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Abstract

We study the many-body dynamics of weakly interacting Bose gases with two-
particle losses. We show that both the two-body interactions and losses in atomic
gases may be tuned by controlling the inelastic scattering process between atoms
by an optical Feshbach resonance. Interestingly, the low-energy behavior of the
scattering amplitude is governed by a single parameter, i.e. the complex s-wave
scattering length ac. The many-body dynamics are thus described by a Lindblad
master equation with complex scattering length. We solve this equation by ap-
plying the Bogoliubov approximation in analogy to the closed systems. Various
peculiar dynamical properties are discovered, some of them may be regarded as
the dissipative counterparts of the celebrated results in closed Bose gases. For
example, we show that the next-order correction to the mean-field particle decay
rate is to the order of |na3c |1/2, which is an analogy of the Lee-Huang-Yang cor-
rection of Bose gases. It is also found that there exists a dynamical symmetry
of symplectic group Sp(4,C) in the quadratic Bogoliubov master equation, which
is an analogy of the SU(1,1) dynamical symmetry of the corresponding closed
system. We further confirmed the validity of the Bogoliubov approximation by
comparing its results with a full numerical calculation in a double-well toy model.
Generalizations of other alternative approaches such as the dissipative version of
the Gross-Pitaevskii equation and hydrodynamic theory are also discussed in the
last.
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1 Introduction

Interacting Bose gas is a central topic in the fields of ultracold atoms and condensed matter
physics, for it represents a paradigm of quantum many-body physics. Theoretically, if one
focuses on the low-energy physics, the interactions between bosons can always be simplified by
a zero-range one with a real s-wave scattering length as that reproduces the same low-energy
scattering phase shift [1], despite that the actual potentials are usually very complicated.
Various many-body effects can then be studied theoretically with the help of the zero-range
model [2, 3]. More importantly, experimental techniques such as Feshbach resonance can
adjust a along the real-axis in cold atomic gases [4], which allows us to demonstrate various
many-body effects, from the Lee-Huang-Yang correction [5–9] for positive scattering length
to the Bose nova effect [10–12] for negative scattering length.

Recently, with the development of theoretical and experimental methods [13–29], much
more attention has been paid to behaviors of cold atom systems with dissipation. For bosonic
and fermionic models, single particle and two-body dissipation processes such as particle
pump and loss can be realized [30–36]. To better understand the many-body physics in
open systems, it is then useful to introduce a zero-range model for Bose gases with two-body
losses. In a previous work [37], the authors have shown that with a proper renormalization or
regularization approach, the boson-boson interactions and losses can be effectively described
by a complex contact interaction parameterized by a complex s-wave scattering length ac.
The physics of the dissipative Bose gases can then be regarded as an extension of as from the
real axis to the complex plane.

In this paper, we focus on the dissipative dynamics of weakly interacting Bose gas with
two-body losses. Firstly, we show that complex scattering length ac can be effectively adjusted
in the lower complex plane through optical Feshbach resonances. Then we study the many-
body dynamics in the weakly interacting and dissipating region by introducing the Bogoliubov
approximation [38]. Within the Bogoliubov approximation, the evolution process is governed
by a quadratic time-dependent Lindblad equation. By numerically solving a toy model, we
verify the accuracy of this approximation in open systems. Furthermore, we find within
this approximation, the superoperators in the master equation form a closed algebra, which
corresponds to a symplectic Sp(4,C) dynamical symmetry group, and helps to derive an
exact solution for the evolution of density matrix. Our analysis also reveals that an n-
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mode bosonic system governed by a quadratic Lindbladian always has Sp(2n,C) dynamical
symmetry. Finally, within the framework of the Keldysh path-integral method, we obtain a
generalized non-Hermitian Gross-Pitaevskii equation which reproduces the same excitation
spectrum as the Lindblad equation and leads to a set of dissipative hydrodynamic equations
in the long wavelength limit.

The paper is organized as follows. In Section. 2, we show that the complex scattering length
ac in an atomic gas can be tuned across the lower half complex plane via optical Feshbach
resonances. Then in Section. 3 we introduce the single-channel master equation and the
Bogoliubov approximation, which we use to solve the many-body properties of the dissipative
Bose gases. We verify the validity of the Bogoliubov approximation by numerically solving a
toy model in Section. 4, and discuss the dynamical symmetry of the Bogoliubov Lindbladian
in Section. 5. In Section. 6, we derive the dissipative version of the Gross-Pitaevskii equation
and hydrodynamic theory using the Keldysh path integral formalism for open systems.

2 Tuning complex scattering lengths in experiments

In the scattering theory, it is known that the inelastic collisions between particles will cause
two-body losses and eventually lead to a complex s-wave scattering length, which contains
all the information of the low-energy scattering amplitude [1, 39–41]. This suggests that one
might control the two-particle interaction and losses experimentally by tuning the inelastic
scattering process between atoms in a cold atomic gas. Experimentally, this tuning can be
realized through the optical Feshbach resonance technique [42]. As shown in Fig. 1 (a), in the
experiment, an external laser is applied to the atomic gas, and the frequency of the optical
field is tuned close to a transition between two ground state atoms and a highly excited
molecular state (i.e. a two-body bound state consists of a ground state atom and a highly
excited atom). When the excited molecule spontaneously decays and emits a photon, the two
atoms will be kicked out of the system because of the huge recoil momentum, thus causing
two-particle losses in the atomic gas.

Theoretically, this process might be captured by a detailed calculation of the scattering
amplitude for a finite-range multi-channel model, which shows that the complex scattering
length is given by [39–41]

ac(E) = abg

󰀕
1 +

Γ(I)

E − ν − Γ(I) + iγ/2

󰀖
. (1)

Here ν is the detuning of the laser field, γ is the decay rate of the excited molecule, abg is
the (real) background s-wave scattering length, E is the scattering energy, and Γ(I) stands
for the width of the resonance and is proportional to the intensity I of the laser field.

