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Entanglement measures constitute powerful tools in the quantitative description of quantum
many-body systems out of equilibrium. We study entanglement in the current-carrying steady
state of a paradigmatic one-dimensional model of noninteracting fermions at zero temperature in
the presence of a scatterer. We show that disjoint intervals located on opposite sides of the scat-
terer, and within similar distances from it, maintain volume-law entanglement regardless of their
separation, as measured by their fermionic negativity and coherent information. The mutual in-
formation of the intervals, which quantifies the total correlations between them, follows a similar
scaling. Interestingly, this scaling entails in particular that if the position of one of the intervals is
kept fixed, then the correlation measures depend non-monotonically on the distance between the
intervals. By deriving exact expressions for the extensive terms of these quantities, we prove their
simple functional dependence on the scattering probabilities, and demonstrate that the strong long-
range entanglement is generated by the coherence between the transmitted and reflected parts of
propagating particles within the bias-voltage window. The generality and simplicity of the model
suggest that this behavior should characterize a large class of nonequilibrium steady states.
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I. INTRODUCTION

Within the broad field of quantum many-body physics, the study of nonequilibrium phenomena is becoming in-
creasingly intertwined with the analysis of entanglement witnesses. In particular, the scaling of various entanglement
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measures with the size of a subsystem quantitatively captures canonical nonequilibrium behaviors, such as thermal-
ization [1–3] or the violation thereof [4–6], in closed systems subjected to an initial quench. In quench problems of this
type, transient effects of long-range entanglement are signatures of integrability [7–10], and the dynamics as well as
the stationary values of the entanglement entropy, negativity, and mutual information are used for the classification
of out-of-equilibrium models and their phases [11–22].

This success motivates the examination of entanglement properties also in open systems, and specifically those
of their steady states, which may give rise to unique entanglement structures [23–29]. Current-carrying states of
inhomogeneous systems offer a promising ground for such an analysis, as recent studies have revealed that they
can naturally sustain long-range quantum coherent correlations [30–32]. In this context, scaling laws of steady-
state entanglement measures were shown to be closely related to the localized-diffusive phase transition of the open
noninteracting Anderson model [33]. In this work we show that nonequilibrium conditions may lead to an even more
striking behavior of quantum information measures. This is achieved through the study of an elementary model
for an inhomogeneous system in a current-carrying state, where the mechanism underlying its unusual entanglement
properties is exceptionally transparent.

Beyond the role of entanglement measures as fundamental quantities, their estimation is inextricably linked to the
construction of useful tensor-network simulations of condensed matter systems [34, 35]. Strong (volume-law) entangle-
ment, which is commonly found in nonequilibrium quantum many-body states [2, 13, 36], impedes the utility of these
simulation methods [37]. One possible key for their improvement is thus the uncovering of nontrivial entanglement
structures in certain classes of states, like the one that is the subject of this work. Steady states that are predicted to
give rise to strong entanglement are also of potential interest from a technological standpoint, as entanglement is an
essential resource for quantum information applications [38–40].

In this work, we examine the long-range entanglement induced by a current-conserving scatterer in the voltage-
biased steady state of a 1D noninteracting fermion system. We treat this problem generally, without imposing specific
assumptions regarding the structure of the scatterer other than it being smaller compared to all other length scales.
We study the correlations between two disjoint subsystems located on opposite sides of the scatterer: AL on its left,
and AR on its right. The total amount of correlations is regularly quantified using the mutual information (MI)
between the two subsystems,

IAL:AR
= SAL

+ SAR
− SA. (1)

Here A = AL ∪ AR, and SX = −Tr [ρX ln ρX ] is the von Neumann entanglement entropy of a subsystem X [41], with
ρX being the reduced density matrix of X.

Given that A is in a mixed state, however, the MI has limitations as a measure of entanglement, since it takes
into account both classical and quantum correlations [42]. Therefore, we also address the fermionic negativity [43–45]
between AL and AR, an entanglement monotone defined as

E = ln Tr
√

(ρ̃A)†
ρ̃A, (2)

where ρ̃A is obtained from ρA by applying a partial time-reversal to either AL or AR. Interestingly, our analysis
shows that the MI and negativity follow a similar scaling, a scaling which to the best of our knowledge has not been
previously observed in a natural physical scenario.

As our main result, we find that both the MI and the negativity scale linearly with ℓmirror, the number of sites in
AL that, under reflection with respect to the position of the scatterer, overlap with sites in AR (see Fig. 1(a) for an
illustration). Remarkably, this steady-state extensive entanglement is long-ranged, as the observed volume-law scaling
does not decay with the (similar) distance of the mirroring sites from the scatterer. Moreover, the entanglement
depends non-monotonically on the distance of either AL or AR from the scatterer. We analytically derive exact
formulas for the asymptotic scaling of the MI and the negativity (Eqs. (8)–(9)). Additionally, we demonstrate that
the coherent information (CI) [46, 47],

I(AL⟩AR) = SAR
− SA, (3)

is not only positive (which is impossible classically) when ℓmirror is large enough, but also grows with ℓmirror according
to a volume law (Eq. (10))1. The CI is a lower bound to the squashed entanglement [48, 49], another rigorous
entanglement measure with axiomatically desirable properties [41], which therefore obeys an extensive scaling as well
in regimes where I(AL⟩AR) > 0.

1 The definition of the CI is evidently not symmetric with respect to the two subsystems AL and AR. Our choice to examine I(AL⟩AR)
rather than I(AR⟩AL) is arbitrary, and we maintain this choice throughout the text for convenience.
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Figure 1. (a) Schematic sketch of the model: Red circles mark lattice sites in the scattering region, while sites outside this region
are marked in blue. Noninteracting reservoirs with different chemical potentials are connected to the two ends of the chain.
See the text (Sec. II) for details regarding the notations. Bottom panels: An intuitive picture for the origin of the steady-state
entanglement structure. (b) Any incoming wavepacket (black) is split by the scattering region into a transmitted part (dark
gray) and a reflected part (light gray), with amplitudes determined by the associated sacttering matrix (see Eq. (5)). The
transmitted and reflected parts are coherently correlated and thus generate entanglement. (c) Split wavepackets with energies
within the voltage window strongly entangle regions that mirror each other with respect to the position of the scattering region.
Correlation measures exhibit long-range volume-law scaling, since the number of split wavepackets shared by these mirroring
regions is proportional to their length and independent of their spatial separation.

A simple intuitive explanation for these results is provided by considering that the scatterer splits each incom-
ing single-particle wavepacket into two coherently correlated counter-propagating parts (Fig. 1(b)). Each such split
wavepacket with energy within the voltage window generates entanglement, since detecting the particle in one subsys-
tem prohibits its presence in the other. As the number of such wavepackets is proportional to ℓmirror and independent
of the distance between the subsystems (Fig. 1(c)), the correlation measures exhibit a similar behavior.

The paper is organized as follows. In Sec. II we introduce the model for the system and its nonequilibrium steady
state that are the subject of this work. In Sec. III we report our analytical results for correlation measures in the
steady state. We point out the salient features of these results, and support them through comparisons to numerical
results (computed for a specific choice of the scatterer). Sec. IV outlines the derivation of the analytical results, and
is limited to the conceptually crucial steps in the derivation, while the technical aspects of the process are mostly
discussed in the appendices. In Sec. V we conclude and mention potential future directions arising from this work.

Additionally, the paper includes four technical appendices. In Appendix A we derive the two-point correlation
function, which served as the basic ingredient in all of our calculations. Appendix B presents the technical details of
our computation method for subsystem entropies, from which (as explained in Sec. IV) the asymptotics of the MI and
CI can be immediately derived. Appendix C summarizes the derivation of the formula for the fermionic negativity,
which is based on the same method. Finally, in Appendix D we complement the numerical results included in Sec. III
with additional numerical tests corroborating our analysis.

II. NONEQUILIBRIUM MODEL

We consider a 1D lattice, occupied by noninteracting fermions and connected at its ends to two reservoirs with
different chemical potentials, µL ̸= µR, at zero temperature. The lattice is assumed to be of infinite length, and it
is modeled as a tight-binding chain that is homogeneous everywhere, except for a small region at the center of the
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chain, which we dub the scattering region. The Hamiltonian is thus of the form

H = −η

∞∑
m=m0

[
c†

mcm+1 + c†
−mc−m−1 + h.c.

