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Abstract

We study the incoherent transport of bosonic particles through a one dimensional

lattice with di�erent left and right hopping rates, as modelled by the asymmetric

simple inclusion process (ASIP). Speci�cally, we show that as the current passing

through this system increases, a transition occurs, which is signi�ed by the appear-

ance of a characteristic zigzag pattern in the stationary density pro�le near the

boundary. In this highly unusual transport phase, the local particle distribution

alternates on every site between a thermal distribution and a Bose-condensed state

with broken U(1)-symmetry. Furthermore, we show that the onset of this phase

is closely related to the so-called non-Hermitian skin e�ect and coincides with

an exceptional point in the spectrum of density �uctuations. Therefore, this ef-

fect establishes a direct connection between quantum transport, non-equilibrium

condensation phenomena and non-Hermitian topology, which can be probed in

cold-atom experiments or in systems with long-lived photonic, polaritonic and

plasmonic excitations.
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1 Introduction

Transport phenomena are of relevance for almost all areas of physics and technology with trans-
port of electric currents and heat conduction in solids being two prototypical examples. While
electric currents are carried by electrons, i.e., massive fermionic particles, heat transfer can be
understood as the emission and reabsorption of quantized lattice vibrations, i.e, non-conserved
bosonic excitations. However, despite relying on very di�erent microscopic mechanisms, both
transport scenarios share many similarities. For example, depending on the mean free path,
transport can either be ballistic or di�usive, where in the latter case Ohm's law and Fourier's
law describe a similar linear relation between the current and the applied voltage or tempera-
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ture gradient. Therefore, a general question of interest is under which conditions `anomalous
transport' with a qualitatively very di�erent phenomenology can be observed.
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Figure 1: Asymmetric bosonic transport. (a) Sketch of the ASIP setup studied in this work.
Bosons injected from a thermal particle reservoir with mean occupation number n̄r on the
right can incoherently hop along the lattice with asymmetric rates Γl and Γr, before being
emitted into a second reservoir with occupation number n̄l on the left. A directional hopping
can be imposed, for example, by applying a potential gradient with an energy o�set U between
neighboring sites. (b) Under stationary conditions, this hopping asymmetry combined with
the bosonic particle statistics results in the bosonic skin e�ect, i.e., the formation of a �nite
boundary region with a staggered density pro�le. The two insets show sketches of the Wigner
distribution for individual lattice sites, indicating that within this boundary region, the odd
sites are in a condensed state with broken U(1) symmetry, while all other lattice sites exhibit
a thermal distribution. See text for more details.

In this paper, we consider the setup shown in Fig. 1 (a) as an elementary model to study
dissipative transport of bosons. Here, bosons injected from a hot reservoir on the right can
incoherently hop between neighboring sites of a one dimensional lattice, before being dumped
into a second reservoir on the other end. This process has two key features: First, in the
presence of a bias, the hopping rates to the left and right, Γl and Γr, are in general di�erent,
in which case the transport is asymmetric, i.e., directional. Second, the hopping rates toward
sites that are already occupied are enhanced by the bosonic particle statistics. Therefore, this
process can be seen as the bosonic counterpart of the celebrated asymmetric simple exclusion
process (ASEP) [1, 2, 3, 4]�a common model for directed transport of fermions or classi-
cal hard-core particles�and one speaks of an asymmetric simple inclusion process (ASIP)
instead 1.

Compared to fermions as the carriers for electric currents, the dissipative transport of
bosonic particles has attracted considerably less attention so far. This can be attributed to a

1Note that in the previous literature the term `ASIP' is not uniquely de�ned and also used for a broader
class of transport processes [5, 6, 7, 8]. Here, ASIP exclusively refers to the direct bosonic analog of the ASEP,
which describes incoherent hopping of actual bosonic particles.

3



SciPost Physics Submission

lack of conventional solid-state systems where this physics could be observed. However, this
situation has changed recently and a variety of experimental platforms have now become avail-
able where non-equilibrium processes with bosonic particles can be probed. This includes, for
example, cold atoms in optical lattice potentials, where di�erent techniques to study transport
have already been demonstrated [9, 10, 11, 12, 13]. Furthermore, it has been shown in various
experiments that long-lived photonic [14, 15, 16], polaritonic [17, 18, 19, 20, 21, 22, 23] or
plasmonic [24] excitations can behave as massive bosonic particles and equilibrate with the
surrounding material, before they eventually decay. The ongoing experimental advances in
these platforms naturally raise the question of how transport in such settings is a�ected by
the bosonic particle statistics of the carriers.

In the following analysis, we investigate the properties of the ASIP in a thermal transport
scenario, where we focus primarily on the stationary current and the density pro�le along the
lattice. In the absence of asymmetry, we recover the usual di�usive transport in this model as
well, characterized by a linear population gradient and a Fourier law for the current. However,
as soon as a �nite degree of asymmetry is introduced, the transport becomes ballistic and
particles accumulate in a �nite boundary region near the drain. Moreover, as the total cur-
rent through the system increases, we observe a transition from a smooth pile-up to a zigzag
structure, as depicted in Fig. 1 (b), with odd (even) sites being highly (weakly) populated.
This phase represents a rather unusual non-equilibrium con�guration, where the particle dis-
tribution alternates on every lattice site between a thermal distribution and that of a coherent
state with broken U(1)-symmetry. This emergence of coherences in a purely dissipative and
thermal transport scenario is very surprising and related to non-equilibrium condensation phe-
nomena [19, 14, 25, 26, 27, 28] that have no counterpart in fermionic transport. Therefore,
we identify this boundary condensation as a unique feature of the ASIP model and call it the
bosonic skin e�ect.

The observed accumulation of particles in a dissipative transport scenario is indeed very
reminiscent of the so-called non-Hermitian skin e�ect (NHSE)[29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43]. This e�ect refers to the boundary localization of the eigenfunctions
of certain non-Hermitian lattice Hamiltonians and is thus frequently discussed in connection
with their topological classi�cation [44, 32, 35, 45, 42]. However, such non-Hermitian models
do not conserve the norm of the wavefunction nor the particle number. Therefore, beyond
their mathematical interest, the relevance of the NHSE and other spectral features of non-
Hermitian systems for actual quantum transport processes is not immediately clear and still
a subject of ongoing investigations [31, 36, 37, 38, 39, 40, 41, 43]. Here, by mapping the
dynamics of density �uctuations in our system onto the paradigmatic Hatano-Nelson model
(HNM) [29, 35, 45, 42], we establish a direct correspondence between the eigenvalue structure
of this non-Hermitian Hamiltonian and the stationary states of the ASIP transport problem.
This correspondence relies on a subtle di�erence between Dirichlet and Neumann boundary
conditions for the HNM and provides important additional insights into the nature of the
predicted boundary transition. In particular, we �nd that the onset of condensation coincides
with the appearance of a higher-order exceptional point in the HNM and occurs without a
closing of the dissipative gap. This distinguishes the bosonic skin e�ect from other dissipative
quantum phase transitions [46, 47] and, in summary, reveals an unexpectedly rich interplay
between transport, non-equilibrium condensation e�ects and non-Hermitian physics.

The remainder of the paper is structured as follows. In Sec. 2, we introduce the ASIP
model and the main transport equations that we use to describe it. In Sec. 3, we present the
bosonic skin e�ect and discuss the onset of the zigzag phase within mean-�eld theory, before
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investigating the full particle distribution and condensation e�ects in Sec. 4. Finally, in Sec. 5,
we discuss the connection between the ASIP and the HNM, before summarizing our main
�ndings in Sec. 6. Additional details about the analytic derivations and numerical methods
are presented in the appendices.

2 Model

We consider the transport of bosons in a 1D lattice, as depicted in Fig. 1 (a). Here, the bosons
are injected from a thermal reservoir on the right and propagate along a chain of L lattice
sites through incoherent hopping processes, before being emitted into a second reservoir on
the left. In the following we are primarily interested in asymmetric transport, Γl > Γr, where
Γl and Γr denote the hopping rates to the left and to the right, respectively.

2.1 The ASIP master equation

We model the dynamics of this system by the Lindblad master equation

dρ̂

dt
= (Lhop + Ll + Lr) ρ̂, (1)

where ρ̂ is the system density operator. Here, the �rst term describes the incoherent hopping of
bosons along the lattice. This process is described by the Liouville superoperator [48, 49, 50, 40]

Lhopρ̂ =
L−1∑
p=1

ΓlD[â†pâp+1]ρ̂+ ΓrD[â†p+1âp]ρ̂, (2)

where âp (â
†
p) are the bosonic annihilation (creation) operators for lattice site p and we have

introduced the short notation

D[ĉ]ρ̂ = ĉρ̂ĉ† − 1

2

(
ĉ†ĉρ̂+ ρ̂ĉ†ĉ

)
. (3)

In Eq. (2), the jump operator â†p+1âp (â
†
p−1âp) destroys a boson at site p and creates a boson at

site p+1 (p−1) instead. This process conserves the total particle number and it is thus di�erent
from particle loss or gain. As a direct consequence of this particle number conservation, each
jump operator is quadratic in â and â†, and therefore the hopping process is nonlinear.

