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We study the interplay of vortices and disorder in a two-dimensional disordered

superconductor at zero temperature described by the Bogoliubov-de Gennes (BdG)

self-consistent formalism for lattices of sizes up to 100 × 100 where the magnetic

flux is introduced by the Peierls substitution. We model substantially larger lattice

size than in previous approaches (≤ 36× 36) which has allowed us to identify a rich

phase diagram as a function of the magnetic flux and the disorder strength. For

sufficiently weak disorder, and not too strong magnetic flux, we observe a slightly

distorted Abrikosov triangular vortex lattice. An increase in the magnetic flux leads

to an unexpected rectangular vortex lattice. A further increase in disorder, or flux,

gradually destroys the lattice symmetry though strong vortex repulsion persists. An

even stronger disorder leads to deformed single vortices with an inhomogeneous core.

As the number of vortices increases, vortex overlap becomes more frequent. Finally,

we show that global phase coherence is a feature of all these phases and that disorder

enhances substantially the critical magnetic flux with respect to the clean limit with

a maximum on the metallic side of the insulating transition.
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I. INTRODUCTION

The application of a perpendicular magnetic field to a superconducting thin film leads to

a very rich phenomenology. For type II superconductors at zero temperature, an Abrikosov

lattice [1, 2] of vortices forms for intermediate fields. As temperature increases, topological

defects, thermal vortices, starts to proliferate and eventually the lattice is melted through a

Berezinskii-Kosterlitz-Thouless transition [3, 4]. For lower temperatures, it has been iden-

tified theoretically, and later confirmed experimentally, an intermediate phase, termed an

hexatic fluid [5–7] for lattices with hexagonal symmetry, that combines short-range positional

order, like in a liquid, with a quasi-long-range orientational order as in the low temperature

Abrikosov lattice phase.

The presence of disorder brings new interesting phenomena. A vortex tends to occupy

regions where the order parameter is suppressed as a result of the disordered potential. At

the same time, disorder pins vortices which prevents, or slows down, a dissipative response to

a current, and therefore a finite resistivity. Deformations of a vortex lattice, due to disorder,

leads to the so called Bragg’s glass [8–12] characterized by a power-law decay of the crystalline

order so that some weakened form of diffraction peaks, and therefore discrete translational

symmetry, coexists with glassy features. For a stronger disorder or field, a transition to a

vortex glass [13–15] occurs characterized by both a relatively homogeneous repulsion among

vortices in real space and, in Fourier space, a circular pattern [16] instead of sharp diffraction

peaks that signal the complete loss of any discrete translational symmetry. A further increase

in the disorder strength, or field, leads to either the loss of superconductivity or a fully disorder

vortex phase where vortices repulsion is strongly suppressed.

A detailed experimental study [17], supported by numerical results based on the solution

of the Bogoliubov-de Gennes (BdG) equation for small disordered lattices, revealed that vor-

tices occupy regions between superconducting islands which enhances phase fluctuations and

eventually leads to a transition to a state formed by incoherent Cooper pairs. Translational

symmetry of the vortex lattice seems to be lost even for a relatively weak disorder strength.
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Transport properties in the presence of both disorder and magnetic field show rather

unusual features. Experimentally, it has been observed an enormous increase of resistivity

[18–20] for fields slightly above the one at which the insulating transition occurs. Surprisingly,

a further increase of the magnetic field reduces the resistivity to values closer to the normal

metal limit. The origin of these unexpected features is still under debate [21] though it is

believed to be somehow related to residual correlations of the superconducting state [22–26]

in the form, for instance, of localized phase-incoherent Cooper’s pairs.

A more recent explanation of this phenomenon [27], based on an explicit numerical solution

of the BdG equations in small lattices, is that there exists a region of magnetic flux strength

where the conductivity still has a gap-like form for low frequencies but the superfluidity

density vanishes. As a result, the resistivity becomes very large until larger magnetic fluxes

close the gap completely.

Although disorder, temperature or magnetic field tend in general to suppress superconduc-

tivity, their combined effect can have a more complex behavior. For instance, as mentioned

earlier, disorder hampers the motion of vortices, especially at low temperature, which sup-

presses dissipation and therefore potentially enhances superconductivity. Indeed, a recent

study [28] of the XY model with a non-zero flux using Monte Carlo techniques [29–31] has

found that disorder makes the superconducting state more robust against thermal effects.

Similarly, disorder in certain circumstances can also enhance the superconducting critical

temperature [32–39].

It is important to stress that, with a few exceptions Refs. [17, 27, 40–43] to be discussed

later, theoretical research about vortices in disordered superconductors does not employ the

microscopic and self-consistent BdG approach where the random potential is the one felt by

the electrons that form the Cooper’s pair. For instance, in the XY model, describing the

phase dynamics, the Josephson couplings are random but they are not directly related to the

random potential that model impurities in materials. Likewise, in stability studies of vortex

lattices [8, 10–12, 44], disorder is just a random deviation of the vortex position from the one

corresponding to a perfect Abrikosov lattice. In practical terms, this is qualitatively similar

to the assumption that the disorder distribution of the impurities of the sample, typically

Gaussian or box distributed, is also the one observed in the order parameter or other relevant

observables of the superconducting state. However, this is not always the case.
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There are substantial experimental [45, 46] and theoretical [32, 34, 37, 39, 47–57] evidence

indicating that a microscopic approach is necessary to model quantum coherence effects, such

as Anderson localization [58], induced by disorder that control the physics in certain region

of parameters. This is especially true in two dimensions [59, 60] where even a weak disorder

strength can trigger important localization [58] effects in the superconducting state. For in-

stance, the amplitude of the order parameter becomes highly inhomogeneous [47, 48] in space

with an emergent granular structure even on the metallic side of the superconductor-insulator

transition. Close to the transition, the probability distribution of the order parameter am-

plitude is well described not by a Gaussian but by a broad log-normal distribution [49] and

a parabolic f(α) spectrum [34, 37, 45, 46] typical of systems with multifractal-like features

[51, 61, 62]. As mentioned earlier, a range of parameters has been identified where, due to

this intricate spatial structure, the average order parameter and the critical temperature is

enhanced by disorder [32, 35, 49]. The physical reason for this counterintuitive behavior is

that although in many sites the order parameter is suppressed, in others it is substantially

enhanced. We note that superconductivity does not require all sites to have phase coherence

but only that a supercurrent can go through the sample. Recent experimental results [45, 46]

are fully consistent with this theoretical picture.

In view of that, a natural question to ask is to what extent the current picture of the effect

of disorder in superconducting vortices, largely based on a phenomenological description of

disorder, is modified if disorder is introduced microscopically and the calculation is carried

out self-consistently.

In this paper, we employ the self-consistent BdG formalism [63, 64] to address this problem

in a two dimensional disordered superconductor in the presence of a magnetic flux, introduced

by the so-called Peierls substitution. More specifically, we study quantitatively the vortex

distribution as a function of disorder and flux strength, and also the spatial structure of

single vortices when the order parameter is sufficiently inhomogeneous. Moreover, we address

the impact of disorder on global phase coherence and also in superconducting properties

such as the average order parameter and the critical flux corresponding to the breaking of

superconductivity.

The main results of this study are summarized in Fig. 1. For weak disorder, the most

salient feature is an intermediate, in flux, rectangular vortex lattice phase in Fourier space
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FIG. 1. Vortex phase diagram. The cartoon summarizes the vortex distribution as a function

of magnetic flux φ and disorder V . The red (green) line stands for φc2 (φc1) the upper (lower)

critical magnetic flux as a function of the disorder strength V . In the region below the dashed green

line, our results are not conclusive regarding the existence of a vortex lattice. Between the green

and the sky blue line, we observe the expected Abrikosov triangular lattice. Upon increasing the

magnetic flux, the vortex lattice becomes rectangular when the average distance between vortices Lv
is smaller than the superconducting coherence length ξ0. In the figure, we depict the Bragg lattice,

the structure factor of the vortices position. For larger fields, the circular pattern signals the vortex

repulsion phase characterized by a loss of vortex translation symmetry, strong vortex repulsion and

on average rotational symmetry of the vortices position. In the phase termed vortex attraction,

vortex repulsion is strongly suppressed and we observe strong vortex overlap in many cases. The

question mark refers to the fact that we do not have a fully quantitative description of this phase.

