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Abstract

We advance the characterization of complexity in quantum many-body systems
by examining W -states embedded in a spin chain. Such states show an amount
of non-stabilizerness or “magic”, measured as the Stabilizer Rényi Entropy, that
grows logarithmically with the number of qubits/spins. We focus on systems
whose Hamiltonian admits a classical point with an extensive degeneracy. Near
these points, a Clifford circuit can convert the ground state into a W -state, while
in the rest of the phase to which the classical point belongs, it is dressed with lo-
cal quantum correlations. Topological frustrated quantum spin-chains host phases
with the desired phenomenology, and we show that their ground state’s Stabi-
lizer Rényi Entropy is the sum of that of the W -states plus an extensive local
contribution. Our work reveals that W -states/frustrated ground states display a
non-local degree of complexity that can be harvested as a quantum resource and
has no counterpart in GHZ states/non-frustrated systems.
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1 Introduction

The problem of simulating quantum states is, generally, intractable for classical computers.
For this reason, Feynman put forward the notion of a quantum computer [1] as only a quan-
tum device would be able to simulate a generic quantum system efficiently. This necessity is of
particular relevance for states of quantum many-body systems that can be used to accommo-
date new exotic phenomena of matter like quantum criticality [2], topological order [3, 4, 5],
exotic metals without quasi-particle excitations [6, 7] quantum systems away from equilibrium
like systems of ultra-cold atomic gases [8, 9, 10], etc.

However, the picture that has emerged after years of research is much more multifaceted
than what Feynman weighed. Indeed, the large amounts of studies of quantum properties,
most notably entanglement, in quantum many-body systems have fostered and given an im-
pulse towards relevant progress in their simulation. It is now well-known that states defined
in one-dimensional systems obeying area law [11, 12] can be efficiently represented and ma-
nipulated using matrix-product states (MPS) techniques [13, 14], tensor-networks [15, 16],
entanglement renormalization schemes [17] and other computational procedures. Hence, the
complexity of quantum simulations does not affect all quantum states and does not arise from
entanglement alone. Certain classes of states can be, at the same time, highly entangled and
efficiently simulated on a classical computer.

This is the case for stabilizer states [18], namely those states that can be obtained from
the computational basis using Pauli operations and their centralizer, the so-called Clifford
resources [19, 20]. Clifford’s resources are very efficient in entangling [21, 22] but do not
provide any quantum supremacy [1, 23, 24, 25]. Since they can be efficiently represented
(i.e. with a cost that increases only polynomially with the size of the system) on a classical
computer, there is no information processing that a quantum computer could do by Clifford
resources that would not be efficiently performed by a classical computer. On the other hand,
as soon as such circuits get doped with non-Clifford resources, their entanglement pattern
becomes more complex, driving a transition to universality and quantum chaos [26, 27, 28, 29].

In the context of quantum many-body systems, the study of non-stabilizerness has been
limited, probably because of the hardness of computing the existing measures for this resource,
which has been dubbed magic in the folklore [30, 31, 32, 33]. Among the few exceptions [34,
35, 36] one that is worth noting is [37] where the authors show the usefulness of quantum
many-body states with non-Clifford resources for quantum computation.

Lately, however, a new measure of non-stabilizerness has been introduced [38] as the Sta-
bilizer Rényi Entropy (SRE), which can be computed efficiently for MPSs [39] but is also
amenable to experimental measurement [40, 41]. In Ref. [42], by exploiting the computabil-
ity of the SRE, it was shown that the ground state of an Ising spin chain in a transverse
field, despite obeying entanglement area law [11], does possess an extensive amount of non-
stabilizerness. In the gapped phases, the SRE can be resolved by local quantities, i.e. its
value can be well approximated as the sum of the SRE of its parts. This picture fails at the
quantum critical point, where the correlation length diverges [43, 44], and the entanglement
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shows a logarithmic violation of the area law. Here, the local approximation fails with a large
offset error due to entanglement and magic getting a diverging logarithmic correction [39]
which cannot be captured by local measures. Therefore, one has to consider very large blocks
to get a reasonable approximation of the exact result. It is worth reminding that at critical
points decimation schemes like the MPS encounter a hurdle, because of the logarithmic di-
vergence of entanglement. The resulting picture is of a quantum complexity emerging from a
delocalization of non-stabilizerness, i. e, the impossibility of resolving SRE in terms of local
quantities.

In this paper, we explore the delocalization of SRE in quantum many-body systems, by
considering a class of states – the W -states [45] – which are a global superposition of a
macroscopical number of factorized states. By embedding these states as the ground states
of a quantum spin chain and adding additional interactions to dress these states with local
correlation, we achieve a detailed characterization of various contributions to their SRE.

