steady state.
Then, we could obtain the fixed point relation,

x∗ = γ̂∗ +wφ∗ + j, (54)
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where w= g2ηRint, and
〈(γ̂∗)2〉= g2C . (55)

However, the fixed point relation is not closed, and we must evaluate Rint by its definition.
In essence, the integrated response function Rint could be computed by 〈δφ

∗

δ j 〉, setting j to
zero later. An equivalent derivation is given in the Appendix B. One can generate a series of
noise samples γ̂∗ from N (0, g2C iter), where the superscript iter denotes the value from the last
iteration step. Second, the new observables from these samples are computed as,

C =



(φ∗)2
�

γ̂∗
, Rint =




φ′[γ̂∗ +wφ∗]
�

1+wRiter
int

��

γ̂∗
. (56)

These equations can be iteratively solved, requiring a high computational complexity due to
the noise sampling and fixed point searching for each noise sample.

To achieve an analytic fixed point solution, we choose the ReLU function φ(x) = xΘ(x),
which is commonly used in machine learning and theoretical neuroscience studies. We could
thus recast Eq. (54) to the following form,

φ∗ = φ(γ̂∗ +wφ∗), (57)

where j is erased. With the help of ReLU function, we can write φ∗ as a function of γ̂∗,

φ∗ =
γ̂∗Θ(γ̂∗)
1−w

≡ψ(γ̂∗), (58)

and the response function becomes,

Rint =
­

δφ∗

δ j

·

=
­

δφ∗

δγ̂∗

·

=
­

Θ(γ̂∗)
1−w

·

. (59)

Therefore, we can derive the self-consistent equations of C , Rint as well as m,

C = 〈(φ∗)2〉=
∫

�

γ̂∗Θ(γ̂∗)
1−w

�2

p(γ̂∗)dγ̂∗ =
g2C

2(1−w)2
,

Rint =
­

Θ(γ̂∗)
1−w

·

=

∫

Θ(γ̂∗)
1−w

p(γ̂∗)dγ̂∗ =
1

2(1−w)
,

m= 〈φ∗〉=
∫

γ̂∗Θ(γ̂∗)
1−w

p(γ̂∗)dγ̂∗ =
g2C

p
2π(1−w)

,

(60)

where the integral range covers the entire real value region, and w= g2ηRint. In the following,
we omit the subscript of Rint. These relations will give the analytic fixed point (observables),

m= 0, C = 0, R=
1−

p

1− 2g2η

2g2η
. (61)

Note that we discard the other root for R because of the divergence in the limit η→ 0 (keeping
g finite). Equation (61) implies that g2/(2(1−w)2) 6= 1 and 1− 2g2η > 0 (see Appendix C).

We compare the fixed point solution obtained directly from Eq. (51) to the analytic fixed
point given by Eqs. (60, 56). The fixed point iteration becomes difficult when φ = tanh in the
current model. This fixed point is a well-known result of m= C = 0, which is hard to achieve
numerically, because numerical errors always make it impossible to get a perfect zero value.
We must set a very small value for the initialization of C , or we can just set C to zero and then
get Rint. In spite of this numerical error, we observe a perfect match (Figure 2) as the iteration
step of the DMFT equation [Eq. (51)] increases.
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Figure 2: Convergence of observables to analytic fixed point solutions dur-
ing iteration of the DMFT equation. The parameters set {g,η,σ,∆t} is
{0.2, 0.5,0.1, 0.1(ms)}. (a) Transfer function φ = tanh. (b) Transfer function
φ = ReLU.

4.3 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem (FDT) relates the linear response function to the correla-
tion function in equilibrium, which establishes a model independent relationship connecting
the statistics of spontaneous fluctuation to the response to perturbations [22]. A static coun-
terpart is the linear response theory that relates the fluctuation and susceptibility. FDT allows
one to predict the mean response to external perturbations without applying any perturba-
tion, and instead, by analyzing the time-dependent correlations. FDT holds particularly in a
stochastic system subject to conservative forces and the dynamics bears a steady state [19,22].
We discuss the relevance of FDT in the context of random neural networks in this subsection.