In this chapter, we provide a simplified zero-range model to reproduce this formula and
discuss the domains on the complex plane where ac might reach using optical Feshbach res-
onances. To construct the model, we first introduce the bosonic field operator b̂ (d̂) for the
ground state atoms (excited molecules), and the Hamiltonian of the system may be written
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as (󰄁 is set to unity in this paper)

Ĥofr =
󰁛

k

󰀓
󰂃kb̂

†
kb̂k + ξkd̂

†
kd̂k

󰀔
+

g

2Ω

󰁛

k,k′,p

b̂†k+pb̂
†
k′−pb̂k′ b̂k

+
1√
Ω

󰁛

k,p

󰀓
αd̂†pb̂p

2
−kb̂p

2
+k + α∗d̂pb̂

†
p
2
−k

b̂†p
2
+k

󰀔
,

where g is the interacting strength between atoms in the open channel, 󰂃k = k2

2m and ξk =
k2

4m + ν, m is the atom mass, Ω is the volume. The two channels are coupled by laser light
with strength α.

Figure 1: (a)The schematic for the optical Feshbach resonance model. In the open channel,
a pair of atoms b is interacting via strength g. They are coupled to a molecule state d in the
closed channel by laser light at detuning ν. The molecular state spontaneously radiates at rate
γ. (b) The range of a−1

c (0). For fixed Γ(I), the trajectory of a−1
c (0) forms a circle tangent to

the real-axis at a−1
bg with radius Γ(I)

γabg
in the upper half complex plane when changing ν within

(−∞,+∞). Then the radius of this circle will increase as we gradually turn on Γ(I).

The spontaneous radiation of the bound-state molecule can be characterized by the fol-
lowing Lindblad master equation [43]

∂tρ̂ = L(ρ̂) = −i[Ĥofr, ρ̂]−
γ

2

󰁛

k

{d̂†kd̂k, ρ̂}+ γ
󰁛

k

d̂kρ̂d̂
†
k.

For a two-body process, the dynamics of the corresponding density matrix (in two-particle
Fock space) is equivalent to the evolution under a non-hermitian Hamiltonian

Ĥ2-body = Ĥofr − i
γ

2

󰁛

k

d̂†kd̂k. (2)

We can obtain the two-body scattering matrix T2 for this Ĥeff at relative kinetic energy E

T2(E) =

󰀣󰀕
g +

|α|2
E − ν + iγ/2

󰀖−1

− 1

Ω

󰁛

k

1

E − k2/m

󰀤−1

.
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By matching the derived T-matrix with the usual low-energy expansion formula 4π
m

󰀓
1

ac(E) + i
√
mE

󰀔−1
[1],

we obtain the renormalize relation for the complex scattering length ac,

m

4πac(E)
=

󰀕
g +

|α|2
E − ν + iγ/2

󰀖−1

+
1

Ω

󰁛

|k|<Λ

m

k2
, (3)

where Λ is the momentum cut-off and ac(E) can be further written as

ac(E) = abg +
m

4π

|αre|2
E − νre + iγ/2

(4)

with m
4πabg

= 1
g + mΛ

2π2 , |αre|2 = |α|2
(1+mgΛ/(2π2))2

, νre = ν − mΛ|α|2
2π2+mgΛ

.

The above formula is exactly eq. (1) if we take the limit Λ → ∞, and write Γ(I) =
m|αre|2
4πabg

[44].

For a dilute gas at extremely low temperature, the kinetic energy E is negligible and the
many-body effect can be well captured by the zero energy scattering length ac(E = 0). A
general ac(0) can be achieved via changing the detuning ν and density I. To be more clear,
as shown in Fig. 1(b), at fixed Γ(I), the trajectory of a−1

c (E = 0) form a circle tangent to

the real-axis at a−1
bg with radius Γ(I)

γabg
in the upper half complex when tuning ν ∈ (−∞,+∞).

Therefore, as we gradually increase Γ(I), this circle can sweep across the entire upper half-
plane.

Here we comment on the difference between tuning complex scattering length and real
scattering length. The real scattering length can also be controlled in a magnetic-induced
Feshbach resonance by varying the strength of the magnetic field. However, to achieve a
general complex scattering length, we need at least two adjustable parameters. Thus we
choose the optical resonance model rather than the magnetic Feshbach resonance.

3 Dissipative Bose gas

For non-dissipative atomic gases, it is known that the interaction between particles may
be described by a single-channel contact potential, provided that the Feshbach resonance is
“wide”, i.e. that the occupation in the closed molecular channel is small compared to the
open scattering channel [41]. The Hermitian Hamiltonian of a Bose gas may be written as

Ĥ =
󰁛

k

󰂃kâ
†
kâk +

g

2Ω

󰁛

k,k′,p

â†k+pâ
†
k′−pâk′ âk, (5)

where âk is the annihilation operator for the atoms with momentum k, 󰂃k is the kinetic energy,
g is the coupling constant, Ω is the system volume.

The single-channel Hamiltonian greatly simplifies the calculation of the many-body prop-
erties in closed Bose gases. Thus it is desirable to construct a single-channel model to describe
the many-body dynamics of dissipative atomic gases with complex scattering lengths. In the
previous work [37], the authors have studied this problem and constructed a renormalizable
single-channel model for systems across a “wide” optical Feshbach resonance. In this work,
we focus on the many-body dynamics of this model, and the study of systems across “narrow”
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optical Feshbach resonances will be pursued in the future. In the single-channel model, the
open system dynamics are governed by the master equation [37, 43]

∂tρ̂ = −i(Ĥeffρ̂− ρ̂Ĥ†
eff) + J ρ̂, (6)

with the non-Hermitian effective Hamiltonian

Ĥeff = H − iγb
2Ω

󰁛

k,k′,p

â†k+pâ
†
k′−pâk′ âk, (7)

and the recycling term

J ρ̂ =
γb
Ω

󰁛

k,k′,p

âk′ âkρ̂â
†
k′−pâ

†
k+p, (8)

This master equation describes the dynamics of Bose atoms, denoted by â, as they interact
with each other through a bare coupling constant gb while decaying to the environment (i.e. no
longer confined by the trapping potential) via a two-body losses process characterized by a bare
coupling constant γb. To regularize the contact interaction, we can use the renormalization
relation [37]

1

gb − iγb
=

1

g − iγ
− 1

Ω

󰁛

k

1

2󰂃k
, (9)

and define g − iγ ≡ 4πac
m as renormalized complex coupling constant.

