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Abstract

We investigate the topological string correspondence of the five-dimensional half-BPS
Wilson loops on S1. First, we propose the refined holomorphic anomaly equations for
the BPS sectors of the Wilson loop expectation values. We then solve these equations
and obtain many non-trivial novel integral refined BPS invariants for rank-one models.
By studying the Wilson loop expectation values around the conifold point, we obtain
the quantum spectra of the quantum Hamiltonians of the associated integrable systems.
Lastly, as an application, the study of this paper leads to a generalization of the blowup
equations for arbitrary magnetic fluxes that satisfying the flux quantization condition.
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1 Introduction

Topological strings on non-compact Calabi-Yau threefolds (CY3’s) are solvable and have sig-
nificant connections to several important concepts in physics, such as supersymmetric gauge
theories [1], Chern-Simons theories [2], matrix models [3], and integrable models [4].

The amplitudes of the topological strings on the non-compact Calabi-Yau threefold X com-
pute the BPS spectra of the corresponding compactified theory via compactifying M-theory
on X . In this way, the low energy theory obtained from the geometric engineering [1, 5] is a
five-dimensional (5D) supersymmetric quantum field theory, which is a supersymmetric gauge
theory or a non-Lagrangian theory with eight supercharges, on the background R4×S1. In the
low energy theory, the BPS particles are realized as the M2-branes wrapped on holomorphic
two-cycles C ∈ H2(X ,Z). They are characterized by non-trivial spins ( jL , jR) in the represen-
tation SU(2)L × SU(2)R = SO(4), which is the little group of massive particles in R4 × S1.

The correspondence between 5D gauge theory and topological string theory is extended
to observables. One of the most important observables comes from the insertion of a three-
dimensional half-BPS defect on R2 × S1. The defect partition function then is captured by the
topological open strings, which can be obtained by inserting the Lagrangian submanifold on
X [6], counts the disk invariants [7]. They can be calculated from the refined Chern-Simons
theories and the refined topological vertex [8–10].

Another interesting observable comes from the insertion of the half-BPS Wilson loop opera-
tor, which corresponds to the topological strings on the background (X , {Ci}), with an insertion
of a sequence of background non-compact primitive curves {Ci} [11]. The half-BPS Wilson loop
operator in the 5D gauge theory on R4 × S1, which is winding around the time circle S1, is
defined by inserting the operator

Wr = TrrT exp

�

i

∮

S1

d t(A0(t)−ϕ(t))
�

(1)

in the path integral formalism. Here T is the time ordering operator, r is a representation
of the gauge group, A0(t) = A0( x⃗ = 0, t) is the zero component of the gauge field and
ϕ(t) = ϕ( x⃗ = 0, t) is a scalar field that accompanies the gauge field to preserve half of the
supersymmetries. The main object we want to study is the expectation values of such Wilson
loop operators and their correspondence in topological string theories.

Consider a 5D N = 1 supersymmetric gauge theory from M-theory compactification on
a non-compact Calabi-Yau threefold X , the BPS partition function ZBPS can be defined and
computed as a Witten index [12–17]. It counts the BPS states that are characterized by the
spins ( jL , jR) from the rotation group SO(4)∼= SU(2)L ×SU(2)R of massive particles. The free
energy of the theory is then a generating function of the integral topological invariant NβjL , jR
which counts the number of particles with charge β ∈ H2(X ,Z), mass β · t and spin ( jL , jR),
written as a refined BPS expansion [9,18,19]

FBPS = log ZBPS =
∑

β∈H2(X ,Z)

∑

jL , jR

(−1)2 jL+2 jR NβjL , jR

χ jL (kε−)χ jR(kε+)

k
�

q1/2
1 − q−1/2

1

��

q1/2
2 − q−1/2

2

� e−kβ ·t , (2)

2



SciPost Physics Submission

where ε± =
1
2(ε1 ± ε2), q1,2 = eε1,2 and χ j is the SU(2) character with highest weight j.

The same BPS partition function can also be computed from the refined topological vertex
method [9] and direct integration method [20–22] from the refined holomorphic anomaly
equation, which provides explicit checks for the correspondence.

The insertion of the half-BPS Wilson loop operators has a D-brane realization [23]. The
D-brane bound states provide field contents for the instanton calculations, that we can use
localization and topological vertex method to compute the Wilson loop expectation values for
the classical Lie groups [24–33] in various dimensions 1. Consider a Wilson loop operator in the
simplest representation which can be generated from a heavy, stationary source particle that
carries electric charges. The source particle of the Wilson loop operator can also be understood
as the M2-branes wrapped on a non-compact background primitive curve C. By doing so, we
can deduce that the Wilson loop expectation value in the simplest representation has the BPS
expansion [11,34]




WrC

�

=
∑

β∈H2(X ,Z)

∑

jL , jR

(−1)2 jL+2 jR
eNβjL , jR

χ jL (ε−)χ jR(ε+)e
−β ·t , (3)

in terms of non-negative integral Wilson loop BPS invariants eNβjL , jR
. Higher representations

of Wilson loops are obtained by adding a set of non-compact background primitive curves
S = {C1, · · · ,Cn} and the Wilson loop expectation values are written in terms of the BPS
sectors FBPS,{Ci} [34],




Wr=r1⊗···⊗rn

�

=
∑

{Sn1
,··· ,Snk

}∈Pn(S)

k
∏

i=1

FBPS,Sni
, (4)

by summing over all the partitions {Sn1
, · · · ,Snk

} ∈ Pn(S) of the set S. Each BPS sector has a
BPS expansion and we refer the reader to Section 2 for more details.

In this paper, we will focus more on the study of the BPS sectors, the main result of this pa-
per is that in the holomorphic limit, the genus (n, g) BPS sectors satisfy the refined holomorphic
anomaly equations

∂

∂ S i j
F (n,g)
{C1,··· ,Cn}

=
1
2









Di DjF
(n,g−1)
{C1,··· ,Cn}

+
∑

Sn′∪Sn−n′=S;
n′=0,··· ,n

∑

n′,g ′

′
DiF

(n′,g ′−n)
Sn′

· DjF
(n−n′,g−g ′−n′)
Sn−n′









, (5)

which are derived in Section 2. The refined holomorphic anomaly equations for the BPS sectors
surprisingly coincide with those for the higher point correlation functions [35]. In Section 3,
we specialize the discussion on local del Pezzo surfaces, which correspond to the 5D rank-one
theories in the Coulomb branch.

The holomorphic anomaly equation can be used to solve the topological string amplitudes
by using the direct integration method [20–22], and up to holomorphic ambiguities, the am-
plitudes can be solved entirely. The holomorphic ambiguities can be fixed by using the gap
conditions [36, 37], and other possible boundary conditions. In this paper, we use the direct
integration method to solve the BPS sectors for local P1 × P1 and local P2, we proposed the
boundary conditions of the BPS sectors, which makes it possible to compute the BPS invariants
of Wilson loops to arbitrary genera in arbitrarily high representations. In Section 4, we discuss
the magnetic dual of the Wilson loop, which corresponds to the expansion of the B-model Wil-
son loop expectation value around the conifold point. In particular, we recover the quantized
spectrum of the corresponding quantum Hamiltonians of the integrable systems.

1In 4D, they are chiral operators; in 6D, they are Wilson surface operators.
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In Section 5, we revisit the B-model of the blowup equations. The blowup equation is
another powerful tool for solving the BPS partition functions. It was first derived in the 4D
and 5D supersymmetric gauge theories [38–40] and was later generalized to topological string
theories [41]. The blowup equation of a given theory is classified by the magnetic fluxes, which
were usually thought to be bounded. As we will see in Section 5, for arbitrary magnetic fluxes
that satisfy the flux quantization condition, the blowup equations are still valid but there will
be generically dependencies of the expectation values of the Wilson loops. Our findings give
a large class of generalization to the blowup equations.

The paper is organized as follows. In Section 2, we review the Wilson loops correspondence
in topological string theory and derive the refined holomorphic anomaly equations for the
BPS sectors. In Section 3, we discuss BPS sectors for local del Pezzo surfaces. By using the
direct integration method in the B-model, we explicitly compute the BPS sectors to very high
representations. In Section 4, based on the B-model expression of the BPS sectors, we study the
Wilson loop expectation values around the conifold point from which can be used to derive
the quantum spectra of the corresponding integrable systems. In Section 5, we discuss the
application of the Wilson loop in the blowup equations. In particular, we generalize the blowup
equation for arbitrary magnetic fluxes that satisfy the flux quantization conditions. Section
6 provides the conclusions of this paper. In Appendix A, we review the E-string partition
function from the refined topological vertex method and in Appendix B we derive the Wilson
loop expectation values for D5, E6, E7, E8 del Pezzo’s in the fundamental representation from
the E-string partition function. In Section C, we provide the Wilson loop BPS invariants.

2 Wilson loops and topological strings

This section gives a general description of the Wilson loops and topological strings correspon-
dence. Most of the content here can be found in [34], but we will also introduce new things.
We will first introduce the notations of the refined topological strings and the Wilson loops.
We then describe the BPS expansion of the Wilson loop expectation values involving the BPS
sectors. Then based on the refined holomorphic anomaly equations for the Wilson loop am-
plitudes first introduced in [34], we derive the refined holomorphic anomaly equation for the
BPS sectors. Our main results of this section are included in equation (22) and (23).

The refined topological strings The refined topological strings have been extensively stud-
ied and there are many pedagogical introductions on this topic, e.g. [42]. In this subsection,
we give a brief description of the notations for later use.

The refined A-model topological strings on the Calabi-Yau threefold X compute the refined
BPS invariants of the corresponding five-dimensional gauge theory with eight supercharges,
the whole partition function can be formally written as

Ztop(ε1,ε2, t)≡ eEZBPS, (6)

or simply denoted as Z(ε1,ε2, t), where t is the Kähler parameter, ZBPS is the BPS part defined
in (2), and E is the singular part that can be written in terms of the classical geometrical
invariants

E = 1
6ε1ε2

ai jk t i t j tk + b(0,1)
i t i +

(ε1 + ε2)2

ε1ε2
b(1,0)

i t i , (7)

where ai jk are the triple intersection numbers and b(1,0)
i and b(1,0)

i can also be determined
from the geometric information. For a recent discussion, see [43]. We will also define the free
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energies or the amplitudes

F(ε1,ε2, t) = log Ztop(ε1,ε2, t) =
∞
∑

n,g=0

(ε1 + ε2)
2n(ε1ε2)

g−1F (n,g)(t). (8)

The Wilson loops The expectation values of the half-BPS Wilson loop operators in the Coulomb
branch of a 5D N = 1 gauge theory on R4

ε1,ε2
× S1 are generated by heavy stationary quarks,

which can be obtained by inserting the background non-compact curves {C1, · · · ,Cn} in the
Calabi-Yau geometry X , that was first introduced in [11] and further studied in [34]. We
refer to these curves as primitive curves if they individually generate Wilson loops in non-
decomposable representations rCi

or in short ri of the gauge group. The multiple primitive
curves {C1, · · · ,Cn} insertion generates the Wilson loop in the tensor product of representa-
tion r= r1 ⊗ · · · ⊗ rn.

The BPS partition function ZWr
(ε1,ε2, t) with the insertion of Wilson loop operator Wr can

be obtained by computing the topological string amplitudes on the background (X , {Ci}). We
denote Z(ε1,ε2, t) without the subscript Wr

as the BPS partition of the 5D gauge theory, or
equivalently the topological string partition function on X , then the expectation value of the
Wilson loop operator can be expressed as

〈Wr〉=
ZWr
(ε1,ε2, t)

Z(ε1,ε2, t)
, (9)

which is the main object we study in this paper.

The BPS expansion From the M-theory perspective, the M2-branes wrapped on the non-
compact primitive curves {C1, · · · ,Cn} provide stationary heavy quarks in the 5D gauge theory.
If we first treat these quarks as dynamic particles with masses mi , their BPS spectrum can be
written as the refined Gopakumar-Vafa expansion originated from [18, 19] and extensively
studied in [44]. Then we consider them as non-dynamic background particles, their masses
are defined by the effective masses eMi ≡ I−1 · e−mi by absorbing the momentum factor

I = 2 sinh(ε1/2) · 2 sinh(ε2/2), (10)

to remove the dynamic degrees of freedom. As discussed in [34], the Wilson loop expectation
value can be computed from the generating function

Zgen = exp





∑

{Cli,1
,··· ,Cli,ni

}∈P(S)
FBPS,{Cli,1

,··· ,Cli,ni
} ·Mli,1 · · ·Mli,ni



 , (11)

by summing over the power set P(S) of the set of primitive curves S = {C1, · · · ,Cn}, where
the power set P(S) is all the subsets of S, including the empty set and S itself. Then the
expectation value of the Wilson loop operator in the representation r = r1 ⊗ · · · ⊗ rn can be
derived by considering the coefficient of

∏n
i=1

eMi in the generating function Zgen in the heavy
mass limit mi →∞. We obtain the BPS expansion




Wr=r1⊗···⊗rn

�

=
∑

{Sn1
,··· ,Snk

}∈Pn(S)

k
∏

i=1

FBPS,Sni
, (12)

where we define Pn(S) as the partition of the set S with elements {Sn1
, · · · ,Snk

} ∈ Pn(S), each
element Sni

= {Cli,1 , · · · ,Cli,ni
} is a set of ni primitive curves. FBPS,{C1,··· ,Cn} is defined as the
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BPS sector in the representation r= r1 ⊗ · · · ⊗ rn. It has the BPS expansion 2

FBPS,{C1,··· ,Cn} = In−1 ·
∑

β∈H2(X ,Z)

∑

jL , jR

(−1)2 jL+2 jR
eNβjL , jR

χ jL (ε−)χ jR(ε+)e
−β ·t , (13)

in terms of the refined Wilson loop BPS invariants eNβjL , jR
, which counts the number of BPS

particles of spin ( jL , jR). In particular, when the number of primitive curves n equals zero, the
BPS sector captures the conventional refined topological string amplitudes (8).

The refined holomorphic anomaly equations The free energies F (n,g) defined in (8) satisfy
the refined holomorphic anomaly equations which have been proposed in [22,45], as a refined
generalization of the work of BCOV [46]. In the holomorphic limit, they read

∂F (n,g)

∂ S i j
=

1
2

 

Di DjF (n,g−1) +
∑

n′,g ′

′
DiF (n

′,g ′) · DjF (n−n′,g−g ′)

!

, n+ g > 1, (14)

where the prime in the summation means the omission of (n′, g ′) = (0, 0) and (n, g). Here S i j

is the propagator, and Di is the covariant derivative. The (refined) holomorphic anomaly equa-
tions provide a very powerful method, which is usually called the direct integration method,
to compute the topological string amplitudes in the B-model. The direct integration method
states that by integrating over the propagators S i j on both sides of the holomorphic anomaly
equation (14), up to holomorphic ambiguities, we can solve the topological string amplitudes
genus by genus recursively. For more notations and descriptions, please refer to the text-
book [42], as we do not include all the details here.