The phase termed vortex deformation is characterized by vortices with a vortex core that becomes

spatially inhomogeneous and a highly deformed vortex profile. By no superconductivity, we refer

to a region of vanishing superfluid density independently of its origin. We note that in the rest of

regions, phase coherence holds. Indeed, disorder enhances the critical flux φc2.

between the expected triangular Abrikosov lattice at no or very weak disorder, and a phase

characterized by vortex repulsion but no translational order. When the magnetic flux is

large enough, the vortex overlaps and there are signs of incipient frustration in the phase of

the superconductor, see Fig. 18 in Appendix B. For sufficiently strong disorder, this phase

melts into a disordered vortex phase, termed vortex deformation in Fig. 1, where the vortex

core is spatially inhomogeneous with a highly deformed external profile, see Figs. 10 and 11.
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Another intriguing finding is that all of the above vortex distributions coexist with phase

coherence. Even more, disorder enhances the critical magnetic field, see Fig. 14, especially

on the metallic side of the transition where the average order parameter is enhanced, see

Fig. 15(b), as well. The latter features are potentially relevant for design optimizations of

superconducting devices for technological applications.

As was mentioned previously, the interplay of vortices and disorder using the BdG for-

malism has already been investigated in Refs. [17, 27, 40–43] but for substantially smaller

sizes: at most 36× 36 in those papers versus 100× 100 in our paper. Moreover, these works

do not address the two main problems studied in this paper: the change in the vortex lattice

distribution as a function of disorder and magnetic flux and the spatial deformation and

inhomogeneity of single vortices for strong disorder on the metallic side of the transition.

The reason for that is of technical nature, the study of vortex lattices requires larger lattice

size. Likewise, the convergence of the code slows down substantially in the strong disorder

region which therefore requires both substantial computational resources together with the

use of state of art numerical techniques.

Finally, we would also like to mention a recent study [28], see also Ref. [65], that considered

the interplay of disorder, magnetic field and temperature by using an effective XY model

for the phase of the order parameter. It was found that disorder enhances the robustness

of the superconducting state against magnetic effects at finite temperature. However, the

dependence of the vortex lattice with the disorder strength, the main focus of this paper, is

not addressed. Moreover, quantum coherence effects are lost in this type of phenomenological

approach. Therefore, there is no sizable overlap between our results and previous literature

on this problem.

We start our study with an introduction of the model and the employed numerical tech-

niques.

II. MODEL AND METHOD

The disordered superconductor is modeled by an attractive Hubbard model,

H =
∑
ijσ

−tc†iσcjσ + U
∑
i

ni↑ni↓ +
∑
iσ

Viniσ. (1)
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The effect of a perpendicular magnetic field B(r, t) = ∇ × A(r, t) is introduced by the so

called Peierls’ substitution t→ tij = t exp(iφij) where φij = π
φ0

∫ ri
rj
A(r)dr and φ0 = hc/2e is

the superconducting quantum flux. The magnetic field B is then given in terms of the flux

φ in units of φ0.

We note that when U = 0 and Vi = 0, and for certain values of the magnetic field and the

lattice size, so the flux becomes increasingly incommensurate, the Hamiltonian reduces to

the celebrated Harper-Hofstadter model [66, 67] which displays an intricate band structure

that becomes multifractal at the transition. In this study, since we are interested on vortex

physics, we only focus on integer fluxes that are far from the Harper-Hofstadter limit even for

no disorder. Likewise, recent reports [68, 69] on Hofstadter superconductivity are for clean

systems and for a strength of the magnetic field much larger than the one considered in the

paper. Therefore, there is no overlap with our results.

Returning to Eq. (1), in order to simplify the numerical calculation, the perpendicular

magnetic field is chosen to be a time independent uniform field B = (0, 0, B0). We can use

the vector potential A = (−B0y, 0, 0) in the Landau gauge. We neglect the coupling of the

magnetic field to the spin, the Zeeman term, as the field strength in our problem is relatively

weak so the spin-splitting is too small to cause any substantial effect in the vortex physics in

superconductors we are interesting in.

By performing a Bogoliubov transformation ciσ =
∑

n

[
un(i)γnσ − σv∗n(i)γ†nσ̄

]
, where γnσ

and γ†nσ are fermion operators, we obtain the two dimensional Bogoliubov de-Gennes equa-

tions [48, 63, 64, 70] in the presence of a magnetic flux,

 K̂ ∆̂

∆̂∗ −K̂∗

un(ri)

vn(ri)

 = En

un(ri)

vn(ri)

 (2)

where

K̂un(ri) = −tij
∑
δ

un(ri + δ) + (Vi − µi)un(ri) (3)

and the sum δ is restricted to the four nearest neighboring sites. In our calculation, for

simplicity, we use t = 1 as the unit of energy, and the superconducting flux quantum is φ0 = π.

Vi are random variables from an uniform distribution between [−V, V ]. The local chemical

potential including the Hartree shift is µi = µ + |U |n(ri)/2, ∆̂un(ri) = ∆(ri)un(ri), and the
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same definition applies to vn(ri). The BdG equations are completed by the self-consistency

conditions for the site dependent order parameter ∆(ri) = |U |
∑

n un(ri)v
∗
n(ri) and the density

n(ri) = 2
∑

n |vn(ri)|2. The order parameter can be written as ∆(ri) = |∆(ri)|eiθi where the

non trivial phase θi in this mean field formalism is a direct consequence of the existence of a

magnetic flux. The averaged charge density 〈n〉 =
∑

i n(ri)/N is fixed by tuning the chemical

potential µ at each iteration step.

Imposing the self-consistent condition, we solve eq. (2) numerically on a square lattice

(N = L × L). In order to minimize finite size effects, it is important to employ periodic

boundary conditions at zero temperature. However, this is challenging due to the presence

of the flux leading to a vortex lattice and the requirement of magnetic translation symmetry

[71, 72]. Following previous literature [43, 71, 72], we have found that the optimal choice

that minimizes finite size effects and respects magnetic translation symmetry, is the so called

twisted boundary condition along y-direction un(rx, ry + L) = exp(iπrxLφ/φ0)un(rx, ry) and

vn(rx, ry +L) = exp(−iπrxLφ/φ0)vn(rx, ry), where rx and ry are the lattice sites along x and

y directions respectively.

It is important to stress that exact periodic boundary conditions can be imposed in the

limit of no disorder where the amplitude of the order parameter is constant except in the

vortex core where it vanishes. This is achieved by performing a singular gauge transformation

[40, 73] so that the phase factor of the order parameter vanishes but a new phase factor

appears in the hopping terms which makes possible to impose strictly periodic boundary

conditions respecting at the same time magnetic translation symmetry. However, it assumes

a constant order parameter amplitude so the solution is not self-consistent. In the very weak

disordered regime, it can still be a good approximation because deviations from an Abrikosov

lattice are small and can be accounted phenomenologically[73] by assuming a small random

displacement of the vortex position. However, this approach completely breaks down for

stronger disorder, especially around the insulating transition. Since we are mostly interested

in the impact of disorder on vortices for a broad range of disorder strengths, we cannot adopt

this exact periodic boundary condition scheme.

As a consequence, we could not find a way to exactly impose periodic boundary conditions

because, unlike previous studies in the literature, we aim to keep the treatment of the am-

plitude and the phase of superconducting order parameter on equal footing which requires a



10

self-consistent treatment of the former so that we can study changes in the vortex profile due

to disorder. At the same time, sizes must be as large as possible in order to do any quantita-

tive analysis of the vortex lattice which prevent us using Dirichlet boundary condition. This

constraints led us to choose the mentioned twisted boundary conditions along one direction.

Additional technical details about the choice and implementation of boundary conditions in

the presence of a magnetic flux are found in Appendix. A.