The second and the third term in Eq. (1) represent the coupling to the thermal particle
reservoirs to the left and to the right, which we model by

Llρ̂ = κl(n̄l + 1)D[â1]ρ̂+ κln̄lD[â†1]ρ̂,

Lrρ̂ = κr(n̄r + 1)D[âL]ρ̂+ κrn̄rD[â†L]ρ̂.

Here κl and κr denote the coupling rates to the two reservoirs and n̄l and n̄r are the corre-
sponding thermal occupation numbers. Note that while we will only consider thermal baths
in this work, other pumping mechanisms, such as incoherent gain, would result in a behavior
that is qualitatively very similar to what is discussed below.
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2.2 Asymmetric hopping

Before we proceed, let us brie�y comment on the physical motivation behind this asymmetric
transport model. A very generic scenario is depicted in Fig. 1 (a), where bosons are con�ned
to a lattice with an energy gradient, for example, an optical lattice for cold atoms [10, 12],
a nanophotonic lattice for exciton polaritons or plasmons [21, 24], etc. In this case, due
to a large energy o�set U > 0 between neighboring sites, coherent tunneling is suppressed,
but in the presence of a phononic bath, the bosons may still transition between neighboring
sites by emitting or absorbing vibrational excitations. Such a process can be modelled by a
phonon-assisted tunneling term of the form

Ĥint ∼
∑
p

(â†p+1âp + âp+1â
†
p)(b̂p + b̂†p), (4)

where the bosonic operators b̂p represent local bath excitations. Roughly speaking, for a
particle to jump to the left, it must lose the energy ∼ U by emitting it into the environment.
Conversely, to jump to the right, it must absorb the same amount of energy. Therefore, a bath
at low temperature, where emission processes are more likely than absorption, favors hopping
to the left.

More precisely, under the assumption that the bath is su�ciently Markovian, its dynamics
can be eliminated to derive an equation of motion for the reduced system density operator ρ̂
only. While some details may depend on the speci�c implementation (see Appendix A for a
more detailed derivation), this master equation will be, quite generically, of the form given in
Eq. (1), with hopping rates satisfying

Γl
Γr

= exp

(
~U

kBTphon

)
. (5)

Were Tphon is the temperature of the phononic bath, which determines the asymmetry
in this setting. Apart from such naturally occurring dissipative hopping mechanisms, there
are also many systems where this asymmetric hopping processes can be engineered. For
example, in optical lattices, directed dissipative hopping can be implemented via Raman pro-
cesses [40, 51, 52, 53], which involve atomic or cavity decay as a source of dissipation and
directionality. Ideas for realizing number-conserving dissipation processes for photons have
also been discussed for optomechanical systems [54, 55] and circuit QED [56], and can be
readily adapted for the implementation of directed hopping processes as well. In the following
we do not consider any of these possible implementations speci�cally, but rather address the
general properties of the transport model given in Eq. (1).

2.3 Transport

In this work we focus primarily on the stationary transport of particles between two thermal
reservoirs. In the absence of asymmetry, transport would be solely driven by the temperature
gradient between the reservoirs, i.e., by the di�erence between n̄r and n̄l. For asymmetric
rates, Γl 6= Γr, a directed particle �ow develops even without any external temperature bias.
To characterize transport in di�erent parameter regimes, we consider the average station-
ary current J as well as the stationary density pro�le np = 〈n̂p〉 = 〈â†pâp〉 along the chain.
Throughout this paper we adopt the convention that symbols with hats represent quantum op-
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erators, while symbols without hats denote their averages. Starting from the master equation
in Eq. (1), the mean occupation number np of any of the sites changes in time as

dnp
dt

= Jp,p+1 − Jp−1,p. (6)

This equation has the form of a conservation law, where, for any p ∈ [1, N − 1],

Jp,p+1 = Γl〈n̂p+1(1 + n̂p)〉 − Γr〈n̂p(1 + n̂p+1)〉 (7)

is the average particle current between sites p and p + 1. Note that we have adopted the
convention that a positive Jp,p+1 implies a current �owing from right to left, i.e., from site
p + 1 into site p. From Eq. (7) we already see that the current depends non-linearly on the
density, due to bosonic bunching: indeed, the probability for a particle on site p+ 1 to jump
to site p is enhanced by a factor 1 + n̂p, which depends on the population of the target site.
On the boundaries, the currents

J0,1 = κl(n1 − n̄l), JL,L+1 = κr(n̄r − nL) (8)

represent the �ow of particles into the left bath and from the right bath, respectively. In the
steady state, the particle current is conserved along the chain and we obtain

Jp,p+1(t→∞) = J ∀p. (9)

Note, however, that this uniformity of the current does not imply a uniform pro�le for the
density np.

2.4 Mean-�eld dynamics

Although Eq. (1) contains only dissipative terms and no additional coherent interactions be-
tween the bosons, these incoherent processes are nonlinear and therefore do not permit a closed
set of equations for the mean occupation numbers. In addition, since the number of possi-
ble bosonic con�gurations scales exponentially with the number of lattice sites L, brute-force
numerical solutions of the master equation are also inaccessible for the parameter regimes of
interest. Therefore, to proceed we resort to a mean-�eld decoupling of the equations of mo-
tions by factorizing expectation values as 〈n̂pn̂p+1〉 ≈ 〈n̂p〉〈n̂p+1〉. Under this approximation,
the average current reads

Jp,p+1 ' Γlnp+1(1 + np)− Γrnp(1 + np+1). (10)

The system is then described by a set of L nonlinear di�erential equations, which can be solved
e�ciently numerically and also permit exact analytical solutions in the steady state.

To benchmark the validity of the mean-�eld approximation, we compare these predictions
with exact Monte-Carlo simulations for small systems sizes and low occupation numbers np . 1
and with phase-space simulations based on the Truncated Wigner Approximation (TWA) [57]
for larger occupation numbers. Within their respective regimes of validity, we �nd almost
perfect agreement between the numerical results and the stationary distributions obtained
from mean-�eld theory. Further details about these numerical methods and some of the
benchmarks can be found in Appendix B.
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2.5 Hydrodynamic limit

Additional insights about the transport dynamics in our system can be obtained by considering
the continuum (or hydrodynamic) limit. To do so, we rewrite the mean-�eld equations of
motion as

dnp
dt

=
ΓA
2

(np+1 − np−1)(2np + 1)

+ ΓS(np−1 − 2np + np+1),
(11)

where ΓA = Γl − Γr and ΓS = (Γl + Γr)/2. Then, under the assumption that the np vary
slowly between neighboring sites, we can replace them by a continuous �eld n(x, t), where x is
the dimensionless position along the lattice. Away from the edges, this �eld obeys the partial
di�erential equation

∂tn = ΓA(1 + 2n)∂xn+ ΓS∂
2
xn. (12)

This is, in essence, the well-known Burgers' equation [58, 59, 60], a simpli�ed version of Navier-
Stokes equation in hydrodynamics. The parameters ΓA and ΓS can thus be interpretated as
non-linear advection and di�usion rates, respectively.

With the left side of the lattice being initially empty, the possible solutions of Eq. (12)
include propagating shock fronts of the form [60]

n(x, t) =
n̄sw

2

[
1 + tanh

(
x− L+ cswt

wsw

)]
, (13)

where n̄sw is the height, csw = ΓA(n̄sw + 1) the speed and wsw = 2ΓS/(n̄swΓA) the width of
the wavefront. These solutions clearly illustrate how the bosonic enhancement factor a�ects
transport. First, the velocity of the density wave scales with the typical density n̄sw. Second,
the bosons in the high density region propagate faster than the bosons at the front, which
leads to a compression of the wave and wsw going to 0 for very large n̄sw.

While the Burgers' equation provides valuable intuition about the transport dynamics
in our system, it is based on a continuum approximation and is only expected to hold in a
`laminar' regime, i.e., when the e�ective Reynolds number

Re =
ΓAn̄sw

ΓS
(14)

associated with a typical occupation number n̄sw is small 2. In the opposite limit, the charac-
teristic length scale, wsw ∼ O(1), becomes of the order of the lattice spacing and new features
can arise from the discreteness of the lattice and the presence of boundaries.

2.6 Relation to the ASEP

By replacing the bosonic operators in Eq. (1) by operators âp that obey fermionic anti-

commutation relations, i.e., {âp, â†p} = 1, we obtain the master equation describing the ASEP.

2In the literature, the Burgers' equation is often de�ned as ∂tn = n∂xn + 1
Re

∂2
xn, with Re the Reynolds

number, and n ∼ O(1). In our case, Eq. (12) includes an additional linear term ∼ ΓA∂xn and the �eld assumes
values between 0 and n∞. However, we can rescale the �eld as n→ n/n∞ and time as t→ 2ΓAn∞t and remove
the linear term by a Galilean transformation. After these transformations we recover the standard form of the
Burgers' equation with Re given by Eq. (14).