In [34], it was further observed that for any representation r, by defining the Wilson loop
amplitudes

Wr = log〈Wr〉=
∞
∑

n,g=0

(ε1 + ε2)
2n(ε1ε2)

g−1W(n,g)
r , (15)

the combinations

G(n,g)
r ≡ F (n,g) +W(n,g)

r , (16)

which are the free energies of the whole Wilson loop partition function ZWr
, satisfy the same

refined holomorphic anomaly equations

∂ G(n,g)
r

∂ S i j
=

1
2

 

Di DjG(n,g−1)
r +

∑

n′,g ′

′
DiG(n

′,g ′)
r · DjG(n−n′,g−g ′)

r

!

, n+ g > 1. (17)

Based on (17), many calculations have been done for various models in [34], including models
like local P2 which does not have a gauge theory correspondence. However, at least at this
moment, the physical understanding of the amplitudes G(n,g)

r are still unclear, even though
they also have the refined BPS expansions in terms of integral refined BPS invariants (but
could be negative).

2It is also possible to expand the BPS sector in the refined Gopakumar-Vafa expansion

FBPS,{C1 ,··· ,Cn} = In−1 ·
∑

β∈H2(X ,Z)

∑

gL ,gR

(−1)2gL+2gR
ÝGV

β

gL ,gR
(2 sinh(ε−/2))

2gL · (2sinh(ε+/2))
2gR e−β ·t ,

where ε± =
1
2 (ε1 ± ε2).

6
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To solve the refined holomorphic anomaly equations, we use the direct integration method,
with the holomorphic ambiguities in the following ansatz

fn,g(z) =
δ
∑

i=1

o(i)
∑

k=0

p(k)i

∆k
i

, (18)

whereδ is the number of components∆i of the discriminant, o(i) gives the maximal singularity
that one has at the corresponding type of divisor and p(k)i is a polynomial of zi . In particular for
the conifold divisors o(i) = 2(n+ g)−2. If at the orbifold point where 1

zi
→ 0, the amplitudes

are regular, then the degrees of p(k)i are generically bounded with the highest degree

o(i)× ord(∆i) +σ o(i), (19)

with a shift σ.
For the cases of local P2 and local P1 × P1 without insertion of Wilson loops, it was ob-

served [21,47] that the refined topological string amplitudes F (n,g) are regular at the orbifold
point, together with the gap condition that was derived in [37] from the Schwinger integral
representation of the Gopakumar-Vafa expansion, we can fix the holomorphic ambiguities com-
pletely thus solve the refined topological string amplitudes to any high enough genus (n, g).
For the Wilson loop amplitudes W(n,g)

r , even though they are completely regular at the conifold
point, it has been noticed in [34] that they are not regular when the representations are large,
so that we can not fix the holomorphic anomaly completely even for local P2 and local P1×P1

without additional inputs of boundary conditions. In the next subsection, we will see that if
we consider the holomorphic anomaly equation for the BPS sectors, all of the disadvantages
are resolved.

The refined holomorphic anomaly equations for the BPS sectors We first define the par-
tition function

ZHAE = exp (FHAE) = exp

 

∑

n+g≥1

(ε1 + ε2)
2n(ε1ε2)

g−1F (n,g)

!

, (20)

which is the topological string partition function, by setting the genus zero contribution to
zero. It is not difficult to demonstrate that the refined holomorphic anomaly equations (14)
can be rewritten in the form of the heat kernel equation [46]

�

∂

∂ S i j
−
ε1ε2

2
Di Dj

�

ZHAE = 0, (21)

in the holomorphic limit. Similarly, one can derive that the combination 〈Wr〉ZHAE satisfies the
same equation, by combining it with (21), we can derive the holomorphic anomaly equation

∂

∂ S i j
〈Wr〉=

ε1ε2

2

�

Di Dj〈Wr〉+ DiFHAEDj〈Wr〉+ DjFHAEDi〈Wr〉
�

. (22)

Substituting the BPS expansion (12) in the holomorphic anomaly equation (22), we can derive
the refined holomorphic anomaly equations for the BPS sectors for the primitive curves class
S = {C1, · · · ,Cn}

∂

∂ S i j
F (n,g)
{C1,··· ,Cn}

=
1
2









Di DjF
(n,g−1)
{C1,··· ,Cn}

+
∑

Sn′∪Sn−n′=S
n′=0,··· ,n

∑

n′,g ′

′
DiF

(n′,g ′−n)
Sn′

· DjF
(n−n′,g−g ′−n′)
Sn−n′









. (23)
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Here the first sum on the right-hand side sum over all the subsets Sn′ and Sn−n′ of the primitive
curve class S, with the length of the subsets to be n′ and n − n′ respectively. The prime on
the second sum means we sum over all the integers 0 ≤ n′ ≤ n, 0 ≤ g ′ ≤ g + n by excluding
n′+g ′ = 0 and n′+g ′ = n+g+n. The set Sn′ or Sn−n′ can be empty, when it is empty, we define
the corresponding amplitudes to be the conventional refined topological string amplitudes (8)

F (n,g)
S={ } ≡ F (n,g). (24)

For any negative genus, we use the notation

F (n,g<0)
{C1,··· ,Cn}

= 0. (25)

The refined holomorphic anomaly equations for the BPS sectors are valid for any genus
(n, g) with n + g >= 0. When the set of the primitive curves is empty, these equations are
reduced to the conventional holomorphic anomaly equations of refined topological string that
are valid for n+ g > 1.

From the refined holomorphic anomaly equation for the BPS sectors (23), we can use the
direct integration method to compute the BPS sectors from the lower genus to the higher
genus and from the low number of primitive curves to the higher number of primitive curves
recursively. But we need to slightly change the form of the holomorphic ambiguities due to
the asymptotic behavior at the large volume point t →∞. For models such as local P2 and
local P1×P1, we can verify that the BPS sectors are regular at both conifold point and orbifold
point. The regularity condition provides enough boundary conditions to fix the holomorphic
ambiguities that make it possible to solve the BPS sectors for arbitrary genera and arbitrary
numbers of primitive curves for these two models. We will show the detailed calculations in
Section 3.3.

Additive property The refined holomorphic anomaly equations for the Wilson loop expec-
tation values (22) are completely linear. This means any linear combination of Wilson loop
expectation values of different representations, with coefficients that can be arbitrary functions
of ε1,ε2 or even mass parameters mi , will still satisfy the same refined holomorphic anomaly
equation in the form (22).

Initial conditions Suppose we know all the refined topological string amplitudes F (n,g), the
direct integration method still requires some initial conditions of the recursion equation (23),
that is we need the explicit expression of the genus zero amplitudes of the BPS sectors of a
single primitive curve. The key information has been discussed in [34], here we give a more
generic discussion to arbitrary non-compact Calabi-Yau threefolds 3.

Consider a non-compact Calabi-Yau threefold X , which is not necessarily toric. We keep
in mind that the low energy physics are described by a 5D gauge theory but the discussion
here is valid for theory without a gauge theory description. We denote by b2 and b4 the Betti
numbers that count the number of independent compact divisors and independent curves of
X respectively. In general, for a non-compact Calabi-Yau manifold, b2 ≥ b4, so the Kähler pa-
rameters t i , which are the volume of the curves in X , can be divided into Coulomb parameters
αi and mass parameters mi in the language of gauge theory. We have

t = (α1, · · · ,αb4
, m1, · · · , mb2−b4

), (26)

and αi are also called “true” Kähler parameters in some literature [41], they are supposed to be
the coordinates that all the degrees of αi in the BPS expansion (2) are non-negative. We will

3More precisely, these are arbitrary non-compact Calabi-Yau threefolds for which there is no non-shrinkable
curve.

8
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refer to the curves that correspond to the Coulomb parameters as compact curves and denote
zi to be the related complex structures in the B-model, we usually have the mirror maps in the
expansion

αi = log(zi) +O(zi), (27)

at the large volume limit zi → 0. We define −Ci j as the intersection matrix between the
compact divisors and compact curves; when there is a gauge theory description, Ci j is the
Cartan matrix of the 5D gauge group.

Finally, for the Calabi-Yau manifold X we have described above, there are b4 independent
non-decomposable representations whose highest weights are the fundamental weights. In-
stead of the representations, we consider the orbits generated from these fundamental weights
and denoted the Wilson loop operators as Wri

, which are generated from the primitive curves
Ci , for i = 1, · · · , b4. All other primitive curves are isomorphic to these curves. We call b4 to
be the rank of theory, as the number of independent Coulomb parameters. For each Wilson
loop operator Wri

, the expectation value is equal to the amplitudes of the BPS sector FCi
, at

genus zero they have the value

F (0,0)
Ci

=
b4
∏

j=1

z
−C−1

i j

j , i = 1, · · · , b4. (28)

In the large volume limit
∏b4

j=1 z
C−1

i j

j → 0, the genus zero part of the BPS sector (28) is singular,
but we hope that the higher genus parts are regular under the large volume limit as the initial
conditions for the higher genus BPS sectors. Such a requirement is equivalent to fixing the
coefficient of leading order expansion of the BPS sector to be one. Then the higher genus
amplitudes and the amplitudes with the insertion of more primitive curves can be obtained
from the initial conditions (28) together with the refined holomorphic anomaly equation and
some other inputs of boundary conditions.

Note that the initial conditions here only solve the orbit of the fundamental weight of the
gauge group. The Wilson loop of a representation can be obtained by linear combinations of
these orbits, according to the additive property of the refined holomorphic anomaly equation.

Lastly, we emphasize that the initial conditions for the BPS sectors are completely the
choice by hand. One can choose other initial conditions but the final result of the Wilson loop
expectation values should be the same, up to an irrelevant factor, due to the additive property
of the refined holomorphic anomaly equation (22).

3 Wilson loops for del Pezzo surfaces

In this section, we specialize the descriptions and calculations of Wilson loop expectation val-
ues for the cases of local del Pezzo surfaces. We will take the massless limit, resulting in only
one modulus in both the topological string A-model and B-model. These are denoted as t and
z respectively.

3.1 Topological strings on local del Pezzo surfaces

The topological strings on a local del Pezzo surface X , which is given by the anti-canonical
bundle over the del Pezzo surface S, provides the BPS spectrum of a 5D N = 1 rank-one
supersymmetric quantum field theory that is obtained from the M-theory compactification
on X [48]. Del Pezzo surfaces, which are finitely classified, are smooth, projective algebraic
surfaces with ample anticanonical bundles. They can be described by P1 × P1 and n-point

9
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blowups of P2 up to n = 8, which gives the local Calabi-Yau threefolds which are called local
P1 × P1 and dPn. When n > 1, the n-point blowups of P2 are isomorphic to the (n− 1)-point
blowups of P1 × P1, where the latter describes the 5D low energy theory with gauge group
SU(2) and N f = (n − 1) hypermultiplets transforming in the fundamental representation of
SU(2). These rank-one theories have enhanced global symmetry En, so when n = 5, 6,7, 8,
we also name them as E6 = D5, E7, E8 theories and we refer to the corresponding geometries
as D5, E7, E8 del Pezzo’s.

For the 9-point blowups of P2, the corresponding Calabi-Yau threefold is called dP9 or the
local half K3 surface, the corresponding lower-dimensional theory is no longer a 5D theory
but rather a 6D theory which is known as E-string theory. For E-strings, the global symmetry
becomes the affine Lie group E(1)8 , so we will also use E(1)8 to denote the theory.

Wilson loops from the heavy mass limit Let’s first consider the case dPn with n ≤ 9. We
denote h as the curve that is associated with the original P2 and ei the exceptional curve
that is associated with the i-th blowup, they have the non-vanishing intersection numbers
h2 = −e2

i = 1. Then the Kähler parameters can be described by t which is proportional to the
volume of h and mi which is the volume of ei with a shift

t =
1
3

Vol(h), mi = Vol(ei)−
1
3

Vol(h), i = 1, · · · , n. (29)

Denote ZdPn(t, m1, · · · , mn,ε1,ε2) as the partition function of the refined topological strings
on dPn, in the Calabi-Yau phase that all the degree of the curves ei have positive degrees. For
an integer n≤ 9− n, the heavy mass limit of the partition function on dPn+n can be regarded
as a generating function (11) of the Wilson loops according to the expansion 4

ZdPn+n(t, m1, · · · , mn+n,ε1,ε2) = ZdPn(t, m1, · · · , mn,ε1,ε2)

�

1+
¬

W dPn
[−1]⊗n

¶

n
∏

i=1

eMi + · · ·

�

,

(31)

where we use · · · to denote all other contributions and eMi are the effective masses

eMi =
e−mn+i

2 sinh(ε1/2) · 2 sinh(ε2/2)
, i = 1, · · · ,n. (32)

The coefficient
¬

W dPn
[−1]⊗n

¶

then is supposed to be the Wilson loop expectation value of the
model dPn in the representation [−1]⊗n with n+ n ≤ 9 where [−1]⊗n n-th tensor product of
the “representation” [−1] which means

¬

W dPn
[−1]⊗n

¶

= e−
n
3 t(1+O(et)). (33)

In the self-dual case with ε1 = −ε2 = gs, the partition function of topological strings is reduced
to the partition function of conventional topological strings, which capture the Gromov-Witten
invariants of the Calabi-Yau threefold dPn. Then for n+n≤ 9, equation (31) can be treated as

4The Wilson loop expectation value can also be obtained from a similar expansion of the partition function
with codimension-two defects that live on R2

ε1
× S1 and fixed on the other directions R2

ε2
. The codimension-two

defects are realized as refined topological branes [10, 49] in the topological string theory. Let’s denote the X to
be the defect parameter, the BPS particles that are related to the defects that are only movable along half of the
Omega-deformed space, so the effective mass to expand the partition function should be

eX =
X

2 sinh(ε1/2)
. (30)

10
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a mathematically rigorous way of defining the Gromov-Witten invariants of the Wilson loop.
For the same reason, in the refined case, if n+ n ≤ 9, the refined Wilson loop BPS invariants
can be connected to the refined stable pair invariants [50]. However, there is no bound for
the representation of a Wilson loop operator, it is interesting to find a direct mathematical
definition of the Gromov-Witten invariants of the Wilson loops for arbitrary representations
[−1]⊗n.

To have a better understanding of the expansion (31), we provide an example. In [47], the
massive refined BPS invariants for E-strings are computed. The geometry of the E-string theory
can be treated as an elliptic-fibered CY3. Denoting t and τ as the base and fiber parameters
of the elliptic fibration, and other mass parameters are represented as the characters of E8
group. For the curve class that the degrees of t and τ are d = (d1, d2), the first few refined
BPS invariants ⊕[N d

jL , jR
; ( jL , jR)] are computed in [47]. If d = (1,0), we have

[1; (0, 0)], (34)

if d = (1,1), they are

[248; (0,0)]⊕ [1; (
1
2

,
1
2
)], (35)

if d = (1,2), they are

[3875+ 248+ 2× 1; (0, 0)]⊕ [248+ 1; (
1
2

,
1
2
)]⊕ [1; (1, 1)]. (36)

In the limit to E8 del Pezzo, we take the limit τ→∞, but keep tE8 = t+τ finite. To make the
limit finite, we need to flip the degree d = (1, 0) to d = (−1,0) in the E-string geometry, after
doing this, the leading order coefficients of the τ parameter should be the refined Wilson loop
BPS invariants for E8 del Pezzo surface. So the invariants (34) and (36) are the degree −1
and degree 1 invariants for the Wilson loop of E8 model. In this way, we compute the refined
Wilson loop BPS invariants for D5, E6, E7, E8 models, from the known refined BPS invariants
of E-strings. We list them in Appendix C.3 in the massless case.