As we know, dynamical systems tend to be more difficult to study than equilibrium systems,
because we have no prior knowledge of the steady state (if any) in a general context. In the
simplest case, we consider a Langevin dynamics,

λ ẋ i(t) = −
∂H(x )
∂ x i(t)

+ηi(t), (62)

whereλ is a friction coefficient, ηi(t) is a Gaussian white noise, and 〈ηi(t)η j(t ′)〉= 2Tλδi jδ(t−t ′).
The temperature bridges the relationship between the noise strength and the friction in the
steady state. Here, we assume that the dynamics could be interpreted as moving particles in
a potential H(x ) (or gradient dynamics). This Langevin dynamics, in the long time limit, is
able to reach the thermal equilibrium that is captured by the Gibbs-Boltzmann distribution,

P(x )∼ exp
�

−
H(x )

T

�

, (63)

where the Hamiltonian is exactly the potential function that drives the dynamics through Eq.
(62). This precise probability measure can be derived from the Fokker-Planck equation by
setting the probability current to zero [22]. We have assumed kB = 1 without loss of generality.

Next, we consider a linear and full-symmetric network whose dynamics is governed by

d x i(t)
d t

= −x i(t) + g
N
∑

j=1

Ji j x j(t) +σξi(t), (64)
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Figure 3: Effective temperature of the system given different asymmetry correlation
levels and nonlinearities. The waiting time t ′ is fixed at 15s and the color of points
becomes lighter as t increases. The dash line indicates FDT for the linear system with
symmetric connection η= 1, whose thermodynamic temperature is T = σ2/2= 0.5
(indicated by a black circle in the inset). (a) Comparison among different asymmetry
correlation levels in the linear system. For η= [−1,0, 1], the effective temperatures
obtained by a linear fitting are Teff = [0.551,0.538, 0.524], respectively (inset). (b)
Comparison among different nonlinear functions when η = 1. For φ selected to
be ReLU, Tanh and linear, the effective temperatures obtained by a linear fitting are
Teff = [0.527,0.526, 0.524], respectively (inset).

where Ji j = J ji . By comparing this equation with the Langevin dynamics Eq. (62), we can
directly write down the Hamiltonian H(x ) = −1

2

∑

i x2
i −

1
2 g
∑

i 6= j Ji j x i x j , and the temperature
is determined by T = σ2/2. We remark that non-gradient dynamics (e.g., η 6= 1) may have
a non-equilibrium steady state for which FDT breaks. In this simple gradient dynamics, the
equilibrium can be reached and the FDT holds as follows,

χ(t, t ′) = −
1
T
∂t∆(t, t ′)Θ(t − t ′), (65)

where the instantaneous response function χ(t, t ′) = 1
N

∑

i
∂ 〈x i(t)〉ξ
∂ ji(t)

and the time-dependent

fluctuation ∆(t, t ′) = 1
N

∑

i〈x i(t)x i(t ′)〉ξ. These functions also bear the time-translation in-
variance due to the steady state condition. In addition, we can prove that FDT is valid in the
dynamical system of Eq. (64), and we leave the proof to the Appendix D.