]
+ Hscat. (4)

Here cm is a fermionic annihilation operator for the mth lattice site, η > 0 is a hopping amplitude, m = ±m0 designate
the boundaries of the scattering region, and Hscat pertains only to sites with |m| ≤ m0 and breaks the homogeneity,
e.g., through modified hopping terms, on-site energies, or side-attached sites.

The scattering region can be associated with a 2×2 unitary scattering matrix [50], defined for any lattice momentum
0 < k < π:

S(k) =
(

rL(k) tR(k)
tL(k) rR(k)

)
. (5)

The diagonal (off-diagonal) entries of this matrix stand for reflection (transmission) amplitudes; the left (right)
column contains the scattering amplitudes for a particle originating in the left (right) reservoir with momentum k > 0
(−k < 0). The squared moduli of the entries correspond to the transmission and reflection probabilities, respectively
T (|k|) and R(|k|) = 1 − T (|k|), for a particle originating in either reservoir with momentum k. These scattering
probabilities are the sole property of the scatterer on which our analytical results depend.

The single-particle eigenbasis of the Hamiltonian is comprised of extended scattering states with energies ε =
−2η cos k, and of bound states localized near the scattering region [50, 51]; we ignore the latter in our analysis, as
they contribute negligibly to correlations between sites that are distant from the scatterer. The current-carrying
many-body steady state is pure, with single-particle scattering states originating in the left (right) reservoir occupied
up to a Fermi momentum kF,L > 0 (−kF,R < 0), as shown schematically in Fig. 1(a). The Fermi momenta are related
to the chemical potentials through µi = −2η cos kF,i (i = L, R).

Correlation and entanglement measures are calculated with respect to two subsystems AL and AR, each comprised
of contiguous sites, with lengths ℓi and distances di ≥ 0 (i = L, R) from the scattering region (all of which are
assumed to be much larger than the size of the scattering region, 2m0 + 1): AL contains the sites m such that
−dL − ℓL ≤ m + m0 ≤ −dL − 1, while AR contains the sites m such that dR + 1 ≤ m − m0 ≤ dR + ℓR (see Fig. 1(a)).
ℓmirror = max {min {dL + ℓL, dR + ℓR} − max {dL, dR} , 0} denotes the number of mirroring pairs (−m, m) ∈ AL × AR,
and we also define ∆ℓi = ℓi − ℓmirror.

III. ASYMPTOTICS OF CORRELATION MEASURES

The leading behaviors of the MI and the negativity can be encapsulated by that of the Rényi MI, defined as

I(n)
AL:AR

= S
(n)
AL

+ S
(n)
AR

− S
(n)
A , (6)

where S
(n)
X = 1

1−n ln Tr [(ρX)n] are Rényi entropies (which converge to SX as n → 1). We report that, for the
nonequilibrium steady state described above, the Rényi MI follows a volume-law scaling with ℓmirror,

I(n)
AL:AR

∼ ℓmirror

1 − n

k+∫
k−

dk

π
ln[(T (k))n + (R(k))n] + . . . , (7)

where k− = min{kF,L, kF,R} and k+ = max{kF,L, kF,R} are the two Fermi momenta that bound the voltage window.
The ellipsis (which will be henceforth omitted) represents subleading terms, the dominant of which are logarithmic in
the different length scales (ℓi, di, and combinations thereof). Full exact expressions for these logarithmic terms can
be obtained in the long-range limit di/ℓi → ∞ (with dL − dR kept fixed) using methods related to the asymptotic
calculation of Toeplitz determinants [52–55]; the results for these subleading corrections will be discussed in a separate
publication [56].

The MI is related to the Rényi MI simply by its definition, through the equality IAL:AR
= limn→1 I(n)

AL:AR
, yielding

the following asymptotics:

IAL:AR
∼ ℓmirror

k+∫
k−

dk

π
[−T lnT −R lnR] . (8)
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Figure 2. The single impurity model: Scaling of (a) the mutual information, (b) the coherent information, and (c) the fermionic
negativity between subsystems AL and AR for the symmetric case ℓL = ℓR = ℓ and dL = dR, in the limit di ≫ ℓi. The analytical
results of Eqs. (8)–(10) for ℓ ≥ 50 (lines) are compared to numerical results (dots) for different values of the impurity energy
ϵ0, with the Fermi momenta fixed at kF,R = π/2 and kF,L = 2π/3.

The negativity, on the other hand, is not a priori directly related to the Rényi MI, yet our analysis shows that, at
the leading (linear) order,

E ∼ ℓmirror

k+∫
k−

dk

π
ln

[
T 1/2 + R1/2

]
∼ 1

2I(1/2)
AL:AR

. (9)

The equality I(1/2)
AL:AR

= 2E is known to arise in quenches of integrable systems [10]. Eqs. (8) and (9) state that, for
a generic non-trivial scatterer (i.e., unless T (k) ∈ {0, 1} for all k ∈ [k−, k+]), the MI and negativity both exhibit
extensive scaling with ℓmirror. Additionally, we have found that the CI scales at the leading order as

I(AL⟩AR) ∼ (ℓmirror−∆ℓL)
k+∫

k−

dk

2π
[−T lnT −R lnR] , (10)

and so it grows linearly with ℓmirror if ∆ℓL is fixed. Crucially, the asymptotics in Eqs. (7)–(10) do not depend on the
magnitudes of di, and they hold even when di ≫ ℓi. That is, the extensive entanglement is long-ranged, and it holds
even for subsystems that are very distant relative to their lengths, but that still share mirroring sites. Eqs. (8)–(10)
are the central results of this work.

The special symmetric case where ℓL = ℓR = ℓ and the subsystems are positioned symmetrically relative to the
scatterer (dL = dR) is particularly illuminating with regard to the nature of the steady-state entanglement. In this
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Figure 3. The single impurity model: (a) The mutual information and (b) the fermionic negativity between subsystems AL

and AR as a function of their positions relative to the impurity. We fix ℓL = 100 and ℓR = 200, and observe the dependence
on dL − dR in the limit di ≫ ℓi. Analytical results (lines) are compared to numerical results (dots) for different values of the
impurity energy ϵ0, with the Fermi momenta fixed at kF,R = π/2 and kF,L = 2π/3. Letting ĀL = {m| −m ∈ AL} denote the
mirror image of AL, black dashed vertical lines mark the boundaries of the domain where ĀL ⊂ AR, while gray dashed vertical
lines mark the boundaries of the domain where ĀL ∩ AR ̸= ϕ.

case we have found that SA scales sublinearly with ℓ, i.e. limℓ→∞ SA/ℓ = 0 (see Eq. (19)). The combined subsystem
A is therefore weakly entangled to the rest of the system, while its two components – one being the mirror image of
the other – maintain strong entanglement between them.

The volume-law terms in Eqs. (7)–(10) are evidently generated by the scattering states within the voltage window,
with the contribution of each state in Eq. (7) being the equivalent of the statistical moment of its corresponding
transmission probability. This simple form allows to deduce that the source of the long-range entanglement is the
coherence between the reflected part and the transmitted part of each scattered particle, which arrive simultaneously
at mirroring sites. In the steady state, the constant particle current renders this strong entanglement a stationary
property, and the length scale ℓmirror determines the amount of entanglement as it is proportional to the number of
scattered particles shared by the two subsystems. The voltage bias and the non-trivial scattering constitute necessary
and generically-sufficient conditions for the extensive terms in Eqs. (7)–(10) to not vanish.