Bogoliubov approximation - To solve the spectrum of isolated weakly interacting Bose
gas, we can use the Bogoliubov approximation and diagonalize the quadratic Bogoliubov
Hamiltonian. Similarly, we can generalize Bogoliubov’s transformation in the open system.
Starting from a condensate initial state and assuming the condensate part is always much
larger than quantum depletion during the time evolution, we can trace out the condensed
part by replacing all the â0, â

†
0 with the square root of the zero-momentum atom number

N −
󰁓

k ∕=0 â
†
kâk, then we obtain an approximate master equation for the reduced density

matrix ρ̂′ as ∂tρ̂
′ ≈ LB(ρ̂

′) with

LB(ρ̂
′) = −i[ĤB, ρ̂

′]− 2γn
󰁛

k ∕=0

{â†kâk, ρ̂
′}+ 4γn

󰁛

k ∕=0

âkρ̂
′â†k (10)

and

ĤB =
gnN

2
+

󰁛

k ∕=0

((󰂃k + gn)â†kâk +
gn− iγn

2
â†kâ

†
−k + h.c.),

whereN is the total atom number and n = N
Ω is the density. Here we use renormalized parame-

ters g, γ to replace the bare parameters gb, γb like in conventional Bogoliubov Hamiltonian [38].
Different from the time-independent Bogoliubov Hamiltonian in a closed system, Lindbladian
after Bogoliubov transformation is time-dependent due to the two-body losses. The density
n is decreasing as a function of time t, at mean-field level, we have n(t) = n0(1 + 2γn0t)

−1.
The conventional Bogoliubov Hamiltonian is the linear combination of three operators

Â0
k = 1

2(N̂k + N̂−k + 1), Â1
k = 1

2(â
†
kâ

†
−k + h.c.) and Â2

k = 1
2i(â

†
kâ

†
−k − h.c.), these operators

form a closed SU(1,1) algebra [45–47],

[Â1
k, Â

2
k] = −iÂ0

k, [Â
2
k, Â

0
k] = iÂ1

k, [Â
0
k, Â

1
k] = iÂ2

k. (11)
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As a result, for an isolated system, the Hamiltonian has SU(1,1) dynamical symmetry, and
the Heisenberg equations of these three operators are closed. When introducing the two-body
losses, the Heisenberg equations for these three operators are no longer closed. However, the
evolution of their expectation values A = (〈Ak

0 〉, 〈Ak
2 〉, 〈Ak

2 〉)T are still closed, satisfying

Ȧ = −2

󰀳

󰁃
2γn γn −gn
γn 2γn 󰂃k + gn
−gn −󰂃k − gn 2γn

󰀴

󰁄A+

󰀳

󰁃
2γn
0
0

󰀴

󰁄 . (12)

Here, we focused on the short-time dynamics where γnt ≪ 1 such that we may approximate
n as a constant at a fixed time t. We can diagonalize the 3 × 3 matrix in eq. (12) to obtain
the eigenvalue −2iξk,i, where the quasi-steady state eigenvalue is

ξk,0 = −2iγn, ξk,(1,2) = −2iγn±
󰁴

󰂃2k + 2g0n󰂃k − γ20n
2.

A phase boundary between stable and unstable BEC can be obtained by this quasi-steady
state eigenvalue [37].

Lee-Huang-Yang correction- Furthermore, we will give a detailed derivation for the Lee-
Huang-Yang correction [48, 49] for this open system. Consider quasi-steady-state eigenvalue,
up to O (γnt), simple solution of eq. (12) can be obtained

A(t) = As + e−4γnt (B+C cos 2ξkt+D sin 2ξkt) (13)

constant vectors B,C,D can be determined by the initial value of A, and

AT
s =

󰀳

󰁅󰁅󰁃

1
2 + (g2+γ2)n2

2󰂃2k+4gn󰂃k+6γ2n2

−gn󰂃k+g2n2+2γ2n2

2󰂃2k+4gn󰂃k+6γ2n2

− γn(󰂃k−gn)
2󰂃2k+4gn󰂃k+6γ2n2

󰀴

󰁆󰁆󰁄 . (14)

We see that A never reaches the steady value As because the asymptotic solution eq. (13)
only works for time interval 0 ≤ t ≪ 󰄁/γn. Nevertheless, it is still useful to calculate some
physical properties for this steady state, since this helps to verify the renormalization relation
given in eq. (9).

When A reaches this steady value, we see that nk +n−k = 〈Ak
0 〉 − 1

2 also becomes steady.

Thus we get the total particle losses rate dN
dt = dN0

dt . And we may calculate dN0/dt by

dN0

dt
= ∂ttr

󰀓
ρ̂a†0a0

󰀔
= tr

󰀓
L(ρ̂)a†0a0

󰀔
= tr

󰀓
ρ̂L′(a†0a0)

󰀔
,

with L′ defined by

L′(Ô) ≡ i
󰁫
Ĥ, Ô

󰁬
− γ

2V

󰁛

k,k′,p

󰁱
a†k+pa

†
k′−pak′ak, Ô

󰁲

+
γ

2V

󰁛

k,k′,p

a†k+pa
†
k′−pÔak′ak.

It is then straightforward to show that

L′(a†0a0) ≃ −2γnN − 2
󰁛

k ∕=0

󰀓
γnAk

1 + gnAk
2

󰀔
. (15)
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This leads to

dN0

dt
= −2γnN − 2

󰁛

k ∕=0

󰀓
γn〈Ak

1 〉+ gn〈Ak
2 〉
󰀔
. (16)

From this equation, we see that the first term corresponds to the mean-field decay which leads
to n ≃ n(1 + 2γnt)−1 as mentioned previously. After inserting the steady value, we have

dN0

dt
= −2γnN + 2γn

󰁛

k

gn󰂃k + γ2n2

󰂃2k + 2gn󰂃k + 3γ2n2
. (17)

We immediately find that the summation diverges for large momentum. Similar divergence
occurs in the calculation for ground state energy of Bose gas in a closed system [50, 51].
This divergence arises from the fact that the renormalized interaction is only valid for small
momenta. To cure this divergence, one can introduce an intermediate momentum cutoff and
then consider an effective interaction with second-order processes in the mean-field energy
component. For our case, the second-order effective interaction parameter g̃ and γ̃ is given
by

g̃ − iγ̃ = (g − iγ)

󰀣
1 +

g − iγ

V

󰁛

k

1

2󰂃k

󰀤
. (18)

We thus obtain

γ̃ = γ +
gγ

V

󰁛

k

1

󰂃k
. (19)

Replacing γ in the mean-field part of eq. (17) by γ̃ , we have

dN

dt
=

dN0

dt

= −2γnN + 2γn
󰁛

k

󰀕
gn󰂃k + γ2n2

󰂃2k + 2gn󰂃k + 3γ2n2
− gn

󰂃k

󰀖

= −2γnN
󰁫
1 + cθ(n|ac|3)1/2

󰁬
,

(20)

with cθ a constant that only depends on the argument of the complex scattering length ac,

cθ = 4
√
2π

󰀣
cos 2θ󰁳

cos(θ − π/3)
+ 2 cos θ

󰁳
cos(θ − π/3)

󰀤
.