Note that the Wilson loops can be computed from the topological strings on the background
(X , {Ci}) with a set of primitive curves. The n-point blowups of dPn provides an embedding
geometry for the background (X , {Ci}). However, the embedding geometry is not unique.
For example, one can consider the genus-one fibered CY3 over a −1 curve, with fiber types
D5, E6, E7 [51, 52]. By selecting the next-to-leading order coefficients of e−τ, we can also
obtain the refined Wilson loop BPS invariants for D5, E6, E7 del Pezzo’s in the fundamental
representations.

As we have addressed, when n > 1, the (n+ 1)-point blow up of P2 is isomorphic to the
n-point blow up of P1×P1. But the latter description is more suitable for the corresponding 5D
SU(2) gauge theory with N f = n fundamental flavors. Recently, a refined topological vertex
formalism for 5D SU(2) theory with eight fundamental hypermultiplets was proposed in [53],
which is reviewed in Appendix A. The theory is the Kaluza-Klein (KK) theory of E-string theory
compactified on a circle. Following the logic above, we explicitly derive the partition functions
of the Wilson loop operators in the fundamental representations for E8, E7, E6 and D5 theories
in a close form expression, which are summarized in Appendix B. From the result in Appendix
B, we compute the Wilson loop BPS invariants in the massless limit and check the consistency
with the invariants obtained in Appendix C.3.

BPS expansions Recall that we use the primitive curves Ci to generate the Wilson loops in
the representation ri . For the rank-one case, there is only a single non-decomposable represen-
tation r, so all the primitive curves Ci are isomorphic to each other. We will use the notation n

11
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to denote the n primitive curves or the representation r⊗n. In this notation, we define the BPS
sector in the representation n as

FBPS,n ≡ In−1 ·
∑

β∈H2(X ,Z)

(−1)2 jL+2 jR
eNβjL , jR

χ jL (ε−)χ jR(ε+)e
−β ·t , (37)

where

I ≡ 2 sinh(ε1/2) · 2 sinh(ε2/2). (38)

Then we can obtain the BPS expansion (12) of the Wilson loop expectation values in the
representation n can be simplified as

〈Wn〉=
∑

l,ni ,ki>0
∑l

i=1 ni ki=n

n!
∏l

i=1 (ni!)
ki ki!

F k1
BPS,n1
· · ·F kl

BPS,nl
. (39)

3.2 The refined holomorphic anomaly equations for BPS sectors

In this subsection, we study the refined holomorphic anomaly equations for the BPS sectors
(37) in the rank one case. The discussion here is the same as the general case in Section 2, the
purpose of this subsection is to clarify the notations. Our results involve the genus expansion
of the BPS sector

FBPS,n =
∞
∑

g=0

∞
∑

n=0

(ε1 + ε2)
2n(ε1ε2)

g−1+nF (n,g)
n . (40)

In particular, when n= 0, we define

F (n,g)
n=0 = F (n,g), (41)

which is the refined topological string free energy at genus (n, g).
As discussed in Section 2, the holomorphic limit of the refined holomorphic anomaly equa-

tions for the Wilson loop amplitudes proposed in [34] can be rewritten in the form

∂

∂ S i j
〈Wr〉=

ε1ε2

2

�

Di Dj〈Wr〉+ DiFHAEDj〈Wr〉+ DjFHAEDi〈Wr〉
�

, (42)

which can be used to derive the refined holomorphic anomaly equation for the BPS sectors.
In the rank-one case, by turning off all the mass parameters, we conclude that the BPS sector
F (n,g)
n satisfy the refined holomorphic anomaly equations

∂F (n,g)
n

∂ S
=

1
2

 

D2F (n,g−1)
n +

∑

n′,g ′

′ n!
n′!(n− n′)!

DF (n
′,g ′−n)

n · DF (n−n′,g−g ′−n′)
n−n′

!

, (43)

for any n> 0 and n, g ≥ 0. Here the prime sum means we sum over all the integers 0≤ n′ ≤ n,
0≤ g ′ ≤ g+n by excluding n′+g ′ = 0 and n′+g ′ = n+g+n. Here D is the covariant derivative
defined as

DF (n,g)
n = ∂zF (n,g)

n , D2F (n,g)
n = (∂z + Γ )∂zF (n,g)

n , (44)

Γ is the Christoffel symbol.
In the following sections, we will use (43) to compute the BPS sectors as well as the Wilson

loop BPS invariants.
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CY3 P2 P1 × P1 D5 E6 E7 E8

c0 27 −16 16 27 64 432
κ 1

3 1 4 3 2 1
a 1

3
1
2 1 1 1 1

Table 1: Some constants of the local geometries.

3.3 Examples

This subsection gives some rank-one examples of the direct integration method for the BPS
sectors of Wilson loop expectation values. We will focus on massless cases, which means we
set all the mass parameters to zero. There is only one parameter left, denoted as t for the
Kähler parameter in the A-model or z for the complex structure parameter in the B-model.
The A- and B-model parameters are connected via local mirror symmetry [54]. Here we use
the same notation as was used in [47]. In general, the Calabi-Yau periods ΠA,B are annihilated
by the Picard-Fuchs operator

L= Θ3 + c0zΘ
2
∏

i=1

(Θ+ 1− ai). (45)

For the model we consider in this paper, the values (a1, a2) are given by

P2 : (
1
3

,
2
3
), P1 × P1 : (

1
2

,
1
2
), D5 : (

1
2

,
1
2
), (46)

E6 : (
1
3

,
2
3
), E7 : (

1
4

,
3
4
), E8 : (

1
6

,
5
6
), (47)

and the constant c0 are listed in Table 1. The A- and B-periods ΠA,B can be solved using the
Frobenius method starting with the singular term of the periods

ΠA = log(z) +O(z), (48)

ΠB = Π
2
A+O(z). (49)

The A-period ΠA plays the role of mirror map, that maps the A-model parameter t to the
B-model parameter as −t = ΠA. The B-period ΠB is proportional to the derivative of the
prepotential

ΠB∝ ∂t F
(0,0), (50)

where F (0,0) = −κ6 t3 + · · · and κ is the triple intersection number listed in Table 1. The dis-
criminant is ∆ = 1 + c0z. We refer the reader to [47] about other important input but less
related to our later discussions.

With the notation we have introduced, the genus zero expression of the BPS sector in the
fundamental representation is

F (0,0)
n=1 =

1
za

, (51)

The coefficient a is related to the inverse of the self-intersection number of the curve related
to the Kähler parameter t and the values are summarized in Table 1. Higher genus results can
be solved using the direct integration method, with the holomorphic ambiguity

f (n,g)
n (z) = z−an

 

2(n+g−1)+n
∑

i=1

x i

∆i
+

o
∑

i=0

yiz
i

!

, (52)

13
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where x i , yi are unknown coefficients. Here we add a factor z−an =
�

F (0,0)
n=1

�n
in the holomor-

phic ambiguity (52) according to the expected singular behavior at the large volume limit of
the Wilson loop expectation values. For the E8, E7, E6, D5 models, we solve the BPS sector in
the fundamental representation, we fix the holomorphic ambiguities from the regularity at the
conifold point and a few Wilson loop BPS invariants that are inherited from the BPS invari-
ants of E-strings. The solvability serves as a consistency check for the holomorphic anomaly
equation. We list the Wilson loop BPS invariants for those models in Section C.3.

For the local P2 and local P1×P1 models, the holomorphic ambiguities can be entirely fixed
by the regularities of the BPS sectors at both the conifold point and the orbifold point, we will
give a detailed description of the B-model calculation for them in the following sections.

3.3.1 local P2

(1,0)

(0, 1)

(−1,−1)

Figure 1: Toric diagram for P2, described by the ray vectors (0, 1), (1, 0), (−1,−1).

The toric diagram for local P2 is described in Figure 1, from which we can read the Picard-
Fuchs operator

L= Θ3 + 3z(3Θ+ 2)(3Θ+ 1)Θ, (53)

where Θ ≡ z ∂∂ z . We can then compute the mirror map

−t = log(z)− 6z + 45z2 − 560z3 +
17325z4

2
−

756756z5

5
+O(z6). (54)

The genus one free energies are

F (0,1) = −
1
12

log(z7∆)−
1
2

log

�

�

�

�

∂ t
∂ z

�

�

�

�

, (55)

F (1,0) =
1

24
log(z−1∆), (56)

where∆= 1+27z is the discriminant. Then one can find the Yukawa coupling can be written
in close form

Czzz =
�

∂ t
∂ z

�3

·
∂ 3F (0,0)

∂ t3
= −

1
3z3(1+ 27z)

. (57)
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The propagator and the Christoffel symbol on the moduli space are

Szz =
2∂zF (0,1)

Czzz
= 3z3(1+ 27z)∂z log

∂ t
∂ z
+

1
2

z2(7+ 216z), (58)

Γ z
zz =

∂ z
∂ t
∂ 2 t
∂ z2

= −CzzzSzz −
7+ 216z

6z(1+ 27z)
. (59)

Since there is only one modulus z, the propagator and connection only have one component,
so we will drop the indices in the symbol and use S and Γ to denote the propagator and
connection.

There are two other singular points in the moduli space, which we will call the conifold
point at ∆= 0 and orbifold point at 1

z = 0, that we can use the parameters

zc =∆= 1+ 27z, (60)

and

zo =
1
z

, (61)

around the conifold point and orbifold point. The Kähler parameter can then be solved from
the Picard-Fuchs operator around the region when zc or zo is small, we get the mirror maps tc
and to, they give the inverse expansions

zc = tc −
11
18

t2
c +

145
486

t3
c −

6733
52488

t4
c +

120127
2361960

t5
c −

2431777
127545840

t6
c +O(t7

c ), (62)

zo = t3
o +

1
216

t6
o −

1
60480

t9
o +

367
1763596800

t12
o −

105067
31776487142400

t15
o +O(t18

c ). (63)

With all the ingredients, we can solve the topological string amplitudes for higher genus
n+ g ≥ 2 from the refined holomorphic equation, which has been done in [47]. We will treat
them as an input of the direct integration method for the BPS sector. The direct integration
method involves holomorphic ambiguities, we have the ansatz

f (n,g)
n (z) = z−

n
3

 

2(n+g−1)+n
∑

i=1

x i

∆i
+

o
∑

i=0

yiz
i

!

, (64)

where

o =
�

1
3
(2n+ 2g + n)

�

. (65)

By considering the asymptotic behavior of the amplitudes F (n,g)
n around the conifold point,

orbifold point and large volume point, the unknown coefficients x i , yi in the ansatz (64) can
be completely solved. Our first condition is that the amplitudes are regular at the conifold
point

F (n,g)
n = const.+O(tc), (66)

then all the coefficients x i can be fixed. The second condition is that the amplitudes are regular
around the orbifold point

F (n,g)
n = const.+O(to), (67)
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then all the coefficients yi with i > n
3 can be fixed. The remaining coefficient can be fixed by

considering the singular behavior around the large volume point

F (0,0)
n=1 =

1
z1/3

=Q−
1
3 +O(Q

2
3 ), (68)

and for all other genus (n, g) the coefficients of Q−
n
3+d̃ for −n

3 + d̃ ≤ 0 is zero. Thus, we
can completely solve the BPS sectors to arbitrary genus (n, g) and arbitrary representation
n. Lastly, by using the refined BPS expansion with proper maximal spins, we can recover the
refined BPS invariants in (37). In particular, we observe that the maximal spins have the exact
form

jmax
L =max(0,

(d̃ − 2)(d̃ − 1)
2

), jmax
R =max(0,

(d̃ + 1)(d̃ + 2)
2

− n− 1), (69)

where d̃ = 0,1, 2,3, · · · is the scaled degree defined as

d̃ = d +
n

3
. (70)

Even though there is no limit to solving the amplitudes from the direct integration method, due
to computational cost constraints, we use the direct integration method to solve the amplitudes
up to n+ g+n≤ 20, with n≤ 12, where the expression of the amplitudes can be found in [55].
Then we use the maximal spins to fix the refined Wilson loop BPS invariants that appear in
the BPS expansion (37). For example, the refined Wilson loop BPS invariants for n = 12 and
d = 1 are listed in Table 2, none of which are inherited from any known refined BPS invariants
of CY3’s. More refined invariants can be found in Appendix C.1.

2 jL\2 jR 0 1 2 3 4 5 6 7 8
0 2642 7176 311
1 1611 3954 79
2 79 456 1379 13
3 13 92 377 1
4 1 13 79
5 1 12
6 1

Table 2: BPS spectrum of the Wilson loop for local P2 with n= 12, d = 1.

3.3.2 local P1 × P1

In this subsection, we solve the BPS sectors for local P1 × P1, its toric diagram is described in
Figure 2. The mirror map can be solved from the Picard-Fuchs equation, as given by

−t(z) = log(z) + 4z + 18z2 +
400z3

3
+ 1225z4 +

63504z5

5
+O(z6). (71)

The genus one free energies are

F (0,1) = −
1
12

log(z7∆)−
1
2

log

�

�

�

�

∂ t
∂ z

�

�

�

�

, (72)

F (1,0) =
1

24
log(z−2∆), (73)
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(0,1)

(1, 0)

(0,−1)

(−1, 0)

Figure 2: Toric diagram for local P1 × P1, described by the ray vectors
(0, 1), (1, 0), (−1,0), (0,−1).

where ∆ = (1− 16z) is the discriminant of the mirror geometry. The propagator Szz and the
Christoffel symbol Γ z

zz are defined based on the special geometry relations [21]

DzSzz = ∂zSzz + 2Γ z
zzSzz = −CzzzSzzSzz −

z(1− 12z)
9(1− 16z)

, (74)

Γ z
zz =

∂ z
∂ t
∂ 2 t
∂ z2

= −CzzzSzz −
4(1− 18z)
3z(1− 16z)

. (75)

where Czzz is the Yukawa coupling

Czzz =
�

∂ t
∂ z

�3

·
∂ 3F (0,0)

∂ t3
= −

1
z3(1− 16z)

, (76)

so that the propagator is

Szz =
1

Czzz

�

2∂zF (0,1) −
1
6z

�

= z3(1− 16z)∂z log
∂ t
∂ z
+

4
3

z2(1− 18z). (77)

Since only one component of the propagator exists, we abbreviate Szz as S. Around the conifold
point where ∆ = 0, we use the complex structure parameter zc = 1− 16z. Similarly, around
the orbifold point where z →∞, we use the parameter zo =

1
z . By solving the Picard-Fuchs

equation around the region when zc or zo is small, we get the mirror maps tc and to, they give
the inverse expansions

zc = tc −
5
8

t2
c +

61
192

t3
c −

443
3072

t4
c +

14993
245760

t5
c −

14515
589824

t6
c +O(t7

c ), (78)

zo = t2
o −

1
96

t4
o −

11
368640

t6
o −

31
41287680

t8
o −

141941
7610145177600

t10
o +O(t12

o ). (79)

The BPS sectors can be calculated using the direct integration method, up to holomorphic
ambiguities, in the ansatz form

f (n,g)
n (z) = z−

n
2

 

2(n+g−1)+n
∑

i=1

x i

∆i
+
⌊n+g+n⌋
∑

i=0

yiz
i

!