Notice that, although the results presented in [42] are associated with a particular model,
the picture there obtained is expected to be quite general. Indeed, these results agree with
the ones expected for ground states obtained by exploiting quasi-adiabatic continuation [46]
from a classical point with a finite degeneracy. In this context, a classical point is meant as a
point in the phase diagram where the Hamiltonian reduces to a sum of terms that commutes
with each other and the SRE of the symmetric mixture of all its elements vanishes. The
deformations of the Hamiltonian associated with the quasi-adiabatic continuation, induce the
growth of local quantum correlations, which explains both the extensivity and the local nature
of the SRE [47].

In this work, we consider a different situation, where quantum many-body systems admit
classical points with ground state manifolds whose number of elements scale with L. These
states can be grouped into a finite number of families, each of which admits a base made of
states that can be obtained from each other by spatial translations. To provide an example,
this is the case of the spin one-half chains with topological frustration, which boils down
to the frustrated Ising model at the classical point [48, 49, 50]. This last system admits a
ground state manifold whose basis is the set of single kink states, i.e. states with perfect Néel
order except for a ferromagnetic defect (with two parallelly aligned neighboring spins) which
constitute a domain wall switching between Néel orders. The 2L kink states can be arranged
in 2 different families of states (with different parities for the magnetization), in which each
element can be obtained from the others by spatial translations (i.e., by shifting the kink).

Moving away from the classical point, generally the extensive degeneracy gets lifted and,
depending on the symmetry of the term competing with the Ising one, the ground state can be
represented by a symmetric coherent superposition of the kink states. This happens, among
other cases, when the competing term commutes with the parity of the magnetization along
a direction orthogonal to that of the Ising interaction [51, 52, 53]. The symmetric linear
superposition of the kink states can be connected, through a Clifford circuit, with the W -
states, whose SRE will be shown to grow logarithmically in L. This non-vanishing SRE of the
W -states cannot be resolved in terms of local quantities, since it comes from the delocalized
nature of the linear superposition. Therefore, in proximity of the classical point, we expect
an SRE that, instead of vanishing as in [42], depends logarithmically on L, thus signaling
that they belong to a different and inequivalent class of states, compared to the usual case.
Moving further away from the classical point, a finite correlation length is developed which
adds to this logarithmic growth part and an extensive correction, similar in nature to the one
discussed above. In fact, in the case of topologically frustrated systems, this second term can
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be traced back to the SRE of the corresponding unfrustrated system.
The manuscript is organized as follows. First, in Sect. 2 we introduce the W -states, and

we evaluate analytically their SRE and its dependence on the system size. Next, in Sect. 3
we show how the SRE of the W -states is related to the symmetric linear superposition of
magnetic defects (kinks) states which, in the proximity of a classical point, well-describes the
ground state of a family of topologically frustrated one-dimensional spin-1/2 models. Next, in
Sect. 4 we analyze in detail some examples of topologically frustrated integrable models, and
we underline differences and analogies with the unfrustrated counterparts. Finally, in Sect. 5
we draw our conclusion.

2 W-states

Let us start by recalling that, to quantify the amount of non-stabilizerness for a generic state
defined on a one-dimensional system made of L qubits, it is possible to use the Stabilizer
2-Rényi Entropy (SRE) [38] that is defined as

M2(|ψ⟩) = − log2

(
1

2L

∑
P

⟨ψ|P |ψ⟩4
)
, (1)

where the sum on the right-hand side runs over all possible Pauli strings P =
⊗L

j=1 Pj for
Pj ∈ {σ0

j , σ
x
j , σ

y
j , σ

z
j } where σ0

j stands for the identity operator on the j-th qubit.
Let us now consider a set of L states {|ψj⟩} in which each element is a computational

basis state and, defining T the translation operator, we have |ψj+1⟩ = T |ψj⟩. Since any |ψj⟩
is fully separable, and hence can be written as a tensor product of states defined on each
single qubit, it results to be equivalent to a classical state and its SRE vanishes identically1.
However, if instead of considering only one of the elements of the set, we take into account the
translational invariant linear combination of all of them, i.e. the state |χ⟩ = L−1/2∑

j |ψj⟩ we
obtain an SRE different from zero. To evaluate the SRE of |χ⟩, let us observe that regardless
of the particular expression of |ψj⟩, since it is an eigenstate of a Pauli string, it is always
possible, by exploiting only local rotations, to map it into the state |j⟩ = σz

j |−⟩⊗L where |±⟩
stand for the eigenstates of σx with eigenvalues ±1. Hence, the symmetric superpositions |χ⟩
are equivalent to the well-known W -states [45] defined as

|W ⟩ = 1√
L

L∑
j=1

σz
j |−⟩⊗L . (2)

The W -states play a key role in the theory of quantum information since it maximizes the
multipartite entanglement [45] while retaining the maximum amount of bipartite entanglement
after local measurement on one of its part [54]. As such, they are considered good candidates
for realizing quantum memories [55].