Here, θ is defined as θ = − arg(ac) = − arg(ar + iai) ∈ [0,π], where ac is expressed as two
real parameters: ac = ar + iai.

We note that the n|ac|3 term in eq. (20) is an analog of the celebrated Lee-Huang-Yang
correction to the ground state energy of a weakly interacting Bose gas [48, 49],

E0 =
g0nN

2

󰀗
1 +

128

15π1/2
(na3r)

1/2 +O(n log n)

󰀘
. (21)

With the help of renormalization relation, we can eliminate the divergence eq. (16) and
obtain a physical result of particle loss rate.
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1

γn
ϵ

gn

ϵ

unstable

(a) (b)

Figure 2: (a) Schematic of a double-well toy model with interacting and two-body losses, 󰂃
represent the energy detuning. (b) The phase diagram of double-well model on γn

󰂃 − gn
󰂃 plane.

When gn
󰂃 < −1+3( γn

󰂃
)2

2 , quasi-steady state eigenvalue has a positive imaginary part, which
represents the exponential growth of non-condensate particle number, the system is in the

unstable phase. When gn
󰂃 > −1+3( γn

󰂃
)2

2 , the number of the minority particle is always much
smaller than the condensate number during the time evolution, the system is in the stable
phase.

It is well known that, for Bose gas without a two-particle loss (ai = 0), the system is
dynamically unstable when ar < 0. This instability is reflected in eq. (21), which becomes
ill-defined for a negative real scattering length. Similarly, eq. (20) reflects certain dynamic
instability in open systems. One can check that the coefficient cθ becomes ill-defined for
θ ∈ [5π/6,π], suggesting that our approach is not valid in this regime. This is because the
quantum depletion (Bogoliubov modes) grows rapidly in this regime, which invalidates the

assumption that â0 ≈ â†0 ≈
√
N0 [37].

4 A toy model

Our calculation is based on the assumption that the Bogoliubov approximation is always valid
during the dynamical evolution. It is impossible to verify this approximation numerically in
the thermodynamic limit due to the exponential growth of the Hilbert space dimension in
the quantum many-body system. To numerically compare the dynamics process generated by
the original Lindbladian and the Bogoliubov Lindbladian, we introduce a toy model that can
capture the interacting and dissipation features of the open bosonic system.

Numerical model- As shown in Fig. 2, we consider a double-well model, the annihilation
operator for the bosonic mode in the right (left) well is denoted by b̂r(b̂l). The evolution of
this system is governed by the master equation

∂tρ̂ = −i[Ĥdw, ρ̂]− γ
󰁛

i=r,l

󰀓
{Γ̂†

i Γ̂i, ρ}+ 2Γ̂iρΓ̂
†
i

󰀔
, (22)

where the Hamiltonian is

Ĥdw = −t(b̂†r b̂l + b̂†l b̂r) + g(b̂†r b̂
†
r b̂r b̂r + b̂†l b̂

†
l b̂lb̂l), (23)

with t the hopping strength between the two wells, g the on-site interaction strength. The
Lindblad operators for the onsite two-body losses are Γ̂r = b̂r b̂r, Γ̂l = b̂lb̂l, with γ the decay
rate.
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Corresponding to the Bose gas model, we consider the “zero momentum” mode â0 =
1√
2
(b̂r + b̂l) as majority part while the “non-zero momentum” mode â1 =

1√
2
(b̂r − b̂l) as small

depletion part. We can shift the energy for the mode â0 to zero without loss of generality
and the mode â1 has a detuning 󰂃 = 2t from the mode â0. Omitting the interacting or losses
terms only including minority part, such as â†1â

†
1â1â1, the master equation is then given by

∂tρ̂ = −i(Ĥeff
a ρ̂− ρ̂Ĥeff†

a ) + J ρ̂, (24)

where the effective Hamiltonian Ĥeff
a for â0, â1is

Ĥeff
a =󰂃â†1â1 +

g − iγ

2
(â†0â

†
0â0â0 + â†0â

†
0â1â1

+ â†1â
†
1â0â0 + 4â†0â0â

†
1â1),

(25)

and the recycling term in eq. (24) are similar to Lindbladian of Bose gas with two-body losses,

J ρ̂ = γ(â0â0ρ̂â
†
0â

†
0 + â1â1ρ̂â

†
0â

†
0 + â0â0ρ̂â

†
1â

†
1 + 4â0â1ρ̂â

†
0â

†
1).

In this model, the effective Hamiltonian Ĥeff
a conserves the particle number n̂ = â†0â0+â†1â1

while the recycling term always annihilates two particles, thus the master equation can be
decomposed to a series of hierarchy equations for ρ̂i,j [37]

∂tρ̂i,j = −i(Ĥeff
a ρ̂i,j − ρ̂i,jĤ

eff†
a ) + J ρ̂i+2,j+2, (26)

where ρ̂i,j = P̂iρ̂P̂j , with P̂i the projection operator for the i-particle Fock space. Then for the
dynamical evolution of eq. (24) with initial density matrix a pure state of particle number N ,
only the projected density matrix ρ̂N,N , ρ̂N−2,N−2,ρ̂N−4,N−4... is involved and the numerical
simulation is performed by calculating these differential equations.