To support our general analytical results, we compared them to numerics for a specific model where the scattering
is a result of a single impurity at the site m = 02. For this model, m0 = 0 and Hscat = ϵ0c†

0c0 in Eq. (4), ϵ0 being the
impurity energy. The scattering matrix for this model yields the transmission probability

T (k) = sin2 k

sin2 k + (ϵ0/2η)2 . (11)

2 The numerical results presented in Figs. 2 and 3 were calculated in the limit di/ℓi → ∞, which allows to simplify the expressions for
the elements of two-point correlation matrices, as explained in Appendix A. In Appendix D we also compare these numerical results to
those computed for finite di/ℓi, demonstrating convergence for di/ℓi ≫ 1.
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Good agreement with numerics is manifest in Fig. 2, where, focusing on the aforementioned symmetric case with two
intervals of length ℓ, we plotted the scaling with ℓ of all three correlation measures for different ratios of ϵ0/η. The
analytical results of Eqs. (8)–(10) are plotted for ℓ ≥ 50 (with a constant-in-ℓ additive correction term as the only
fitting parameter), as for small values of ℓ there is a considerable contribution from subleading terms beyond the
leading volume-law term (an exact analytical result for the most dominant subleading term, which is logarithmic in
ℓ, is derived in Ref. [56]).

In Fig. 3 we illustrate a rather counter-intuitive attribute of our results, using the example of the single impurity
model. For fixed values of ℓL and ℓR, we plot the dependence of the MI and the negativity on the positions of the
subsystems, and observe that this dependence is non-monotonic. Indeed, Eqs. (8)–(10) state that the long-range
correlations are the strongest when the overlap between one subsystem and the mirror image of the other is maximal;
if one subsystem is then brought closer to the other, this overlap is reduced and so are the correlations. Fig. 3 again
showcases the good agreement of our analytical results with numerics; the apparent slight deviations can be resolved
once logarithmic corrections are accounted for [56].

IV. ANALYTICAL METHOD

This section delineates the main steps in the derivation of Eqs. (8)–(10), while the discussion of the various technical
steps is deferred to the appendices. Subsec. IV A focuses on the derivation of the formulae for the MI and CI (both
of which are combinations of subsystem entropies), while Subsec. IV B deals with the derivation of the negativity
asymptotics.

The joint starting point of these computations is the two-point correlation function
〈

c†
jcm

〉
for j, m ∈ A. The ab-

sence of interactions entails that the states of the total system and its subsystems are Gaussian, and thus entanglement
is fully encoded in two-point correlations [43, 44, 57, 58]. The correlation function is given explicitly by

〈
c†

jcm

〉
=

kF,L∫
−kF,R

dk

2π
u∗

j (k) um(k) , (12)

where um(k) is the (unnormalized) single-particle wavefunction amplitude at site m of the scattering state associated
with momentum k; namely,

um>m0(k) =
{

eikm + rR(|k|) e−ikm k < 0,

tL(|k|) eikm k > 0,

um<−m0(k) =
{

tR(|k|) eikm k < 0,

eikm + rL(|k|) e−ikm k > 0.
(13)

Eq. (12) is derived in Appendix A, where we also discuss how this expression may be simplified when di ≫ ℓi.

A. Mutual information and coherent information

The exact asymptotics of the MI and of the CI in Eqs. (8) and (10) were obtained through the computation of the
Rényi entropies of AL, AR and A. We describe here the main components of this computation, referring the interested
reader to Appendix B for full details.

Within the Gaussian steady state, the Rényi entropies of a subsystem X are reduced to functions of CX , the
correlation matrix restricted to X ((CX)jm =

〈
c†

jcm

〉
where j, m ∈ X) [57]. Furthermore, these functions admit a

simple series expansion, on which our derivation relied. Namely, the Rényi entropies are given by

S
(n)
X = 1

1 − n
Tr ln[(CX)n + (I − CX)n]

= 1
1 − n

∞∑
s=1

(−1)s+1

s
Tr

[
{(CX)n + (I − CX)n − I}s]

. (14)

To obtain an analytic expression for the Rényi entropies, it is therefore sufficient to calculate a general expression for
moments Tr[(CX)p], with p being positive integers. Each such moment can be expressed in the form of a p-dimensional
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integral,

Tr [(CX)p] =
∫

[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

[ ∑
m∈X

um(kj−1) u∗
m(kj)

]
, (15)

where we defined k0 = kp. Each sum over m ∈ X in Eq. (15) can be rewritten as an integral over a fictitious variable
ξj ∈ [−1, 1], such that Tr [(CX)p] is then expressed as a 2p-dimensional integral.

The specific form of this integral depends on the choice of X, and is relatively involved (see Appendix B). We
illustrate schematically the way forward by considering the case of the connected subsystems X = Ai. For each of
these subsystems, Eq. (15) can be cast in the general form

Tr[(CAi
)p] =

(
ℓi

4π

)p ∑
−→τ ,−→σ ∈{0,1}⊗p

∫
[−kF,R,kF,L]p

dpk

∫
[−1,1]p

dpξ f−→τ ,−→σ

(−→
k

)
exp

i
ℓi

2

p∑
j=1

(
kτj−1 − kσj

)
(ξj + 1)

 , (16)

where kσj
= (−1)σj kj , and where the functions f−→τ ,−→σ vanish for

−→
k /∈ [−kF,R, kF,L]p and are independent of ℓi. The

origin of the exponential term in Eq. (16) can be traced back to the explicit forms of the wavefunctions um(k) in
Eq. (13), which are superpositions of e±ikm.

An integral of the form of Eq. (16) admits a stationary phase approximation in the large-ℓi limit [29, 59, 60];
leading-order contributions come only from summands with −→τ = −→σ , with the asymptotics of Eq. (16) given by

Tr[(CAi
)p] ∼ ℓi

kF,L∫
−kF,R

dkp

2π

∑
−→σ ∈{0,1}⊗p

f−→σ,−→σ

(
kσp

(−1)
−→σ

)
, (17)

where (−1)
−→σ = ((−1)σ1 , . . . , (−1)σp) . Substituting the specific expressions for the functions f−→τ ,−→σ that satisfy Eq. (16),

we then find that

Tr
[
{(CAi

)n + (I − CAi
)n − I}s]

∼ ℓi

k+∫
k−

dk

2π
{(T (k))n + (R(k))n − 1}s (18)

for all positive integers s. A similar treatment was applied to compute the leading term in ∆ℓi of moments of CA,
producing the same result as in Eq. (18) up to replacing CAi with CA and ℓi with ∆ℓL + ∆ℓR.

Summing up these contributions in the series expansion of Eq. (14) yields the extensive terms for the Rényi entropies
of AL, AR and A,

S
(n)
Ai

∼ ℓi

1 − n

k+∫
k−

dk

2π
ln [(T (k))n + (R(k))n] ,

S
(n)
A ∼ ∆ℓL + ∆ℓR

1 − n

k+∫
k−

dk

2π
ln [(T (k))n + (R(k))n] . (19)

The asymptotics in Eq. (19) directly lead to Eq. (7), while Eqs. (8) and (10) are obtained by taking the limit n → 1
and substituting the resulting von Neumann entropies into the definitions in Eqs. (1) and (3). We stress that the
universal dependence of the Rényi entropies on the scattering probabilities results from the fact that, at sites m
lying outside the scattering region, the wavefunctions um(k) in Eq. (13) are written only in terms of plane waves and
scattering amplitudes.

B. Fermionic negativity

Here we outline the principal steps in the derivation of Eq. (9), the asymptotic formula for the fermionic negativity; a
more detailed account of the computation appears in Appendix C. The derivation relies on the fact that the negativity
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E can be obtained as the analytic continuation of the Rényi negativities En = ln Tr
[(

(ρ̃A)†
ρ̃A

)n/2
]

at n = 1, where En

are evaluated at even values of n [43]. In analogy to the Rényi entropies, the Rényi negativities En can be expressed
as functions of CA and of a transformed two-point correlation matrix restricted to A [43, 44, 58]. As shown in
Appendix C, this expression for En leads to the following series expansion:

En =
∞∑

s=1

(−1)s+1

s
Tr


n−1

2∏
γ=− n−1

2

(I − Cγ) − I


s  . (20)

Here each Cγ is a transformed version of CA, given by

Cγ =

 (
1 − e

2πiγ
n

)
IℓL

0

0
(

1 + e
−2πiγ

n

)
IℓR

 CA, (21)

where the entries of CA are ordered such that the first ℓL indices correspond to sites in AL, and the next ℓR correspond
to sites in AR.