8



SciPost Physics Submission

In this case, the site occupation numbers np obey the same equation as in Eq. (6), but with a
fermionic current

JASEP
p,p+1 = Γl〈n̂p+1(1− n̂p)〉 − Γr〈n̂p(1− n̂p+1)〉. (15)

Here, rather than being enhanced, the hopping to neighboring sites is prohibited by the Pauli
exclusion principle, if the site is already occupied. The properties of the ASEP have been
extensively studied in the literature [1, 2, 3, 4]. This includes, most notably, the scaling of
current �uctuations [61, 62] in in�nite lattices, which falls into the Kardar-Parisi-Zhang (KPZ)
universality class [4, 63, 64]. The ASEP is thus closely connected to surface growth and related
non-equilibrium phenomena. It is therefore interesting to understand how the change from
an exclusion to an inclusion process a�ects these properties. These aspects, however, will be
discussed in more details elsewhere 3. Instead, here we focus on novel e�ects that are unique
to the ASIP and reveal themselves already at the mean-�eld level.

3 The bosonic skin e�ect

In the following section, we explore in more details the stationary state of the transport master
equation in Eq. (1), which we describe in terms of the mean occupation numbers np and the
current J .

3.1 Transport regimes

In a �rst step, we show in Fig. 2 examples of the stationary density pro�le np for a lattice of
L = 15 sites, together with the scaling of the current J as a function of L. From these plots
we identify three qualitatively di�erent transport regimes.

3.1.1 Di�usive transport

In Fig. 2 (a) we �rst consider the symmetric case Γl = Γr, where the stationary density pro�le
along the chain is simply a linear interpolation between n̄l and n̄r. This is also expected from
Burgers' equation in the continuum limit, Eq. (12), which for symmetric hopping describes
pure di�usion. In this regime, the current obeys the Fourier law and decreases with system
size, i.e.,

J ∝ n̄r − n̄l
L

. (16)

Interestingly, this di�usive transport is independent of the particle statistics and it is the same
for bosons, fermions and noninteracting classical particles.

3.1.2 `Laminar' asymmetric transport

For a su�ciently large lattice, L � 1, the di�usive transport turns into directional transport
for any �nite hopping imbalance, ΓA 6= 0. In this case, the stationary density pro�le is �at
and assumes a constant value of np ' n∞ across most parts of the lattice. The exception is a
region of size ξ close to the left reservoir, where the density gradually adjusts to a boundary

3Y. Minoguchi, J. Huber, L. Garbe, A. Gambassi and P. Rabl, in preparation
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Figure 2: Plots of the steady-state occupation numbers np for a lattice of L = 15 sites and
di�erent degrees of asymmetry: ΓA/Γl = 0 (a), ΓA/Γl = 0.05 (b), ΓA/Γl = 0.17 (c), and
ΓA/Γl = 1 (d). For all plots n̄r = 10 and two di�erent values of n̄l = 0 (blue lines) and
n̄l = 20 (yellow lines) have been considered. The insets show the current J versus the lattice
size L, in log-log scale and for three di�erent values of n̄l = 0, 5, 9. For ΓA = 0 we recover
a linear population gradient and the Fourier law for the current, as expected for di�usive
transport. For any ΓA > 0 and large L, the current becomes independent of both L and n̄l,
indicating ballistic transport. In this regime, we observe the formation of a �nite boundary
region of size ξ, as indicated by the shaded area. As the asymmetry increases, the width ξ
shrinks and vanishes for ΓA/Γl ' 0.17. Beyond this point, a �nite boundary region, but with
an oscillating density pro�le, reappears. For all plots, we have set κr = κl = Γl.

value, which depends on the occupation number of the left bath, n̄l. Most importantly, for a
lattice size L� ξ, the stationary current J > 0 is completely independent of both n̄l and the
length of the chain [see the inset of Fig. 2 (b)]. This is true even though Γr is still �nite. This
is in contrast to ballistic transport in coherent systems [65, 66, 67, 68], where the stationary
current depends on the properties of both reservoirs.

While the quantitative details in this regime are already a�ected by the bosonically-
enhanced hopping rates, the population pro�le is still qualitatively similar to what one would
obtain for asymmetric hopping of independent classical particles. Moreover, since the e�ective
Reynolds number introduced in Eq. (14) is still small, this behavior is well described by the
continuous Burgers' equation in Eq. (12) and we can draw a close analogy with the regime of
laminar �ow in �uid dynamics.
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3.1.3 `Turbulent' asymmetric transport

When either the asymmetry or the right bath occupation n̄r are further increased, the size of
the boundary region, ξ, decreases and reaches ξ = 0 at a critical value ΓcA ≡ ΓcA(n̄r). At this
speci�c point, the density pro�le is completely �at, with the exception of site p = 1, which
is coupled to the left reservoir. As shown in the inset of Fig. 2 (c), since the relevant length
scale vanishes, the current at this critical value is independent of the system size and adopts
the value

J = κrn̄r
Γl

Γl + κr
. (17)

Remarkably and somewhat unexpectedly, this situation occurs already for �nite Γr, i.e.,
under conditions where particle �ow in both directions is still possible.

As the directed particle �ow is further increased, a boundary region of �nite size ξ reap-
pears. In this regime, however, the occupation numbers vary strongly between neighboring
sites and we observe a zigzag con�guration with a decaying envelop. Counter-intuitively, as
we keep increasing ΓA, we �nd that the extent of this zigzag con�guration increases in the
direction opposite to the propagation. The transport in this regime is ballistic as well, i.e., for
su�ciently large L the current

J ≈ κrn̄r > 0 (18)

is independent of both n̄l and the system size. However, in contrast to the smooth pile-up
observed above, this rapidly oscillating density pro�le is no longer captured by the Burgers'
equation. This behavior is found for high e�ective Reynolds numbers and in analogy with
turbulent �ow in �uid dynamics, we observe a build-up of excitations at small length scales.
In our discrete lattice setting, this leads to a breakdown of the continuum approximation 4.

This staggered accumulation of particles in alternating lattice sites, rather than being
distributed smoothly across the lattice, does not appear in analogous models for directed
transport of fermions or classical particles. Since it arises from a purely dissipative process,
this pattern must also be distinguished from the formation of standing waves in coherent
channels [68]. It is thus a unique consequence of bosonic bunching.

3.2 Stationary density pro�le

Let us now proceed with a more in-depth analysis of the stationary density pro�le. In the
steady state, the current J is uniform across the lattice and we can use Eq. (10) to relate the
occupation numbers between neighboring sites by

ΓAnpnp+1 + Γlnp+1 − Γrnp = J (19)

for all p. For a large enough lattice, L � 1, and p large, the occupation numbers near the
right reservoir approach a constant value np ∼ np+1 = n∞, which is determined by the �xed
point of this equation. This leads to the following general relation,

J = ΓAn∞(1 + n∞), (20)

4Note that similar oscillatory con�gurations are known from numerical simulations of the Burgers' equation,
where they appear as pure discretization artefacts that must be avoided [69, 59]. In contrast, here we consider
a discrete lattice to begin with and the formation of a staggered density pro�le is the main physical e�ect of
interest.
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between the stationary current and the asymptotic particle density. The boundary condition
for the reservoir on the right also gives us J = κr(n̄r − n∞), which allows us to compute
explicitly the asymptotic density,

n∞ =
1

2

√(
1 +

κr
ΓA

)2

+
4n̄rκr

ΓA
− 1

2

(
1 +

κr
ΓA

)
, (21)

and from it the stationary current J .
Note that both quantities are smooth functions of all the system parameters and don't

exhibit any sharp features. For large n̄r we obtain n∞ ∼
√
n̄r and a current J ≈ κrn̄r, which

is limited by the in�ux of particles from the right reservoir.
The left boundary condition imposes J = κr(n1 − n̄r), meaning that np 6= n∞ for small

site numbers p. In Appendix C we show in more details how the relation in Eq. (19) can be
used to determine the full density pro�le np in the limit L → ∞, which for Γl > Γr can be
written in the form

np − n∞
n1 − n∞

=

(
ΓS − c
ΓS + c

)p−1 1 +
(

ΓS−c
ΓS+c

)
µ

1 +
(

ΓS−c
ΓS+c

)p
µ
. (22)

Here, µ is a constant that depends on the properties of the left reservoir, but its precise
dependence is not important for the following discussion. In Eq. (22) we have also introduced
the parameter

c = ΓA

(
n∞ +

1

2

)
, (23)

which is the bosonically-enhanced speed of propagation. Indeed, c is closely related to the speed
of the shockwaves discussed in connection with the Burgers' equation (12), but determined by
the self-adjusted, stationary density n∞.