An experimentally measurable quantity is the integrated response function calculated by

χint(t, t ′) =

∫ t

t ′
dsχ(s, t ′). (66)

Then we rescale the integrated response by the equal time correlation function, and get

χ̂int(t, t ′) = χint(t, t ′)/∆(t ′, t ′), ∆̂(t, t ′) =∆(t, t ′)/∆(t ′, t ′). (67)

Thus, when t ≥ t ′, we have the relation as,

χ̂int(t, t ′) =
1
T

�

1− ∆̂(t, t ′)
�

. (68)

Equation (68) establishes an easy way to measure the temperature determined by the slope
of the parametric plot χ̂int(t + tw, tw) versus ∆̂(t + tw, tw) where tw is a waiting time for
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reaching the steady state. This temperature is called the effective temperature [24], which
may be a constant or changes with the time difference. If the Gibbs-Boltzmann measure exists,
the effective temperature coincides with the thermodynamic temperature. However, these
two temperatures are not equal in general. Even in aging systems where the the decay of
the correlation and response functions depend on the waiting time (how long the system is
prepared), the effective temperature may be different for different ranges of the correlation
function (displaying multiple relaxation time scales as in mean-field glass models [24]).

We verify the fluctuation-dissipation theorem in the rate model via solving the DMFT equa-
tion and provide insights on the long time behavior. We focus on the influence of the nonlinear
function and asymmetric connections on the FDT. The results are summarized in Figure (3).
For the case where η= 1 andφ is linear, the FDT must be valid (see the Appendix D), the slope
obtained by the linear fitting indicates a temperature closer to the ground truth compared to
other non-gradient dynamics. The slight deviation is caused by the numerical errors from sim-
ulations. Interestingly, the nonlinear function and the other asymmetry correlation levels do
not yield a strongly-violated FDT, because a linear fitting with a larger effective temperature
is observed. This suggests that the out-of-equilibrium steady state with unknown probability
measure may be approximated by an equilibrium FDT with a larger effective temperature,
which offers an interesting perspective to bridge the non-gradient dynamics (commonly ob-
served in recurrent neural networks) to an effective thermodynamic behavior.

5 Conclusion

In this lecture note, we briefly introduce the path integral framework, from which the dynam-
ical mean-field theory of generic stochastic dynamics in high dimensional systems is derived.
We also introduce a complementary cavity method to derive the exactly same results. Consid-
ering the long time limit of the dynamics, we analyze the fixed point solution of the dynamics
by a direct deduction of the DMFT equation [16] and by a static cavity analysis [18]. The FDT
is also discussed in the context of generic random neural networks. Based on these theoreti-
cal descriptions, it is interesting to detect the fundamental relationship between spontaneous
fluctuations and response functions to external perturbations, especially in the gradient dy-
namics commonly observed in deep learning [3, 27]. The fluctuation dissipation relation is
also studied in a recent work for spiking neural networks [28], and the path integral frame-
work can also find applications in revealing inner workings in recurrent network models of
memory and decision making [29,30]. We hope this tutorial will expand the cutting-edge re-
searches of learning in neural networks, inspiring more fundamental physics laws governing
high dimensional complex neural dynamics and novel algorthimic designs.
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A Novikov’s theorem

Novikov’s theorem characterizes a useful identity to estimate the dynamic response function.
In this section, we give a derivation for both the original rate model Eq.(1) as well as the DMFT
equation [Eq. (32)]. We consider a general form of dynamical equations,

ẋ i(t) = Fi(x ) + cΞi(t) + ji(t), i = 1, 2, . . . , N , (69)

where F is a general functional of x and c is a constant. Note that, Novikov’s theorem is
valid only if we consider a Gaussian noise here. Thus, we set a general Gaussian noise with
the covariance structure as 〈Ξi(t)Ξ j(t ′)〉 = Di j(t, t ′). For the above dynamics, the response
function is defined by

Ri j(t, t ′) =
δ〈φi(t)〉
δ j j(t ′)

�

�

�

�

j=0

. (70)

The path average 〈O〉 can be defined by
∫ ∫

DxDΞOP(x |Ξ)P(Ξ), where

P(x |Ξ) =
∏

i,t

δ( ẋ i(t)− Fi(x )− cΞi(t)− ji(t)),

P(Ξ) =
1
ZΞ

exp

 

−
1
2

∑

i, j

∫ ∫

dt dt ′Ξi(t)D
−1
i j (t, t ′)Ξ j(t

′)

!