Eq. (20) reduces the calculation of the Rényi negativities to that of terms of the form Tr
[
Cγ1Cγ2 . . . Cγp

]
, which,

by using Eq. (12), may also be written as

Tr
[
Cγ1 . . . Cγp

]
=

∫
dpk

(2π)p

p∏
j=1

[(
1 − e

2πiγj
n

) ∑
m∈AL

um(kj−1) u∗
m(kj) +

(
1 + e

−2πiγj
n

) ∑
m∈AR

um(kj−1) u∗
m(kj)

]
, (22)

where the integral is computed over the domain [−kF,R, kF,L]p. The remainder of the calculation is similar in spirit
to that of the Rényi entropies: the explicit forms of the wavefunctions from Eq. (13) are substituted into Eq. (22);
Eq. (22) is rewritten as a 2p-dimensional integral using p fictitious variables; and finally, this 2p-dimensional integral is
estimated through a stationary phase approximation (see Appendix C). This process eventually leads to the following
result for every positive integer s:

Tr


n−1

2∏
γ=− n−1

2

(I − Cγ) − I


s  ∼ ℓmirror

k+∫
k−

dk

2π

{[
T n/2 + Rn/2

]2
− 1

}s

+ (∆ℓL + ∆ℓR)
k+∫

k−

dk

2π
{T n + Rn − 1}s

. (23)

Upon summation of the series in Eq. (20), we find that the Rényi negativities are given by

En ∼ ℓmirror

k+∫
k−

dk

π
ln

[
T n/2 + Rn/2

]
+ (∆ℓL + ∆ℓR)

k+∫
k−

dk

2π
ln[T n + Rn] , (24)

and the exact asymptotics of the negativity in Eq. (9) is obtained once the limit n → 1 is finally taken.

V. DISCUSSION AND OUTLOOK

In this work we derived the exact asymptotics of correlation measures for a nonequilibrium steady state of 1D
noninteracting fermions. We have shown that this state hosts extensive long-range entanglement between subsystems
that are on opposite sides of a current-conserving scatterer, provided that their distances from it are similar. The
volume-law terms of these measures stem from the extensive number of single-particle wavepackets that originate in
the high-chemical-potential reservoir, which are split by the scatterer so that they are in a superposition of being found
in either one of the mirroring subsystems. The correlation measures thus exhibit a simple and universal dependence
on scattering probabilities, allowing to clearly read off the necessary and sufficient conditions for the generation of
this strong long-range entanglement. Apart from the requirement that the scatterer be non-trivial, the essential
ingredients are the absence of decoherence mechanisms, along with the extensive excess of particles emerging from
one of the reservoirs.

We therefore expect the main features of our results to hold in a wide class of nonequilibrium steady states, including
those of integrable interacting systems [8, 10, 61], as well as when the reservoirs are at finite temperatures, and when
the scatterer induces particle gain and loss [29]. Similar features should also appear in the dynamics following a
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quench where two decoupled half-infinite chains are prepared with unequal fillings, and the scatterer is suddenly
introduced [11, 62, 63]. All of these scenarios offer intriguing prospects for future studies. It would also be interesting
to study the interplay of the effects uncovered by this work with decoherence, which could arise due to an integrability-
breaking impurity or when the system is coupled to Lindblad baths [64–67], or the interplay of the same effects with
the addition of quadratic pairing terms [68], which break charge conservation, to the Hamiltonian of Eq. (4).

Realizations of such models with, e.g., ultracold atoms [69] should allow to experimentally extract entanglement
measures [70–75]. In this context we highlight our results in Eqs. (19) and (24) for the Rényi versions of these
measures, which are generally more amenable to efficient measurement than their von Neumann counterparts.

Replacing the scattering region with a disordered region [30, 33], the signatures of localization and resonances
on long-range entanglement properties could also be a fruitful subject of research. Finally, another possible future
direction is the study of symmetry-resolution [76–86] of the different entanglement measures analyzed here.
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Appendix A: Two-point correlations

Here we derive Eq. (12), which is the general expression for the two-point correlation function
〈

c†
jcm

〉
for sites

outside the scattering region, |j| , |m| > m0. We consider a long chain with N ≫ 1 sites, where the small scattering
region is located at its center; in the end we will take the thermodynamic limit N → ∞.

An annihilation operator cm may be expanded in terms of annihilation operators corresponding to the single-
particle energy eigenstates. We include only extended scattering states in this expansion, neglecting the contribution
of localized bound states, since the amplitude of a bound state wavefunction at any site outside the scattering region
decays exponentially with the distance of that site from the scatterer. More concretely, we associate an annihilation
operator ck,L (ck,R) with the scattering state of a particle originating in the left (right) reservoir with momentum
k > 0 (k < 0). Then, cm may be written as follows:

cm = 1√
N

[ ∑
−π<k<0

um(k) ck,R +
∑

0<k<π

um(k) ck,L

]
, (A1)

where the wavefunctions um(k) are given in Eq. (13). In the language of scattering state creation operators, the
nonequilibrium steady state analyzed in this work is given by

|NESS⟩ =

 ∏
−kF,R<k<0

c†
k,R

  ∏
0<k<kF,L

c†
k,L

 |vac⟩, (A2)

with |vac⟩ being the vacuum state. Substituting Eq. (A1) into the definition of the two-point correlation function, we
find that, in the thermodynamic limit N → ∞, the correlation function approaches the integral expression of Eq. (12).

As explained in Sec. IV, the different correlation measures discussed in this work can all be expressed as functions of
two-point correlation matrices restricted to the subsystems of interest. That is, we generally consider the terms given
by Eq. (12) only for sites j, m ∈ A, and correlation measures can scale at most as O(ℓL + ℓR), given the dimensions
of the correlation matrices. This, in turn, implies that in the limit di/ℓi → ∞ (with dL − dR kept fixed), calculations
of correlation measures can be simplified by first neglecting certain terms in the expressions for the matrix elements〈

c†
jcm

〉
, and only then calculating the appropriate functions of the correlation matrices.

In particular, using Eq. (13) we observe that in Eq. (12) the correlation function is a sum of integrals, where
in each integral the integrand is a product of a function of k that is independent of j, m and an exponent of the
form exp [iαj,mk], with αj,m ∈ {± (j ± m)}. Then, the Riemann-Lebesgue lemma leads to the conclusion that
when |αj,m| ≫ ℓL, ℓR, the contribution of the integral is negligible and may be omitted. This entails that when
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dL, dR ≫ ℓL, ℓR we may use the following approximations for the correlation matrix elements:

〈
c†

jcm

〉
≈



∫ kF,R

−kF,R

dk
2π e−i(j−m)k +

∫ kF,L

kF,R

dk
2π T (k) e−i(j−m)k j, m ∈ AR,∫ kF,L

−kF,L

dk
2π e−i(j−m)k +

∫ kF,R

kF,L

dk
2π T (k) ei(j−m)k j, m ∈ AL,∫ kF,L

kF,R

dk
2π t∗

L(k) rL(k) e−i(j+m)k m ∈ AL and j ∈ AR,∫ kF,R

kF,L

dk
2π t∗

R(k) rR(k) ei(j+m)k j ∈ AL and m ∈ AR.

(A3)

Our analytical results were all derived based on the full expression for
〈

c†
jcm

〉
in Eq. (12). As they indicated that

the volume-law terms of the different correlation measures depend on dL and dR only through dL − dR, they were
compared in Figs. 2–3 to numerical results that were computed in the limit di/ℓi → ∞, based on the approximated
correlation function in Eq. (A3). A comparison to a numerical calculation that relies on the full expression for the
correlation function is provided in Appendix D.

Appendix B: Calculation of the Rényi entropies

In this appendix we describe the analytical method used for the computation of the Rényi entropies S
(n)
X =

1
1−n ln Tr [(ρX)n] for the subsystems X = AL, AR, A. The final results are given in Eq. (19). The results for the
Rényi entropies lead directly to the asymptotics of the MI and CI (Eqs. (8) and (10)), as explained in Subsec. IV A.