By looking at the �rst term on the right side of Eq. (22), we see an exponential decay of
the excess population, which can be re-expressed as(

ΓS − c
ΓS + c

)p−1

=

{
e
− p−1

ξ for c < ΓS ,

e
−( 1

ξ
+iπ)(p−1)

for c > ΓS .
(24)

Therefore, in both regimes, we can de�ne the characteristic decay length

ξ =
1

log
∣∣∣ΓS+c

ΓS−c

∣∣∣ . (25)

As we increase ΓA or n̄r, ξ decreases, and goes to zero for c = ΓS . This allows us to identify
the critical value of the hopping imbalance,

ΓcA
Γl

=
Γl + κr

Γl + κr(1 + n̄r)
, (26)

at which point ξ = 0 and the system changes between the smooth and the zigzag boundary
con�guration observed above. Beyond this point, we acquire an extra phase π, which explains
the alternating occupation numbers for values of ΓA > ΓcA. The full dependence of ξ on ΓA
and n̄r is plotted in Fig. 3, which clearly shows a sharp drop to zero along the transition line
ΓA = ΓcA.
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Figure 3: Dependence of the skin length ξ as de�ned in Eq. (25) on the hopping asymmetry
ΓA and on the thermal population of the right reservoir, n̄r. When ΓA is exactly zero (thick
dark line at the bottom of the diagram), we recover the usual di�usive behavior. The dashed
line corresponds to ΓA = ΓcA, at which point ξ = 0. Below (above) this line, the steady-state
population exhibits a smooth (zigzag) pro�le near the left boundary. The inset shows ξ along
the horizontal green line at ΓA = 0.5Γl. For all points in this plot a value of κr = Γl has been
assumed, and the results are independent of both n̄l and κl.

3.3 Nonlinear transport and the Fibonacci sequence

While the �rst term in Eq. (22) de�nes the characteristic size of the boundary region, it is
important to keep in mind that the full density pro�le is not described by a simple exponential
decay. This deviation, represented by the second term in Eq. (22), is due to the nonlinear
nature of transport arising from the bosonic particle statistics. To obtain additional insights
about this pro�le, we show in Appendix C that the stationary occupation numbers can be
rewritten in the form

np = a
yp−1

yp
+ d, (27)

where the new quantities yp obey the recursion relation

yp+1 = ayp−1 + byp, (28)

with constants a = (JΓA − ΓlΓr)/Γ
2
A, b = 2ΓS/ΓA and d = Γr/ΓA.

This reformulation shows that rather than being described by an exponential decay, the
mathematical structure of np is given by the ratio of successive coe�cients of a generalized
Fibonacci sequence de�ned by Eq. (28), also known as a Lucas sequence. For example, in
the special case of Γr = 0 and a current J = Γl, we obtain a = b = 1 and d = 0 and the
populations np then oscillate toward n∞ = (1 +

√
5)/
√

2 in the same way that the ratio of
successive coe�cients of the Fibonacci sequence oscillates towards the golden ratio.

This observation is not just a purely mathematical curiosity, but a very generic feature of
nonlinear transport. Indeed, any transport model with a next-neighbor nonlinear recursion
relation of the type αnpnp+1 +βnp + γnp+1 = δ will lead to a density pro�le of the form given
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in Eq. (27). By contrast, recursion relations of the type βnp + γnp+1 = δ, as encountered in
linear transport models, give rise to a simple exponential population pro�le.

4 Boundary condensation

The strong bunching of the bosons in certain lattice sites, as observed for ΓA > ΓcA, is somewhat
similar to the formation of a Bose-Einstein condensate, where at low temperatures bosons tend
to accumulate in a single momentum mode. However, in our setting this e�ect is observed
under conditions where a large thermal current passes through the system, and locally one
would expect a thermal distribution of particles instead. To resolve these two con�icting
physical pictures, we must go beyond mean-�eld theory and take a closer look at the full
particle number distributions and the coherence properties of our system.

4.1 Density �uctuations

To study e�ects beyond mean-�eld theory, we use numerical simulations based on the TWA.
Within the TWA, the Wigner distribution is sampled by complex phase-space variables αp
that follow stochastic trajectories. Symmetrically-ordered expectation values of the form
〈â†np âmq 〉sym are then approximated by the corresponding stochastic averages 〈α∗np αmq 〉. We
refer to Appendix B for more details about this method. In Fig. 4 (a) we use the TWA to
evaluate the equal-time two-particle correlation function

g(2)
p (0) =

〈â†pâ†pâpâp〉
〈â†pâp〉2

(29)

for each of the lattice sites, and once the system has reached a steady state. The phase space
plots below this curve show the corresponding distributions of the αp, as obtained from the
individual trajectories in the numerical simulation. These sample the Wigner distribution of
that site.

We see that, near the right reservoir, the value of this correlation function is g(2)(0) ' 2,
as expected for a thermal state [70]. The corresponding Wigner distributions are very close
to a Gaussian distribution centered around α = 0. Near the left boundary, however, g(2)(0)
decreases for all odd sites and approaches a value of g(2)(0) ≈ 1, which indicates a coherent
state. In this case the corresponding phase-space distribution has the shape of a symmetric
ring with a maximum at a �nite value of |αp| ≈

√
np. In contrast, on all even sites the

distribution remains Gaussian-like and centered around αp = 0, although values of g(2)(0) > 2
indicate small deviations from an exact thermal distribution. This overall behavior is further
con�rmed by the probability distributions P (|αp|2) plotted in Fig. 4 (b).

4.2 U(1) symmetry breaking and phase coherence

The ASIP describes a purely incoherent hopping process. This means that the full master
equation given in Eq. (1) is diagonal in the number basis and it is invariant under the local
U(1) symmetry transformations âp → âpe

iφp . This symmetry is also clearly visible in the
phase-space plots in Fig. 4 (a), which are fully symmetric under rotation. However, these
results only describe an ensemble average in the steady-state, while within a given experimental
realization, or for �nite time, the U(1) symmetry can still be spontaneously broken.
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Figure 4: (a) Plot of the second-order correlation function g(2)(0) for a lattice of L = 10 sites,
as obtained from a TWA simulation with 5000 trajectories. The phase-space distributions
below each point indicate the distributions of the amplitudes αp, in the complex plane, at
the �nal time of the simulation. (b) Distributions of the values of |αp|2 and (c) plots of the
coherence function g(1)(τ) for odd (left) and even (right) sites near the boundary (all the even
sites have extremely similar behavior, here we show only p = 2 for simplicity). For all plots
we have set κ = Γl, Γr = 0, n̄r = 30 and n̄l = 0. For the plots in (c), we have used a reference
time of t = 10Γ−1

l , which is su�cient to reach the steady state.

To analyze potential symmetry-breaking e�ects in our system, we are interested in how long
information about the phase in a given site is preserved. This is quanti�ed by the coherence
function

g(1)
p (τ) = lim

t→∞

〈â†p(t+ τ)âp(t)〉sym

〈â†p(t)âp(t)〉sym

. (30)

In Fig. 4 (c), we show the evolution of g
(1)
p (τ) as a function of the delay time τ . We see

that for odd sites near the left reservoir, this correlation function decays over a timescale
τcoh & 10Γ−1

l , which is multiple times longer than the typical relaxation timescales in this
system. In contrast, for even sites, no such extended phase correlation can be observed and
the coherence vanishes on timescales much faster than Γ−1

l . Note that we do not observe any
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signi�cant cross-correlations between any of the lattices sites, either.
To understand this emergence of coherence in more details, we consider the totally asym-

metric case, Γr = 0, and also assume n̄l = 0 for simplicity. Under these assumptions, the
phase-space variable α1 of the �rst lattice site obeys the stochastic equation (see Appendix B.2)

dα1 =
Γln2 − κl

2
α1dt+

√
κl + Γln2

2
dW, (31)

where dW is a Wiener process. For the current discussion we have also adopted the convention
n2 ≡ |α2|2−1/2 to be consistent with symmetrized expectation values, 〈â†pâp〉sym = np+1/2 =
〈|αp|2〉, even on the level of a single trajectory. Close to the steady state, the occupation
number of the second site can be expressed in terms of the recursion relation in Eq. (19) and
approximated by

n2(t) ' J/Γl
1 + n1(t)

. (32)

After reinserting this results into Eq. (31), we obtain a closed di�usion equation for the variable
α1, which is of the form

dα1 =

(
J

|α1|2 + 1/2
− κl

)
α1

2
dt+

√
D(α1)dW. (33)

From the deterministic part of this equation, we see that the nonlinear hopping process acts
like an e�ective saturable gain. For su�ciently large J , this leads to a growth of the initial
amplitude, which then saturates at a value n1 = |α1|2−1/2 ∼ J/κl, consistent with the steady
state result obtained from the mean-�eld analysis in this regime.