Now considering the Bogoliubov approximation, we replace the â0 and â†0 with the square

root of the condensate atoms number n − â†1â1, then we can obtain the approximated Lind-
bladian as

L̂B
dwρ̂ = −i[ĤB

dw, ρ̂]−
γ

2
{nâ1â1 + nâ†1â

†
1 + 4nâ†1â1, ρ̂}

+ γ(nâ1â1ρ̂+ nρ̂â†1â
†
1 + 4nâ1ρ̂â

†
1),

(27)

where the Hamiltonian ĤB
dw is

ĤB
dw = 󰂃â†1â1 +

g

2
(n2 + nâ1â1 + nâ†1â

†
1 + 2nâ†1â1), (28)

and time-dependent particle number is given by n = N(1 + 2γNt)−1. Similar to eq. (12)

in the Bose gas case, the expectation value of the three SU(1,1) operators Â1
dw = (â†1â1 +

â1â
†
1)/2, Â

2
dw = (â†1â

†
1 + â1â1)/2 and Â3

dw = (â†1â
†
1 − â1â1)/2i form a closed set of differential

equations,

Ȧdw = −2

󰀳

󰁃
2γn γn −gn
γn 2γn 󰂃+ gn
−gn −󰂃− gn 2γn

󰀴

󰁄Adw +

󰀳

󰁃
γn
0
0

󰀴

󰁄 , (29)

with Adw = (〈Â1
dw〉, 〈Â2

dw〉, 〈Â3
dw〉)T. The three eigenvalues −2iξi for the 3 × 3 matrix in

eq. (29) are

ξ0 = −2iγn, ξ(1,2) = −2iγn±
󰁳

󰂃2 + 2gn󰂃− γ2n2. (30)

10
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Figure 3: Quench dynamics under time evolution using two methods with total particle
number N = 100 and energy in unit of 󰂃. (solid: exact time evolution governed by Lindbladian
eq. (24); dashed: approximated Lindbladian eq. (27)). The initial condition is all particles
condensate at groundstate, n0 = N . (a),(b)System at stable phase with coupling strength
gN = 0.52󰂃 and dissipation strength γN = 0.20󰂃. (c),(d) System at stable phase with
gN = −0.52󰂃 and γN = 0.02󰂃.

When the imaginary part of ξ1 is larger than zero, the corresponding eigenvalue becomes a
positive number, thus the particle number n̂1 grows exponentially in short time leading to an

unstable dynamic. The phase boundary [52] for this stability is given by gn
󰂃 = −1+3( γn

󰂃
)2

2 as
shown in Fig. 2(b).

Numerical results - We now check the accuracy of the Bogoliubov approximation by com-
paring the numerical simulation result from eq. (24) and eq. (27). The evolution begins with
an initial state with N = 100 particles occupying the mode â0. As shown in Fig. 3, the two
evolution results almost coincide in the stable phase. While in the unstable phase, due to
the increase of the quantum depletion, the particle number n̂1 predicted by the Bogoliubov
approximation eq. (27) deviates from the exact time evolution governed by eq. (24) at long
time. This result confirms that our Bogoliubov approximation for the Lindblad master equa-
tion is valid as long as the ratio between the density of quantum depletion to the total density
is much smaller than the unitary.

5 Dynamical symmetry of Lindbladian

In this section, we discuss the dynamical symmetry of quadratic Lindbladians in detail, which
can greatly simplify the calculation of the master eq. (10). It is worth mentioning that a
time-independent quadratic Lindbladian may be solved explicitly using the third quantization
method [53, 54]. However, this cannot be directly applied to our problem because of the time-
dependent n(t) contained in the master eq. (10). Fortunately, in our Bogoliubov Lindbladian,
it can be shown that, besides the obvious U(1) and Z2 symmetry, the algebraic structures
of the superoperators defined on the density matrix space also contain a hidden symplectic
Sp(4,C) dynamical symmetry. This dynamical symmetry provides a relatively simple way [55,
56] to construct exact solutions to the time-dependent Lindbladian algebraically.

Symmetry- The Lindbladian LB in eq. (10) has two obvious symmetries, i.e. an extended

11
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U(1) symmetry and a Z2 symmetry. To see the U(1) symmetry, one only needs to verify that

the Lindbladian is invariant under transformation âk → âke
iφ, â†k → â†ke

−iφ. The correspond-

ing conserved superoperator is thus Q̃ = [N̂ , ◦]. While for the Z2 symmetry, it can be verified

by realizing LB is invariant under âk → −âk or â†k → −â†k.
However, these two symmetries alone are not enough to obtain an analytical solution to

the master eq. (10). To solve the quench dynamics governed by this time-dependent master
equation, we need to generalize the concept of dynamical symmetry to open systems, i.e. to
find a closed algebra formed by superoperators that contain the Lindbladian LB itself.

Closed algebra- To find this algebra, we note that LB can be expressed in the superoperator-
formalism as

LB(ρ̂
′) =

󰀳

󰁃
󰁛

k,kz≥0

L̃k

󰀴

󰁄 ◦ ρ̂′. (31)

Here L̃k is a superoperator act only on modes k and −k, which is a linear combination
of seven quadratic superoperators. We label these superoperators by h̃ki , i = 1, 2, . . . 7. They
are defined by

h̃1k ◦ ρ̂′ = (â†kâk + â−kâ
†
−k)ρ̂

′, h̃2k ◦ ρ̂′ = 2â†kâ
†
−kρ̂

′,

h̃3k ◦ ρ̂′ = 2âkâ−kρ̂
′, h̃4k ◦ ρ̂′ = ρ̂′(â†kâk + â−kâ

†
−k),

h̃5k ◦ ρ̂′ = 2ρ̂′â†kâ
†
−k, h̃6k ◦ ρ̂′ = 2ρ̂′âkâk,

h̃7k ◦ ρ̂′ = âkρ̂
′â†k + â−kρ̂

′â†−k.

Among these seven superoperators, h̃ik, i = 1, 2, . . . 6 represent the (anti-)commutators be-
tween the (anti-)Hermitian parts of the effective Hamiltonian and the density matrix ρ̂, and
the last one represents the recycling term of L̃k.

However, only these seven superoperators cannot form a closed algebra, i.e. their commu-
tators are not necessarily linear combinations of themselves. For example, we have

[h̃5k, h̃
7
k] ◦ ρ̂′ = −2(âkρ̂

′â†−k + â−kρ̂
′â†k). (32)

which is a superoperator that can not be written in the form of
󰁓7

i=1 αih̃
i
k.