In Subsec. IV A we showed that the calculation of Rényi entropies can be reduced to that of the moments Tr[(CX)p]
for all positive integers p. We now derive the asymptotics of these moments for the subsystems of interest, starting
from their integral expression in Eq. (15). The analysis is based on the stationary phase approximation (SPA) [59],
and is inspired by the analytical methods of Refs. [29, 60].

a. Asymptotics of moments for the connected subsystems

We first consider the case X = AR. We begin by introducing the notation WR(x) = x
sin x exp

[
2i

(
m0 + dR + 1

2
)

x
]
,

and observing that

m0+dR+ℓR∑
m=m0+dR+1

exp[im (kj−1 − kj)] = ℓR

2 WR

(
kj−1 − kj

2

) 1∫
−1

dξ exp
[
i
ℓR

2 (kj−1 − kj) (ξ + 1)
]

. (B1)

For convenience, we define the notation kaj
= (−1)aj kj for aj ∈ {0, 1}, as well as (−1)

−→a = ((−1)a1 , . . . , (−1)ap) for
−→a ∈ {0, 1}⊗p. We use Eqs. (13) and (B1) to write∑

m∈AR

um(kj−1) u∗
m(kj) = ℓR

2
∑

aj−1,bj=0,1
Ξaj−1bj

(
kaj−1 , kbj

)
Θ

(
kaj−1

)
Θ

(
kbj

)
, (B2)

where Θ(x) is the Heaviside step function, and where we defined

Ξ00(kj−1, kj) = tL(|kj−1|) t∗
L(|kj |) WR

(
kj−1 − kj

2

) 1∫
−1

dξe
i
2 ℓR(kj−1−kj)(ξ+1),

Ξ11(kj−1, kj) =
1∫

−1

dξ

{
WR

(
kj − kj−1

2

)
e

i
2 ℓR(kj−kj−1)(ξ+1) + rR(|kj−1|) r∗

R(|kj |) WR

(
kj−1 − kj

2

)
e

i
2 ℓR(kj−1−kj)(ξ+1)

}

+
1∫

−1

dξ

{
r∗

R(|kj |) WR

(
−kj−1 − kj

2

)
e− i

2 ℓR(kj−1+kj)(ξ+1) + rR(|kj−1|) WR

(
kj−1 + kj

2

)
e

i
2 ℓR(kj−1+kj)(ξ+1)

}
,

Ξ01(kj−1, kj) =
1∫

−1

dξ tL(|kj−1|)
{

WR

(
kj−1 + kj

2

)
e

i
2 ℓR(kj−1+kj)(ξ+1) + r∗

R(|kj |) WR

(
kj−1 − kj

2

)
e

i
2 ℓR(kj−1−kj)(ξ+1)

}
,

(B3)
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and Ξ10(kj−1, kj) = Ξ01(kj , kj−1)∗.
When plugging Eq. (B2) into the expression for Tr[(CAR

)p] in Eq. (15), we will generally get a sum of 2p-dimensional
integrals, each of the form

F(−→τ , −→σ ) =
(

ℓR

4π

)p ∫
[−kF,R,kF,L]p

dpk

∫
[−1,1]p

dpξ f−→τ ,−→σ

(−→
k

)
exp

i
ℓR

2

p∑
j=1

(
kτj−1 − kσj

)
(ξj + 1)

 , (B4)

with −→τ , −→σ ∈ {0, 1}⊗p, and where the function f−→τ ,−→σ

(−→
k

)
is independent of ℓR and supported on [−kF,R, kF,L]p. We

apply a change of variables

ζ1 = ξ1,

ζj = ξj − ξj−1 (2 ≤ j ≤ p), (B5)

and obtain

F(−→τ , −→σ ) =
(

ℓR

4π

)p ∫
[−kF,R,kF,L]p

dpk

∫
dpζ f−→τ ,−→σ

(−→
k

)
exp

i
ℓR

2


p∑

j=1

(
kτj−1 − kσj

)
+

p∑
l=1

ζl

p∑
j=l

(
kτj−1 − kσj

)
 .

(B6)

These are the integrals to which we apply the SPA. The SPA allows us to detect which integrals contribute to the
leading-order terms of Tr [(CAR

)p], and to compute their exact contribution to the linear term in ℓR. From Eq. (B6)
it is evident that the answer to the question of whether F(−→τ , −→σ ) has a leading-order contribution is determined by
the values of −→τ and −→σ . We now illustrate the method by focusing on two concrete cases for the choice of −→τ and −→σ .

Assuming that τj = σj for every j, we find that

F(−→σ , −→σ ) =
(

ℓR

4π

)p
kF,L∫

−kF,R

dkp

1∫
−1

dζ1

∫
dp−1k dp−1ζ f−→σ,−→σ

(−→
k

)
exp

[
i
ℓR

2

p∑
l=2

ζl

(
kσl−1 − kσp

)]
. (B7)

Applying the SPA to the innermost (2p − 2)-dimensional integral, with respect to the stationary point of the function
1
2

∑p
l=2 ζl

(
kσl−1 − kσp

)
(at which ζl = 0 and kσl−1 = kσp for l = 2, . . . , p), we obtain [59]

F(−→σ , −→σ ) ∼
(

ℓR

4π

)p
kF,L∫

−kF,R

dkp

1∫
−1

dζ1 f−→σ,−→σ

(
kσp (−1)

−→σ
) {(

2π

ℓR

)p−1
|det H|−1/2

}
= ℓR

2π

kF,L∫
−kF,R

dkp f−→σ,−→σ

(
kσp (−1)

−→σ
)

,

(B8)

where we used the fact that the Hessian H at the stationary point yields |det H| =
( 1

2
)2p−2.

If, on the other hand, τj = σj for every j ≥ 2 but τ1 ̸= σ1, then

F(−→τ , −→σ ) =
(

ℓR

4π

)p
kF,L∫

−kF,R

dk1

1∫
−1

dζ1 exp [iℓRkτ1 (ζ1 + 1)]
∫

dp−1k dp−1ζ f−→τ ,−→σ

(−→
k

)
exp

[
i
ℓR

2

p∑
l=2

ζl

(
kτl−1 − kτp

)]
.

(B9)

Applying the SPA to the innermost integral will again produce a factor proportional to ℓ−p+1
R , yielding

F(−→τ , −→σ ) ∼ ℓR

4π

kF,L∫
−kF,R

dk1

1∫
−1

dζ1 f−→τ ,−→σ

(
kτ1 (−1)

−→τ
)

exp [iℓRkτ1 (ζ1 + 1)] , (B10)

only now the remaining phase factor exp [iℓRkτ1 (ζ1 + 1)] will eliminate the extensive contribution, such that F(−→τ , −→σ )
can have a contribution that is, at most, constant in ℓR.
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From these two examples, it is straightforward to infer the more general rule that an integral F(−→τ , −→σ ) can contribute
to Tr[(CAR

)p] beyond the constant-in-ℓR order only if −→σ = −→τ . Furthermore, if indeed −→σ = −→τ , Eq. (B8) indicates
the contribution of F(−→τ , −→σ ) to the linear-in-ℓR term of Tr[(CAR

)p].
Let us now apply this general conclusion to our problem. Substituting Eq. (B2) into Eq. (15), we obtain

Tr[(CAR
)p] =

(
ℓR

4π

)p ∫
[−kF,R,kF,L]p

dpk
∑

−→a ∈{0,1}⊗p

p∏
j=1

[
Ξaj−1aj

(
kaj−1 , kaj

)
Θ

(
kaj

)]
. (B11)

Eq. (B8) tells us that the focus on leading-order terms confines F(−→σ , −→σ ) to an integration subdomain where kσj = kσp

for all 1 ≤ j ≤ p; this implies that, for the purpose of calculating the leading-order asymptotics of Tr[(CAR
)p], some

of the terms in the full expressions for Ξaj−1aj
(
kaj−1 , kaj

)
in Eq. (B3) may be a priori discarded, given that for them

the kσj−1 = kσj
requirement is satisfied only when kσj−1 = kσj

= 0. Namely, we may replace

Ξ11(kj−1, kj) −→
1∫

−1

dξ

{
WR

(
kj − kj−1

2

)
e

i
2 ℓR(kj−kj−1)(ξ+1) + rR(|kj−1|) r∗

R(|kj |) WR

(
kj−1 − kj

2

)
e

i
2 ℓR(kj−1−kj)(ξ+1)