. (80)

Similar to the case of P2, by using the convention that around the large volume point, the only
negative degree of Q = e−t comes from the genus zero part Fn=1, specifically

F (0,0)
n=1 =

1
p

z
, (81)
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together with the regularity of the amplitudes at the conifold point and orbifold point, we
can fix the holomorphic ambiguities for all the genera (n, g) and all the representations n. In
particular, we find that the maximal spins have the exact form

jmax
L =

�

d̃
2

���

d̃
2

�

− 1

�

−
1
2

�

d̃ − 1
2

�

(1− (−1)d̃), (82)

jmax
R =

�

d̃
2

���

d̃
2

�

+ 3

�

−
1
2

�

d̃ − 1
2

�

(1− (−1)d̃)− n+ 1, (83)

where d̃ = 0,1, 2,3, · · · , is the scaled degree defined as

d̃ = d +
n

2
. (84)

We use the direct integration method to solve the BPS sectors for n+ g + n ≤ 20 and n ≤ 10,
where the expression of the amplitudes can be found in [55]. We use the maximal spins to
determine the refined Wilson loop BPS invariants. For example, the refined BPS invariants for
n = 10 and d = 1, 2 are listed in Table 3 and additional invariants can be found in Appendix
C.2.

2 jL\2 jR 0 1 2 3 4 5
0 1115 10
1 89 402 1
2 14 90
3 1 13
4 1

d = 1

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9
0 5192 9982 462 2
1 594 2608 5792 134
2 160 754 2168 22
3 2 24 160 620 2
4 2 24 138
5 2 22
6 2

d = 2

Table 3: BPS spectrum of the Wilson loop for local P1 × P1 with n= 10 and d ≤ 2.

4 Magnetic dual and quantum spectrum

The magnetic dual of the topological string amplitudes can be obtained by expanding the
topological string amplitudes around the conifold point [56–58]. The duality is usually called
electric-magnetic duality in the gauge theory [59, 60], it maps the theory of electric particles
in the weak coupling region to its strongly coupled region, which is equal to a dual theory of
magnetic monopoles or monopole strings in 5D in the weakly coupling region. In this sense,
the expansion parameter t exchanges with the dual parameter tD,

tD = C
∂F (0,0)

∂ t
= a′ tc , (85)

which is proportional to the Kähler parameter tc around the conifold point. The dual parame-
ter tD plays the role of the magnetic monopole string tension. Here the quantity a′ is a factor
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that arises because of the notations, we have a′ = 1 for local P1×P1 and a′ =
p

3 for local P2

according to the notation of tc defined in Section 3.3.
In this section, we intend to study the magnetic dual of the Wilson loop expectation values

in the NS limit ε1→ ħh,ε2→ 0, which means we want to expand the Wilson loop expectation
values around the conifold point in the NS limit. These are expected to be the expectation
values of the ’t Hooft operators in the magnetic dual theory. As we will see later, by imposing
a proper quantization condition, the expectation values reproduce the quantum spectrum of
the quantum Hamiltonians of the corresponding quantum integrable systems.

The Nekrasov-Shatashvili (NS) limit of the topological string theory is related to the inte-
grable system [61]. In the NS limit, if the CY3 is toric, the mirror curve in the B-model is quan-
tized as the quantum spectral curves for the cluster integrable systems [62, 63]. See [64, 65]
for other related discussions on the massive quantum curves for del Pezzo surfaces. The
complex structure parameter, identified with the Wilson loop expectation value in the NS
limit [25,66–69], is connected to the eigenvalue of the corresponding quantum Hamiltonian.
If one treats the quantum Hamiltonian as a quantum mechanical system, the phase space of the
quantum system is usually bounded, so we have a quantization condition states in [61,70,71]
that the quantum dual parameter tD(ħh) has the WKB quantization condition

tD(ħh)≡ C
∂

∂ t
lim

ε1→ħh,ε2→0
ε1ε2F = ħh

�

l +
1
2

�

, l = 0, 1,2, · · · , (86)

in terms of the energy level l. Denote
¬

W (n,g)
D

¶

(tD) (87)

as the genus (n, g) expectation values of the dual Wilson loops, expanding in terms of the dual
parameter tD. Classically, the eigenvalue of the Hamiltonians is equal to 〈W (0,0)

D 〉 (tD), which
is directly lifted to quantum version according to

¬

W (0,0)
D

¶

(tD) =
∞
∑

n=0

¬

W (n,0)
D

¶

(tD(ħh))ħh2n, (88)

The quantum dual parameter tD(ħh) has the expansion

tD(ħh) = tD +
∞
∑

i=1

tD,2iħh2i , (89)

where the quantum corrections tD,2i can be solved as functions of the classical dual parameter
tD from the relation (88). For example, for the first two orders, we have

tD,2 = −
W (1)

D

W (0)
D,1

,

tD,4 = −
W (2)

D

W (0)
D,1

+
W (1)

D W (1)
D,1

�

W (0)
D,1

�2 −

�

W (1)
D

�2
W (1)

D,2

2
�

W (0)
D,1

�3 ,

(90)

where we have used the notations

W (n)
D,k ≡ ∂

k
tD

¬

W (n,0)
D

¶

(tD) , W (n)
D ≡W (n)

D,0. (91)
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Then the explicit values of the quantum corrections to tD(ħh) can be solved from the expression
of the Wilson loop expectation value around the conifold point. After solving the quantum
corrected dual parameter tD(ħh), one can solve the quantization condition for the classical dual
parameter tD from (86), and then substitute these solutions back into 〈W (0,0)

D 〉 (tD), we can
then solve the energy spectrum

El =
¬

W (0,0)
D

¶

(tD) . (92)

For example, for local P1 × P1, the quantization of the dual parameter is

tD = ħh
�

l +
1
2

�

+
ħh2

32
−

2l + 1
512
ħh3 +O(ħh4). (93)

By substituting (93) into (92), we get the quantized energy spectrum

El = 4+ (2l + 1)ħh+
1
8
(2l2 + 2l + 1)ħh2 +

1
192
(2l3 + 3l2 + 3l + 1)ħh3 +O(ħh4), (94)

which agrees with the results in [72].
Note that our method here, in principle, is no different than the method in [72]. However,

the advantage here is that we do not use any information about the explicit expression of the
quantum curve or the quantum Hamiltonian, we solve the quantum spectrum only from the
conifold point expansion of the Wilson loop expectation value.

5 Blowup equations and Wilson loops

The blowup equations, which are functional equations over the partition function of refined
topological strings, were initially derived for 4D instanton partition functions [38]. These
equations served as generalizations of the contact term equation [73]. In [39,40], these equa-
tions were generalized to the K-theoretic version for 5D N = 1 SU(N) gauge theory, which
clarify the connection between the K-theoretic instanton partition function on C2 and on bC2.
5 Later, these blowup equations were further generalized to refined topological string the-
ory [41], and they provide the most powerful and efficient way of computing BPS invariants
and instanton partition functions for various 5D/6D quantum field theories with eight super-
charges [43,76–84].

In this section, we generalize the blowup equation in a more general form, which involves
the Wilson loop expectation values. We will then use these blowup equations to check the
Wilson loop BPS invariants for local P2 and P1 × P1 we calculated in 3.3.

5.1 Blowup equations

Define the whole topological string partition function on the Calabi-Yau threefold X as

Z(ε1,ε2, t) = eEZBPS(ε1,ε2, t), (95)

by following the notation in Section 2, where t i are the kähler parameters. Recall that the
Kähler parameters are usually written as a collection of Coulomb parameters αi and mass
parameters mi

6 in the 5D supersymmetric gauge theories

t = {α1, · · · ,αb4
; m1, · · · , mb2−b4

}, (96)

5See [74,75] for the developments in 4D versions with surface defects.
6We treat the 5D instanton counting parameter(s) as the mass parameter(s)
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where b2 and b4 are the Betti numbers that count the number of independent compact divisors
and the number of independent curves of X respectively. We define −Ci j as the intersection
matrix between the compact divisors and compact curves. Then there exists a sequence of
blowup equations which were first derived in [39], that connect the partition function Z and
the partition function bZ on the blown-up space of R4. They can be summarized in the form

Λ(ε1,ε2, t i)Z (ε1,ε2, t i +πiBi) = bZ (ε1,ε2, t i +πiBi)

=
∑

n∈Zb4

(−1)|n|Z (ε1,ε2 − ε1, t i + Riε1 +πiBi)

× Z (ε1 − ε2,ε2, t i + Riε2 +πiBi) , (97)

and being classified by the magnetic fluxes Ri = n jC ji+Bi/2. We call the function Λ(ε1,ε2, t i)
the Lambda factor. Here we use the bold n = (n1, · · · , nb4

) to distinguish from the n that
appears in the genus expansion. Note that the magnetic fluxes for the mass parameters are
constant values Ri =

1
2 Bi , i > b4. The magnetic fluxes Bi are always integers that satisfy the

flux quantization condition

(−1)2 jL+2 jR+1 = (−1)β ·B, (98)

for any BPS particle with spin ( jL , jR) and degrees βi .
The blowup equations (97) can be regarded as functional equations of the partition func-

tion of topological strings. It was studied in [41] by using the modularity of the B-model
topological string amplitudes, the factor Λ(ε1,ε2, t i) is a modular function and is free of ε1,ε2
poles if one imposes the flux quantization condition (98). Such properties give a strong con-
straint on the form of Λ(ε1,ε2, t i), one possible solution is that Λ(ε1,ε2, t i) is a “constant”
that is independent of the Coulomb parameters αi , such that there would be a bound on the
possible values for the fluxes of the mass parameters, and then Λ(ε1,ε2, t i) can be completely
determined by taking the limit αi →∞ on both side of the equation (97)

Λ(ε1,ε2, t i) = lim
αi→0

bZ (ε1,ε2, t i +πiBi)
Z (ε1,ε2, t i +πiBi)

= lim
αi→0

exp( fi(n,ε1,ε2)t i), (99)

by only using the classical geometric information from E 7, where we define fi(n,ε1,ε2) from

fi(n,ε1,ε2)t i

= E(ε1,ε2 − ε1, t i + Riε1 +πiBi) + E(ε1 − ε2,ε2, t i + Riε2 +πiBi)− E(ε1,ε2, t i +πiBi).
(100)

The finiteness of the limit on the right-hand side of (99) usually indicates that the fluxes of the
mass parameters are bounded even though it seems that there is no reason for the existence
of this bound from the flux quantization condition. In this paper, we want to generalize the
blowup equation to the cases when the magnetic fluxes of the mass parameters exceed that
bound, and in this case, the Lambda factor Λ(ε1,ε2, t i) does depend on the Coulomb parame-
ters.

5.2 General structure of blowup equations

The blowup equations are always solved within a bound that the Lambda factor Λ(ε1,ε2, t i)
doesn’t depend on the Coulomb parameters. However, it is possible to generalize it to arbitrary
fluxes that satisfy the flux quantization condition. We have the following conjecture:

7The second equality in (99) holds if the BPS part of the partition functions is zero under the limit αi → 0.
This condition is indeed true for most theories, but there are indeed some special examples that we also need to
consider the BPS part.
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For refined topological strings on a non-compact Calabi-Yau threefold X , for any magnetic flux B
satisfying the flux quantization condition

(−1)2 jL+2 jR+1 = (−1)β ·B, (101)

we have the blowup equation

Λ(ε1,ε2, t i)Z (ε1,ε2, t i +πiBi) = bZ (ε1,ε2, t i +πiBi)

≡
∑

n∈Zb4

(−1)|n|Z (ε1,ε2 − ε1, t i + Riε1 +πiBi)

× Z (ε1 − ε2,ε2, t i + Riε2 +πiBi) , (102)

where the factor Λ(ε1,ε2, t) is a linear combination of Wilson loop expectation values as

Λ(ε1,ε2, t) =
∑

k

Λk(ε1,ε2, m)



Wrk

�

. (103)

Here Λk(ε1,ε2, m) is a function that only depend on the Omega-deformed parameters ε1,2 and
the mass parameter m. 〈Wrk

〉 is the Wilson loop expectation value in the representation rk of the
gauge group. By considering the limit t → 0 for the formal expression of Λ

Λ(ε1,ε2, t i) =
bZ (ε1,ε2, t i +πiBi)
Z (ε1,ε2, t i +πiBi)

, (104)

the expression of Λ(ε1,ε2, t) can be determined completely from the perturbative information
fi(n,ε1,ε2) and a few BPS invariants of the partition function and Wilson loop observables.

Several reasons support the conjecture. The first reason is that a similar form has appeared
in [40] for SU(N) case, which should be generalized to arbitrary non-compact Calabi-Yau
threefolds. In [40], they developed the blowup equation for the “time” dependent partition
function, the expansion of the “time” variables involves the Wilson loop expectation values.
The second reason is that from the formal structure of the blowup equation (102), one can
verify that the factor Λ(ε1,ε2, t) satisfies the refined holomorphic anomaly equation [85], co-
incides with the refined holomorphic anomaly equation (22) we have derived in Section 2 for
the Wilson loop expectation values. This coincidence gives strong support for the conjecture.
The third reason is that from the modular property of the topological string amplitudes, it
was shown in [41] that the Lambda factor Λ(ε1,ε2, t) is a weight zero (quasi-)modular func-
tion. In [41], the Λ(ε1,ε2, t) factor was chosen to be a “constant” that doesn’t depend on any
Coulomb parameter. However, the other possible generalization would be a rational function
of the complex structure parameter at the genus zero order, which is generalized to the linear
combination of Wilson loop expectation values at higher genus.

Example To clarify our statement, we give an example. In the pure SU(2) case, whose
geometry is corresponding to local P1×P1, when we choose the flux of the Coulomb parameter
t to be 2n, and the flux for instanton counting parameter to be Bm, then the perturbative
contribution to the blowup equations is

2n(n− Bm/2)t + n2m+ (
n
3
−

4
3

n3 + n2Bm)(ε1 + ε2). (105)

Here Bm should be an even integer according to (101). When Bm = −4,−2,0, 2,4, the minimal
value of ft = 2n(n− Bm/2) is always zero, from which we can derive that Λ(ε1,ε2, t i) = 1 for
Bm = −2,0, 2 and

Λ(ε1,ε2, t i) =

¨

1− q1q2, if Bm = 4,

1− q−1
1 q−1

2 , if Bm = −4.
(106)
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These magnetic fluxes are those discussed in [41]. When Bm = 6, at n = 1, ft = −1, which is
negative, such a negative term contributes a term et in Λ(ε1,ε2, t i). In the large t limit, such
a negative power cancel with the BPS invariants in the blowup equation contributes addition
terms in Λ(ε1,ε2, t i). We may get

Λ(ε1,ε2, t i)|t→∞ = 1−Qm(q1q2(1+ q1)(1+ q2) + q2
1q2

2Q−1)− q2
1q2

2Q2
m, (107)

which can be easily deduced from the perturbative prepotential and the degree one BPS in-
variants of Q. As we have explained, the Λ(ε1,ε2, t i) function here is pole free from ε1,2→ 0,
and itself should be a modular function, among all the physical observables, the Wilson loop
partition functions satisfy all the properties. Thus, we claim that the whole expression of Λ is
to replace the negative Q term with its Wilson loop expectation value. For example

〈W3〉= 〈W2⊗2〉 − 1=
1
Q
+ 1+ 2Qm +O(Q), (108)

then we conclude that

Λ(ε1,ε2, t i) = 1−Qm

�

q1q2(1+ q1 + q2) + q2
1q2

2〈W3〉
�

+ q2
1q2

2Q2
m, (109)

is the Lambda factor for the magnetic flux Bm = 6. By using the result of the instanton parti-
tion function, we check the blowup equation with flux Bm = 6 up to the six-instanton order.
Similarly, for Bm = 8, Λ(ε1,ε2, t i) contains Q3

m, we check the result up to the six-instanton
level.