From the expression of |W ⟩ in (2) it is possible to evaluate analytically the value of
M2(|W ⟩) which turns out to be equal to

M2(|W ⟩) = 3 log2(L) − log2(7L− 6), (3)
1In fact, a factorized state is an eigenstate of 2N Pauli strings in which each element of the string is either

the identity or a Pauli matrix. Thus, its SRE vanishes.
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(see Apprendix A for a detailed proof).
The result in (3) shows that there is a whole class of states, that is the W -states and all

other states that can be obtained from it with the help of a stabilizer circuit, whose SRE
displays a logarithmic dependence on the system size. This class is different from the one
obtained by using Clifford circuits on a fully separable state, a class to which also the GHZ
states [56] belongs and which is characterized by a zero non-stabilizerness.

3 Non-stabilizerness close to a classical point

Let us now turn back to consider a quantum many-body problem. If one of the states of
the set {|ψj⟩} is a ground state of an invariant under spatial translation Hamiltonian at its
classical point, then all the elements of the set, as well as all the possible linear combinations
of them, are also ground states of the Hamiltonian. This implies that the Hamiltonian holds,
at its classical point, an extensive degeneracy. An example of a situation like the one described
can be found, for instance, in classical (non-disordered) frustrated systems [57, 58, 59, 60].

By turning on a quantum (competing) interaction, in general the massive degeneracy is,
at least partially, lifted. In agreement with perturbation theory, the ground state can be well
approximated by a linear combination of the elements in the set {|ψj⟩}. It is not possible to
make a general statement about the particular linear combination that minimizes the energy,
since it strongly depends on both the expression of the classical Hamiltonian and on the nature
of the perturbation. To have a taste of the richness of this phenomenology, see Ref. [61] for the
case of one-dimensional topologically frustrated models. Therefore, we are forced to choose a
particular family of models.

From now on, we focus on the translationally invariant one-dimensional model whose
Hamiltonian can be written in the form

H = J
L∑

j=1
σx

j σ
x
j+1 − λ

L∑
j=1

Oj . (4)

The parameter λ allows for tuning the relative weight of the two terms. At λ = 0 (classical
point), the Hamiltonian boils down to a simple 1D Ising model that, in the presence of
topological frustration, shows the extensive degeneracy in the ground state manifold that we
are looking for. In a translationally invariant 1D system, topological frustration is induced
by choosing antiferromagnetic interactions (J = 1) and by enforcing the so-called frustrated
boundary conditions (FBC) that are imposed by setting: 1) periodic boundary conditions
(σα

j = σα
j+L ∀ j, α); 2) odd number of sites (L = 2M + 1 for any strictly positive integer M).

The family of Hamiltonians in (4) features a second term in competition with the Ising
one which preserves translational invariance, violates the parity symmetry along the direction
of the Ising interaction but preserves the one with respect to an orthogonal direction, in our
case the z direction. Moreover, to exploit the methods presented in Ref. [42], we also require
the resulting model to be mappable to a free fermionic one, by making use of the Jordan-
Wigner transformation [44]. This family of Hamiltonians is extremely wide and includes,
among others, the transverse field Ising model (TFIM) [43], obtained by setting Oj = σz

j and
the Cluster-Ising model (CIM) [62, 63], that is the simplest example of the family of Cluster
models [64, 65], which is obtained choosing Oj = σy

j−1σ
z
jσ

y
j+1.

At the classical point λ = 0, the Hamiltonian in (4) admits a ground state manifold with
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k

Figure 1: Pictorial representation of the Clifford circuit Ŝ in (6) for L = 5. The H and Z
boxes stand respectively for the Hadamard gate and the σz operator on the chosen qubit.
The CNOT gates involve two qubits and are represented by a line connecting a black dot,
indicating the qubit that acts as the controller, and a colored circle signaling the one that can
be flipped.

a degeneracy equal to 2L, as an effect of the Kramers’ degeneracy theorem. This manifold
is described by a basis made of the union of two extensive sets of states, which are {|k⟩ =
T k−1⊗M

j=1 σ
z
2j |−⟩⊗L} and {|k′⟩ = T k−1⊗M

j=1 σ
z
2j |+⟩⊗L} for all k and k′ running from 1 to

L = 2M + 1 where |±⟩ are the eigenstates of σx with eigenvalues ±1. The elements of these
two sets of states are known as kink states or domain-wall states and are Néel’s states with a
localized magnetic defect (two neighboring spins parallelly oriented which interpolate between
the two Néel orders) [61].