Another important technical issue that also requires a detailed description is the method

to determine the position of the vortex. A vortex occurs in a certain region of the sample if

the sum of the phase difference between two neighboring sites (θi+δ−θi) in a closed path L is

2π, namely,
∑
L(θi+δ− θi) = ±2π. The vortex core is then located at the center of the closed

path. The inset of Fig. 6(b) shows the precise relation of the phase θi (red arrow) and the

vortex core (red circle). Further details on the definition of a closed path and a vortex core

are found in Appendix. B. Moreover, in order for the phase θi of the superconducting order

parameter to be single-valued everywhere, φ/φ0 must be an even number [40, 74], so that

the accumulated phase difference
∑
L(θi+δ − θi) along any closed path that contains a set of

vortices is 2nvπ, where nv = ±1,±2, · · · . The findings of Section. V and Appendix. E confirm

that for a satisfactory description of the vortex profile, especially in the strong disorder region,

it is necessary the self-consistent calculation of the amplitude of the order parameter.

Finally, we comment on the choice of parameters in this study. We adjust the chemical

potential so that the charge density is fixed at 〈n〉 = 0.875 which is commonly used in the

study of disordered superconductors [27, 37, 47, 48]. For the study of the vortex lattice, we set

N = 60× 60 and coupling constant |U | = 1.25. With these parameters, the coherence length

ξ0 ∼ 12 so the radius of the vortex r0 ∼ 12 will be similar which allows us to reproduce

the Abrikosov lattice even in the clean limit. In some cases, we also study larger system

size N = 100 × 100 to confirm the results. When we study the vortex profile and spatial

inhomogeneity within the vortex region, our focus shifts to a system with weaker coupling

|U | = 1, leading to larger vortex, r0 ∼ 15, which helps us investigate in more detail the spatial

structure inside the vortex. In order to get rid of the interactions between vortices, which

might cause unexpected effects to the vortex, we study only two vortices in such system with

size N = 60×120. In summary, with this choice of parameters, we are able to explore vortex

physics, both for single vortices and for vortex lattice, in the presence of disorder approaching
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the experimental region of weakly coupled conventional metallic superconductors.

III. DISTRIBUTION OF VORTICES IN CLEAN BDG SUPERCONDUCTORS:

ABRIKOSOV TRIANGULA LATTICE

In this section, we study the distribution of vortices as a function of the magnetic flux

strength in the limit of no disorder where we expect to recover the Abrikosov triangular lattice

solution originally obtained [1] from the phenomenological Ginzburg-Landau formalism.

In the clean limit, V = 0, the application of a sufficiently strong magnetic flux results in the

creation of the Abrikosov lattice [1], a triangular lattice of vortices. The vortex distribution

depicted in Fig. 2, for a 100×100 lattice, shows excellent agreement with an Abrikosov lattice

in both real space and Fourier space.
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FIG. 2. Left: The spatial distribution of the order parameter |∆(r)| normalized by ∆0 = 0.0894t,

which is the superconducting gap in the absence of disorder and magnetic flux. The vortices

position is marked by red circles. The Abrikosov triangular lattice is clearly observed. Right: The

corresponding structure factor of the vortices position. We obtain sharp Bragg peaks, marked by

white circles in the figure, that correspond to the expected triangular Abrikosov lattice. This is

consistent with the distribution of vortices in real space. The system size is N = 100 × 100, and

the magnetic flux φ/φ0 = 16. The other parameters are |U | = 1.25, 〈n〉 = 0.875.

We subsequently study the sample with different aspect ratios. Results depicted in Fig. 3

show that the triangular Abrikosov lattice is well reproduced, although in some cases, the

Abrikosov lattice is stretched or compressed due to the shape. In Fourier space, we observed

the expected sharp hexagonal Bragg pattern related to the triangular lattice in real space.

Results for different sizes and aspect ratio, confirm the triangular Abrikosov lattice in the

limit of no disorder.
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FIG. 3. Top panel: The spatial distribution of the order parameter |∆(r)| normalized by ∆0 =

0.0894t, and the vortices core (red circles). The height of the sample is fixed at 60, while the length

of the sample are 60, 80, 90 and 110 from left to right. The Abrikosov triangular lattice is clearly

observed though for 60 is slightly compressed. The magnetic flux is φ/φ0 = 12 for 60, 80, 90, and

φ/φ0 = 18 for 110. Below is the corresponding structure factor. We obtain sharp Bragg peaks,

marked by white circles in the figure, that correspond to the expected triangular Abrikosov lattice.

The other parameters are |U | = 1.25, 〈n〉 = 0.875.

IV. DISTRIBUTION OF VORTICES IN DISORDERED SUPERCONDUCTORS

We now turn to the role of disorder in the vortex distribution at zero temperature. In

Fig. 4, we depict the spatial dependence of the order parameter, resulting from the solution of

the BdG equations, for different disorder strengths V and magnetic fluxes φ/φ0. Red circles

stand for the vortex position.

A. Weak disorder region

In the weak disorder region V = 0.5, the distribution of vortices is rather sensitive to

φ/φ0. For 10 ≤ φ/φ0 ≤ 16, we still observe clear regularities that points to a deformed

triangular Abrikosov lattice. However, a larger φ/φ0 induces larger spatial inhomogeneities

in the order parameter that translates into a more complicated vortex pattern. It seems that

it becomes energetically favorable that vortices occupy regions where the order parameter

is suppressed. We note that, in two dimensions, the effect of sufficiently strong disorder
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FIG. 4. The spatial distribution of the order parameter |∆(r)| normalized by ∆0 = 0.0894t with

|U | = 1.25, 〈n〉 = 0.875. The position of vortices is represented by red circles. Disorder strength is

V = 0.5, 1.0, 1.5 and 2.25 in units of the hopping energy from top to bottom. The magnetic flux

strength is, from left to right, φ/φ0 = 0, 10, 16, 20, 24, 36 and 64. By increasing disorder, the spatial

distribution of the order parameter becomes strongly inhomogeneous. As expected, an increasing

magnetic flux, suppresses the order parameter which effectively becomes more inhomogeneous. In

the region of strong magnetic flux (φ/φ0 ≥ 36), close or at the transition, we do not mark the vortex

position because, see sections V and Appendix. A, vortex overlap and single vortices are deformed

especially in the strong disorder region which makes difficult to determine its location.

induces incipient quantum localization effects such a log-normal spatial distribution of the

order parameter [33, 34]. However, a disorder strength V = 0.5 is too weak to cause any

significant localization effect. The distribution of probability is indeed still close to Gaussian,

see appendix G, though with a comparatively larger standard deviation.

For a larger field φ/φ0 = 24, the vortex positions do not seem to follow any pattern. For

larger field φ/φ0 = 36 and 64, we cannot discern vortices clearly because strong overlap in

some cases which we think indicates that this must be close or above the critical field at

which the loss of superconductivity takes place.

In any case, the spatial distribution of the order parameter is not enough for a quantitative

description of the vortex distribution. For that purpose, we compute next the structure factor

with respect to the position of the vortices [7, 16, 75]. We note that lattice symmetries in
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real space can be characterized by the pattern of Bragg peaks in the first Brillouin zone.

1. From triangular to rectangular vortex lattice in Fourier space

We now provide a more quantitative analysis of the nature for the vortex lattice as a

function of disorder and magnetic flux by the Fourier transform with respect to the vortex

positions. For V = 0.5 and φ/φ0 ≤ 18, we observe, see Fig. 5, an hexagonal structure in

Fourier space which is a signature of the triangular Abrikosov lattice. Unexpectedly, around

φ/φ0 ∼ 20, the hexagonal lattice in Fourier space transforms into a rectangular lattice.

We first analyze the difference of the maximum angle θx and minimum angle θn of the

triangle formed by three neighboring vortices, and the distance between two vortices, as a

function of the magnetic flux. The results are shown in Fig. 6. In the triangular Abrikosov

lattice, θx = θn = π/3, which leads to cos(θx − θn) = 1. For a right triangle, θx = π/2 and

θn = π/4, which leads to cos(θx − θn) =
√

2/2 ∼ 0.7. Those features are well captured in

Fig. 6(a) that shows the transformation of the vortex distribution from a triangular lattice

to a rectangular lattice.
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FIG. 5. Structure factor of the vortices position in the weak disorder region V = 0.5. The magnetic

flux is φ/φ0 is 16, 18, 20, 22 and 24 from left to right. For φ/φ0 = 16, 18, the pattern is consistent

with a triangular lattice in real space. However, a small increase, φ/φ0 = 20, leads to a transition

to a rectangular lattice. An increase in the flux ( φ/φ0 = 22) results in a close to circular pattern

signaling the absence of translational symmetry. Physically, a circular pattern indicates a combina-

tion of vortices repulsion and the restoration of rotational symmetry [65, 76]. This circular pattern

eventually disappears for φ/φ0 ≥ 24 which signals a fully disordered phase with no clear vortex

repulsion. To make the pattern more evident, we have set some cut-off value, referred by High in

the plot.