When the Coulomb parameter has half integer flux n+ 1
2 , we also find Λ(ε1,ε2, t i) agrees

with our prediction. We have checked

Λ(ε1,ε2, t i)Bm=0 = 0,

Λ(ε1,ε2, t i)Bm=2 = i(Qmq1q2)
1
4 ,

Λ(ε1,ε2, t i)Bm=4 = i(Qmq2
1q2

2)
1
4 〈W2〉,

Λ(ε1,ε2, t i)Bm=6 = i(Qmq3
1q3

2)
1
4
�

−1+Qm(−1+ q1 + q2 + q1q2)− q2
1q2

2Q2
m + 〈W2⊗2〉

�

,

Λ(ε1,ε2, t i)Bm=8 = · · · . (110)

We have checked these Λ’s numerically to the six-instanton level by using the Wilson loop
expectation values obtained in [34].

Genus zero expression Now we study the genus expansion of the blowup equation, we will
focus on the model local P1 ×P1 and the leading order contribution in the blowup equations.
Denote F (n,g)(ε1,ε2, t, m) to be the genus (n, g) free energy of the topological strings on local
P1×P1, then the leading order expansion of the blowup equation indicates that the genus zero
part of Lambda Λ(n,g)

Bm,a has the expression

Λ
(0,0)
Bm
=

∑

n∈Z+a

exp
�

2n2∂ 2
t F

(0,0) + 2Bmn∂m∂tF (0,0) +
1
2

B2
m∂

2
mF

(0,0) +F (0,1) −F (1,0)
�

. (111)
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If our conjecture for the Lambda factor is correct, then the genus zero part is a Laurent poly-
nomial of z. Indeed, as we have checked, if a = 0, they have the exact expressions

Λ
(0,0)
Bm=0 = Λ

(0,0)
Bm=2 = 1 (112)

Λ
(0,0)
Bm=4 = 1−Qm, (113)

Λ
(0,0)
Bm=6 = −

Qm

z
+ (1−Qm)

2, (114)

Λ
(0,0)
Bm=8 = −

Qm

z2
+ (1−Qm)

4, (115)

Λ
(0,0)
Bm=10 = −

Qm

z3
+

Qm(2− 3Qm +Q3
m)

z2
−

3Qm(1−Qm)4

z
+ (1−Qm)

6, (116)

...

which are linear combinations of the genus zero Wilson loop expectation values with different
representations. Interestingly, the components in the combination have the same charge under
the one-form symmetry Z2 that maps

p
z to −

p
z.

5.3 General structure of blowup equations for Wilson loops

The blowup equations can be generalized to the Wilson loop observables [11]. In the general
form, we have the following conjecture:
For refined topological strings on a non-compact Calabi-Yau threefold X , define the partition func-
tion with the insertion of the Wilson loop operator as

ZWr
= 〈Wr〉 · Z (ε1,ε2, t i) , (117)

where

〈Wr〉= 〈Wr〉 (ε1,ε2, t i) (118)

is the Wilson loop expectation value in the representation r. Then for any magnetic flux B satisfying
the flux quantization condition

(−1)2 jL+2 jR+1 = (−1)β ·B, (119)

and for any representations ra, rb, we have the blowup equation

Λ(ε1,ε2, t i)Z (ε1,ε2, t i +πiBi)

=
∑

n∈Zb4

(−1)|n|ZWra
(ε1,ε2 − ε1, t i + Riε1 +πiBi)

× ZWrb
(ε1 − ε2,ε2, t i + Riε2 +πiBi) , (120)

where the factor Λ(ε1,ε2, t) is a linear combination of Wilson loop expectation values as

Λ(ε1,ε2, t) =
∑

k

Λk(ε1,ε2, m)



Wrk

�

, (121)

Here Λk(ε1,ε2, m) is a function that only depend on the Omega-deformed parameters ε1,2 and
the mass parameter m. 〈Wrk

〉 is the Wilson loop expectation value in the representation rk of the
gauge group. The way to determine the explicit expression of the Lambda factor (121) is the
same as the case in Section 5.2.

Note that for the BPS particles of Wilson loops, the flux quantization condition (119) also
depends on the representation n as we can verify from the BPS spectra listed in Appendix
C. The flux quantization condition (119) should be considered for the BPS particles of the
conventional refined topological strings without the insertion of Wilson loops.
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6 Conclusions

In this paper, we study the refined topological string correspondence of the Wilson loop op-
erators in the five-dimensional N = 1 supersymmetric quantum field theory on the Omega
deformed background R4

ε1,ε2
×S1. For the 5D theory which can be obtained from the M-theory

compactification on the non-compact Calabi-Yau threefold X , the Wilson loops are provided
by inserting the background non-compact primitive curves C1, · · · ,Cn on the Calabi-Yau back-
ground, and the expectation values of the Wilson loop operators can be obtained by considering
the topological strings on the background (X , {C1, · · · ,Cn}).

The expectation value of the Wilson loop operator can be written in terms of the BPS sec-
tors, and each BPS sector has a refined BPS expansion or equivalently the refined Gopakumar-
Vafa expansion that is similar to the case of refined topological strings but with an additional
momentum factor. Based on the refined holomorphic anomaly equations proposed in [34],
we derive the refined holomorphic anomaly equation for the BPS sectors. In particular, we
use the direct integration method to compute the BPS sectors for many rank-one models, in-
cluding local En del Pezzos and local P2 and local P1 × P1. For the last two models, we solve
the BPS sectors in the B-model by using the direct integration method and recover the refined
BPS invariants for them to very high representations, indicating the existence of new integral
invariants.

Even though we give a general description for the Wilson loops and topological strings
correspondence, all the models we have checked are toric Calabi-Yau threefolds. In the gauge
theory, at least when the gauge groups are classical Lie groups, one can use the localization
method to compute the Wilson expectation values. It is also interesting to study the B-model
approach, particularly in non-toric cases and those cases without a gauge theory description
as discussed in [86]. Some consistency checks have been done for E-strings in [31] and for
the 5D rank-two cases in [87], by studying the quantum periods of the quantum curves for
5D Sp(2) gauge theories. It is also interesting to verify the calculations by using the B-model
method.

In Section 4, we study the Wilson loop expectation values around the conifold point in the
NS limit, and without the consideration of the quantum curve, we recover the quantum spectra
of the corresponding integrable systems. However, the spectrum we obtained is supposed to be
the perturbative spectrum, which is consistent when the Planck constant ħh is small. Recently,
the resurgence structure of the Wilson loop in the NS limit is discussed, which leads to a non-
perturbative completion of the Wilson loops valid for large ħh. It is interesting to see if we can
obtain the non-perturbative spectrum obtained in [88, 89] from the non-perturbative Wilson
loop expectation values.

In Section 5, we present generalizations of the blowup equations. We propose that when
the magnetic fluxes Bm for the mass parameters are large, the Lambda factor Λ(ε1,ε2, t) in
the blowup equation involves Wilson loop expectations. We give an explicit check for the
case of 5D pure SU(2) theory. We then generalize the formalism to the case of Wilson loops.
Our proposal here can be directly generalize to 6D cases. In six dimensions, the Wilson loop
becomes the Wilson surface but the expectation value of the Wilson surface operator can be
effectively calculated as the expectation value of the Wilson loop operator in the 5D KK theory.
Our proposal provides a generalization of the elliptic blowup equation and it is interesting to
study the 6D cases to see whether new information on the elliptic genera can be obtained.
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A The partition function of E-string theory

In this appendix, we review the refined topological vertex formalism for the E-string theory or
equivalently, the effective 5D KK theory SU(2) + 8F that was studied in [53]. We start with
the definitions of a sequence of functions that involve the partitions µi:

Nµ1µ2
(Q; t, q) =

∏

(i, j)∈µ1

�

1−Qt−µ
t
2, j+i−1q−µ1,i+ j

�

·
∏

(i, j)∈µ2

�

1−Qtµ
t
1, j−iqµ2,i− j+1

�

, (122)

Z̃µ(t, q) =
∏

(i, j)∈µ

�

1− tµ
t
j−i+1qµi− j

�−1
, (123)

M(Q; t, q) =
∞
∏

i, j=1

�

1−Qt i−1q j
�−1

(124)

Zµ1µ2
=

q||µ2||2 t ||µ
t
1||

2
Z̃µ1
(t, q)Z̃µt

1
(q, t)Z̃µ2

(t, q)Z̃µt
2
(q, t)

Nµ1µ2
(Q2)Nµ1µ2

(Q2 t
q )

, (125)

ZM =
M(Q2)M(Q2 t

q )
∏

k=1,3,5,7
M(MkQ

q

t
q )M(

Mk
Q

q

t
q )

, (126)

and

Zµ1µ2µi
(M j , Mk) =q

||µi ||
2

2 t
||µt

i ||
2

2 Z̃µi
(t, q)Z̃µt

i
(q, t)Nµiµ1

(
Q
M j

√

√ t
q
)Nµ2µi

(QM j

√

√ t
q
)

×
�

−
Mk

Q

�|µi |
�

1
Æ

M j Mk

�|µ2|




√

√

√

M j

Mk





|µ1|

. (127)

Here we use the notation q = eε1 , t = e−ε2 for the Omega-deformed parameters. Then up to

an extra factor Z
E(1)8
extra, the partition function of SU(2) + 8F is

Z E(1)8 Z
E(1)8
extra = ZM

∑

µ1,µ2

u|µ1|+|µ2|Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)

∑

µ4

Zµ1µ2µ4
(M3, M4)

×
∑

µ5

Zµ1µ2µ5
(M5, M6)

∑

µ6

Zµ1µ2µ6
(M7, M8), (128)

where Mk, k = 1, · · · , 8 are the mass parameters for the eight fundamental flavors, Q is the
Coulomb parameter. u is the instanton counting parameter for the SU(2) + 8F theory and we
call |µ1|+ |µ2| the instanton number.

In the expression for the instanton part of the E-string partition function, we also use the
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notation 8

Zµ1µ2
(M j , Mk) =

∑

µi
Zµ1µ2µi

(M j , Mk)
∑

µi
Z;;µi

(M j , Mk)
, (129)

where

∑

µi

Z;;µi
(M j , Mk) =

M(M j Mk)M(
Mk
M j

t
q )

M(Mk
Q

q

t
q )M(QMk

q

t
q )

. (130)

In (130), the numerator of the right-hand side doesn’t depend on the Coulomb parameter, thus

should belong to part of the extra factor Z
E(1)8
extra. By computing (128) on the right-hand side to

higher enough instanton numbers, the extra factor is the Coulomb-independent part and can
be summarized as

Z
E(1)8
extra =M(M1M2)M(

M2

M1

t
q
)M(M3M4)M(

M4

M3

t
q
)M(M5M6)M(

M6

M5

t
q
)M(M7M8)M(

M8

M7

t
q
)

× PE

�

qu2

(1− q)(1− t)(1− u2)

4
∑

i=1

�

1+
1

M2i−1M2i
+M2i−1M2i

�

�

× PE

�

tu2

(1− q)(1− t)(1− u2)

4
∑

i=1

�

1+
M2i−1

M2i
+

M2i

M2i−1

�

�

× PE

�

qu
(1− q)(1− t)(1− u2)

4
∏

i=1

�

1
p

M2i−1M2i
+
p

M2i−1M2i

�

�

× PE

�

tu
(1− q)(1− t)(1− u2)

4
∏

i=1

�√

√M2i−1

M2i
+

√

√ M2i

M2i−1

�

�

× PE

�

2(1+ qt)u2

(1− q)(1− t)(1− u2)

�

. (131)

B Wilson loop expectation values for del Pezzo surfaces

As pointed out in Section 3.1, the Wilson loops for del Pezzo surfaces can be obtained from the
partition function of E-strings. This appendix derives the Wilson loop expectation values for
E8, E7, E6, D5 del Pezzos in the fundamental representation. The exact expressions are listed
in equations (143), (147), (151) and (155) respectively.

By using the following identity

Nνλ(Q
√

√ t
q

; t, q) = (−Q)|ν|+|λ| t
1
2 (−||λ

t ||2+||νt ||2)q
1
2 (||λ||

2−||ν||2)Nλν(Q−1

√

√ t
q

; t, q), (132)

the combination

Zµ1µ2µi
(M j , Mk)≡M

1
2 (|µ1|+|µ2|)
k Zµ1µ2µi

(M j , Mk)

= t ||µ
t
i ||

2− 1
2 ||µ

t
1||

2
q

1
2 ||µ1||2 Z̃µi

(t, q)Z̃µt
i
(q, t)Nµ1µi

(
M j

Q

√

√ t
q
)Nµ2µi

(QM j

√

√ t
q
)

× (−Q)|µ1|
�

Mk

M j

�|µi |

M
1
2 (|µ1|+|µ2|)
j (133)

8The calculation of Zµ1µ2
(M j , Mk) is time-consuming. Since this function can be commonly used for other

topological vertex calculations, we provide the results for Zµ1µ2
(M j , Mk), with |µ1|+ |µ2| ≤ 10, in [55].
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always has positive degrees of Mk. Let’s define Qb =
up

M2M4M6M8
, the partition function of

E-strings becomes

Z E(1)8 Z
E(1)8
extra = ZM

∑

µ1,µ2

Q|µ1|+|µ2|
b Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)

∑

µ4

Zµ1µ2µ4
(M3, M4)

×
∑

µ5

Zµ1µ2µ5
(M5, M6)

∑

µ6

Zµ1µ2µ6
(M7, M8), (134)

and the extra term becomes

Z
E(1)8
extra =M(M1M2)M(

M2

M1

t
q
)M(M3M4)M(

M4

M3

t
q
)

M(M5M6)M(
M6

M5

t
q
)M(M7M8)M(

M8

M7

t
q
)

PE

�

qQ2
bM2M4M6M8

(1− q)(1− t)(1−Q2
bM2M4M6M8)

4
∑

i=1

�

1+
1

M2i−1M2i
+M2i−1M2i

�

�

PE

�

tQ2
bM2M4M6M8

(1− q)(1− t)(1−Q2
bM2M4M6M8)

4
∑

i=1

�

1+
M2i−1

M2i
+

M2i

M2i−1

�

�

PE

�

qQb

(1− q)(1− t)(1−Q2
bM2M4M6M8)

4
∏

i=1

�

1
p

M2i−1
+
p

M2i−1M2i

�

�

PE

�

tQb

(1− q)(1− t)(1−Q2
bM2M4M6M8)

4
∏

i=1

�

p

M2i−1 +
M2i

p

M2i−1

�

�

PE

�

2(1+ qt)Q2
bM2M4M6M8

(1− q)(1− t)(1−Q2
bM2M4M6M8)

�

, (135)

which always has positive degrees of M2, M4, M6, M8. Then, by recursively picking up the coef-
ficients of M8, M6, M4, M2 one by one, we obtain the Wilson loops for SU(2)with N f = 7, 6,5, 4,
or equivalently E8, E7, E6, D5 del Pezzos.