It is thus necessary to introduce three more superoperators h̃ik, i = 8, 9, 10 to close the
algebra. They are

h̃8k ◦ ρ̂′ = â†−kρ̂
′â†k + â†kρ̂

′â†−k,

h̃9k ◦ ρ̂′ = âkρ̂
′â†−k + â−kρ̂

′â†k,

h̃10k ◦ ρ̂′ = â†kρ̂
′âk + â†−kρ̂

′âk.

All of the superoperators h̃ik, i = 1, 2, . . . , 10 now form a closed algebra [57], whose
commutation relations are listed in Table. 1. Hence these superoperators are generators of
the dynamical symmetry group of Lindbladian. In the following of this section, because only
particles at momentum k and −k are coupled, we will omit the label k of superoperators.
Below we will prove this algebra can map to the algebra of two coupled harmonic oscillators
and the corresponding group is isomorphic to Sp(4,C). Before that, we will formally write
the exact solution of L̃B.

12
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h̃1] h̃2] h̃3] h̃4] h̃5] h̃6] h̃7] h̃8] h̃9] h̃10]

[h̃1, 0 2h̃2 −2h̃3 0 0 0 −h̃7 h̃8 −h̃9 h̃10

[h̃2, 0 −4h̃1 0 0 0 −2h̃8 0 −2h̃10 0

[h̃3, 0 0 0 0 0 2h̃7 0 2h̃9

[h̃4, 0 2h̃5 −2h̃6 −h̃7 −h̃8 h̃9 h̃10

[h̃5, 0 −4h̃4 −2h̃9 −2h̃10 0 0

[h̃6, 0 0 0 2h̃7 2h̃8

[h̃7, 0 h̃6 h̃3 h̃1 + h̃4

[h̃8, 0 h̃1 − h̃4 h̃2

[h̃9, 0 h̃5

[h̃10, 0

Table 1: Commutation relation table of 10 superoperators. The superoperators h̃1, h̃2, h̃3

or h̃4, h̃5, h̃6 can form two su(1, 1) algebra, which is the result of the SU(1,1) dynamical
symmetry of Bogoliubov Hamiltonian in closed system.

Exact solution- Based on this closed algebra structure, the dynamical problem of time-
dependent Lindbladian can be solved exactly [55, 56]. First of all, formally solve the master
equation ρ̂ as ∂tρ̂ = L̃B ◦ ρ̂ , we can denote the solution as

ρ̂(t) = Λ̃(t, t0) ◦ ρ̂(t0). (33)

Λ̃(t, t0) is a dynamical map from time t0 to time t. In general, this mapping is a semi-
group which satisfies Λ̃(t2, t0) = Λ̃(t2, t1)Λ̃(t1, t0) but don’t satisfy the unitary condition under
Lindblad time evolution. Thanks for the closed algebra, the Lindbladian can be written as a
linear combination of the dynamical symmetry group generators L̃ =

󰁓7
l=1 ul(t)h̃

l hence we
can parametrize the dynamical map by these ten generators,

Λ̃(t, t0) =

10󰁜

i=1

egi(t)h̃
i
. (34)

Substitute this equation back to the master equation, we can get

∂t

10󰁜

i=1

egi(t)h̃
i
=

7󰁛

l=1

ul(t)h̃
l

10󰁜

j=1

egj(t)h̃
j
, (35)

where ul(t) are time-dependent parameters defined by Hamiltonian. Solving the dynamics
of the time-evolution operator is equivalent to solving the complex functions gi(t). Right
multiply the inverse of Λ̃(t, t0) at both sides of eq. (35) and write the explicit expression of
time derivative, we can obtain

10󰁛

m=1

∂tgm(t)

m󰁜

i=1

egi(t)h̃
i
h̃me−gi(t)h̃

i
=

7󰁛

l=1

ul(t)h̃
l. (36)

Using Baker-Campbell-Hausdorf formula [58] and commutation relation in Table. 1, we can
formally write L.H.S of eq. (36) as:

󰁛

m,n

∂tgm(t)ηmnh̃
n =

7󰁛

l=1

ul(t)h̃
l, (37)

13
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Harmonic Oscillator Bogoliubov Lindbladian

h1 (a†a+ aa†)/2 (â†kâk + â−kâ
†
−k)◦

h2 a†a† (2â†kâ
†
−k)◦

h3 aa (2âkâ−k)◦
h4 (b†b+ bb†)/2 ◦(â†kâk + â−kâ

†
−k)

h5 b†b† ◦(2â†kâ
†
−k)

h6 bb ◦(2âkâ−k)

h7 ab âk ◦ â†k + â−k ◦ â†−k

h8 a†b â†−k ◦ â†k + a†k ◦ a†−k

h9 ab† âk ◦ â†−k + â−k ◦ â†k
h10 a†b† â†k ◦ âk + â†−k ◦ â−k

Table 2: Operators in coupled harmonic oscillator system and superoperators in dissipative
Bose gas system after Bogoliubov approximation with momentum k. These 10 operators and
superoperators have the same commutation relation in Table. 1 and they can form the algebra
sp(4,C).

where the ηmn are analytic functions of g. Considering the linear independent property of ten
generators, we can obtain a set of coupled first-order differential equations. In consequence,
by solving these coupled differential equations for g(t), we will get the exact solution of
the dynamics governed by time-dependent Lindbladian. In practice, obtaining an analytical
solution for a general time dependence ul(t) is difficult. However, eq. (37) offers a method to
numerically obtain the time evolution of the density matrix, which is similar to the evolution
of a Gaussian state under a quadratic Hamiltonian [47, 59].

In the following, we show that the superoperators h̃i form an algebra of sp(4,C) by map-
ping them to a coupled 2-mode harmonic oscillator. We further generalize this result to an
n-mode quadratic Lindblad bosonic system, in which the superoperators form a closed algebra
of sp(2n,C).