A distinct feature of the rectangular lattice is that the distance between vortices is smaller

than the typical vortex separation Lv, which is determined by the coherence length ξ0 = 12,
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FIG. 6. (a) The cosine of the differences of the maximum angle θx and the minimum angle θn in

the triangle formed by three vortices. By increasing the magnetic flux, there is a transition from

equilateral triangle to right triangle. (b) The vortex lattice spacing Lv as a function of the magnetic

flux. Inset: spatial distribution of the order parameter (color code of Fig. 4) for two different

magnetic fluxes including the extra phase (red arrow) due to the magnetic flux and the vortex core

(red circle). The size of the vortex lattice spacing in the clean limit is close to the coherence length,

ξ0 ∼ 12, so we expect that smaller spacing will lead to vortex overlap.

obtained in the clean limit, so vortex overlap. This overlap is energetically unfavorable in the

clean case. However, disorder may make it possible because vortices gain energy in locations

where the order parameter is suppressed. Therefore, the observed rectangular distribution

is a compromise between disorder that tend to group vortices with no spatial symmetry and

magnetic flux that tend to a more symmetric triangular vortex distribution.

More specifically, the differences between the non-overlapping vortices and the overlapping

vortices are illustrated in the inset of Fig. 6(b) where it is observed a clear deformation of

the vortex arrow, with respect to that of a single isolated vortex, in the region between the

two vortices.

These results further support that vortex overlap plays an important role in the triangular

to rectangular lattice transition. In order to fully confirm the existence of this intriguing

rectangular phase, we repeat the analysis for a larger sample size L = 100 in Appendix. F. A

larger size leads to a larger number of vortices which makes the Fourier analysis much more

accurate. The observation of a sharp rectangular pattern in Fourier space for L = 100, see
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Appendix. F, provides strong evidence of the existence of a rectangular vortex lattice in real

space and sufficiently weak disorder far from the critical region.

We note that a similar transition from a hexagonal vortex lattice to a rectangular vortex

lattice in Fourier space is also observed in FeSe [75] and LiFeSe [16]. In these experiments,

the transformation is attributed to vortex overlap. A direct comparison with our results is

not possible because these iron-based materials are multi-band superconductors. The order

parameter is thus expected to have a non trivial angular dependence. By contrast, our model

is disordered, single-band and the order parameter has s-wave symmetry and therefore no

angular dependence.

2. From rectangular vortex lattice to vortex repulsion and beyond

By a further increase of the magnetic flux φ/φ0 ≥ 22, the peaks that characterize the

rectangular lattice phase become gradually smeared out. Some structure, closer to a circle,

remains which signals vortex repulsion but loss of any discrete translational symmetry and the

on average restoration of rotational symmetry of the vortices position. Therefore, although

the inhomogeneity of the order parameter destroys any lattice structure in Fourier space,

the magnetic flux still maintain vortices well separated. This gradual destruction of discrete

translational symmetry has been observed [76] experimentally.

For φ/φ0 ≥ 24, no clear structure can be discerned in Fourier space which is typically

associated with a vortex disordered phase where vortex repulsion is gradually weakened. In

this weak disorder region, with no multifractal effects, we expect rotational symmetry to

still continue in the region close to the transition. However, larger lattices, with a larger

number of vortices, leading to a sharper pattern in Fourier space, are necessary for a full

characterization of this phase. More specifically, it would be interesting to determine whether

a clear diffraction disk, characteristic of rotational symmetry in the vortices position, is

observed.

B. Strong disorder region

For stronger disorder (V ∼ 1.5), see Fig. 4, and not too strong fields, the system is still

superconducting, see next section, but the order parameter has large spatial inhomogeneities
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and vortices tend to be located in regions where the order parameter is heavily suppressed.

Moreover, vortices become spatially inhomogeneous. After averaging over different vortex

cores, which smooths out inhomogeneities, the averaged vortex profile is still quite sensitive

to the disorder strength, see Fig. 10 and Appendix E for more details. A Fourier analysis,

see Fig. 7, confirms this point. The observed circular pattern for φ/φ0 ≤ 24, suggest, as

in the weak disordered region, the restoration, on average, of the rotational symmetry, the

breaking of any remnants of discrete translational invariance, and the persistence of strong

vortex repulsion.

The circular pattern finally disappears for φ/φ0 ≥ 28. In this region of stronger fields, it

is unclear whether rotational symmetry is restored because multifractal-like properties of the

order parameter distribution may control completely the position of vortices. In any case,

the system size is not large enough to provide a more quantitative characterization.

For V & 1.5, which is close to the transition, we find no trace of vortex lattice or glass

structure. Vortices position seem to be dictated by the sample regions where the order pa-

rameter has an especially small value. Therefore, no vortex repulsion is observed. Moreover,

the inhomogeneities inside the vortex core becomes even stronger, see Fig. 11. For these

reasons, in many cases, it becomes increasing difficult to precisely determine the position of

isolated vortices.
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FIG. 7. Structure factor of the vortices position in the strong disorder region V = 1.5. The magnetic

flux is φ/φ0 = 10, 16, 20, 24, 28 from left to right and the lattice size is 60 × 60. Unlike the weak

disorder V ∼ 0.5 region, we do not observe the triangular or rectangular lattice phases. The spatial

distribution of the order parameter is too inhomogeneous for the formation of any form of vortex

lattice. For φ/φ0 ≤ 24, the system is characterized by vortices that still repel each other but have

lost discrete lattice symmetry. For larger fields, vortex repulsion is strongly weakened. The vortex

distribution approaches the fully disordered phase.

For a sufficiently strong field, we expect that the vortex positions are ultimately controlled
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by the multifractal-like properties of the order parameter. However, as mentioned above, we

could not find a precise characterization that would allow a more quantitative description of

the vortex distribution. Larger sizes and more vortices would be necessary for that purpose.

A general feature of the strong disorder region is the relative insensitivity of the order

parameter to the increase of the magnetic flux. In part, this is due to the fact that we

model the magnetic flux in the so called Peierls substitution that neglects the coupling of

the spin to the magnetic field. However, it also contributes that vortices occur in regions

where the superconducting order parameter is already heavily suppressed by disorder, which

is amplified by coherence effects, so they barely induce a further suppression. We shall see in

Section VI that this feature has important consequences in observables such as the critical

magnetic flux or the spatial average of the order parameter. Finally, we note that in this

section we have employed a 60× 60 lattice. The reason for that is twofold, on the one hand

numerical convergence is much slower as disorder increases. On the other hand, finite size

effects are suppressed by disorder so, at least in the region where disorder destroys the vortex

lattice, we do not think larger sizes > 60× 60 will change the results qualitatively. However,

as mentioned earlier, larger lattices will be necessary for a more quantitatively description of

the vortex distribution in this region.
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V. THE VORTEX PROFILE

In the previous section, we showed that vortices occur in regions with heavily suppressed

superconductivity. One natural question to ask is whether the vortex shape is sensitive to

the spatial distribution of the superconducting order parameter. It is also important to

explore the profile of single vortices in the presence of disorder, so that we can have a better

understanding of the interplay of disorder and magnetic flux.
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FIG. 8. Left: The spatial distribution of the order parameter and its phase in the clean limit when

there are four vortices. Right: The profile of the order parameter for the vortex. The red solid line

is the fit to the Ginzburg-Landau prediction Eq. 4. The other parameters are |U | = 1.0, 〈n〉 = 0.875.