}
,

Ξ01(kj−1, kj) −→
1∫

−1

dξ tL(|kj−1|) r∗
R(|kj |) WR

(
kj−1 − kj

2

)
e

i
2 ℓR(kj−1−kj)(ξ+1), (B12)

and again Ξ10(kj−1, kj) = Ξ01(kj , kj−1)∗. Note that in the first summand appearing in the expression for Ξ11(kj−1, kj),
the term in the exponent has an opposite sign compared to all other integrals (including Ξ00(kj−1, kj)). Since we have
established that expressions of the form F (−→τ , −→σ ) in Eq. (B4) contribute to the leading order only when −→σ = −→τ , a
leading-order contribution to Eq. (B11) will arise from this integral only for −→a = 1⊗p, meaning that we can write

Tr [(CAR
)p] ∼

(
ℓR

4π

)p ∫
[−kF,R,kF,L]p

dpk

∫
[−1,1]p

dpξ

p∏
j=1

[
Θ(−kj) WR

(
kj−1 − kj

2

)
exp

[
iℓR

2 (kj−1 − kj) (ξj + 1)
]]

+
(

ℓR

4π

)p ∫
[−kF,R,kF,L]p

dpk

∫
[−1,1]p

dpξ
∑

−→a ∈{0,1}⊗p

p∏
j=1

[
Θ

(
kaj

)
WR

(
kaj−1 − kaj

2

)
exp

[
iℓR

2
(
kaj−1 − kaj

)
(ξj + 1)

]]

×
1 + (−1)aj

[
T

(
kaj

)
− R

(
kaj

)]
2 . (B13)

Applying the SPA as explained above while using the fact that WR(0) = 1, we thus have

Tr[(CAR
)p] ∼ ℓR

{
kF,R

π +
∫ kF,L

kF,R

dk
2π (T (k))p

kF,L > kF,R,
kF,L+kF,R

2π +
∫ kF,R

kF,L

dk
2π (R(k))p

kF,L < kF,R.
(B14)

The derivation for the case X = AL is equivalent, yielding

Tr[(CAL
)p] ∼ ℓL

{
kF,L+kF,R

2π +
∫ kF,L

kF,R

dk
2π (R(k))p

kF,L > kF,R,
kF,L

π +
∫ kF,R

kF,L

dk
2π (T (k))p

kF,L < kF,R.
(B15)

b. Asymptotics of moments for the disjoint subsystem

We now consider the case X = A. In the summation over sites m in
∑

m∈A um (kj−1) u∗
m (kj) (the sum that appears

in Eq. (15)) we will separate mirroring sites from sites which are not mirrored. For concreteness, we assume that
dL < dR < dL + ℓL < dR + ℓR, where the subsequent generalization is straightforward. We then have

∑
m∈A

um(kj−1) u∗
m(kj) =

m0+dR∑
m=m0+dL+1

u−m(kj−1) u∗
−m(kj) +

m0+dR+ℓR∑
m=m0+dL+ℓL+1

um(kj−1) u∗
m(kj)

+
m0+dL+ℓL∑

m=m0+dR+1

[
um(kj−1) u∗

m(kj) + u−m(kj−1) u∗
−m(kj)

]
. (B16)
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We define the function WL(x) = x
sin x exp

[
2i

(
m0 + dL + 1

2
)

x
]
. Sums of exponents appearing in Eq. (B16) can be

written as integrals:

m0+dR∑
m=m0+dL+1

exp [im (kj−1 − kj)] = ∆ℓL

2 WL

(
kj−1 − kj

2

) 1∫
−1

dξ exp
{

i (kj−1 − kj)
[

∆ℓL

2 (ξ + 1)
]}

,

m0+dL+ℓL∑
m=m0+dR+1

exp [im (kj−1 − kj)] = ℓmirror

2 WL

(
kj−1 − kj

2

) 1∫
−1

dξ exp
{

i (kj−1 − kj)
[

ℓmirror

2 (ξ + 1) + ∆ℓL

]}
,

m0+dR+ℓR∑
m=m0+dL+ℓL+1

exp [im (kj−1 − kj)] = ∆ℓR

2 WL

(
kj−1 − kj

2

) 1∫
−1

dξ exp
{

i (kj−1 − kj)
[

∆ℓR

2 (ξ + 1) + ℓL

]}
. (B17)

The substitution of Eq. (B16) into the integral expression for Tr[(CA)p] in Eq. (15) will then yield a sum of integrals
of the form

F
(−→τ , −→σ ,

−→
A

)
=

 p∏
j=1

Aj

2

 ∫
[−kF,R,kF,L]p

dpk

(2π)p

∫
[−1,1]p

dpξ f
(−→

k
)

exp

i

p∑
j=1

(
kτj−1 − kσj

) [
Aj

2 (ξj + 1) + Bj

] , (B18)

where (Aj , Bj) ∈ {(∆ℓL, 0) , (ℓmirror, ∆ℓL) , (∆ℓR, ℓL)}. Writing Aj = αjℓ with αj being some fixed ratios, we are
interested in the leading-order behavior as ℓ → ∞. Again defining the variables {ζj} as in Eq. (B5), we arrive at
the crucial observation that unless A1 = A2 = . . . = Ap (and hence also B1 = B2 = . . . = Bp), we cannot find
in the exponent a (2p − 2)-variable function with a stationary point as before, regardless of the values of −→τ , −→σ .
Leading-order contributions will therefore arise only from terms where A1 = A2 = . . . = Ap. We can thus conclude
that

Tr[(CA)p] ∼
∫

[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

{
m0+dR∑

m=m0+dL+1
u−m(kj−1) u∗

−m(kj)
}

+
∫

[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

{
m0+dR+ℓR∑

m=m0+dL+ℓL+1
um(kj−1) u∗

m(kj)
}

+ M(p), (B19)

where we defined

M(p) =
∫

[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

{
m0+dL+ℓL∑

m=m0+dR+1

[
um(kj−1) u∗

m(kj) + u−m(kj−1) u∗
−m(kj)

]}
. (B20)

The first two integrals in Eq. (B19) can be treated in the same way in which the equivalent integrals were treated
in the cases of the connected subsystems. What therefore remains to be done is to treat M(p). We define W̃(x) =
WL(x) e2ix∆ℓL in order to simplify the notation. In analogy to Eqs. (B11) and (B12), we may discard terms that have
no leading-order contribution to M(p) and write

M(p) ∼
(

ℓmirror

4π

)p ∫
[−kF,R,kF,L]p

dpk
∑

−→a ∈{0,1}⊗p

p∏
j=1

[
Ξ̃aj−1aj

(
kaj−1 , kaj

)
Θ

(
kaj

)]
, (B21)
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where

Ξ̃00(kj−1, kj) = [tL(|kj−1|) t∗
L(|kj |) + rL(|kj−1|) r∗

L(|kj |)] W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1)

+ W̃
(

kj − kj−1

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−kj−1)(ξ+1),

Ξ̃11(kj−1, kj) = [tR(|kj−1|) t∗
R(|kj |) + rR(|kj−1|) r∗

R(|kj |)] W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1)

+ W̃
(

kj − kj−1

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−kj−1)(ξ+1),

Ξ̃01(kj−1, kj) = [tL(|kj−1|) r∗
R(|kj |) + rL(|kj−1|) t∗

R(|kj |)] W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1), (B22)

and Ξ̃10(kj−1, kj) = Ξ̃01(kj , kj−1)∗. Applying the SPA through the same procedure as before, while recalling the
unitarity of the scattering matrix in Eq. (5), we then obtain

M(p) ∼ kF,L + kF,R

π
ℓmirror, (B23)

so that in total,

Tr[(CA)p] ∼

{
kF,L+kF,R

2π (ℓL + ℓR) + ∆ℓL

∫ kF,L

kF,R

dk
2π (R(k))p + ∆ℓR

∫ kF,L

kF,R

dk
2π [(T (k))p − 1] kF,L > kF,R,

kF,L+kF,R

2π (ℓL + ℓR) + ∆ℓL

∫ kF,R

kF,L

dk
2π [(T (k))p − 1] + ∆ℓR

∫ kF,R

kF,L

dk
2π (R(k))p

kF,L < kF,R.
(B24)

c. Asymptotics of the Rényi entropies

Finally, we use the asymptotics of the moments in Eqs. (B14), (B15) and (B24) to derive the Rényi entropies of the
subsystems of interest. In particular, we observe that the terms comprising the series expansion in Eq. (14) follow
the asymptotic scaling

Tr
[
{(CAi

)n + (I − CAi
)n − I}s]

∼ ℓi

k+∫
k−

dk

2π
{(T (k))n + (R(k))n − 1}s

,

Tr
[
{(CA)n + (I − CA)n − I}s]

∼ (∆ℓL + ∆ℓR)
k+∫

k−

dk

2π
{(T (k))n + (R(k))n − 1}s

. (B25)

This yields Eq. (19), which is true for any dL and dR.