Map to harmonic oscillators- Even though the commutation relations between h̃ik seem
complicated as shown in Table. 1, it is worth noting that they only consist of quadratic
superoperators. A natural question is then whether there is an isolated system that has the
same algebra structure. Indeed, we find that if we consider two coupled harmonic oscillators
with ladder operators a and b, all the superoperators h̃i can be mapped to linear combinations
of quadratic forms of a, a†, b, b†. In Table. 2, we give the explicit correspondence of this
mapping, and it is not difficult to show that the mapping preserves commutation relations,
i.e. it is indeed an isomorphism. The isomorphism greatly the structure of the algebra. As an
example, we will show in the following that the quadratics of ladder operators â and b̂ form
the algebra of symplectic group Sp(4,C).

Sp(2n,C) dynamical symmetry group - To show this, we prove a general result, i.e. the
quadratic forms of ladder operators an in an n-mode harmonic oscillators (n = 1, 2, . . .) have

14
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symplectic Sp(2n,C) dynamical symmetry. A generic quadratic form is given by is given by

M̂ =
1

2

󰀓
a†1, . . . , a†n, a1, . . . , an

󰀔󰀕
B A
AT C

󰀖

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

a†1
...

a†n
a1
...
an

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

To make the coefficient matrices unique, we require BT = B and CT = C.
Note that the coefficient matrix may be written as

󰀕
B A
AT C

󰀖
=

󰀕
A −B
C −AT

󰀖󰀕
I

−I

󰀖
≡ MΩ (38)

with M satisfying

ΩM +MTΩ = 0, (39)

which is the generator for Lie group Sp(2n,C).
We now define new operators

bi =

󰀝
ai, i ∈ {1, 2, . . . , n}
ai−n, i ∈ {n+ 1, . . . , 2n} (40)

bi =

󰀝
a†i , i ∈ {1, 2, . . . , n}
ai−n, i ∈ {n+ 1, . . . , 2n} (41)

which are related by bi = Ωijb
j and bi = Ωijbj with matrices

Ωij =

󰀝
δi,j−n, i ∈ {1, 2, . . . , n}
−δi,j+n, i ∈ {n+ 1, . . . , 2n} (42)

Ωij =

󰀝
−δi,j−n, i ∈ {1, 2, . . . , n}
δi,j+n, i ∈ {n+ 1, . . . , 2n} (43)

We thus have the following useful commutation relations

[bi, b
j ] = δji , [bi, bj ] = −δij , (44)

[bi, bj ] = Ωij , [bi, bj ] = −Ωij . (45)

With all these definitions, the generic quadratic form in Eq. (38) can then be expressed as

M̂ =
1

2
biM j

i bj (46)

with the upper (lower) index representing the column (row) index. The above formula gives
a one-to-one mapping between the quadratic form and the Lie algebra sp(2n,C). More im-
portantly, it can be proved (Appendix A)

[M̂, N̂ ] =
1

2
bi[M,N ]ji bj , (47)
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which implies that the mapping is an isomorphism.
Now we prove n-mode quadratic bosonic Hamiltonian has an Sp(2n,C) dynamical sym-

metry, meanwhile, in the last subsection we proved our Bogoliubov Lindbladian is isomorphic
to coupled 2-mode harmonic oscillator. In consequence, we can conclude that Bogoliubov
Lindbladian has an Sp(4,C) dynamical symmetry.

Furthermore, our results are not only restricted to Bogoliubov Lindbladian. Because
quadratic operators in 2n-mode coupled harmonic oscillator have the same commutation rela-
tion with the superoperators in n-mode quadratic Lindbladian, we can conclude that quadratic
Lindbladian which is constituted by n-mode bosons has Sp(2n,C) dynamical symmetry. This
result will be useful for the further analytical study of open systems.

6 Dissipative Gross-Pitaevskii equation and hydrodynamic the-
ory

In closed systems, weakly interacting Bose gas can also be treated using other theoretical
approaches such as the Gross-Pitaevskii equation and the hydrodynamic theory [50, 51, 60].
In this section, we generalize these two descriptions to open systems with weak two-body
losses. We derive the dissipative versions of the Gross-Pitaevskii equation and hydrodynamic
equations based on the Keldysh path integral formalism.

Keldysh formalism- We start from the master equation ∂tρ̂ = Lρ̂ of interacting bosons
subject to two-body losses in real space,

Lρ̂ =
1

i
[Ĥ, ρ̂]− γ

2

󰁝

r
{ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r), ρ̂}+ J ρ̂, (48)

where ψ̂(r) is the bosonic annihilation operator at position r, and

Ĥ =

󰁝

r
ψ̂†(r)

󰀕
−∇2

2m

󰀖
ψ̂†(r) +

g

2

󰁝

r
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (49)

is Hermitian Hamiltonian of interacting bosons.
The recycling term J ρ̂ is given by

J ρ̂ = γ

󰁝

r
ψ̂(r)ψ̂(r)ρ̂ψ†(r)ψ̂†(r). (50)

Using the keldysh path-integral representation, we introduce fields ψ± and ψ̄± living respec-
tively on the time contour C+ and C−, where time runs from −∞ to +∞ and then back to
−∞ in the closed-contour C+ ∪ C−. Then we can write partition function Z = Tr(ρ(t)) of
eq. (48),

Z =

󰁝
D[ψ+, ψ̄+,ψ−, ψ̄−]e

iS[ψ], (51)
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where we omit the initial condition and the Lindblad-Keldysh action [61] is

S =

󰁝
dtdr

󰁛

η=±
(−1)sη(ψ̄η(r)i∂tψη(r)−H(ψ̄η(r),ψη(r)))

+
i

2
γ

󰁝
dtdr

󰁛

η=±
ψ̄η(r)ψ̄η(r)ψη(r)ψη(r)

− iγ

󰁝
dtdr ψ+(r)ψ+(r)ψ̄−(r)ψ̄−(r),

(52)

where time runs from −∞ to +∞, and sη = 0 for η = +, sη = 1 for η = −.
Saddle-point approximation- We consider the case that almost all particles occupy the

ground state energy level, which means N ≈ N0 ≫ 1. In the closed system, we can assume
the system is always in a coherent state, and the condensate wavefunction can be found by the
saddle-point equation. Similarly, here we consider the losses process to be weak and slow so
that we can still take the coherent state assumption. As a result, we can take the saddle-point
equation in an open system,