According to the Ginzburg-Landau (GL) theory [77, 78], the profile of the order parameter

inside a vortex neglecting disorder effects is:

∆(r)

∆0

= as tanh(r/r0) (4)

where as∆0 is the spatial average of the order parameter in the absence of magnetic field

and r0 characterizes the vortex size. In the clean limit, r0 is similar to the superconducting

coherence length ξ0. In the inhomogeneous case, to have smoother results, we obtain the

∆(r)/∆0 by averaging over points in the vortex core at the same distance of the center.

The results with only two vortices are illustrated in Fig. 8 ∼ 11. In the clean and weak

disorder limit, the results fit well with the GL prediction. Additional results are presented

in Appendix E. The best fitting for r0 in the weak disorder region V = 0.5 is 10 ≤ r0 ≤ 14,

which is slightly smaller than r0 = 14.73 in the clean limit. However, when the disorder is

stronger, the fittings become much worse, and the fitted parameter r0 varies in a much larger
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region because the vortex profile is no longer circular. This is directly related to the fact that

the spatial distribution of the order parameter is dominated by disorder which in this region

is highly inhomogeneous.

0 20 40 60 80 100 120
0

20

40

60

0

0.2

0.4

0.6

0.8

1

0 10 20
0

0.2

0.4

0.6

0.8

0 10 20
0

0.2

0.4

0.6

0.8

FIG. 9. Upper: The spatial distribution of the order parameter amplitude and phase in the presence

of a weak disorder strength V = 0.5. Lower: the corresponding vortex profile. The red solid line is

the fit to the Ginzburg-Landau Eq. 4 prediction. Vortex 1 (2) stands for the left (right) vortex of

the upper plot. Other parameters are 〈n〉 = 0.875 and a lattice size 60× 120. We employ a weaker

coupling |U | = 1.0 so that the vortex is larger which facilitates the study of its core and profile.

More specifically, if we define the vortex profile by the spatial distribution of the phase in

the vortices region, shown in Fig. 10 and 11, the vortices have the shape of heavily suppressed

superconducting order parameter region which is far from circular but rather elongated and

with no apparent symmetry. We are not aware of any previous research about this intriguing

phase characterized by deformed vortices with inhomogeneous vortex cores.

Moreover, these results in the intermediate and strong disorder hint that in the weak

|U | ≤ 1 coupling limit, it may be possible to observe multifractal vortices [33, 37, 45, 46],

namely, vortices whose shape is directly influenced by the multifractal-like features of the

spatial distribution of the order parameter.
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FIG. 10. Upper: The spatial distribution of the order parameter and its phase in the intermediate

disorder region V = 1.5. Lower: Vortex profile compared (red lines) with the Ginzburg-Landau

prediction Eq. 4. Vortex 1 stands for the left vortex, and the right vortex is Vortex 2. The other

parameters are 〈n〉 = 0.875 and a lattice size 60× 120. We employ a weaker coupling |U | = 1.0 so

that the vortex is larger which facilitates the study of its core and highly deformed profile.

Finally, we note that by averaging over different vortices we recover an approximate cir-

cular shape, as is shown in Fig. 23 of Appendix E. In the presence of a stronger disorder

V = 2.25, even identifying the vortex core is problematic and therefore we can not perform

an average over the vortex cores. In this limit, which is around the superconductor-insulator

transition, as expected, the vortex core deviate strongly from the GL prediction and the

spatial structure is highly inhomogeneous, the outer profile seems to be very sensitive to the

details of the disorder potential but highly elongated in general. Intriguingly, the phase of the

order parameter seems to form the so-called Josephson vortex [27] that needs to be defined

over a rather long and non-circular path.



22

0 20 40 60 80 100 120
0

20

40

60

0

0.2

0.4

0.6

0.8

1

0 10 20
0

0.1

0.2

0.3

0.4

0 10 20
0

0.1

0.2

0.3

0.4

FIG. 11. Upper: The spatial distribution of the order parameter and its phase in the stronger

disorder region V = 2.25. Lower: spatial vortex profile compared with the Ginzburg-Landau

prediction Eq. 4 in the clean case (red lines). Vortex 1 (2) stands for the left (right) vortex in the

upper plot. The other parameters are |U | = 1.0, 〈n〉 = 0.875 and a lattice size 60× 120. Deviations

from the theoretical prediction illustrate the important effect of disorder.

VI. CHARACTERIZATION OF THE SUPERCONDUCTING STATE IN THE

PRESENCE OF VORTICES AND DISORDER

The results of previous sections suggest that while for weak disorder a vortex lattice is

still formed, though with a different symmetry depending on the magnetic flux, the effect for

stronger disorder is more drastic. No lattice structure or even short range position correlation

can be discerned. It seems that vortices are located in regions with a very small value of

the order parameter. Therefore, it is ultimately controlled by disorder, more specifically

by the spatial inhomogeneities of the order parameter, and therefore not much influenced

by the magnetic flux. In this section, we aim to understand in more detail to what extent

disorder weakens the effects of the magnetic flux. We shall see that in certain cases it may

even enhance superconductivity. We split the analysis of the interplay between disorder and
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magnetic flux in two parts. We first compute the covariance of the order parameter and

the order parameter amplitude two-point correlation for a more quantitative assessment of

the suppression of magnetic effects by disorder. In the second part, we show that in certain

region of parameters, disorder increases experimental observables like the critical magnetic

field flux and the spatial average of the order parameter.

A. Covariance and two-point correlation function of the order parameter amplitude

We compute the covariance of the order parameter with and without magnetic flux,

cov(φ) = 〈(∆(0)− ∆̄(0))(∆(φ)− ∆̄(φ))〉/σ(0)σ(φ) (5)

where σ2(0) is the variance of the order parameter without magnetic flux ∆(0), and σ2(φ) is

the variance of the order parameter in the presence of a magnetic flux φ.
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FIG. 12. The dependence of the covariance cov(φ) Eq. (5) on the flux φ offers strong evidence

that when disorder is weak V = 0.5, the impact of the magnetic flux is strong which is consistent

with the observed different lattice distributions. However, for strong disorder, the effect of the flux

is limited as vortices are located in regions where the order parameter is strongly suppressed by

disorder effects. The flattening for large φ and weak disorder V = 0.5 signals the transition.

From previous results, we expect that for weak disorder cov(φ) is sensitive to φ because we

observe different transitions in the vortex distribution. For strong disorder, vortices position

does not change much with disorder, so we expect cov(φ) is only weakly dependent on φ.
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Numerical results, depicted in Fig. 12, fully support these qualitative considerations. Even

for V = 0.5, cov(φ) is relatively close to the one for weak fields φ/φ0 < 10 because a vortex

lattice is not yet formed so a flux has little effect. However, the formation of vortex lattice

at φ/φ0 ∼ 16 reduces drastically the covariance. Disorder does not play an important role

in this region. A further increase in the magnetic flux leads to changes in the vortex lattice

structure and a further weakening of the correlations described by the covariance. The

decrease rate of cov(φ) is reduced sharply at around φ/φ0 ≥ 24 which is precisely the region

where we stop observing any positional and orientational order in the vortex distribution.

A magnetic flux above the critical one will eventually break down superconductivity. For

stronger disorder, V ≥ 1.0, the covariance decreases slowly with φ/φ0 even for relatively

large fields. Already for V = 1.5, which is still on the metallic side of the transition, the

covariance is largely insensitive to φ/φ0. This confirms that, in this region, vortex positions

and the spatial distribution of the vortex core are closely related to the distribution of the

superconducting order parameter and not to the strength of the magnetic flux, namely, the

vortex is controlled by disorder and therefore the covariance does not change much.
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FIG. 13. Two-point spatial correlation function of the order parameter. From left to right:

V = 0.5, 1.5 and 2.25. (a) The correlation is very sensitive to the magnetic flux strength. As

a consequence, we observe substantial changes around the formation of the vortex lattice φ/φ0 = 16

and its destruction φ/φ0 = 22. (b) The breaking of positional order is signaled by the insensitivity

of the correlation function to changes in the field around φ/φ0 ∼ 20. (c) Correlation function around

the insulating transition. The dependence on the magnetic flux is rather weak in this region. Note

the different range of fields in the left and right plots.

We turn now to the two-point correlation function of the order parameter amplitude

〈|∆(r)||∆(0)|〉 which provides valuable information about the impact of a magnetic flux in
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a disordered superconductor. We note that we are not including phase fluctuations in our

formalism so this observable provides only an upper bound for the loss of phase coherence.