In practice, note that

Nµ1;(Q; t, q) =
∏

(i, j)∈µ1

�

1−Qt i−1q−µ1,i+ j
�

, (136)

and

Nµ1
(Q; t, q) =Nµ1;(Q; t, q)

l(µ1)
∏

i=1

�

1−Qt i−2q−µ1,i+1
�

�

1−Qt i−1q−µ1,i+1
�

�

1−Qt l(µ1)−1q
�

. (137)

We define

eNµ1
(Q; t, q) =

l(µ1)
∏

i=1

�

1−Qt i−2q−µ1,i+1
�

�

1−Qt i−1q−µ1,i+1
�

�

1−Qt l(µ1)−1q
�

, (138)

so that we have

Zµ1µ2
(M j , Mk)

Zµ1µ2;(M j ,Mk)
=

p
tq

(1− t)(1− q)
eNµ1
(

M j

Q

√

√ t
q

; t, q) eNµ2
(QM j

√

√ t
q

; t, q)
Mk

M j

√

√ t
q

. (139)
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Using the above components, we derive the partition functions and the Wilson loop expectation
values for En del Pezzo’s in the fundamental representation. For E8 del Pezzo surface:

Z E8 Z E8
extra = ZM

∑

µ1,µ2

Q|µ1|+|µ2|
b Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)

∑

µ4

Zµ1µ2µ4
(M3, M4)

×
∑

µ5

Zµ1µ2µ5
(M5, M6)Zµ1µ2;(M7, 0), (140)

Z E8
WF

Z E8
extra = ZM

∑

µ1,µ2

Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)

∑

µ4

Zµ1µ2µ4
(M3, M4)

×
∑

µ5

Zµ1µ2µ5
(M5, M6)Zµ1µ2;(M7, 0)

×
�

eNµ1
(

M7

Q

√

√ t
q

; t, q) eNµ2
(QM7

√

√ t
q

; t, q)
1

M7

√

√ t
q
− C8

�

, (141)

where Z E8
extra and C8 are defined from the Fourier expansion of Z

E(1)8
extra

Z
E(1)8
extra = Z E8

extra(1+ C8M8 +O(M2
8 )). (142)

Then the expectation value of the Wilson loop operator for E8 del Pezzo is




WF
E8
�

=
Z E8

WF

Z E8
, (143)

where we use the subscript F to denote the fundamental representation. Subsequently, for E7
del Pezzo surface, we have

Z E7 Z E7
extra = ZM

∑

µ1,µ2

Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)

∑

µ4

Zµ1µ2µ4
(M3, M4)

×Zµ1µ2;(M5, 0)Zµ1µ2;(M7, 0), (144)

Z E7
WF

Z E7
extra = ZM

∑

µ1,µ2

Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)

∑

µ4

Zµ1µ2µ4
(M3, M4)

×Zµ1µ2;(M5, 0)Zµ1µ2;(M7, 0)

×
�

eNµ1
(

M5

Q

√

√ t
q

; t, q) eNµ2
(QM5

√

√ t
q

; t, q)
1

M5

√

√ t
q
− C7

�

, (145)

where Z E7
extra and C7 are defined from the Fourier expansion of Z E8

extra

Z E8
extra = Z E7

extra(1+ C7M6 +O(M2
6 )). (146)

Then the expectation value of the Wilson loop operator for E7 del Pezzo is




WF
E7
�

=
Z E7

WF

Z E7
. (147)

For E6 del Pezzo surface:

Z E6 Z E6
extra = ZM

∑

µ1,µ2

Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)Zµ1µ2;(M3, 0)Zµ1µ2;(M5, 0)Zµ1µ2;(M7, 0),

(148)
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Z E6
WF

Z E6
extra = ZM

∑

µ1,µ2

Zµ1µ2

∑

µ3

Zµ1µ2µ3
(M1, M2)Zµ1µ2;(M3, 0)Zµ1µ2;(M5, 0)Zµ1µ2;(M7, 0)

×
�

eNµ1
(

M3

Q

√

√ t
q

; t, q) eNµ2
(QM3

√

√ t
q

; t, q)
1

M3

√

√ t
q
− C6

�

, (149)

where Z E6
extra and C6 are defined from the Fourier expansion of Z E7

extra

Z E7
extra = Z E6

extra(1+ C6M4 +O(M2
4 )). (150)

Then the expectation value of the Wilson loop operator for E6 del Pezzo is




WF
E6
�

=
Z E6

WF

Z E6
. (151)

For D5 del Pezzo surface:

Z D5 Z D5
extra = ZM

∑

µ1,µ2

Zµ1µ2
Zµ1µ2;(M1, 0)Zµ1µ2;(M3, 0)Zµ1µ2;(M5, 0)Zµ1µ2;(M7, 0), (152)

Z E6
WF

Z E6
extra = ZM

∑

µ1,µ2

Zµ1µ2
Zµ1µ2;(M1, 0)Zµ1µ2;(M3, 0)Zµ1µ2;(M5, 0)Zµ1µ2;(M7, 0)

×
�

eNµ1
(

M1

Q

√

√ t
q

; t, q) eNµ2
(QM1

√

√ t
q

; t, q)
1

M1

√

√ t
q
− C5

�

, (153)

where Z D5
extra and C5 are defined from the Fourier expansion of Z E6

extra

Z E6
extra = Z D5

extra(1+ C5M2 +O(M2
2 )). (154)

Then the expectation value of the Wilson loop operator for D5 del Pezzo is




WF
D5
�

=
Z D5

WF

Z D5
. (155)

C Refined BPS invariants

In this appendix, we present the refined Wilson loop BPS invariants, denoted eN d
jL , jR

, in the BPS
sector

FBPS,n = In−1 ·
∞
∑

d∈Z+0−an

(−1)2 jL+2 jR
eN d

jL , jR
χ jL (ε−)χ jR(ε+)e

−d t , (156)

where Z+0 denotes the set of non-negative integers, and the constant a is defined in Table
1. These invariants are relevant for local P2, local P1 × P1, and local D5, E6, E7, E8 del Pezzo
surfaces, as described in Appendix C.1, Appendix C.2, and Appendix C.3 respectively.

C.1 Refined BPS invariants for local P2
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2 jL\2 jR 0
0 1

d = 1
3

2 jL\2 jR 0 1 2 3
0 1

d = 4
3

2 jL\2 jR 0 1 2 3 4 5 6 7
0 1 2
1 1

d = 7
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 4 3 1
1 1 3 4
2 1 2
3 1

d = 10
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 1 2 4 7 9 12 9 6
1 1 3 7 11 15 12 4
2 1 3 7 11 9 3
3 1 3 7 7 1
4 1 3 4
5 1 2
6 1

d = 13
3

Table 4: BPS spectrum of the Wilson loop for local P2 with n= 2 and d ≤ 13
3 .

2 jL\2 jR 0 1 2
0 1

d =1

2 jL\2 jR 0 1 2 3 4 5 6
0 1 3
1 1

d =2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11
0 1 3 7 7 1
1 1 4 7
2 1 3
3 1

d = 3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 3 7 14 20 27 21 11
1 1 4 11 21 31 27 7
2 1 4 11 21 20 4
3 1 4 11 14 1
4 1 4 7
5 1 3
6 1

d = 4

Table 5: BPS spectrum of the Wilson loop for local P2 with n= 3 and d ≤ 4.
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2 jL\2 jR 0 1
0 1

d = 2
3

2 jL\2 jR 0 1 2 3 4 5
0 1 4
1 1

d = 5
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10
0 1 4 11 14 1
1 1 5 11
2 1 4
3 1

d = 8
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 3 11 25 41 58 48 19
1 1 5 16 36 60 58 11
2 1 5 16 36 41 5
3 1 5 16 25 1
4 1 5 11
5 1 4
6 1

d = 11
3

Table 6: BPS spectrum of the Wilson loop for local P2 with n= 4 and d ≤ 11
3 .

2 jL\2 jR 0
0 1

d = 1
3

2 jL\2 jR 0 1 2 3 4
0 1 5
1 1

d = 4
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9
0 1 5 16 25 1
1 1 6 16
2 1 5
3 1

d = 7
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 15 41 77 118 106 31
1 1 6 22 57 108 118 16
2 1 6 22 57 77 6
3 1 6 22 41 1
4 1 6 16
5 1 5
6 1

d = 10
3

Table 7: BPS spectrum of the Wilson loop for local P2 with n= 5 and d ≤ 10
3 .
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2 jL\2 jR 0 1 2 3
0 1 6
1 1

d = 1

2 jL\2 jR 0 1 2 3 4 5 6 7 8
0 6 22 41 1
1 1 7 22
2 1 6
3 1

d = 2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 16 62 134 226 224 48
1 7 29 85 182 226 22
2 1 7 29 85 134 7
3 1 7 29 63 1
4 1 7 22
5 1 6
6 1

d = 3

Table 8: BPS spectrum of the Wilson loop for local P2 with n= 6 and d ≤ 3.

2 jL\2 jR 0 1 2
0 7
1 1

d = 2
3

2 jL\2 jR 0 1 2 3 4 5 6 7
0 6 29 63 1
1 1 8 29
2 1 7
3 1

d = 5
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 85 218 408 450 71
1 7 37 121 290 408 29
2 1 8 37 121 219 8
3 1 8 37 92 1
4 1 8 29
5 1 7
6 1

d = 8
3

Table 9: BPS spectrum of the Wilson loop for local P2 with n= 7 and d ≤ 8
3 .
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2 jL\2 jR 0 1
0 8
1 1

d = 1
3

2 jL\2 jR 0 1 2 3 4 5 6
0 36 92 1
1 1 9 37
2 1 8
3 1

d = 4
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12
0 92 332 697 858 101
1 45 166 441 698 37
2 1 9 46 166 340 9
3 1 9 46 129 1
4 1 9 37
5 1 8
6 1

d = 7
3

Table 10: BPS spectrum of the Wilson loop for local P2 with n= 8 and d ≤ 7
3 .

2 jL\2 jR 0 1 2 3 4 5
0 37 129 1
1 10 46
2 1 9
3 1

d = 1

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11
0 460 1130 1556 139
1 46 220 645 1139 46
2 10 56 221 506 10
3 1 10 56 175 1
4 1 10 46
5 1 9
6 1

d = 2

Table 11: BPS spectrum of the Wilson loop for local P2 with n= 9 and d ≤ 2.
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2 jL\2 jR 0 1 2 3 4
0 175 1
1 10 56
2 1 10
3 1

d = 2
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10
0 496 1729 2695 186
1 276 912 1784 56
2 10 67 287 727 11
3 1 11 67 231 1
4 1 11 56
5 1 10
6 1

d = 5
3

Table 12: BPS spectrum of the Wilson loop for local P2 with n= 10 and d ≤ 5
3 .

2 jL\2 jR 0 1 2 3
0 231 1
1 67
2 1 11
3 1

d = 1
3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9
0 2410 4479 243
1 287 1245 2697 67
2 78 365 1014 12
3 1 12 79 298 1
4 1 12 67
5 1 11
6 1

d = 4
3

Table 13: BPS spectrum of the Wilson loop for local P2 with n= 11 and d ≤ 4
3 .
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C.2 Refined BPS invariants for local P1 × P1

2 jL\2 jR 0 1
0 1

d =1

2 jL\2 jR 0 1 2 3
0 2

d =2

2 jL\2 jR 0 1 2 3 4 5 6
0 1 5
1 1

d = 3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9
0 2 6 12
1 2 6
2 2

d = 4

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 5 14 22 29 2
1 1 6 16 22 1
2 1 6 14
3 1 5
4 1

d = 5

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 6 18 36 60 74 78 14 2
1 2 8 24 50 74 76 14
2 2 8 26 50 60 6
3 2 8 24 36 2
4 2 8 18
5 2 6
6 2

d = 6

Table 14: BPS spectrum of the Wilson loop for local P1 × P1 with n= 2 and d ≤ 6.
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2 jL\2 jR 0
0 1

d = 1
2

2 jL\2 jR 0 1 2
0 2

d = 3
2

2 jL\2 jR 0 1 2 3 4 5
0 1 6
1 1

d = 5
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8
0 2 8 18
1 2 8
2 2

d = 7
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 6 20 38 51 3
1 1 7 23 38 1
2 1 7 20
3 1 6
4 1

d = 9
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 6 26 60 110 148 154 28 2
1 2 10 34 82 138 150 22
2 2 10 36 82 110 8
3 2 10 34 60 2
4 2 10 26
5 2 8
6 2

d = 11
2

Table 15: BPS spectrum of the Wilson loop for local P1 × P1 with n= 3 and d ≤ 11
2 .
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2 jL\2 jR 0 1
0 2

d = 1

2 jL\2 jR 0 1 2 3 4
0 1 7
1 1

d =2

2 jL\2 jR 0 1 2 3 4 5 6 7
0 2 10 26
1 2 10
2 2

d = 3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11
0 7 27 61 89 4
1 1 8 31 61 1
2 1 8 27
3 1 7
4 1

d = 4

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 34 94 192 286 304 50 2
1 2 12 46 126 242 288 32
2 2 12 48 126 192 10
3 2 12 46 94 2
4 2 12 36
5 2 10
6 2

d = 5

Table 16: BPS spectrum of the Wilson loop for local P1 × P1 with n= 4 and d ≤ 5.
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2 jL\2 jR 0
0 2

d = 1
2

2 jL\2 jR 0 1 2 3
0 1 8
1 1

d = 3
2

2 jL\2 jR 0 1 2 3 4 5 6
0 2 12 36
1 2 12
2 2

d = 5
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10
0 7 35 92 150 5
1 1 9 40 92 1
2 1 9 35
3 1 8
4 1

d = 7
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 36 138 318 528 592 82 2
1 14 60 184 400 530 44
2 2 14 62 184 318 12
3 2 14 60 140 2
4 2 14 48
5 2 12
6 2

d = 9
2

Table 17: BPS spectrum of the Wilson loop for local P1 × P1 with n= 5 and d ≤ 9
2 .