For J/κl � 1 and once the amplitude α1 has been ampli�ed to a large value, it can be
approximately written as α1(t) ' √n1e

iφ1(t), with a �xed n1 and a phase φ1(t) that obeys

dφ1 '

√
κ2
l

2J
dW. (34)

This phase di�usion equation predicts a decay of the ensemble-averaged amplitude according
to

|〈α1〉| ∝ e−t/τcoh , (35)

with a coherence time of τcoh = 4J/κ2
l ' 4n̄r/κl. In Fig. 5 we consider a scenario in which

the lattice is initialized in a symmetry-broken state, i.e., a coherent state with a very small
but �nite amplitude on each site. The displacement direction can change from site to site, but
remains the same from one trajectory to the next. For this initial con�guration, the plots in
Fig. 5 (a) show the successive evolution of the Wigner distribution of site p = 1. We clearly see
that the small initial displacement is quickly ampli�ed to its steady-state value, after which
the phase di�uses on a much longer timescale. Eventually, we recover the ring-shaped pro�le
shown in Fig. 4 (a). In Fig. 5 (b) we plot the evolution of |〈α1〉| for di�erent values of n̄r.
The long-time decay of this quantity agrees very well with the analytic prediction in Eq. (35).
Note also that, initially, each trajectory breaks the symmetry in the same direction, set by the
initial perturbation. Hence, for intermediate times, the symmetry breaking is present even at
the level of the density matrix.
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Figure 5: (a) Evolution of the Wigner distribution of site p = 1, when the system is initially
prepared in a symmetry-broken state with |〈αp〉| =

√
3 and a random phase. The three

plots show the resulting phase-space distributions obtained in a TWA simulation for times
Γlt = 0, 2, 40 and for n̄r = 80. On a short timescale, the initial displacement is ampli�ed, while
phase di�usion is observed over much longer times. (b) Logarithmic plot of the ensemble-
averaged amplitude of the �rst site for the same initial conditions, but assuming di�erent
thermal occupation numbers of the right reservoir. After a short ampli�cation, we observe an
exponential decay of the average amplitude due to phase di�usion. The dashed lines represent
the analytic prediction for this decay, as given in Eq. (35). For all plots, Γl = κr, Γr = 0,
L = 10 and n̄l = 0.

4.3 Summary

In summary, the results presented in this section show that the zigzag structure observed at
the mean-�eld level is consistent with the picture of an alternating lattice of condensed and
thermal-like bosonic states. Consistently with other non-equilibrium condensation phenomena
or closely related lasing e�ects [19, 14, 25, 26, 27, 28], the Bose-condensed sites in our system
are characterized by a spontaneously broken U(1)-symmetry with a phase coherence time that
is long compared to the typical relaxation timescales in this system. The most surprising
�nding in our setting is that this e�ect occurs only in every other site near the boundary,
while neighboring sites and other parts of the lattice remain close to a thermal state. This
con�guration is speci�c to the current transport scenario, where the stationary populations are
determined by the nonlinear recursion relations discussed in Sec. 3.3, rather than by energetic
considerations or an external gain mechanism.

Note that condensation e�ects have also been discussed for zero-range [5] and other at-
tractive transport processes [5, 6], where even on a periodic lattice all particles eventually
accumulate in a single site. This is not the case for the ASIP considered here, where for pe-
riodic boundary conditions the system would simply evolve into an in�nite-temperature state
with all particle con�gurations being equally likely. Therefore, the presence of a boundary is
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essential to observe this type of condensation, which would not follow from an analysis of bulk
properties only.

5 Asymmetric bosonic transport and the Hatano-Nelson model

As already pointed out in the introduction, the accumulation of particles near one end of the
lattice in a dissipative transport model shares many similarities with the NHSE. This e�ect
refers to the fact that the eigenfunctions of certain non-Hermitian lattice Hamiltonians, which
are extended over the whole lattice for periodic boundary conditions, become exponentially
localized when open boundary conditions are introduced. A prominent example where this
e�ect occurs is the HNM [29], which, indeed, has originally been introduced to describe direc-
tional transport of bosons. However, in contrast to the full ASIP master equation considered
here, the HNM is formulated in terms of a tight-binding Hamiltonian with asymmetric tun-
nelling amplitudes. Such a Hamiltonian is necessarily non-Hermitian, meaning that it does
not preserve probabilities, particle numbers or operator commutation relations. Therefore, de-
spite a considerable interest in the spectral properties of the HNM and related non-Hermitian
Hamiltonians, their relevance for actual quantum transport problems often remains unclear.

While consistent embeddings of the HN Hamiltonian into a proper master equation have
been discussed [31, 37, 38, 39, 41, 43], these works have considered linear jump operators,
which describe particles being exchanged with the environment. In this case, the evolution
does not obey a conservation relation with a well-de�ned current, and the connection to the
original dissipative hopping problem is lost. In the following we show instead how an explicit
connection between the HNM and the ASIP transport problem can be established at the level
of density �uctuations. This discussion complements the single-particle analysis of Ref. [40],
and provides a new interpretation of the HNM at the level of a many-body transport problem.
It also reveals a surprising relation between the dynamics of �uctuations and the stationary
state of this system.

5.1 The non-Hermitian skin e�ect

The HNM is the simplest model to study boundary localization in non-Hermitian systems. It
is described by the lattice Hamiltonian

ĤHN = i
∑
p

Jlâ
†
pâp+1 − Jrâ†p+1âp =

∑
p,q

â†p(hHN)p,qâq, (36)

where the âp represent non-interacting bosons or fermions, whose dynamics is then fully de-
scribed by the tunneling matrix

hHN =



0 iJl 0 0 . . . −ixJr
−iJr 0 iJl 0 0 . . .

0 −iJr 0 iJl 0 . . .

0 0 −iJr 0 iJl . . .
...

...
...

. . .
. . .

. . .


. (37)
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Here, x = 1 for periodic boundary conditions and x = 0 for an open chain. For Jr = Jl
we recover the usual tight-binding Hamiltonian with real-valued single particle eigenenergies,
Ek = 2Jr sin(k). The corresponding momentum eigenstates are extended over the whole
lattice, both for open and periodic boundary conditions. For Jr 6= Jl, by contrast, the tunneling
to the left and to the right is no longer the same, and Ĥ†HN 6= ĤHN. Still, when assuming
periodic boundary conditions, the eigenfunctions of hHN remain plane waves, ψk(p) ∼ e−ikp,
where k ∈ [−π, π), but with a complex spectrum

Ek = (Jl + Jr) sin(k) + i(Jl − Jr) cos(k), (38)

which describes an ellipse in the complex plane. In contrast, for open boundary conditions,
all eigenmodes are exponentially localized near one end of the chain [71],

ψk(p) = (−i)p−1

(
Jr
Jl

) p−1
2

sin(pk), (39)

and are no longer orthogonal to each other. The corresponding spectrum is given by

Ek = 2
√
JrJl cos(k). (40)

Thus, the spectrum changes from a closed loop to a line in the complex plane (see Fig. 6 and
the discussion below). This transition from an extended to a localized set of wavefunctions
when changing from periodic to open boundary conditions occurs in many other related lattice
models, and has been dubbed NHSE [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

From Eq. (40) we see that when Jr and Jl have the same sign, i.e., JrJl > 0, the single-
particle energies are real and therefore describe solutions that oscillate in time. However, when
JrJl < 0, the spectrum is purely imaginary, i.e., it describes decaying or ampli�ed solutions.
These two regimes are separated by a so-called exceptional point (EP) at Jr = 0, where the
Hamiltonian of Eq. (36) becomes defective and cannot be diagonalized anymore. Instead, the
tunneling matrix adopts a Jordan normal form

hHN = iJl



0 1 0 0 0 . . .

0 0 1 0 0 . . .

0 0 0 1 0 . . .

0 0 0 0 1 . . .
...

...
...

. . .
. . .

. . .


, (41)

which has only a single eigenmode with energy EEP = 0 and a wavefunction ψEP(p) = δp1,
which is fully localized on the �rst site. The other basis elements are so-called generalized

eigenvectors, i.e., they are transformed into ψEP through the action of hHN. The NHSE and
the presence of exceptional points have recently attracted a lot of attention, in particular in
connection with the classi�cation of topological properties of non-Hermitian lattice systems
[44, 32, 35, 45, 42].

5.2 Linearized boson transport

Let us now return to our mean-�eld model in Eq. (6) and consider a situation where at some
initial time t = 0 the whole lattice is prepared in a state with a �at density distribution
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np(0) = n∞. For the successive evolution we make the ansatz

np(t) = n∞ + εp(t), (42)

and assume that the �uctuations εp remain small compared to n∞. This is justi�ed for short
times and, more generally, under the condition n̄r + n̄l ≈ 2n∞. We can then linearize the
mean-�eld equations of motion and obtain

dεp
dt

= c(εp+1 − εp−1) + ΓS(εp+1 + εp−1 − 2εp)

+ [(c+ ΓS − κ) εp + κm̄] δp1 − (c− ΓS + κ) εpδpL, (43)

with m̄ = (n̄l + n̄r − 2n∞) and δij the Kronecker delta, and we have set κl = κr = κ for
simplicity.

To connect this result to the HNM discussed above, we introduce the vectors ~ε = (ε1, .., εL)T

and ~r(~ε) = (m̄− ε1, 0, . . . ,−εL)T , such that

d~ε

dt
= −ih~ε+ κ~r, (44)

with a non-Hermitian Hamiltonian

h = i



ΓS + c ΓS + c 0 0 . . .

ΓS − c 0 ΓS + c 0 . . .

0 ΓS − c 0 ΓS + c . . .