Since the disorder is not periodic in this study, we do not consider the periodicity when we

calculate the correlation function, namely, we specifically consider only the sites that are at

a specific distance, denoted as ”r”, from the chosen site ”0”, and then perform an average

over all sites.

For weak disorder V = 0.5, see left plot of Fig. 13, we distinguish three different regions

as φ/φ0 increases: for φ/φ0 ≤ 10 the effect of the magnetic flux is small. We do not observe a

decay of correlations. For φ/φ0 = 16, 20, there exists a drop of correlations for long distances

consistent with the formation of the vortex lattice. A further increase of the field results

in a sharper drop of correlations consistent with the destruction of the vortex lattice. For

stronger disorder V ≥ 1.5, central and right plot of Fig. 13, the effect of the magnetic flux is

relatively small which reinforces the idea that strong disorder suppresses the impact of the

magnetic flux without necessarily breaking phase coherence.

B. Enhancement of the critical magnetic flux and the order parameter by disorder

An intriguing feature that we have observed is that the critical magnetic flux is enhanced

by disorder. Results depicted in Appendix. C indicate that in the clean limit the maximum

magnetic flux is φ/φ0 = 12 for size N = 60× 60. However, see Fig. 4, even a weak disorder

V = 0.5, enhances the critical maximum magnetic flux to φ/φ0 ∼ 24. In order to reach a more

quantitative conclusion about whether the critical magnetic flux is enhanced by disorder, we

determine this critical flux by both the study of the superfluid stiffness and a percolation

analysis of the order parameter spatial distribution.

The superfluid stiffness Ds

π
presented in Fig. 14(a) is given by Ds

π
= 〈−kx〉−Λxx(q, iω → 0)

[79], see Appendix. H for more details. In the weak disorder region, Ds/π decreases sharply

as the magnetic flux increases. In the intermediate disorder region, the superfluid stiffness

decreases more slowly. Ds/π is still finite even for φ/φ0 = 36. This enhancement of the critical

field is not monotonic. For a sufficiently strong disorder, Anderson localization effects trigger

a transition even without a magnetic flux. This is illustrated for V = 2.25, at or very close to

the transition, where the superfluid stiffness becomes compatible with zero for a much smaller
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field strength φ/φ0 = 16. By compatible with zero we mean though the superfluid density

is not zero its value is already very small so it is probably zero once quantum fluctuations,

neglected in our mean field analysis, are considered.
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FIG. 14. (a) The superfluid stiffness as a function of the magnetic flux. (b) The probability that

|∆(r)| ≥ ∆c, where ∆c = 0.1∆0, and ∆0 = 0.0897. The crossing with pc = 0.59 is the percolation

prediction for the transition. The parameters are N = 60× 60, |U | = 1.25 and 〈n〉 = 0.875.

We now proceed with another estimation of the critical field based on a percolation analysis

of the order parameter spatial distribution. The percolation threshold for a 2D square lattice

is pc = 0.59 [80]. Results, depicted in Fig. 14(b), show that the critical flux for the breaking

of superconductivity, within the metallic region, is enhanced by disorder. This is consistent

with the previous superfluid stiffness analysis. Strictly speaking, the location of the transition

depends on the cut-off value ∆c. Therefore, the percolation analysis gives only a rough

estimation rather than a precise determination of the critical magnetic flux. However, in

combination with the previous superfluid density results, it provides a consistent, albeit

qualitative, picture of the role of disorder: up to intermediate strengths V = 1.5, disorder

enhances the critical magnetic flux. A further increase of V , at or close to the insulating

transition, leads to a suppression of the critical magnetic flux. The maximum enhancement

occurs for intermediate values of the disorder strength V ∼ 1.5.

We investigate now the effect of disorder on the spatial average of the order parameter
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FIG. 15. The spectral gap 〈Eg〉 (left) and the spatial average of the order parameter 〈∆(r)〉 (right)

for |U | = 1.25 and 〈n〉 = 0.875. While the spectral gap decreases monotonously with disorder and

magnetic flux, we identify a region φ/φ0 ∼ 20 where 〈∆(r)〉 increases with disorder though its value

is still smaller than ∆0, the order parameter in the absence of disorder and at zero field.

and the spectral gap in the presence of a magnetic flux. For a fixed value of the disorder

strength, see Fig. 15(b), the spatial average of the order parameter decreases as magnetic

flux increases. However, the decrease is much slower as disorder is increased. Interestingly,

we identify a region in the magnetic flux φ/φ0 ∼ 20 strength, close to the transition, where,

for a fixed φ/φ0, the spatial average of the order parameter is enhanced by disorder though it

is still smaller than in the no disorder, no field limit. This is another example where disorder

protects the superconducting state against magnetic effects that tend to weaken it. The

average spectral gap, depicted in Fig. 15(a), shows qualitatively similar features though we

could not clearly identify a region where disorder enhances it for a fixed magnetic flux.

In conclusion, even weak disorder debilitates magnetic effects in two dimensional supercon-

ductors. Ultimately, this is due to the fact that disorder makes the order parameter inhomo-

geneous in space. Quantum coherence effects, such as incipient localization or multifractality,

tend to amplify this suppressing effect due to the enhancing of spatial inhomegeneities. We

note that a microscopic model, as the one we employ, is necessary for a quantitative descrip-

tions of this phenomenon.
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VII. CONCLUSION AND OUTLOOK

We have investigated the distribution of vortices in a two dimensional disordered super-

conductor by a completely microscopic approach based on the solution of BdG equations in

the presence of a random potential and a magnetic flux introduced in the Peierls approxi-

mation. This is in contrast with most of previous calculations in the literature where the

starting point is the semi-phenomenological Ginzburg Landau equations or by using the XY

model and Monte-Carlo techniques. Until recently, our approach was not practically feasible

because of limitations in the lattice size and therefore in the number of vortices that can be

produced. Although limitations still exist, the rapid development of computational resources,

and the use of state of the art numerical techniques, has made possible to obtain results for

a range of parameters not far from the ones corresponding to weakly coupled metallic su-

perconductors and to simulate a sufficient number of vortices to investigate different lattice

configurations.

One of main results of this research is the observation, for a disorder strength not too

strong, of different transitions in the vortex lattice as the flux strength increases. As was

expected, for sufficiently weak disorder, a perturbed Abrikosov lattice is the configuration

with lower energy. For a slightly stronger magnetic flux, the dominant configuration is instead

a rectangular lattice. A further increase in the field strength leads to a phase characterized

by short-range vortex repulsion but no clear evidence of Bragg’s peaks which indicates loss

of any discrete translation symmetry.

A further increase of disorder, or magnetic flux, still inside the superconducting side where

global phase coherence holds, leads to the strong suppression of vortex repulsion. Indeed,

the absence of vortex repulsion makes at times difficult to distinguish individual vortices.

Another intriguing finding in this region is that the profile of single vortices is strongly

deformed from the standard circular shape. Moreover, the vortex core becomes spatially

inhomogeneous. It is plausible to expect that the vortex position and profile is mostly

dictated by the spatial distribution of the order parameter rather than by the strength of the

magnetic flux. As a result, the vortex distribution must be influenced by the multifractal-

like properties of the spatial distribution of the order parameter [34, 37, 45, 46]. However,

larger sizes accommodating more vortices would be necessary to provide a more quantitative
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characterization.

We also study the robustness of the superconducting state to the presence of vortices and

disorder. A major result of this investigation is the observation of global phase coherence

signaling a zero resistance state not only in the Abrikosov and rectangular lattice phase but

also in the vortex repulsion phase provided that disorder or magnetic flux strength are not

too strong. We have also identified a region of disorder close to the transition where the

critical magnetic flux is substantially enhanced with respect to the clean limit. Likewise, for

a fixed, and sufficiently strong field, φ/φ0 ∼ 20, we found that the spatial average of the

order parameter is enhanced by disorder. However, it is still smaller than in the limit of no

disorder and no magnetic flux.