2 jL\2 jR 0 1 2
0 9
1 1

d =1

2 jL\2 jR 0 1 2 3 4 5
0 14 48
1 2 14
2 2

d =2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9
0 43 132 242 6
1 1 10 50 132 1
2 1 10 44
3 1 9
4 1

d = 3

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 186 500 928 1122 126 2
1 14 76 258 628 930 58
2 2 16 78 258 502 14
3 2 16 76 200 2
4 2 16 62
5 2 14
6 2

d = 4

Table 18: BPS spectrum of the Wilson loop for local P1 × P1 with n= 6 and d ≤ 4.
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2 jL\2 jR 0 1
0 10
1 1

d = 1
2

2 jL\2 jR 0 1 2 3 4
0 14 62
1 2 16
2 2

d = 3
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8
0 44 181 374 7
1 11 61 182 1
2 1 11 54
3 1 10
4 1

d = 5
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11 12
0 198 744 1554 2052 184 2
1 92 350 944 1558 74
2 2 18 96 350 760 16
3 2 18 94 276 2
4 2 18 78
5 2 16
6 2

d = 7
2

Table 19: BPS spectrum of the Wilson loop for local P1 × P1 with n= 7 and d ≤ 7
2 .

2 jL\2 jR 0 1 2 3
0 78
1 2 18
2 2

d =1

2 jL\2 jR 0 1 2 3 4 5 6 7
0 232 556 8
1 11 73 243 1
2 1 12 65
3 1 11
4 1

d =2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10 11
0 1014 2482 3610 258 2
1 94 460 1368 2502 92
2 20 116 462 1110 18
3 2 20 114 370 2
4 2 20 96
5 2 18
6 2

d = 3

Table 20: BPS spectrum of the Wilson loop for local P1 × P1 with n= 8 and d ≤ 3.
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2 jL\2 jR 0 1 2
0 96
1 20
2 2

d = 1
2

2 jL\2 jR 0 1 2 3 4 5 6
0 240 799 9
1 85 316 1
2 1 13 77
3 1 12
4 1

d = 3
2

2 jL\2 jR 0 1 2 3 4 5 6 7 8 9 10
0 1088 3754 6112 350 2
1 574 1920 3870 112
2 20 138 596 1572 20
3 2 22 136 484 2
4 2 22 116
5 2 20
6 2

d = 5
2

Table 21: BPS spectrum of the Wilson loop for local P1 × P1 with n= 9 and d ≤ 5
2 .
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C.3 Refined BPS invariants for En del Pezzos

2 jL\2 jR 0
0 1

d =−1

2 jL\2 jR 0
0 10

d =1

2 jL\2 jR 0 1
0 16

d = 2

2 jL\2 jR 0 1 2 3
0 1 46
1 1

d = 3

2 jL\2 jR 0 1 2 3 4
0 16 160
1 16

d = 4

2 jL\2 jR 0 1 2 3 4 5 6
0 10 140 586
1 10 140
2 10

d = 5

Table 22: BPS spectrum of the Wilson loop in the fundamental representation for D5
del Pezzo.

2 jL\2 jR 0
0 1

d =−1

2 jL\2 jR 0
0 27

d =1

2 jL\2 jR 0 1 2
0 79
1 1

d =2

2 jL\2 jR 0 1 2 3
0 27 378
1 27

d = 3

2 jL\2 jR 0 1 2 3 4 5
0 405 2133
1 27 405
2 27

d = 4

2 jL\2 jR 0 1 2 3 4 5 6 7 8
0 731 4540 12716 79
1 79 888 4540 1
2 1 80 809
3 1 79
4 1

d = 5

Table 23: BPS spectrum of the Wilson loop in the fundamental representation for E6
del Pezzo.
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2
j L
\2

j R
0

0
1

d
=
−

1

2
j L
\2

j R
0

1
0

13
4

1
1

d
=

1

2
j L
\2

j R
0

1
2

0
96

8
1

56

d
=

2

2
j L
\2

j R
0

1
2

3
4

5
0

16
74

10
45

1
1

1
13

4
18

07
2

1
13

4
3

1

d
=

3

2
j L
\2

j R
0

1
2

3
4

5
6

7
0

43
64

0
12

97
68

10
24

1
96

8
94

96
44

55
2

56
2

56
10

80
85

28
3

56
10

24
4

56

d
=

4

2
j L
\2

j R
0

1
2

3
4

5
6

7
8

9
10

11
0

23
78

27
93

03
81

17
12

24
9

68
14

0
13

4
1

86
09

7
37

66
69

93
92

94
15

52
9

1
2

18
08

15
79

6
91

17
5

31
02

03
19

42
3

13
5

19
43

15
79

7
75

77
9

13
5

4
1

13
5

19
43

13
85

6
1

5
1

13
5

18
08

6
1

13
4

7
1

d
=

5

Ta
bl

e
24

:
B

PS
sp

ec
tr

um
of

th
e

W
ils

on
lo

op
in

th
e

fu
nd

am
en

ta
lr

ep
re

se
nt

at
io

n
fo

r
E 7

de
lP

ez
zo

.

43



SciPost Physics Submission

2
j L
\2

j R
0

0
1

d
=
−

1

2
j L
\2

j R
0

1
2

0
41

25
1

24
9

2
1

d
=

1

2
j L
\2

j R
0

1
2

3
4

5
0

18
61

26
24

9
1

41
24

38
87

7
1

2
24

9
43

73
3

1
24

9
4

1

d
=

2

2
j L
\2

j R
0

1
2

3
4

5
6

7
8

9
0

36
94

11
9

11
39

36
22

25
20

04
24

9
1

14
34

13
0

48
80

61
8

43
49

8
1

2
39

12
5

29
50

05
12

86
88

1
46

23
3

46
22

43
74

7
25

63
77

25
0

4
1

25
0

46
23

39
37

4
1

5
1

25
0

43
74

6
1

24
9

7
1

d
=

3

2
j L
\2

j R
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

0
48

58
75

76
5

79
96

89
23

7
72

30
84

85
13

57
37

9
43

74
1

72
03

56
19

29
20

38
36

9
54

59
82

77
7

28
54

78
72

30
03

73
25

0
2

29
69

91
20

10
66

91
23

7
23

47
19

99
4

76
13

63
2

44
24

7
1

3
13

87
75

9
78

73
88

3
30

96
71

29
80

57
13

70
16

49
25

5
46

25
4

30
06

21
16

92
75

4
76

88
50

4
23

68
06

24
30

06
23

25
0

5
43

75
44

24
7

30
52

46
16

49
75

3
60

79
37

1
43

99
8

1
6

25
0

46
25

44
24

8
30

06
24

13
53

50
6

46
24

7
1

25
0

46
25

43
99

8
25

68
75

25
0

8
1

25
0

46
24

39
37

5
1

9
1

25
0

43
74

10
1

24
9

11
1

d
=

4

Ta
bl

e
25

:
B

PS
sp

ec
tr

um
of

th
e

W
ils

on
lo

op
in

th
e

fu
nd

am
en

ta
lr

ep
re

se
nt

at
io

n
fo

r
E 8

de
lP

ez
zo

.

44



SciPost Physics Submission

References

[1] S. H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B
497, 173 (1997), doi:10.1016/S0550-3213(97)00282-4, hep-th/9609239.

[2] E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133, 637 (1995), hep-th/
9207094.

[3] M. Aganagic, A. Klemm, M. Marino and C. Vafa, Matrix model as a mirror of Chern-Simons theory,
JHEP 02, 010 (2004), doi:10.1088/1126-6708/2004/02/010, hep-th/0211098.

[4] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino and C. Vafa, Topological strings and integrable
hierarchies, Commun. Math. Phys. 261, 451 (2006), doi:10.1007/s00220-005-1448-9, hep-th/
0312085.

[5] S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4-D N=2 gauge theories: 1.,
Adv. Theor. Math. Phys. 1, 53 (1998), doi:10.4310/ATMP.1997.v1.n1.a2, hep-th/9706110.

[6] T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, Lett. Math.
Phys. 98, 225 (2011), doi:10.1007/s11005-011-0531-8, 1006.0977.

[7] M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z.
Naturforsch. A 57, 1 (2002), doi:10.1515/zna-2002-1-201, hep-th/0105045.

[8] M. Aganagic, A. Klemm, M. Marino and C. Vafa, The Topological vertex, Commun. Math. Phys.
254, 425 (2005), doi:10.1007/s00220-004-1162-z, hep-th/0305132.

[9] A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10, 069 (2009),
doi:10.1088/1126-6708/2009/10/069, hep-th/0701156.

[10] C. Kozçaz, S. Shakirov, C. Vafa and W. Yan, Refined Topological Branes, Commun. Math. Phys.
385(2), 937 (2021), doi:10.1007/s00220-020-03883-1, 1805.00993.

[11] H.-C. Kim, M. Kim and S.-S. Kim, 5d/6d Wilson loops from blowups, JHEP 08, 131 (2021),
doi:10.1007/JHEP08(2021)131, 2106.04731.

[12] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7(5),
831 (2003), doi:10.4310/ATMP.2003.v7.n5.a4, hep-th/0206161.

[13] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244,
525 (2006), doi:10.1007/0-8176-4467-9_15, hep-th/0306238.

[14] H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes,
JHEP 12, 031 (2011), doi:10.1007/JHEP12(2011)031, 1110.2175.

[15] D. Rodríguez-Gómez and G. Zafrir, On the 5d instanton index as a Hilbert series, Nucl. Phys. B
878, 1 (2014), doi:10.1016/j.nuclphysb.2013.11.006, 1305.5684.

[16] O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP
01, 079 (2014), doi:10.1007/JHEP01(2014)079, 1310.2150.

[17] C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07, 063
(2015), doi:10.1007/JHEP07(2015)063, [Addendum: JHEP 04, 094 (2016)], 1406.6793.

[18] R. Gopakumar and C. Vafa, M theory and topological strings. 1. (1998), hep-th/9809187.

[19] R. Gopakumar and C. Vafa, M theory and topological strings. 2. (1998), hep-th/9812127.

[20] T. W. Grimm, A. Klemm, M. Marino and M. Weiss, Direct Integration of the Topological String,
JHEP 08, 058 (2007), doi:10.1088/1126-6708/2007/08/058, hep-th/0702187.

[21] B. Haghighat, A. Klemm and M. Rauch, Integrability of the holomorphic anomaly equations, JHEP
10, 097 (2008), doi:10.1088/1126-6708/2008/10/097, 0809.1674.

[22] M.-x. Huang and A. Klemm, Direct integration for general Ω backgrounds, Adv. Theor. Math. Phys.
16(3), 805 (2012), doi:10.4310/ATMP.2012.v16.n3.a2, 1009.1126.

[23] D. Tong and K. Wong, Instantons, Wilson lines, and D-branes, Phys. Rev. D 91(2), 026007 (2015),
doi:10.1103/PhysRevD.91.026007, 1410.8523.

45

https://doi.org/10.1016/S0550-3213(97)00282-4
hep-th/9609239
hep-th/9207094
hep-th/9207094
https://doi.org/10.1088/1126-6708/2004/02/010
hep-th/0211098
https://doi.org/10.1007/s00220-005-1448-9
hep-th/0312085
hep-th/0312085
https://doi.org/10.4310/ATMP.1997.v1.n1.a2
hep-th/9706110
https://doi.org/10.1007/s11005-011-0531-8
1006.0977
https://doi.org/10.1515/zna-2002-1-201
hep-th/0105045
https://doi.org/10.1007/s00220-004-1162-z
hep-th/0305132
https://doi.org/10.1088/1126-6708/2009/10/069
hep-th/0701156
https://doi.org/10.1007/s00220-020-03883-1
1805.00993
https://doi.org/10.1007/JHEP08(2021)131
2106.04731
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
hep-th/0206161
https://doi.org/10.1007/0-8176-4467-9_15
hep-th/0306238
https://doi.org/10.1007/JHEP12(2011)031
1110.2175
https://doi.org/10.1016/j.nuclphysb.2013.11.006
1305.5684
https://doi.org/10.1007/JHEP01(2014)079
1310.2150
https://doi.org/10.1007/JHEP07(2015)063
1406.6793
hep-th/9809187
hep-th/9812127
https://doi.org/10.1088/1126-6708/2007/08/058
hep-th/0702187
https://doi.org/10.1088/1126-6708/2008/10/097
0809.1674
https://doi.org/10.4310/ATMP.2012.v16.n3.a2
1009.1126
https://doi.org/10.1103/PhysRevD.91.026007
1410.8523


SciPost Physics Submission

[24] N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-
characters, JHEP 03, 181 (2016), doi:10.1007/JHEP03(2016)181, 1512.05388.

[25] H.-C. Kim, Line defects and 5d instanton partition functions, JHEP 03, 199 (2016),
doi:10.1007/JHEP03(2016)199, 1601.06841.

[26] T. Kimura, H. Mori and Y. Sugimoto, Refined geometric transition and qq-characters, JHEP 01, 025
(2018), doi:10.1007/JHEP01(2018)025, 1705.03467.

[27] P. Agarwal, J. Kim, S. Kim and A. Sciarappa, Wilson surfaces in M5-branes, JHEP 08, 119 (2018),
doi:10.1007/JHEP08(2018)119, 1804.09932.

[28] B. Assel and A. Sciarappa, Wilson loops in 5d N = 1 theories and S-duality, JHEP 10, 082 (2018),
doi:10.1007/JHEP10(2018)082, 1806.09636.

[29] N. Haouzi and J. Oh, On the Quantization of Seiberg-Witten Geometry, JHEP 01, 184 (2021),
doi:10.1007/JHEP01(2021)184, 2004.00654.

[30] J. Chen, B. Haghighat, H.-C. Kim and M. Sperling, Elliptic quantum curves of class Sk, JHEP 03,
028 (2021), doi:10.1007/JHEP03(2021)028, 2008.05155.

[31] J. Chen, B. Haghighat, H.-C. Kim, M. Sperling and X. Wang, E-string quantum curve, Nucl. Phys.
B 973, 115602 (2021), doi:10.1016/j.nuclphysb.2021.115602, 2103.16996.

[32] J. Chen, B. Haghighat, H.-C. Kim, K. Lee, M. Sperling and X. Wang, Elliptic quantum curves of 6d
SO(N) theories, JHEP 03, 154 (2022), doi:10.1007/JHEP03(2022)154, 2110.13487.

[33] S. Nawata, K. Zhang and R.-D. Zhu, ABCD of qq-characters (2023), 2302.00525.

[34] M.-x. Huang, K. Lee and X. Wang, Topological strings and Wilson loops, JHEP 08, 207 (2022),
doi:10.1007/JHEP08(2022)207, 2205.02366.

[35] M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid N = 2 theories,
Annales Henri Poincare 14, 425 (2013), doi:10.1007/s00023-012-0192-x, 1109.5728.

[36] M.-x. Huang and A. Klemm, Holomorphic Anomaly in Gauge Theories and Matrix Models, JHEP
09, 054 (2007), doi:10.1088/1126-6708/2007/09/054, hep-th/0605195.

[37] M.-x. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi-Yau:
Modularity and boundary conditions, Lect. Notes Phys. 757, 45 (2009), doi:10.1007/978-3-540-
68030-7_3, hep-th/0612125.

[38] H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math. 162, 313 (2005),
doi:10.1007/s00222-005-0444-1, math/0306198.

[39] H. Nakajima and K. Yoshioka, Instanton counting on blowup. II. K-theoretic partition function,
Transform. Groups 10(3-4), 489 (2005), doi:10.1007/s00031-005-0406-0, math/0505553.