0 0 ΓS − c 0 . . .
...

...
...

. . .
. . .


− 2iΓS1. (45)

Therefore, ignoring the coupling to the reservoirs for now, i.e. κ→ 0, we see that the density
�uctuations εp obey an e�ective Schrödinger equation with a non-Hermitian Hamiltonian h,
which, by identifying Jr ↔ c − ΓS and Jl ↔ c + ΓS , is very similar but not identical to
hHN. In particular, the diagonal elements of h are shifted by a constant imaginary part −2iΓS
and, compared to hHN, there is an additional term c + ΓS in the �rst entry of h. The �rst
change merely shifts all the eigenenergies in the complex plane towards negative imaginary
values, enforcing stable dynamics. The second change, as we will see, arises from the boundary
conditions.

5.3 Neumann boundary conditions and the steady state

To understand the di�erences between h and hHN, we emphasize that the dynamics of the
�uctuations εp in Eq. (43) can still be written as a continuity equation,

dεp
dt

= jp,p+1 − jp−1,p, (46)

with currents
jp,p+1 = (ΓS + c) εp+1 − (ΓS − c) εp. (47)

This set of currents, ~j = (j1,2, j2,3, . . . )
T , then obeys the equation of motion

d~j

dt
= −i[hHN − 2iΓS1]~j. (48)
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We see that, up to a global shift, it is the dynamics of current �uctuations that is governed
by the non-Hermitian lattice Hamiltonian hHN with Dirichlet boundary conditions

j0,1 = 0. (49)

In other words, the linearized dynamics in our system is indeed governed by the HNM, but
imposing Neumann boundary conditions for the density �uctuations εp. This is physically
consistent with the assumption κ = 0 made in this analysis.

This subtle change in the boundary conditions has an important consequence for the spec-
trum of h, namely the existence of a steady state. More precisely, in Appendix D we show
that

Spec{h}L = Spec{hHN − 2iΓS}L−1 ∪ {Ess = 0}, (50)

where Spec{A}L is the spectrum of matrix A in L dimensions. This means, �rst of all, that
the spectrum of density �uctuations in the ASIP model shares all the spectral features of the
HNM, which we discussed in Sec. 5.1 above. In addition, there exists a unique steady state
with Ess = 0 and a wavefunction

ψss(p) =

(
ΓS − c
ΓS + c

)p−1

. (51)

Up to nonlinear corrections, which have been omitted in the current analysis, this wavefunction
agrees with the stationary density pro�le derived in Eq. (22). Note that the existence and
the shape of this steady state does not change when the coupling to the reservoirs is no longer
neglected, since the term ∼ κ(ε1−m̄) in Eq. (43) merely �xes the magnitude of the �uctuation
at the �rst site and εL ∼ ψss(L)→ 0.

5.4 Discussion

In Fig. 6, we plot the eigenvalues of hHN−2iΓS , for Dirichlet and periodic boundary conditions,
and compare them with the spectrum of h. These plots con�rm that the eigenvalue structure of
h mimics that of the shifted HNM, except for the existence of a steady state with Ess = 0. For
open lattices, the non-zero eigenvalues coalesce near c = ΓS , which corresponds to the (L−1)-
th order exceptional point EP for Jr = 0 in the HNM. By contrast, the steady-state mode
remains well isolated and pinned at the origin. The explicit form of the steady-state solution
in Eq. (51) con�rms that this exceptional point coincides with the transition point into the
zigzag phase in the full ASIP master equation. Hence, we have found a situation in which an
EP for the higher-energy modes is directly connected with an observable con�guration change
in the steady-state.

In Ref. [40], this exponentially localized steady-state was also obtained, but only in the
'smooth' phase, by considering the full spectrum of the hopping Liouvillian Lhop restricted to
the single-particle subspace. For a single boson, there are no nonlinearities, which corresponds
to the limit n∞ → 0 and c = ΓA/2. In this case, even in the fully asymmetric limit, Γr → 0, the
EP can be approached, but not crossed. A closely related analysis has also been performed
for generalizations of the HNM with purely linear jump operators [39]. Here, the many-
body stationary states for bosons and fermions exhibit an accumulation of particles near one
boundary, but these features are rather broad and the direct connection to the NHSE has
not been found there. We conclude that while many of these models show formally similar
excitation spectra, the crossing of the EP and the transition into the zigzag phase is related to
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Figure 6: Complex spectrum of shifted HNM, h̃HN = hHN−2iΓS1, for di�erent boundary con-
ditions. The green squares (`periodic') and the blue dots (`Dirichlet') represent the eigenvalues
of h̃HN on a lattice of L = 19 sites with periodic and open boundary conditions, respectively.
The red triangles (`Neumann') are the eigenvalues of h as given in Eq. (45) for a lattice of
L = 20 sites. The four lower panels show the complex spectra of these Hamiltonians for dif-
ferent values of c, increasing counter-clockwise. The spectrum of h coincides with the one of
h̃HN, plus the isolated steady-state at the origin. The two insets at the top depict the shape of
the steady-state eigenmode ψss before and after crossing the EP at a value of c = ΓS . These
results show that the transition into the zigzag structure of the steady state of h coincides
with the EP for its higher-energy modes.

the nonlinearity of the underlying transport equations, which allows us to ful�ll the condition
c > ΓS through a bosonically enhanced propagation speed. At the same time, while being a
many-body e�ect, for Γr → 0 the zigzag pattern can already be observed deep in the quantum
regime, i.e., for an average density of n∞ < 1 (see Fig. B.3).

The correspondence between the EP in the �uctuation dynamics and the transition in
the stationary density pro�le is actually quite surprising. Naively one would expect that the
EP, which occurs at an imaginary o�set of −2iΓS , mainly in�uences the transient dynamics of
decaying �uctuation modes. Instead, it signi�es a sharp transition in the stationary �uctuation
mode, which remains spectrally well isolated from the EP. This is in stark contrast to what
is usually assumed for non-equilibrium phase transitions in dissipative systems, where the
phase transition point coincides with a closure of the dissipative gap [46, 47]. The origin of
this paradoxical situation can be traced back to the conservation of �uctuations, which, when
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decaying in site p, reappear in site p − 1. Fluctuations thus propagate across the chain, and
fully decay only when they reach the edge. Therefore, while near the EP there is only a single
eigenvalue that sets the timescale of the dynamics, it can still take a (diverging) time τrelax ∝ L
for the system to fully relax. As pointed out in Refs. [36, 40, 43], it corresponds to the time
required for the excitations to propagate along the chain. This distinguishes the analysis of
such transport transitions from other non-equilibrium phase transitions in unbiased systems.

6 Summary and Conclusions

In summary, we have studied the dissipative thermal transport of bosons through a lattice
with asymmetric hopping rates, as described by the ASIP. Compared to analogous models
for fermions or distinguishable particles, dissipative transport of bosons is characterized by
hopping events that are accelerated by the presence of other particles. Our analysis showed
that despite the simplicity of this process and without including any additional coherent in-
teractions, this bosonic enhancement already gives rise to a highly non-standard transport
phenomenology including ballistic currents, the formation of a boundary region with coexist-
ing thermal and Bose-condensed sites, as well as the spontaneous development of coherence in
a purely dissipative system.

In contrast to other condensation mechanisms that have been investigated for various
(classical) inclusion processes [5, 6], the predicted transition for bosonic transport relies on the
presence of a boundary and would be absent in an in�nite or periodic lattice. This creates a
natural connection to the HNM and related non-Hermitian lattice models, which we discussed
in full details in Sec. 5. This analysis establishes a direct correspondence between the EP in
the complex excitation spectrum of the HNM and the transition point in the stationary density
pro�le of the ASIP. It also shows that, while closely related to the NHSE, the formation of the
zigzag phase is a genuine many-body e�ect that does not appear for single-particle or linear
transport models.