Natural extensions of this work include the study of finite temperature effects and a more

quantitative characterization of the vortex repulsion phase and the spatial deformation of

the vortex core and profile, especially its relation to the multifractal-like spatial distribution

of the order parameter. Another problem that deserves further attention is that of the inter-

play of magnetic effects in granular materials modeled by Josephson junctions nano-arrays

where the superconducting state is also spatially inhomogeneous due to quantum coherence

effects induced by variations in the grain size. It would also be worthwhile to investigate the

vortex distribution in Hofstadter [69] superconductors and disordered multi-band topological

superconductors where it is possible that more stable vortex lattice configurations may exist.
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Appendix A: The boundary conditions in the presence of the magnetic flux

In this appendix, we introduce in detail how the periodic boundary conditions are modified

in the presence of magnetic flux, also see Ref [71, 72]. Although the periodic boundary

condition which means that the boundaries are connected is still implemented to the lattice, it

is no doubt that in the presence of vector potential A = (−B0y, 0, 0), where B0 = φ/(Lx×Ly),

the order parameter is no longer periodic. Here, we use the subscript x and y to specify the

x and y direction for clarification.
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FIG. 16. (a). The hopping term tij at the lattice sites which are not the bottom and top boundaries.

(b). The hopping between the bottom and top boundaries.

As introduced in Section II, the effect of a perpendicular magnetic field is introduced by

Peierls’ substitution, which leads to tr,r+δy = t and tr,r+δx = texp(−iryB0), where δx and δy

are the nearest neighboring sites of r along the x and y direction, which is illustrated clearly

in Figure. 16(a). However, when the sites are in the bottom or top boundary, we need to

introduce the extra phase along y−direction, see Figure. 16(b), to make sure that the sum

of the phase in a minimum loop is still B0. By considering all of this, the accumulated

phase will be Lx×Ly ×B0 = πφ/φ0, which means there will be φ/φ0 vortices in the sample.

Moreover, in order the wavefunctions are single valued, the accumulated phase must satisfy

exp(iπφ/φ0) = 1, which implies that φ/φ0 must be even. When this quasi-periodic boundary

conditions are implemented properly, the magnetic translation symmetry is restored, which
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means in our system, the order parameter should follow the translation property: ∆(rx, ry + Ly) = ∆(rx, ry)exp(i2π
φ
φ0

rx
Lx

)

∆(rx + Lx, ry) = ∆(rx, ry)
(A1)

Appendix B: Definition of the closed path and the position of vortices
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FIG. 17. The spatial distribution of the amplitude of the order parameter |∆(ri)| (false color)

normalized by its bulk value ∆0 ∼ 0.16, and its phase θi (black arrows). The closed path is

presented by the red arrows and the position of the vortex is marked by the red circle. The results

are on a smaller system size N = 18× 36 in the presence of magnetic flux φ/φ0 = 2, which means

there have two vortices. The coupling constant is U = −1.5 and the average density is 〈n〉 = 0.875.

The disorder strength is V = 0.0, 0.5, 1.0, 1.5 and 2.25 from (a) to (e).
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After solving self-consistently the BdG equations (2) in the presence of magnetic flux, we

obtain the on-site complex order parameter, which can be written as ∆(r) = |∆(ri)|eiθi . We

can therefore separate the amplitude |∆(ri)| and phase θi. We use the spatial distribution

of the |∆(ri)| and θi to define the position of the vortices. It is known that around the

vortex region, superconductivity is suppressed. The order parameter is almost zero at the

vortex core. Therefore, it is better to first find those sites with order parameter smaller

than a threshold value 0.2∆0. When the disorder is not that strong, those sites with heavily

suppressed superconductivity possess a higher possibility to become a vortex. We define a

closed path L around those positions. If the sum of the phase difference of two neighbouring

sites in this closed path L satisfies
∑
L(θi+δ − θi) = ±2π, this position corresponds to the

center of a vortex core. In most cases, the numerical code finds easily the vortex by either

considering the smallest loop, only four neighboring sites, around the point mentioned above,

marked by the red arrow in Fig. 17(b) and 17(c) (the vortex on the right side), or the second

smallest loop with eight sites, see Figs. 17(a) and 17(d). The vortex core is then located

at the center of the corresponding closed path. However, some vortices cannot be identified

by the code with the method mentioned above, especially in the stronger disordered region.

Since we already know the number of vortices in the sample when we define the magnetic

flux, that is φ/φ0, we can find the rest of vortices by hand, as shown in Fig. 17(e). Although

it is a much larger closed path, the sum of the phase difference along this path is still 2π, if

it contains a vortex.

As shown in the the main text, at even stronger disorder or higher magnetic flux, it is

difficult to identify the vortex by this simple way due to the strong spatial inhomogeneities of

the order parameter. Although we couldn’t identify vortices in some regions in the presence

of high magnetic flux, we want to stress that there might contain one or more flux in these

regions, which makes the ambiguous phase distribution, see Figure 18. More interestingly, in

some regions, the phases at neighboring sites have opposite directions. Whether it is some

kind of artifactual behavior, or novel physical mechanism still needs further studies. For that

reason, we just simply plot the spatial distribution of the order parameter without presenting

the position of the vortices to show the gradual suppression and eventual disappearance of

superconductivity.
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FIG. 18. The spatial distribution of the order parameter amplitude |∆(ri)| (normalized by ∆0 =

0.0894t) and phase θi (red arrows) in the presence of magnetic flux φ/φ0 = 16 (left) and φ/φ0 = 36

(right). The red circles represent the position of the vortices core. Although the phases don’t forms

the standard vortex loop as we introduced earlier, we still expect the regions marked by yellow

rectangles might contain one or more fluxes. The reason is that in these regions, the amplitude

of the order parameter are highly suppressed by magnetic flux, and the phase distribution also

show strange behaviors. The strength of random disorder is V = 1.0, and the other parameters are

|U | = 1.25, 〈n〉 = 0.875.

Appendix C: The vortices distribution in the absence of disorder

In this Appendix, we present results of the vortices distribution in a finite size clean system

in the presence of increasing magnetic fluxes, to show that how the vortices accommodate

itself below the critical magnetic field. Since the size is finite and the system is symmetric,

only configurations with a certain number of vortices respect the symmetry. Only when there

are 12 vortices, a compressed Abrikosov lattice is reproduced. The order parameter also

decreases fast with increasing magnetic field. Slightly increasing the magnetic flux further to

φ/φ0 = 14, the superconductivity breaks.
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FIG. 19. The spatial distribution of the order parameter amplitude |∆(ri)| (normalized by ∆0 =

0.0894t) in the presence of magnetic flux φ/φ0 = 4, 8, 10, 12 and 14 from left to right in the clean

limit. The red circles represent the position of the vortices core. The system size is N = 60 × 60

and the other parameters are |U | = 1.25, 〈n〉 = 0.875.

Appendix D: Calculation of structure factor S(q)

The structure factor is a fundamental concept in the field of condensed matter physics

and materials science, providing valuable insights into the arrangement and ordering of atoms

within a lattice. It is also a type of Fourier analysis. In this particular study, we focus on

investigating the vortex lattice and its properties. By analyzing the structure factor, we can

gain insights into the distribution of vortices and the overall symmetry of the vortex lattice.

Mathematically, the structure factor is defined as follow

S(q) =
1∑

ij fv(ri)fv(rj)

∑
ij

fv(ri)fv(rj)exp(iq(ri − rj)) (D1)

However, due to the spatial inhomogeneity of the superconducting order parameter, di-

rectly calculating the structure factor of the order parameter would introduce additional

effects that obscure the information about the vortex lattice. To address this, we extract the

vortex positions, denoting them as fv(ri), and calculate the structure factor based on these

positions. The essential steps are depicted in Figure 20. The pattern of structure factor is

significantly improved, enabling a more accurate analysis of the vortex lattice.
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FIG. 20. Process for obtaining the structure factor S(q). The spatial distribution of the order

parameter corresponds to the results in Figure 4. The upper panel demonstrates the sample with

weak disorder V = 0.5 and the lower panel depicts intermediate disorder V = 1.5. The number of

fluxes are fixed at φ/φ0 = 16.