,
(71)

where ZΞ is a normalization constant. With this definition, the response function could there-
fore be calculated as,

Ri j(t, t ′) =
δ

δ j j(t ′)

∫ ∫

DxDΞP(Ξ)P(x |Ξ)φi(t)

=

∫ ∫

DxDΞφi(t)P(Ξ)
δ

cδΞ j(t ′)
P(x |Ξ)

= −
∫ ∫

DxDΞφi(t)P(x |Ξ)
δ

cδΞ j(t ′)
P(Ξ)

=
1
c

∫ ∫

DxDΞφi(t)P(x |Ξ)

�

∫

∑

k

ds D−1
jk

�

t ′, s
�

Ξk(s)

�

P(Ξ)

=
1
c

®

φi(t)

�

∫

∑

k

ds D−1
jk

�

t ′, s
�

Ξk(s)

�¸

,

(72)

where we have used the property that P(x |Ξ) is symmetric with respect to Ξ j(t ′) and j j(t ′),
and we have applied the integral by parts in the third equality. For the original N -neuron
model [Eq.(1)], c = σ, Ξi(t) = ξi(t) and Di j(t, t ′) = δi jδ(t − t ′). We thus have,

Ri j(t, t ′) =
1
σ

®

φi(t)

�

∫

∑

k

dsδ−1
jk δ

−1(t ′ − s)ξk(s)

�¸

=
1
σ




φi(t)ξ j(t
′)
�

, (73)

where we have used the identity
∫

δ−1(t − s)δ(s − t ′)ds = δ(t − t ′). For the DMFT equation
[Eq.(32)] of one-neuron system, c = 1, Ξ(t) = γ(t) and D(t, t ′) = Γ (t, t ′) = g2C(t, t ′)+σ2δ(t−t ′).
Therefore, the response function becomes,

R(t, t ′) =

�

φ(t)

∫

ds Γ−1(t ′, s)γ(s)

�

. (74)
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B Static cavity method for recurrent dynamics

In this section, we introduce the static cavity method [18] to derive the self-consistent equa-
tions for the fixed point of dynamics. We consider the rate model with the ReLU transfer
function φ(x) = xΘ(x). The procedure starts from the fixed-point condition of the noise-free
rate model [Eq. (1)], which is

x i = g
N
∑

j=1

Ji j v j + ji , (75)

where we set v j = φ(x j) for simplicity. Note that asymmetric connections incorporate corre-
lation between Ji j and v j , and thereby the central limit theorem in the summation does not
apply. To overcome this barrier, we can remove the contribution of J ji and consider this dele-
tion as a small perturbation. Therefore, the sum in Eq. (75) can be separated into two parts
as,

x i = g
N
∑

j=1

Ji j v j→i + g
N
∑

j=1

Ji jδv j + ji , (76)

where v j→i denotes the firing rate of neuron j in the absence of J ji , and δv j is the perturbation
caused by the presence of J ji . According to the central limit theorem, the first term on the
right hand side can now be treated as a Gaussian field, which we denote as γ̃i and compute
the variance,

〈(γ̃i)
2〉= g2C̃ , (77)

where ·̃ indicates the cavity quantity. Note that, C̃ = 〈v2
j→i〉 is the self-consistent cavity vari-

ance function. As for the second term, we compute the perturbation by a linear response
approximation,

δv j =
N
∑

k=1

R jkηk, (78)

where R jk =
δv j

δ jk
is the linear response function. The small perturbation ηk here is actually

the contribution from neuron i to neuron k through Jki , which is exactly Jki vi . Therefore, the
second term in the r.h.s. of Eq. (76) becomes,

g
N
∑

j=1

Ji jδv j = g
N
∑

j=1

N
∑

k=1

Ji jR jkJki vi

≈ gη2Rvi ,

(79)

where R = 1
N

∑

j R j j . Note that, the approximation in the last equality is exactly the same as
what we did in the dynamical cavity approach [see Eqs.(42,43)].