δS

δψ̄±
= 0,

δS

δψ±
= 0, (53)

then we obtain

i∂tψ+ − (−∇2

2m
ψ+ + gcψ̄+ψ+ψ+) = 0

−i∂tψ̄+ − (−∇2

2m
ψ̄+ + gcψ̄+ψ+ψ̄+)− 2iγψ+ψ̄−ψ̄− = 0

−i∂tψ− + (−∇2

2m
ψ− + g∗c ψ̄−ψ−ψ−)− 2iγψ+ψ+ψ̄− = 0

i∂tψ̄− + (−∇2

2m
ψ̄− + g∗c ψ̄−ψ−ψ̄−) = 0,

(54)

where the complex interacting strength gc = g − iγ.
Non-Hermitian Gross-Pitaevskii equation - The regularization of Keldysh action requires

the relation ψ+ = ψ−, ψ̄+ = ψ̄− [62], combining with the saddle-point equations eq. (54), we
will obtain the Gross-Pitaevskii equation under the two-body losses (ψ+ = ψ),

i∂tψ −
󰀕
−∇2

2m
ψ + gc|ψ|2ψ + V ψ

󰀖
= 0. (55)

This equation substitutes the coupling parameter g to the complex version g − iγ in the
conventional Gross-Pitaevskii equation. However, due to the particle loss, the solution of this
dissipative Gross-Pitaevskii equation becomes quite different from the conventional solution
for a closed system. For example, when V = 0, it is easy to show that we have a plane-wave-
like solution given by

ψ0(r) =
√
n0e

−i gc
2γ

log(1+2γn0t). (56)

And in finite momentum we can also obtain an exact solution, ψp(r) =
√
n0e

i(p·r−p2t/2)e
−i gc

2γ
log(1+2γn0t).

Then we can solve the excitation spectrum of this dissipative Gross-Pitaevskii equation
by inserting small perturbation ψ = ψ0+ δψ and its complex conjugate and expanding to the

17



SciPost Physics Submission

linear order in δψ:

i∂tδψ = −1

2
∇2δψ + 2gc|ψ0|2δψ + (g − iγ)ψ2

0δψ
∗,

i∂tδψ
∗ =

1

2
∇2δψ∗ − 2g∗c |ψ0|2δψ∗ − (g + iγ)ψ∗2

0 δψ.

To solve this equation, we may apply a unitary transformation δφ = e
i g
2γ

log(1+2γn0t)δψ
which leads to a simplified equation in the “rotating wave frame”,

i∂tδφ = −1

2
∇2δφ+ (2gc − g)nδφ+ gcnδφ

∗,

i∂tδφ
∗ =

1

2
∇2δφ∗ − (2g∗c − g)nδψ∗ − g∗cnδφ,

with n = n0(1 + 2γn0t)
−1. Now if we consider perturbations with momentum k and naively

treat n(t) as time-invariant, we may find the eigenfrequencies of the above equations are

ωk = −2iγn±
󰁴

󰂃2k + 2gn󰂃k − γ2n2 (57)

which coincide with the values we previously obtained using the Bogoliubov approximation.
As a result, we can also get the phase diagram by solving this dissipative Gross-Pitaevskii
equation.

Hydrodynamic equation- In the closed system, fruitful physical consequences can be ob-
tained by solving the hydrodynamic theory of interacting BEC, such as superfluidity, anisotropic
expansion, and low-energy modes in a harmonic trap [50, 51, 60]. It is then interesting to
construct the hydrodynamic equation with two-body loss. Starting from the time-dependent
dissipative Gross-Pitaevskii equation eq. (55), we can derive the hydrodynamic equations
which govern the dynamics of a dissipative fluid. By decomposing ψ =

√
ρeiθ, the real part

and imaginary part give the hydrodynamic equations:

∂tρ+∇(ρv) + 2γρ2 = 0

m∂tv = −∇(
1

2m

1
√
ρ
∇2√ρ+

1

2
mv2 + V (r) + gρ).

(58)

The first equation is called the continuity equation, which reflects the conservation of particle
numbers. Now two-body losses in interacting BEC bring new term γρ2 in the continuity
equation, which breaks the particle number conservation. And the second equation, the
Newton equation, is same as the conventional one. For a uniform system with V (r) = 0, the
uniform solution is

ρ(r, t) =
ρ0

1 + 2γtρ0
, (59)

which shows that condensate particles always decay with time and the vacuum is the only
true steady state of this system. With the new dissipation term γρ2, finding the solutions for
the general case is challenging, we will leave this for future research.

7 Conclusion

In summary, we systematically study the many-body dynamics of weakly interacting Bose
gases with two-body losses. It is shown that both the two-body interactions and losses in a
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cold atomic gas may be described by a complex scattering length ac, which may be controlled
via tuning an external laser field. We generalize Bogoliubov approximation to open systems
and verify the validity of this approximation by numerical simulating a toy model that has a
similar structure. Based on this time-dependent Bogoliubov Lindbladian, we study the quench
problem and prove this system has a Sp(4,C) dynamical symmetry, which is crucial for the
exact calculation of quench dynamics. Furthermore, we show a general n-mode quadratic
Lindbladian of the bosonic system has a dynamical symmetry of Sp(2n,C), which is useful
for the analytical understanding of the dissipative open system. On the other hand, we also
generalize the Gross-Pitaevskii equation and hydrodynamic theory to dissipative Bose gases.
Hydrodynamic equations have rich interesting solutions in closed systems, we only discuss the
solution without external potential in this paper, it would be significant to generalize these
solutions to open systems and study the stable property of these results. Finally, from a
closed interacting bosonic model to open system, other types dissipation are admitted such as
single body loss and pump, particle number form dissipation. It is also interesting to discuss
the different properties of these open systems. We hope our work can be helpful for further
understanding the non-equilibrium dissipative dynamics in cold atom systems.
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A Proof of Eq. (47)

We prove Eq. (47) by direct calculation,
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. (60)

Now we are left with the second term on the R.H.S. To keep going, note Eq. (39) is written
as

ΩijM l
j +M i

jΩ
jl = 0, ΩijM

j
l +M j

i Ωjl = 0. (61)

19



SciPost Physics Submission

We thus have
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Combing Eq. (60) and Eq. (62), we then proved Eq. (47) in the main text..
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