In conclusion, this bosonic skin e�ect creates an interesting connection between transport
physics, non-equilibrium phase transitions and non-Hermitian physics. For highly asymmet-
ric hopping rates, which can be engineered, for example, for cold atoms in optical lattices,
the predicted zigzag phase is already observable at the level of a few atoms. Instead, in
nanophotonic lattices for optical photons or exciton polaritons, where one might only achieve
a small, temperature-induced bias, the necessary condition c ∼ ΓS can still be reached by
assuming pumped reservoirs with a considerably higher density. Therefore, since the main
features associated with this transition are rather robust with respect to the details of the
model, they should be observable in a variety of bosonic lattice systems, whenever hopping is
predominantely incoherent.
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A Derivation of the transport master equation

In this section, we outline the derivation of the ASIP master equation in Eq. (1) for the case
of a tilted lattice potential, where the bosons in each site are coupled to a bath of localized
phonon modes. The Hamiltonian for this system can be written as

Ĥ = −ta
L−1∑
p=1

(â†p+1âp + â†pâp+1) +

L∑
p=1

pUâ†pâp + Ĥphon, (52)

where ta is the tunneling amplitude and U is the energy o�set between two sites. The third
term, Ĥphon, accounts for the presence of the phononic bath, and we assume it to be of the
form

Ĥphon =

∫ ∞
0

dω
[
ωb̂†p,ω b̂p,ω + g(ω)â†pâp(b̂p,ω + b̂†p,ω)

]
. (53)

Here, the �rst part is the energy of the phononic modes with annihilation (creation) operators

b̂p,ω (b̂
†
p,ω) satisfying [b̂p,ω, b̂

†
q,ω′ ] = δpqδ(ω−ω′), and the second part describes a phonon-induced

shift of each lattice site with some smooth coupling function g(ω).
In the limit U � ta, coherent tunneling between neighboring sites is energetically sup-

pressed and we can diagonalize the bare lattice Hamiltonian to lowest order in ε = ta/U . We
do so by introducing the new bosonic operators

ĉp = âp + ε(âp+1 − âp−1) +O(ε2), (54)

and write the full Hamiltonian as

Ĥ '
∑
p

pUĉ†pĉp +

∫ ∞
0

dω ωb̂†p,ω b̂p,ω + Ĥint. (55)

To understand the e�ect of the remaining interaction term, Ĥint, we move to the interaction
picture and de�ne

x̂p(t) =

∫ ∞
0

dω g(ω)
(
b̂p,ωe

−iωt + b̂†p,ωe
iωt
)
. (56)

Then,

Ĥint(t) =
∑
p

x̂p(t)
{
ĉ†pĉp + εV̂ (t) +O(ε2)

}
, (57)

with

V̂ (t) =
(
ĉ†p−1ĉp − ĉ

†
pĉp+1

)
e−iUt + H.c. (58)

We see that to zeroth-order in ε, we only obtain an o�-resonant energy shift ĉ†pĉp, which does
not change the site occupation numbers and only leads to dephasing e�ects that depend on
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the bath spectral density at ω ≈ 0. To �rst order in ε we obtain a phonon-mediated hopping
term, similar to Eq. (4).

After making a rotating wave approximation and keeping only the resonant terms in
Eq. (57), we can eliminate the bath degrees of freedom and derive a master equation for
the lattice bosons only. It is given by

dρ̂

dt
' (Ldeph + Lhop) ρ̂, (59)

where
Ldeph =

∑
p

ΓΦD[n̂p] (60)

is a pure dephasing term and

Lhop = ΓlD[ĉ†p−1ĉp − ĉ
†
pĉp+1] + ΓrD[ĉ†p−1ĉp − ĉ

†
pĉp+1] (61)

accounts for the incoherent, phonon-mediated hopping between neighboring sites. In these
expressions, ΓΦ = Cxx(0) and

Γl = ε2Cxx(U), Γr = ε2Cxx(−U), (62)

where

Cxx(ω) =

∫ ∞
0

dseiωs〈x̂(t)x̂(t− s)〉 (63)

is the correlation spectrum of the phonon bath. When the bath is in a thermal state with
temperature Tphon, we obtain

Cxx(ω)

Cxx(−ω)
= e~ω/(kBTphon), (64)

which leads to the relation between the hopping rates given in Eq. (5). Note that in Eq. (59)
we have omitted additional cross-site dephasing terms, which scale as ∼ ε2ΓΦ and can therefore
be neglected compared to Ldeph.

Due to the simple structure of the bath considered in this model, Eq. (61) still contains

cross-terms of the form (ĉp−1ĉ
†
p)ρ̂(ĉp+1ĉ

†
p), which involve the coherences of the density matrix.

These coherences, however, will be washed out under the in�uence of Ldeph or any additional
dephasing terms that might appear in a more realistic setting. We emphasize that the presence
of such dephasing terms has no in�uence on the population dynamics, the particle currents
or the stationary density pro�les investigated in this work. Therefore, we conclude that the
master equation given in Eq. (1) is indeed a rather generic model to study dissipative bosonic
transport. Note that this does not apply to the coherence functions evaluated in Sec. 4, which
are sensitive to ΓΦ and thus to speci�c details of the environment.

B Numerical methods

B.1 Low density regime: Monte-Carlo simulations

In the absence of any additional Hamiltonian terms, the master equation in Eq. (1) is diagonal
in the Fock basis |{~n}〉 = |n1, n2.., nL〉. The con�guration is encoded by the vector ~n =
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(n1, .., nL)T , where the np denote the number of bosons in each site. Therefore, we can restrict
our analysis to the diagonal elements of the density operator, P ({~n}, t) = 〈{~n}|ρ̂(t)|{~n}〉, which
describe the probabilities of di�erent particle con�gurations. These probabilities evolve as

Ṗ =Γl
∑
p

np(1 + np+1)P ({~n+ ~δp,p+1})− (1 + np)np+1P

+Γr
∑
p

np+1(1 + np)P ({~n− ~δp,p+1})− np(1 + np+1)P

+κl

{
n̄ln1P ({~n− ~ε1}) + (n̄l + 1)(n1 + 1)P ({~n+ ~ε1})

− [n̄l(1 + n1) + (n̄l + 1)n1]P
}

+ (l↔ r),

where the last term is obtained by doing the substitution (l↔ r), ~ε1 ↔ ~εL, and n1 ↔ nL.
Here, εjp = δpj , ~δp,p+1 = ~εp+1 − ~εp, we used a short notation P = P ({~n}), and omitted time
dependence to lighten the notations.

Due to the exponentially growing con�guration space, the exact dynamics of P ({np}, t) can
only be calculated for very small lattices and low occupation numbers. Instead, for larger lat-
tices we sample the probability distribution via a Monte-Carlo simulation. To do so, the boson
numbers np(t) for each site are treated as stochastic variables, which during an in�nitesimal
time step dt evolve according to

dnp = dN l
p − dN l

p−1 + dN r
p−1 − dN r

p . (65)

Here, the dN l,r
p = 0, 1 are independent random variables and indicate that a boson has hopped

to the left (right) when dN l
p = 1 (dN r

p = 1). The probabilities for these events are

p(dN l
p = 1) = Γlnp+1(1 + np)dt, (66)

p(dN r
p = 1) = Γr(1 + np+1)npdt, (67)

and p(dN i
p = 0) = 1−p(dN i

p = 1). By starting from a given initial con�guration, {np(t = 0)},
and evolving a total number of Nt stochastic trajectories in time, we can approximate the
expectation value of any function of operators n̂p by an ensemble average. For example,

〈n̂pn̂q〉(t) '
1

Nt

Nt∑
i=1

np(t)nq(t) =: 〈np(t)nq(t)〉. (68)

This method becomes exact in the limit Nt → ∞, and therefore also accounts for cross-site
correlations, Cpq(t) = 〈n̂pn̂q〉(t) − 〈n̂p〉(t)〈n̂q〉(t), which are neglected in mean-�eld theory.
It cannot, however, be used to predict quantities such as cross-site coherences of the form
〈â†pâp+1〉, because those involve o�-diagonal elements of the density matrix. Furthermore, this
method is limited to low average occupation numbers, since otherwise the rate of jumps, and
therefore also the total simulation time, increases signi�cantly.

B.2 High density regime: Truncated Wigner Approximation

The TWA is a technique for simulating the dynamics of bosons in phase space, which is spanned
by complex amplitudes αp and α

∗
p de�ned on each site p. The state of the full lattice is then
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fully described by a multi-mode Wigner distributionW ({αp}, t) on this space and expectation
values of symmetrically-ordered operator products can be obtained from the moments of this
function. For example,

〈â†np âmq 〉sym =

∫
d2Lα (α∗p)

nαmq W ({αp}). (69)

To obtain the equation of motion for W ({αp}) we use the substitutions [57]

â†pρ̂→
(
α∗p −

1

2
∂αp

)
W, âpρ̂→

(
αp +

1

2
∂α∗p

)
W,

etc., to convert the master equation (1) for the density operator into a partial di�erential

equation forW . To illustrate this approach, let us consider only a single term, dρ̂dt = ΓlD[â†1â2]ρ̂,
which translates into

∂W

∂t
=

Γl
2

{
∂1

(α1

2
− α1|α2|2

)
+ ∂2

(α2

2
+ α2|α1|2

)
+∂∗1∂1

(
|α2|2

2
− 1

4

)
+ ∂2∂

∗
2

(
|α1|2

2
+

1

4

)
−∂1∂2α1α2 +

1

4
∂1∂
∗
1∂2α2 −

1

4
∂2∂
∗
2∂1α1 + c.c.

}
W, (70)

where we have used the short-hand notation ∂i = ∂αi , and ∂∗i = ∂α∗i . Note that the same
equation was derived in [72], where the two bosonic modes represented Schwinger bosons
describing a d-level system.

The TWA consists in neglecting in this equation all third-order derivatives. This approxi-
mation is expected to be accurate when the number of bosons in the chain is high (see [73, 57]
for a more detailed discussion). Hence, this method provides a complementary treatment
to the one presented in the previous section. After we performed the TWA, we obtain a
Fokker-Planck equation, governed by a drift vector ~A and a di�usion matrix D,

∂W

∂t
= −∂λ(AλW ) +

1

2
∂λ∂

∗
µ(DλµW ), (71)

where we have used Einstein's sum convention and the 2L greek indices run over all αp and
α∗p.