Finally, we recast the fixed point equation ( ji = 0) as

x i = γ̃i +wvi , (80)

where w= gη2R and 〈γ̃2
i 〉= g2C̃ . The above equation can be transformed to vi = φ(γ̃i +wvi)

and then written as a function of γ̃i as,

vi =
γ̃iΘ(γ̃i)
1−w

≡ψ(γ̃i). (81)

We then compute the cavity variance function and the linear response function as follows,

C̃ = 〈v2
i 〉=

∫

�

γ̃iΘ(γ̃i)
1−w

�2

p(γ̃i)dγ̃i =
g2C̃

2(1−w)2
,

R=
­

δvi

δγ̃i

·

=

∫

Θ(γ̃i)
1−w

p(γ̃i)dγ̃i =
1

2(1−w)
.

(82)
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We remark that C̃ , under the limit of N →∞, can be replaced by the full variance function
C̃ = 〈v2

i 〉. The above results are now exactly the same with Eq. (60).

C Stability analysis for the ReLU transfer function

The stability of the trivial fixed point can be linked to the connectivity spectrum. To be more
precise, we take the rate model whose transfer function is φ = tanh as an example. We can
first linearize the neural dynamics Eq. (1) (in the absence of white noise) around the fixed
point (x ∗ = 0),

∆̇x i(t) =
∑

j

Di j∆x j(t) → ∆x (t) = exp (Dt)∆x (0), (83)

where,
Di j = −δi j + gJi jφ

′(x∗j ) = −δi j + gJi j (84)

is the local Jacobian matrix at the fixed point. The eigenvalues of this Jacobian matrix de-
termine the stability of the local dynamics. In particular, if the eigenvalues with the largest
real part cross zero along the real axis, the dynamics becomes chaotic in our current model. In
general, the instability is not a sufficient but necessary condition for the transition to chaos [6].
Moreover, the spectrum of Ji j is actually a well-known elliptic law [31],

ρ(λ) =

¨

1
π(1−η2) ,

�

x
1+η

�2
+
�

y
1−η

�2
< 1,

0, otherwise ,
(85)

where λ is the eigenvalue of complex value, while x and y are the coordinates on the real-
and imaginary-axis. The special case of η= 0 gives the circular law in random matrix theory.
Thus, the eigenvalue with the largest real part of Di j is g(1+η)−1. Consequently, the stability
condition is given by g(1+η)< 1.

However, the Jacobian is ill-defined when φ = ReLU. Instead, we rely on the static cavity
method [18]. For the sake of clarity, we follow the same notations introduced in Appendix B.
Our starting point is the relation of v j = ψ(γ̃ j), which states that the firing-rate of neuron j
could be seen as a function of its cavity input. From the cavity idea, the presence of neuron i
contributes to a perturbation δv j , i.e.,

δv j =ψ
′(γ̃ j)



g
∑

k 6=i

J jkδvk + gJ ji vi



, (86)

where a linear expansion at γ̃ j is used when the effect of the cavity operation is small. Note
that the term in the bracket denotes the deviation of the cavity input to neuron j between
with and without the neuron i. It is reasonable that if the fixed point is stable, the variance
of δv j must be finite and positive [18]. Taking the average over the network statistics, we get
〈δv j〉 = 0. To compute the variance, we square both sides of Eq. (86) and take the disorder
average, which results in,

〈(δv)2〉= g2χφ〈(δv)2〉+
g2

N
χφv2

i , (87)

where χφ =



(ψ′(γ̃ j))2
�

. This equation leads to,

N〈(δv)2〉=
g2χφ

1− g2χφ
v2

i . (88)
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To ensure 〈(δv)2〉 physical, the condition 1− g2χφ > 0 must be satisfied. To proceed, we first
compute χφ ,

χφ =
¬

�

ψ′(γ̃ j)
�2¶
=

∫

�

Θ(γ̃i)
1−w

�2

p(γ̃i)dγ̃i =
1

2(1−w)2
, (89)

Note that w= g2ηR and R= 1
2(1−w) , which implies that

g2Rη=
1−∆

2
, (90)

where ∆=
p

1− 2g2η. The stability thus requires that g2

2(1−w)2 < 1, which finally leads to the
condition by using Eq. (90),

g(1+η)<
p

2. (91)

The stability condition further implies that 1− 2g2η > 1− 2g2(
p

2/g − 1)≥ 0.