[40] H. Nakajima and K. Yoshioka, Perverse coherent sheaves on blowup, III: Blow-up formula from
wall-crossing, Kyoto J. Math. 51(2), 263 (2011), doi:10.1215/21562261-1214366, 0911.1773.

[41] M.-x. Huang, K. Sun and X. Wang, Blowup Equations for Refined Topological Strings, JHEP 10, 196
(2018), doi:10.1007/JHEP10(2018)196, 1711.09884.

[42] A. Klemm, The B-model approach to topological string theory on Calabi-Yau n-folds, In B-model
Gromov-Witten theory, Trends Math., pp. 79–397. Birkhäuser/Springer, Cham (2018).

[43] H.-C. Kim, M. Kim, S.-S. Kim and K.-H. Lee, Bootstrapping BPS spectra of 5d/6d field theories,
JHEP 04, 161 (2021), doi:10.1007/JHEP04(2021)161, 2101.00023.

[44] M. Dedushenko and E. Witten, Some Details On The Gopakumar-Vafa and Ooguri-Vafa Formulas,
Adv. Theor. Math. Phys. 20, 1 (2016), doi:10.4310/ATMP.2016.v20.n1.a1, 1411.7108.

[45] D. Krefl and J. Walcher, Extended Holomorphic Anomaly in Gauge Theory, Lett. Math. Phys. 95,
67 (2011), doi:10.1007/s11005-010-0432-2, 1007.0263.

[46] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and
exact results for quantum string amplitudes, Commun. Math. Phys. 165, 311 (1994),
doi:10.1007/BF02099774, hep-th/9309140.

46

https://doi.org/10.1007/JHEP03(2016)181
1512.05388
https://doi.org/10.1007/JHEP03(2016)199
1601.06841
https://doi.org/10.1007/JHEP01(2018)025
1705.03467
https://doi.org/10.1007/JHEP08(2018)119
1804.09932
https://doi.org/10.1007/JHEP10(2018)082
1806.09636
https://doi.org/10.1007/JHEP01(2021)184
2004.00654
https://doi.org/10.1007/JHEP03(2021)028
2008.05155
https://doi.org/10.1016/j.nuclphysb.2021.115602
2103.16996
https://doi.org/10.1007/JHEP03(2022)154
2110.13487
2302.00525
https://doi.org/10.1007/JHEP08(2022)207
2205.02366
https://doi.org/10.1007/s00023-012-0192-x
1109.5728
https://doi.org/10.1088/1126-6708/2007/09/054
hep-th/0605195
https://doi.org/10.1007/978-3-540-68030-7_3
https://doi.org/10.1007/978-3-540-68030-7_3
hep-th/0612125
https://doi.org/10.1007/s00222-005-0444-1
math/0306198
https://doi.org/10.1007/s00031-005-0406-0
math/0505553
https://doi.org/10.1215/21562261-1214366
0911.1773
https://doi.org/10.1007/JHEP10(2018)196
1711.09884
https://doi.org/10.1007/JHEP04(2021)161
2101.00023
https://doi.org/10.4310/ATMP.2016.v20.n1.a1
1411.7108
https://doi.org/10.1007/s11005-010-0432-2
1007.0263
https://doi.org/10.1007/BF02099774
hep-th/9309140


SciPost Physics Submission

[47] M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and [p, q]-
strings, JHEP 11, 112 (2013), doi:10.1007/JHEP11(2013)112, 1308.0619.

[48] K. A. Intriligator, D. R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theo-
ries and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497, 56 (1997), doi:10.1016/S0550-
3213(97)00279-4, hep-th/9702198.

[49] M. Aganagic and S. Shakirov, Refined Chern-Simons Theory and Topological String (2012), 1210.
2733.

[50] J. Choi, S. Katz and A. Klemm, The refined BPS index from stable pair invariants, Commun. Math.
Phys. 328, 903 (2014), doi:10.1007/s00220-014-1978-0, 1210.4403.

[51] A. Klemm, J. Manschot and T. Wotschke, Quantum geometry of elliptic Calabi-Yau manifolds, Com-
mun. Number Theory Phys. 6(4), 849 (2012), doi:10.4310/CNTP.2012.v6.n4.a5, 1205.1795.

[52] C. F. Cota, A. Klemm and T. Schimannek, Topological strings on genus one fibered Calabi-Yau 3-folds
and string dualities, JHEP 11, 170 (2019), doi:10.1007/JHEP11(2019)170, 1910.01988.

[53] S.-S. Kim and X.-Y. Wei, Refined topological vertex with ON-planes, JHEP 08, 006 (2022),
doi:10.1007/JHEP08(2022)006, 2201.12264.

[54] T. M. Chiang, A. Klemm, S.-T. Yau and E. Zaslow, Local mirror symmetry: Calculations and
interpretations, Adv. Theor. Math. Phys. 3, 495 (1999), doi:10.4310/ATMP.1999.v3.n3.a3,
hep-th/9903053.

[55] https://github.com/wangxin07895123/Wilsonloop5D .

[56] M. Aganagic, V. Bouchard and A. Klemm, Topological Strings and (Almost) Modular Forms, Com-
mun. Math. Phys. 277, 771 (2008), doi:10.1007/s00220-007-0383-3, hep-th/0607100.

[57] M.-x. Huang and A. Klemm, Holomorphicity and Modularity in Seiberg-Witten Theories with Matter,
JHEP 07, 083 (2010), doi:10.1007/JHEP07(2010)083, 0902.1325.

[58] M.-x. Huang, Modular anomaly from holomorphic anomaly in mass deformed N = 2 supercon-
formal field theories, Phys. Rev. D 87(10), 105010 (2013), doi:10.1103/PhysRevD.87.105010,
1302.6095.

[59] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric
QCD, Nucl. Phys. B 431, 484 (1994), doi:10.1016/0550-3213(94)90214-3, hep-th/9408099.

[60] N. Seiberg and E. Witten, Electric - magnetic duality, monopole condensation, and confinement
in N=2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426, 19 (1994), doi:10.1016/0550-
3213(94)90124-4, hep-th/9407087.

[61] N. A. Nekrasov and S. L. Shatashvili, Quantization of Integrable Systems and Four Dimen-
sional Gauge Theories, In 16th International Congress on Mathematical Physics, pp. 265–289,
doi:10.1142/9789814304634_0015 (2009), 0908.4052.

[62] A. B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér.
(4) 46(5), 747 (2013), doi:10.24033/asens.2201, 1107.5588.

[63] R. Eager, S. Franco and K. Schaeffer, Dimer Models and Integrable Systems, JHEP 06, 106 (2012),
doi:10.1007/JHEP06(2012)106, 1107.1244.

[64] S. Moriyama, Spectral Theories and Topological Strings on del Pezzo Geometries, JHEP 10, 154
(2020), doi:10.1007/JHEP10(2020)154, 2007.05148.

[65] T. Furukawa, S. Moriyama and Y. Sugimoto, Quantum Mirror Map for Del Pezzo Geometries, J.
Phys. A 53(38), 38 (2020), doi:10.1088/1751-8121/ab93fe, 1908.11396.

[66] D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d N = 1 theories, JHEP 01, 019 (2017),
doi:10.1007/JHEP01(2017)019, 1506.03871.

[67] A. Sciarappa, Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge
theory, JHEP 10, 116 (2017), doi:10.1007/JHEP10(2017)116, 1706.05142.

47

https://doi.org/10.1007/JHEP11(2013)112
1308.0619
https://doi.org/10.1016/S0550-3213(97)00279-4
https://doi.org/10.1016/S0550-3213(97)00279-4
hep-th/9702198
1210.2733
1210.2733
https://doi.org/10.1007/s00220-014-1978-0
1210.4403
https://doi.org/10.4310/CNTP.2012.v6.n4.a5
1205.1795
https://doi.org/10.1007/JHEP11(2019)170
1910.01988
https://doi.org/10.1007/JHEP08(2022)006
2201.12264
https://doi.org/10.4310/ATMP.1999.v3.n3.a3
hep-th/9903053
https://github.com/wangxin07895123/Wilsonloop5D
https://doi.org/10.1007/s00220-007-0383-3
hep-th/0607100
https://doi.org/10.1007/JHEP07(2010)083
0902.1325
https://doi.org/10.1103/PhysRevD.87.105010
1302.6095
https://doi.org/10.1016/0550-3213(94)90214-3
hep-th/9408099
https://doi.org/10.1016/0550-3213(94)90124-4
https://doi.org/10.1016/0550-3213(94)90124-4
hep-th/9407087
https://doi.org/10.1142/9789814304634_0015
0908.4052
https://doi.org/10.24033/asens.2201
1107.5588
https://doi.org/10.1007/JHEP06(2012)106
1107.1244
https://doi.org/10.1007/JHEP10(2020)154
2007.05148
https://doi.org/10.1088/1751-8121/ab93fe
1908.11396
https://doi.org/10.1007/JHEP01(2017)019
1506.03871
https://doi.org/10.1007/JHEP10(2017)116
1706.05142


SciPost Physics Submission

[68] A. Grassi and M. Marino, The complex side of the TS/ST correspondence, J. Phys. A 52(5), 055402
(2019), doi:10.1088/1751-8121/aaec4b, 1708.08642.

[69] A. Grassi and M. Mariño, A Solvable Deformation of Quantum Mechanics, SIGMA 15, 025 (2019),
doi:10.3842/SIGMA.2019.025, 1806.01407.

[70] A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04,
040 (2010), doi:10.1007/JHEP04(2010)040, 0910.5670.

[71] M. Aganagic, M. C. N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined
Topological Strings, JHEP 11, 019 (2012), doi:10.1007/JHEP11(2012)019, 1105.0630.

[72] M.-x. Huang and X.-f. Wang, Topological Strings and Quantum Spectral Problems, JHEP 09, 150
(2014), doi:10.1007/JHEP09(2014)150, 1406.6178.

[73] J. D. Edelstein, M. Gomez-Reino and M. Marino, Blowup formulae in Donaldson-Witten theory and
integrable hierarchies, Adv. Theor. Math. Phys. 4, 503 (2000), doi:10.4310/ATMP.2000.v4.n3.a1,
hep-th/0006113.

[74] N. Nekrasov, Blowups in BPS/CFT correspondence, and Painlevé VI (2020), 2007.03646.

[75] S. Jeong and N. Nekrasov, Riemann-Hilbert correspondence and blown up surface defects, JHEP 12,
006 (2020), doi:10.1007/JHEP12(2020)006, 2007.03660.

[76] C. A. Keller and J. Song, Counting Exceptional Instantons, JHEP 07, 085 (2012),
doi:10.1007/JHEP07(2012)085, 1205.4722.

[77] J. Gu, B. Haghighat, K. Sun and X. Wang, Blowup Equations for 6d SCFTs. I, JHEP 03, 002 (2019),
doi:10.1007/JHEP03(2019)002, 1811.02577.

[78] J. Gu, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d SCFTs. Part II. Exceptional
cases, JHEP 12, 039 (2019), doi:10.1007/JHEP12(2019)039, 1905.00864.

[79] J. Gu, B. Haghighat, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d SCFTs.
Part III. E-strings, M-strings and chains, JHEP 07, 135 (2020), doi:10.1007/JHEP07(2020)135,
1911.11724.

[80] J. Kim, S.-S. Kim, K.-H. Lee, K. Lee and J. Song, Instantons from Blow-up, JHEP 11, 092 (2019),
doi:10.1007/JHEP11(2019)092, [Erratum: JHEP 06, 124 (2020)], 1908.11276.

[81] J. Gu, B. Haghighat, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d SCFTs. Part
IV. Matters, JHEP 11, 090 (2021), doi:10.1007/JHEP11(2021)090, 2006.03030.

[82] Z. Duan, K. Lee, J. Nahmgoong and X. Wang, Twisted 6d (2, 0) SCFTs on a circle, JHEP 07, 179
(2021), doi:10.1007/JHEP07(2021)179, 2103.06044.

[83] K. Lee, K. Sun and X. Wang, Twisted Elliptic Genera (2022), 2212.07341.

[84] H.-C. Kim, M. Kim and Y. Sugimoto, Blowup equations for little strings, JHEP 05, 029 (2023),
doi:10.1007/JHEP05(2023)029, 2301.04151.

[85] K. Sun, Blowup Equations and Holomorphic Anomaly Equations (2021), 2112.14753.

[86] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP 04, 103
(2018), doi:10.1007/JHEP04(2018)103, 1801.04036.

[87] J. Chen, Y. Lü and X. Wang, D-type Minimal Conformal Matter: Quantum Curves, Elliptic Garnier
Systems, and the 5d Descendants (2023), 2304.04383.

[88] X. Wang, G. Zhang and M.-x. Huang, New Exact Quantization Condition for Toric Calabi-Yau Geome-
tries, Phys. Rev. Lett. 115, 121601 (2015), doi:10.1103/PhysRevLett.115.121601, 1505.05360.

[89] A. Grassi, Y. Hatsuda and M. Marino, Topological Strings from Quantum Mechanics, Annales Henri
Poincare 17(11), 3177 (2016), doi:10.1007/s00023-016-0479-4, 1410.3382.

48

https://doi.org/10.1088/1751-8121/aaec4b
1708.08642
https://doi.org/10.3842/SIGMA.2019.025
1806.01407
https://doi.org/10.1007/JHEP04(2010)040
0910.5670
https://doi.org/10.1007/JHEP11(2012)019
1105.0630
https://doi.org/10.1007/JHEP09(2014)150
1406.6178
https://doi.org/10.4310/ATMP.2000.v4.n3.a1
hep-th/0006113
2007.03646
https://doi.org/10.1007/JHEP12(2020)006
2007.03660
https://doi.org/10.1007/JHEP07(2012)085
1205.4722
https://doi.org/10.1007/JHEP03(2019)002
1811.02577
https://doi.org/10.1007/JHEP12(2019)039
1905.00864
https://doi.org/10.1007/JHEP07(2020)135
1911.11724
https://doi.org/10.1007/JHEP11(2019)092
1908.11276
https://doi.org/10.1007/JHEP11(2021)090
2006.03030
https://doi.org/10.1007/JHEP07(2021)179
2103.06044
2212.07341
https://doi.org/10.1007/JHEP05(2023)029
2301.04151
2112.14753
https://doi.org/10.1007/JHEP04(2018)103
1801.04036
2304.04383
https://doi.org/10.1103/PhysRevLett.115.121601
1505.05360
https://doi.org/10.1007/s00023-016-0479-4
1410.3382

	Introduction
	Wilson loops and topological strings
	Wilson loops for del Pezzo surfaces
	Topological strings on local del Pezzo surfaces
	The refined holomorphic anomaly equations for BPS sectors
	Examples
	local P2
	local P1P1


	Magnetic dual and quantum spectrum
	Blowup equations and Wilson loops
	Blowup equations
	General structure of blowup equations
	General structure of blowup equations for Wilson loops

	Conclusions
	The partition function of E-string theory
	Wilson loop expectation values for del Pezzo surfaces
	Refined BPS invariants
	Refined BPS invariants for local P2
	Refined BPS invariants for local P1P1
	Refined BPS invariants for En del Pezzos

	References