Appendix E: More results for the profile of vortices

Section V discusses the spatially inhomogeneous vortex core, and this appendix presents

the additional results, see Fig. 21 for weak disorder V = 0.5 and Fig. 22 for stronger disorder

V = 1.5. In the weak disorder V = 0.5, both the phase and the amplitude of the order

parameter is closed to a circle, and its profile is well described by the GL theory. When

disorder increases to V = 1.5, but still in the superconducting region, the shape of vortex

core differ significantly from each other and it is never a circle. The vortex profile also deviate

noticeably from the predictions of GL theory. However, by taking a sample average, as shown

in Fig. 23, the rotational symmetry of the vortex core is restored, resulting in a standard

circular vortex core that fits well with the GL theory. Moreover, the fitting parameter r0,

which characterizes the vortex size for the sample averaged vortex, decreases slightly with

increasing disorder, indicating that the vortex core becomes smaller.
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FIG. 21. The spatial distribution of the order parameter and its phase in the weak disorder region

V = 0.5, and the corresponding vortex profile with the GL fit Eq. 4. Vortex 1 means the left

vortex, and the right vortex is Vortex 2. Five different disorder realizations are presented. The

other parameters are |U | = 1.0, 〈n〉 = 0.875.
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FIG. 22. The spatial distribution of the order parameter and its phase in the intermediate disorder

region V = 1.5, and the corresponding vortex profile with GL fit. Vortex 1 means the left vortex,

and the right vortex is Vortex 2. Five different disorder configurations are presented. The other

parameters are |U | = 1.0, 〈n〉 = 0.875.
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FIG. 23. The sample average of the order parameter at the vortex region in the presence of

weak disorder V = 0.5 (upper panel) and intermediate disorder V = 1.5 (lower panel), and the

corresponding vortex profile with GL fit. For the weak disorder V = 0.5, we do sample average

over 14 vortices. We calculate 24 vortices to do sample average for stronger disorder V = 1.5, so

that we could remove the significant inhomogeneity in the order parameter amplitude. The other

parameters are |U | = 1.0, 〈n〉 = 0.875.

Appendix F: Confirmation of rectangular vortex lattice at a larger sample size

In this appendix, we provide further evidence of the existence of the rectangular vortex

lattice by increasing the system size up to L = 100. Therefore, we will have more vortices

in the sample which facilitates the analysis of its spatial distribution. It is important to

stress that, in strictly two dimensions, due to localization for any disorder strength in the
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non-interacting limit, a larger system sizes effectively enhances the effect of disorder. For

that reason, we will focus on this appendix on a weaker disorder strength V = 0.25 to be

able to observe the triangular phase for small magnetic flux and the rectangular phase for

stronger magnetic flux. We note that the rectangular phase is still observed for V = 0.5

which is the value chosen in the main text.
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FIG. 24. Distribution function of the spatial distribution of the order parameter for V = 0.5 and

different values of the magnetic flux
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FIG. 25. Top row: Spatial distribution of the vortex for V = 0.25 and, from left to right, a magnetic

flux φ/φ0 is 20, 24 and 30. Bottom row: Structure factor of the vortex distribution. The system size

is N = 100×100, and the other parameters are those of the main text, U = −1.25 and 〈n〉 = 0.875.
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The vortex distribution in real and Fourier space for different values of the magnetic

flux are depicted in Fig. 25 for V = 0.25 and in Fig. 26 for V = 0.5. For V = 0.25 and

φ/φ0 = 20, we observe a clear signal of a slightly deformed hexagonal lattice in Fourier

space which corresponds with the Abrikosov triangular lattice in real space. However, for a

larger magnetic flux φ/φ0 = 30, the lattice distribution is fully consistent with a rectangular

lattice. More specifically, the distribution seems to be sensitive to the microscopic details

of the disordered potential. Depending on the disorder realization, vortices in some parts of

the sample seems to start forming a triangular lattice while in other parts no such pattern

is observed. Since Anderson localization in two dimension occurs for any disorder strength

and the sample size is larger now L = 100, we expect stronger inhomogeneities for the same

disorder strength. Stronger spatial inhomogeneities will eventually prevent the observation

of the triangular phase that requires no or very weak disorder. It would be necessary larger

sample sizes to clarify whether the transition between triangular and rectangular is sharp or

it is just a crossover as a function of the field strength. However, we rule out any important

role of multifractality or other direct precursor of localization. The distribution of the order

parameter, see Fig. 24, in this range of parameters is Gaussian and not log-normal and level

statistics, see appendix G follows closely the prediction of random matrix theory which is a

clear signature that the system is deep in the disordered metallic phase.

For V = 0.5, we do not observe the standard triangular lattice because disorder is already

too strong given the larger size. However, the rectangular lattice phase is clearly observed

for a wide range of parameters between 30 ≤ φ/φ0 ≤ 44. In conclusion, the results for a

larger size, L = 100 confirm the existence of the rectangular Bragg vortex lattice for weakly

disordered two-dimensional superconductors in the presence of a perpendicular magnetic flux.
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FIG. 26. The spatial distribution of the vortex and its structure factor for V = 0.5 and a magnetic

flux φ/φ0 = 16, 22, 24, 30, 36, 44. The other parameters are the same as those of Fig.25

Appendix G: Spectral analysis at weak disorder in the presence of magnetic flux

In this appendix, we study the level statistics of the eigenenergies of the BdG equations

with the aim to clarify whether V = 0.5 is still in the weak disorder region where multifractal

effects are expected to be negligible. For that purpose, we compare the level spacing distri-

bution P (s), the probability of having two eigenvalues at a distance s in units of the local

mean level spacing, with the Wigner-Dyson surmise which is a very good approximation of

the random matrix prediction.

We note that without a magnetic flux φ/φ0 = 0, the Hamiltonian is time reversal invariant

and rotational symmetric. Therefore, we should compare our results with that of the Gaussian
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orthogonal ensemble (GOE),

PGOE(s) =
π

2
s exp(−π

4
s2). (G1)

However, a magnetic field breaks time reversal symmetry so in that case the comparison

should be with the Gaussian unitary ensemble (GUE),

PGUE(s) =
32

π2
s2 exp(− 4

π
s2). (G2)

Results depicted in Fig. 27 confirm a good agreement with the random matrix prediction.

This confirms both that localization effects are not important and that the magnetic flux

breaks time reversal symmetry.
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FIG. 27. The level spacing distribution P (s) for V = 0.5 and different external magnetic flux is

0, 16, 20, 24, 36, 44, 48 and 54. The GOE is described by Eq (G1), and GUE is Eq (G2). The system

size is N = 100 × 100, U = −1.25 and 〈n〉 = 0.875. For the statistical analysis, we only take

3000, 30% of the total, eigenenergies around the band centre E = 0. The observed good agreement

with the random matrix prediction precludes any important effect of multifractality in this weakly

disorder region.
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Appendix H: Calculation of the superfluid stiffness Ds/π

In this Appendix, we present the detailed formulas to calculate the superfluid stiffness.

Solving the self-consistent BdG equations, we will get the eigenvalues {En} and the corre-

sponding eigenvectors {un(i), vn(i)}. With those outputs, we can calculate the superfluid

stiffness Ds/π = 〈−kx〉 − Λxx(q = 0, iω → 0), where 〈−kx〉 = 2t
N

∑
i

∑
n[vn(i)v∗n(i + x) +

v∗n(i)vn(i+x)] is the kinetic energy along the x direction. The second term Λxx(q = 0, iω → 0)

can be obtained from the bare current-current correlation function [48, 81, 82], which is given

by

χij(j
x, jx, iω) = 2t2

∑
nm

u∗n(i+ x̂)v∗m(i)(vm(j + x̂)un(j) + vn(j + x̂)um(j))

ω + iη + En + Em

− vn(i+ x̂)um(i)(u∗m(j + x̂)v∗n(j) + u∗n(j + x̂)v∗m(j))

ω + iη − En − Em
− (j + x̂↔ j)− (i+ x̂↔ i) + (i+ x̂↔ i, j + x̂↔ j)

(H1)

where (j + x̂ ↔ j) means swapping the site index j + x̂ and j in the presented expression.

We then obtain Λxx(q = 0, iω → 0) = 1
N

∑
ij χij(j

x, jx, iω → 0) by summing over all sites i

and j.
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