Appendix C: Calculation of the fermionic negativity

In this appendix we summarize the derivation of the result for the fermionic negativity E between AL and AR. The
analytical method we employed is similar to that used in Appendix B for the calculation of the Rényi entropies, as
we explain below.

The fermionic negativity E can be obtained from the Rényi negativities

En = ln Tr
[(

(ρ̃A)†
ρ̃A

)n/2
]

, (C1)
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by evaluating En at even values of n and performing an analytic continuation to n = 1. En can be written in terms of
the restricted correlation matrix CA and a transformed correlation matrix CΞ, facilitating a significant simplification
of the calculation as in the case of the Rényi entropies. We write

CA =
(

CAL
CLR

CRL CAR

)
, (C2)

where the matrices CLR and CRL = (CLR)† represent two-point correlations between a site in AL and another in AR,
and we define

CΞ = 1
2

[
I − (I + Γ+Γ−)−1 (Γ+ + Γ−)

]
, (C3)

where

Γ± =
(

2CAL
− IℓL

∓2iCLR

∓2iCRL IℓR
− 2CAR

)
. (C4)

The Rényi negativities can then be written as [43, 44, 58]

En = ln det
[
(CΞ)n/2 + (I − CΞ)n/2

]
+ n

2 ln det
[
(CA)2 + (I − CA)2

]
. (C5)

We now define the polynomials

pn(z) = zn + (1 − z)n =
n−1

2∏
γ=− n−1

2

(
1 − z

zγ

)
(C6)

and

p̃n(z) = zn/2 + (1 − z)n/2 =
γ= n−1

2∏
γ=1/2

(
1 − z

z̃γ

)
(C7)

for any even integer n. Here {zγ} and {z̃γ} are, respectively, the roots of pn and p̃n, and they satisfy

(zγ)−1 = 1 − e2πiγ/n, γ = −n − 1
2 , −n − 3

2 , . . . ,
n − 1

2 ,

(z̃γ)−1 = e2πiγ/n + e−2πiγ/n

e2πiγ/n
, γ = 1

2 ,
3
2 , . . . ,

n − 1
2 . (C8)

Note that pn has n different roots, while p̃n has n/2 roots if n = 0 mod 4, and n/2 − 1 roots if n = 2 mod 4; in
the latter case the missing root corresponds to the index γ = n/4, for which 1/z̃γ = 0. Additionally, we recognize
that det[I + Γ+Γ−] = det

[
I + (I − 2CA)2

]
, so that using the definition of p̃n we may write the Rényi negativities in

Eq. (C5) as

En = ln det

 n−1
2∏

γ=1/2

[
I + Γ+Γ−

2 − (I − Γ+) (I − Γ−)
4z̃γ

] . (C9)

Now, if we define the modified correlation matrices

Cγ =

 (
1 − e

2πiγ
n

)
IℓL

0

0
(

1 + e
−2πiγ

n

)
IℓR

 CA =

 (
1 − e

2πiγ
n

)
CAL

(
1 − e

2πiγ
n

)
CLR(

1 + e
−2πiγ

n

)
CRL

(
1 + e

−2πiγ
n

)
CAR

 ,

C ′
γ = CA

 (
1 − e

2πiγ
n

)
IℓL

0

0
(

1 + e
−2πiγ

n

)
IℓR

 =

 (
1 − e

2πiγ
n

)
CAL

(
1 + e

−2πiγ
n

)
CLR(

1 − e
2πiγ

n

)
CRL

(
1 + e

−2πiγ
n

)
CAR

 , (C10)
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one may check that

I + Γ+Γ−

2 − (I − Γ+) (I − Γ−)
4z̃γ

=
(

iIℓL
0

0 IℓR

) (
I − C ′

γ

) (
−e

−4πiγ
n IℓL

0
0 IℓR

) (
I − Cγ− n

2

) (
−iIℓL

0
0 IℓR

)
. (C11)

By substituting Eq. (C11) into Eq. (C9), and recognizing that
∏(n−1)/2

γ=1/2

(
−e

−4πiγ
n

)
= 1, we arrive at the result

En = ln det

 n−1
2∏

γ=1/2

(
I − C ′

γ

)
(I − C−γ)

 = Tr ln

 n−1
2∏

γ=− n−1
2

(I − Cγ)

 , (C12)

which then yields the series expansion of En reported in Eq. (20). As explained in Subsec. IV B, writing this series
expansion reduces the calculation to that of terms of the form Tr

[
Cγ1Cγ2 . . . Cγp

]
, corresponding to the general integral

expression in Eq. (22).
We proceed by applying the SPA to the integrals appearing in Eq. (22). For concreteness we again assume that

dL < dR < dL + ℓL < dR + ℓR. The same argument that led to Eq. (B19) allows us to separate the integral into
independent leading-order contributions arising from mirrored and unmirrored sites. Namely, to the linear order in
∆ℓL, ∆ℓR and ℓmirror, we have

Tr
[
Cγ1 . . . Cγp

]
∼

∫
[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

[(
1 − e

2πiγj
n

) m0+dR∑
m=m0+dL+1

u−m(kj−1) u∗
−m(kj)

]

+
∫

[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

[(
1 + e

−2πiγj
n

) m0+dR+ℓR∑
m=m0+dL+ℓL+1

um(kj−1) u∗
m(kj)

]
+ Mγ1...γp

, (C13)

where we defined

Mγ1...γp
=

∫
[−kF,R,kF,L]p

dpk

(2π)p

p∏
j=1

{
m0+dL+ℓL∑

m=m0+dR+1

[(
1 − e

2πiγj
n

)
u−m(kj−1) u∗

−m(kj) +
(

1 + e
−2πiγj

n

)
um(kj−1) u∗

m(kj)
]}

.

(C14)
The first two integrals in Eq. (C13) have already been treated using the SPA in Appendix B, as they arise (up
to a multiplicative constant) in the calculation of the Rényi entropies (see Eqs. (B14) and (B15)). Assuming for
concreteness that kF,L > kF,R, we may therefore write

Tr
[
Cγ1 . . . Cγp

]
∼ ∆ℓL

kF,R + kF,L

2π
+

kF,L∫
kF,R

dk

2π
(R(k))p

 p∏
j=1

(
1 − e

2πiγj
n

)

+ ∆ℓR

kF,R

π
+

kF,L∫
kF,R

dk

2π
(T (k))p

 p∏
j=1

(
1 + e

−2πiγj
n

)
+ Mγ1...γp

. (C15)

Let us now address the asymptotics of Mγ1...γp , to the linear order in ℓmirror. Repeating the argument in Appendix
B leading to Eq. (B12), which was also used to obtain Eq. (B21), we use the SPA to discard terms with no leading-order
contribution and write

Mγ1...γp ∼
(

ℓmirror

4π

)p ∫
[−kF,R,kF,L]p

dpk
∑

−→a ∈{0,1}⊗p

p∏
j=1

[
Ξ̃aj−1aj

γj

(
kaj−1 , kaj

)
Θ

(
kaj

)]
, (C16)
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with

Ξ̃00
γ (kj−1, kj) =

[(
1 + e

−2πiγ
n

)
tL(|kj−1|) t∗

L(|kj |) +
(

1 − e
2πiγ

n

)
rL(|kj−1|) r∗

L(|kj |)
]

× W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1) +

(
1 − e

2πiγ
n

)
W̃

(
kj − kj−1

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−kj−1)(ξ+1),

Ξ̃11
γ (kj−1, kj) =

[(
1 − e

2πiγ
n

)
tR(|kj−1|) t∗

R(|kj |) +
(

1 + e
−2πiγ

n

)
rR(|kj−1|) r∗

R(|kj |)
]