D Derivation of fluctuation-dissipation theorem in equilibrium

In this section, we give a proof of fluctuation-dissipation theorem for the model [Eq. (1)] with
linear transfer function and fully-symmetric connections. We begin the derivation by rewriting
the model in the vector form,

ẋ (t) = −x (t) + J x (t) +σξ(t) + j(t), (92)

where J = J T and 〈ξ(t)Tξ(t ′)〉 = 1N×Nδ(t − t ′) by construction. The solution of this linear
dynamics can be given by,

x (t) =

∫ t

0

dt ′e(−1+J)(t−t ′)
�

σξ(t ′) + j(t ′)
�

. (93)

From this solution, we can compute the response function [32],

χ(t, t ′) =
∂ 〈x (t)〉
∂ j(t ′)

�

�

�

�

j=0
= Θ(t − t ′)e(−1+J)(t−t ′), (94)

as well as the correlation function,

∆(t, t ′) =



x (t)x T(t ′)
�

= σ2

∫ t

0

∫ t ′

0

dt ′′dt ′′′e(−1+J)(t−t ′′)



ξ(t ′′)ξT(t ′′′)
�

e(−1+JT)(t ′−t ′′′)

= σ2

∫ min(t,t ′)

0

dt ′′e(−1+J)(t−t ′′)e(−1+JT)(t ′−t ′′)

= σ2

∫ min(t,t ′)

0

dt ′′e(−1+J)(t+t ′−2t ′′),

(95)
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where the bold functions χ(t, t ′) and C(t, t ′) refers to N ×N matrices. Next, we calculate the
mean auto-correlation function [32],

∆(t, t ′)≡
1
N

Tr∆(t, t ′)

= σ2

∫ 2

−2

dk
2π

p

4− k2

∫ min(t,t ′)

0

dt ′′e(−1+k)(t+t ′−2t ′′)

= σ2

∫ min(t,t ′)

0

dt ′′
I1(2(t + t ′ − 2t ′′))

t + t ′ − 2t ′′
e−(t+t ′−2t ′′)

= σ2

∫ t+t ′

|t−t ′|
dw

I1(2w)
2w

e−w,

(96)

where the trace used in the second line can be seen as an integral over the eigenvalues. Wigner
semi-circle law is used here for the eigenvalue spectrum of fully-symmetric matrix J [20]. In
the second line, a substitution k = 2cosθ is used and the modified Bessel function of the
first kind is introduced, i.e., I1(τ)

τ = 1
π

∫ π

0 dθ (sinθ )2eτ cosθ . The final step also involves a
substitution of w= t + t ′ − 2t ′′. In the long time limit, the upper limit of integral tends to∞
and the mean auto-correlation function becomes time translation invariant.

Follow the same procedure, we can compute the mean response function,

χ(t, t ′)≡
1
N

Trχ(t, t ′) = Θ(t − t ′)
I1

�

2
�

t − t ′
��

t − t ′
e−(t−t ′). (97)

Finally, it would be easy to verify the following FDT using Eq. (95) and Eq. (96),

χ(t, t ′) = −
1
T
∂t∆(t, t ′)Θ(t − t ′), (98)

where T = σ2/2 represents the thermodynamic temperature. Performing the Fourier trans-
form, we can also recast the FDT in the frequency domain ∆(ω) = 2T

ω Imχ(ω).
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