For the example given in Eq. (70) above, the corresponding di�usion matrix is given by

D =
Γl
2


|α2|2 −α1α2 0 0

−α∗1α∗2 |α1|2 0 0

0 0 |α2|2 −α∗1α∗2
0 0 −α1α2 |α1|2

 ,

where we have ordered the four independent variables as (α1,α
∗
2,α
∗
1,α2). We have also omitted

the constant terms ±1/4, which cancel when adding the contributions from all lattice sites,
expect at the boundaries. For any other site, the di�usion matrix is positive semi-de�nite and
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can therefore be written as D = BB† with

B =

√
Γl
4


α2 −α2 0 0

−α∗1 α∗1 0 0

0 0 α∗2 −α∗2
0 0 −α1 α1

 .

Therefore, it is possible to unravel the Fokker-Planck equation in terms of stochastic trajec-
tories in phase space, which follow the (Ito) equations

d~αλ = ~Aλdt+
∑
ν

Bλµd ~Wµ. (72)

Here, ~W = (W1,W
∗
2 ,W

∗
1 ,W2), where the dWi are complex-valued Wiener processes satisfying

〈dWidW
∗
i 〉 = 1 and 〈dWidWi〉 = 〈dWi〉 = 0. By de�ning dV = (dW1 − dW ∗2 )/

√
2, we can

write the stochastic equations as

dα1 =
Γl
2
α1

(
|α2|2−

1

2

)
dt+

√
Γl
2
α2dV,

dα2 = −Γl
2
α2

(
|α1|2+

1

2

)
dt−

√
Γl
2
α1dV

∗.

This derivation can be generalized in a straightforward manner to all lattice sites and
including the hopping to the right and the coupling to the reservoirs. Altogether we end up
with the following set of stochastic di�erential equations

dαp =
ΓA
2
αp
(
|αp+1|2 − |αp−1|2

)
dt− ΓSαpdt+

√
ΓS

(
αp+1dVp − αp−1dV

∗
p−1

)
, (73)

dα1 =
ΓA
2
α1|α2|2dt−

ΓS
2
α1dt+

√
ΓSα2dV1 −

κl
2
α1dt+

√
κl
2

(2n̄l + 1)− ΓA
4
dVl,

dαL = −ΓA
2
αL|αL−1|2dt−

ΓS
2
αLdt−

√
ΓSαL−1dV

∗
L−1 −

κr
2
αLdt+

√
κr
2

(2n̄r + 1) +
ΓA
4
dVr,

where all the dVi are independent complex Wiener processes.
Note that in the equation for α1, the di�usion rate in the last term can become negative,

when the coupling to the left reservoirs is too weak. This problem does not occur in any of
the presented results, where we assume κl = Γl. In this case, the noise processes ∼ dV1 and
∼ dVl can be combined in a single stochastic process, and for Γr = n̄l = 0 we obtain Eq. (31).

B.3 Benchmarking the mean-�eld approximation

In Fig. B.3, we compare the results obtained with these two numerical methods with the
predictions from mean-�eld theory in the limits of low and high occupation numbers. These
plots show that all the features in the stationary density pro�le discussed in the main text
are accurately reproduced by both methods, within their respective range of applicability. In
particular, the exact results from the Monte-Carlo simulations demonstrate that the predicted
density patterns are already visible in parameter regimes where there is on average less than
one boson per site. We also �nd that the mean-�eld prediction for the transition point ΓcA is
well reproduced by both methods (not shown here).
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Figure 7: Top row: Comparison between the steady-state populations as predicted by mean-
�eld (MF) theory and by the TWA, for n̄r = 10 and for Γr/Γl = 0.95 (left) and Γr = 0 (right).
Bottom row: Comparison between the steady-state populations as predicted by mean-�eld
theory and by exact Monte-Carlo (MC) simulations, for n̄r = 1 and Γr/Γl = 0.5 (left) and
Γr = 0 (right). For these results we simulated 5 × 103 trajectories for the TWA and 5 × 105

trajectories for the Monte-Carlo method. For all plots, κr = κl = Γl, n̄l = 0, and L = 10.

C Derivation of the stationary density pro�le

In this section we provide additional details about the derivation of the steady-state occupation
numbers np within the mean-�eld approximation. The starting point for this derivation is
Eq. (19), which for L → ∞ already determines the relation between the current J and the
asymptotic occupation number n∞, as given in Eq. (20). To solve the full recursion relation,
we �rst introduce a new variable vp = np − Γr/ΓA, which obeys

vp+1 =
a

vp + b
(74)

with a = (JΓA−ΓlΓr)/ΓA
2 and b = 2ΓS/ΓA. In a next step, we make the ansatz vp = ayp−1/yp

to obtain a new sequence of numbers yp, which satisfy

yp+1 = ayp−1 + byp. (75)

Hence, the yp are given by a generalization of the Fibonacci sequence (known as the Lucas
sequence). We can express the elements of this sequence as

yp = αφp+ + βφp−, (76)

where the constants α and β depend on the initial condition and

φ± =
b±
√
b2 + 4a

2
=

1

ΓA
(ΓS ± c) (77)
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with c = ΓA(1 + 2n∞)/2. To obtain this last equality, we used the boundary condition
J = ΓAn∞(1 + n∞), from which it follows that

√
4a+ b2 = 2n∞ + 1. Therefore, in terms of

these quantities, we obtain a general expression for the mean occupation number of each site,

np = a
αφp−1

+ + βφp−1
−

αφp+ + βφp−
+

Γr
ΓA

=

(
n∞ −

Γr
ΓA

) 1 +
(

ΓS−c
ΓS+c

)p−1
µ

1 +
(

ΓS−c
ΓS+c

)p
µ

+
Γr
ΓA

, (78)

where µ = β/α. By rewriting the above result in terms of the ratio (np − n∞)/(n1 − n∞) we
obtain Eq. (22), from which the decay of the zigzag structure becomes more obvious.

At this point, the parameters n∞ and µ are still unknown and must be determined by the
boundary conditions. Since in the steady-state the current is constant we obtain

J = κl(n1 − n̄l) = κr(n̄r − nL) = ΓAn∞(1 + n∞).

In the limit of a large lattice, we can set nL = n∞, which gives us a quadratic equation for
n∞,

ΓAn
2
∞ + (ΓA + κr)n∞ = κrn̄r,

with a solution displayed in Eq. (21). Finally, from the current into the left reservoir and the
result for np=1 in Eq. (78) we can determine the value of µ. For n̄l = 0 and Γr = 0, its explicit
expression is

µ =

(
ΓS + c

ΓS − c

)
2n∞ − n̄r
n̄r − n∞

.

In the most general case, its precise functional dependence on all the system parameters is
complicated and of limited interest.

D Eigenstates of HNM with Neumann boundary conditions

In this appendix we derive the relation between the spectra of hHN and h, which correspond
to the HNM with Dirichlet and Neumann boundary conditions, respectively. An alternative
derivation, and further results on these kinds of matrices, can be found in [71]. We introduce
here the L-dimensional current vector ~j = (j0,1, j1,2, j2,3, ...)

T , which includes the component
j0,1 = 0. Then, according to Eq. (47), we obtain the linear relation

~j = V~ε (79)

between current and density �uctuations, where

V =



0 0 0 0 . . .

c− ΓS ΓS + c 0 0 . . .

0 c− ΓS ΓS + c 0 . . .

0 0 c− ΓS ΓS + c
. . .

...
...

...
. . .

. . .


. (80)
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By comparing Eq. (79) with the continuity equation (46), we �nd that

h = i∇V, (81)

where ∇ with ∇ij = δij−1 − δij is the discrete gradient. It follows that

d~j

dt
= −i(iV∇)~j, (82)

where the e�ective Hamiltonian for the current is of the form

iV∇ =


0 0 0 . . .

c− ΓS

0
...

hHN − 2iΓS

 . (83)

This is the result given in Eq. (48), but with the j0,1 component included. Let us now consider

a vector ~Φk = (0, ~ψk)
T , where ~ψk is an eigenmode of hHN for L− 1, with energy EHN

k . Then,
from Eq. (82) it follows that

iV∇~Φk = (EHN
k − 2iΓS)~Φk, (84)

and, after multiplying both sides by ∇,

i∇V (∇~Φk) = h(∇~Φk) = (EHN
k − 2iΓS)∇~Φk. (85)

This means that for each of the L− 1 eigenfunctions ~ψk of hHN we obtain an eigenvector of h,
with a modefunction ∇~Φk, and eigenenergy Ek = EHN

k − 2iΓS . Moreover, since det(V ) = 0,
there is one additional eigenstate ψss with energy Ess = 0, which satis�es V ψss = hψss = 0. It
is straightfoward to check that this eigenstate is of the form given in Eq. (51). Putting these
two sets of eigenstates together, we �nally obtain the result of Eq. (50).
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