× W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1) +

(
1 + e

−2πiγ
n

)
W̃

(
kj − kj−1

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−kj−1)(ξ+1),

Ξ̃01
γ (kj−1, kj) =

[(
1 + e

−2πiγ
n

)
tL(|kj−1|) r∗

R(|kj |) +
(

1 − e
2πiγ

n

)
rL(|kj−1|) t∗

R(|kj |)
]

× W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1),

Ξ̃10
γ (kj−1, kj) =

[(
1 + e

−2πiγ
n

)
rR(|kj−1|) t∗

L(|kj |) +
(

1 − e
2πiγ

n

)
tR(|kj−1|) r∗

L(|kj |)
]

× W̃
(

kj−1 − kj

2

) 1∫
−1

dξ e
i
2 ℓmirror(kj−1−kj)(ξ+1). (C17)

According to Eq. (B8), the SPA imposes the restriction |k1| = |k2| = . . . = |kp| on integrals contributing to the leading
order; since in Eq. (C16) the integration subdomain with kF,R < |kj | < kF,L is limited to kj > 0, Mγ1...γp is split into
two independent contributions,

Mγ1...γp
∼

(
ℓmirror

4π

)p ∫
[−kF,R,kF,R]p

dpk
∑

−→a ∈{0,1}⊗p

p∏
j=1

[
Ξ̃aj−1aj

γj

(
kaj−1 , kaj

)
Θ

(
kaj

)]

+
(

ℓmirror

4π

)p ∫
[kF,R,kF,L]p

dpk

p∏
j=1

Ξ̃00
γj

(kj−1, kj) . (C18)

The asymptotics of both integrals can be estimated using the SPA procedure explained before. When applied to the
first integral (which corresponds to an equilibrium scenario), this procedure yields

(
ℓmirror

4π

)p ∫
[−kF,R,kF,R]p

dpk
∑

−→a ∈{0,1}⊗p

p∏
j=1

[
Ξ̃aj−1aj

γj

(
kaj−1 , kaj

)
Θ

(
kaj

)]
∼ ℓmirror

kF,R

π


p∏

j=1

(
1 − e

2πiγj
n

)
+

p∏
j=1

(
1 + e

−2πiγj
n

) ,

(C19)
while for the second integral we find

(
ℓmirror

4π

)p ∫
[kF,R,kF,L]p

dpk

p∏
j=1

Ξ̃00
γj

(kj−1, kj) ∼ ℓmirror

kF,L∫
kF,R

dk

2π


p∏

j=1

(
1 − e

2πiγj
n

)
+

p∏
j=1

[
1 − e

2πiγj
n R(k) + e

−2πiγj
n T (k)

] .

(C20)
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Figure 4. The single impurity model: Scaling of (a) the mutual information, (b) the coherent information, and (c) the fermionic
negativity between subsystems AL and AR for the symmetric case ℓL = ℓR = ℓ and dL = dR. (d) The mutual information and
(e) the fermionic negativity as a function of dL − dR, when fixing ℓL = 100 and ℓR = 200; letting ĀL = {m| − m ∈ AL} denote
the mirror image of AL, black dashed vertical lines mark the boundaries of the domain where ĀL ⊂ AR, while gray dashed
vertical lines mark the boundaries of the domain where ĀL ∩ AR ̸= ϕ. In all the panels, results are computed in the limit
di ≫ ℓi; analytical results (lines) are compared to numerical results (dots) for different values of the bias ∆k = kF,L − kF,R,
with the lower Fermi momentum fixed at kF,R = π/2, and the impurity energy fixed at ϵ0 = η.

Together with Eq. (C15), we then have

Tr


n−1

2∏
γ=− n−1

2

(I − Cγ) − I


s  ∼ ℓmirror

kF,L∫
kF,R

dk

2π


n−1

2∏
γ=− n−1

2

(
e

2πiγ
n R(k) − e

−2πiγ
n T (k)

)
− 1


s

+ ∆ℓL

kF,L∫
kF,R

dk

2π


n−1

2∏
γ=− n−1

2

(
1 −

(
1 − e

2πiγ
n

)
R(k)

)
− 1


s

+ ∆ℓR

kF,L∫
kF,R

dk

2π


n−1

2∏
γ=− n−1

2

(
1 −

(
1 + e

−2πiγ
n

)
T (k)

)
− 1


s

. (C21)

Using the decomposition of the polynomials pn and p̃n in Eqs. (C6) and (C7), we arrive at Eq. (23), a result that also
captures the case kF,L < kF,R (for which an equivalent derivation applies). By summing the series in Eq. (20) and
taking the limit n → 1, we then obtain the final result for the leading-order asymptotics of the fermionic negativity,
given by Eq. (9).
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Figure 5. The single impurity model: Comparison between numerical calculations of correlation measures for the symmetric
case with ℓL = ℓR = ℓ = 50 and dL = dR = d, for two values of the impurity energy ϵ0 and with the Fermi momenta fixed at
kF,R = π/2 and kF,L = 2π/3. (a) The difference between I(d)

AL:AR
, the MI computed using the full expressions for the correlation

matrices (Eq. (12)), and I(∞)
AL:AR

, the MI computed from correlation matrices where entries were taken to the limit d → ∞

(Eq. (A3)), as a function of d. (b) The deviation of I(d)
AL:AR

, the average of I(d)
AL:AR

over Friedel oscillations, from I(∞)
AL:AR

;
the dashed gray line emphasizes that, for d ≫ ℓ, the deviation approaches a ∝ 1/d2 power-law behavior. (c) The amplitude∣∣∣I(d)

AL:AR
− I(d)

AL:AR

∣∣∣ of the oscillations in the MI; the dashed gray line emphasizes that, for d ≫ ℓ, the amplitude approaches a
∝ 1/d power-law behavior. The bottom panels (d)–(f) present a similar analysis for the fermionic negativity E .

Appendix D: Additional numerical tests

Fig. 2 shows a comparison between our analytical results and numerical calculations of the different correlation
measures – MI, CI and fermionic negativity – assuming a symmetric configuration of the subsystems (ℓL = ℓR and
dL = dR); Fig. 3 compares analytical and numerical results for the dependence of the MI and negativity on the
positions relative to the scatterer of subsystems with fixed lengths. All of these results were computed for the single
impurity model described in Sec. III, for fixed values of the Fermi momenta and various values of the impurity energy
ϵ0. In Fig. 4 we show similar comparisons, where now the impurity energy is fixed and results are plotted for various
values of the bias, which is another parameter that influences the asymptotic scaling coefficients (for a bias that is
small enough such that the scattering probabilities vary negligibly in [k−, k+], the leading volume-law terms of the
correlations measures are linear in the bias). Again, the good agreement of the analytical calculation with numerics
is clearly evident.

The numerical calculations presented in Figs. 2–4 all rely on the direct diagonalization of two-point correlation
matrices, through Eq. (14) (for the MI and CI) and Eq. (C5) (for the negativity). The entries of these correlation
matrices were computed in the limit di/ℓi → ∞ (with dL − dR kept fixed), by discarding terms that vanish in this
limit according to the Riemann-Lebesgue lemma, as explained in Appendix A.

In Fig. 5 we demonstrate that the omission of these terms from the correlation matrices indeed captures the
di/ℓi → ∞ limit of the correlation measures themselves. For the symmetric case ℓL = ℓR = ℓ and dL = dR = d, we
let I(d)

AL:AR
and E(d) denote the MI and negativity, respectively, that were numerically calculated using correlation

matrices with entries given by Eq. (12), while I(∞)
AL:AR

and E(∞) stand, respectively, for the MI and negativity that
were numerically calculated using correlation matrices with entries given by Eq. (A3).

Indeed, the results in Fig. 5, numerically computed for the single impurity model, indicate that I(d)
AL:AR

→ I(∞)
AL:AR

and E(d) → E(∞) as d/ℓ → ∞. As they converge toward this limit, the correlation measures exhibit Friedel oscillations,
a behavior that was previously observed for the entanglement entropy of a single subsystem of contiguous sites [28].
As in that case, the difference between the average over these oscillations and the d → ∞ limit decays according to a
∝ 1/d2 power law, while the amplitude of the oscillations decays according to a ∝ 1/d power law.
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