Depending on the choice of Oj , a finite λ reduces the extensive ground state degeneracy
of the classical point to a finite odd number. In the cases analyzed in this paper, we have
two different behaviors. For the topologically frustrated TFIM, we have that the degeneracy
is completely removed and the dimension of the ground state manifold is always equal to
1 [51, 52]. On the contrary, for the CIM, we have two different situations. If L is odd, but
it is not an integer multiple of 3 the degeneracy is completely lifted, and we obtain a ground
state manifold whose dimension is equal to 1. On the other hand, if L is simultaneously
odd and integer multiple of 3 the dimension of the ground state manifold is equal to 3. [53].
However, independently of the degree of the ground state degeneracy, as the lowest energy
state we always find the symmetric superposition of kink states with zero momentum that we
can write as

|Wk⟩ = 1√
2L

L∑
k=1

(|k⟩ + |k′⟩). (5)

The |Wk⟩ looks similar to |W ⟩ and can be obtained from it using a simple stabilizer circuit.
This means that we can write |Wk⟩ = Ŝ |W ⟩ where Ŝ is the stabilizer circuit

Ŝ =
L−1∏
j=1

C(L,L− j)

 M∏
j=1

σz
2j−1

H(L)σz
L

L−1∏
j=1

C(j, j + 1)Πz. (6)

In (6) H(j) = 1√
2(σx

j + σz
j ) stands for the Hadamard gate on the j-th qubit, C(j, l) =

exp
[
ıπ

4 (1 − σx
j )(1 − σz

l )
]

is the CNOT gate on the l-th qubit controlled by the value of the j-th
one while Πz =

⊗L
j=1 σ

z
j is the parity operator along z. It is worth underlining that, since the
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Figure 2: Behavior of the SRE as function of the parameter λ for the TFIM (Panel A), CIM
with odd L not integer multiple of 3 (Panel B) and CIM with L odd and integer multiple of 3
(Panel C). In all panels the plots represent the value of SRE obtained for frustrated systems
(J = 1) while the lines depict the SRE for unfrustrated ones (J = −1).

operators in the second tensor product of the CNOT operators do not commute each other,
the product must read as

∏L−1
j=1 C(j, j + 1) = C(L− 1, L) ·C(L− 2, L− 1) · . . . ·C(1, 2). This

circuit is depicted in Fig. 1 in the case of L = 5. Since M2 is invariant under stabilizer Clifford
circuits, we have M2(|WK⟩) = M2(|W ⟩). Thus, for systems that satisfy our hypothesis, in
the proximity of the classical point, the SRE does not vanish but scales logarithmically as in
eq. (3).

4 Analysis of some Topologically frustrated models

Moving further away from the classical point with extensive degeneracy, the perturbative
approximation we used in the previous section ceases to be valid. We must therefore determine
the exact expression for the ground state, and from it determine the value of the SRE. This
procedure cannot be performed with general arguments such as those used up to now, and
the problem must be analyzed case by case. In this paper, we will focus on two different
models, namely the topologically frustrated version of both the TFIM and the CIM, whose
ground states have been analyzed in previous works [51, 53] exploiting the Jordan-Wigner
transformations that allow mapping the spin systems in free-fermionic ones.
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Figure 3: Comparison between the SRE for the unfrustrated system (left column) and the
topologically frustrated (tight column) for the different models: TFIM (panels A); CIM with
L not an integer multiple of 3 (panels B); CIM with L an integer multiple of 3 (panels C).
The different values of λ are in the legends. While SRE always grows linearly with the chain
length for the unfrustrated cases, topological frustration adds non-linear contributions that,
in the thermodynamic limit, reduces to eq. (7)

In Fig. 2, we depict the results obtained for the SRE as a function of λ for both models.
For the sake of clarity, in the case of CIM, we split the discussion in two, depending on whether
the size of the system is or is not an integer multiple of 3. This choice is justified not only
from the presence or absence of a ground state degeneracy in the frustrated case, but also
from the fact that even the non-frustrated models exhibit two different behaviors for L equal
or different from an integer multiple of 3 [62].

In all panels, we see similar behaviors. For the unfrustrated models, the SRE vanishes at
the classical point, increases with λ reaching the maximum at the critical value λ = 1 and
then decreases vanishing in the limit of diverging λ. The only exception to this picture is the
CIM with L = 3 that clearly shows a pathological behavior due to the fact that the cluster
interaction extends to the whole system. On the contrary, the SRE for the frustrated model
always starts with a non-zero value, as predicted in eq. (3), then, depending on the size of the
system, can or cannot reach a maximum before the quantum critical point. Increasing L such
a maximum becomes both more evident and closer to the phase transition. Above the critical
point, the behaviors of the SRE for the frustrated systems are similar to the unfrustrated ones
and tend to coincide as λ increases.
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On the other hand, in Fig. 3, for several values of λ, we evaluate the SRE as a function
of L for the ground states of the unfrustrated models (left column) and the frustrated ones
(right column). In agreement with the results obtained in [42], regardless of the value of λ,
the SRE for the unfrustrated models always displays a linear dependence on L. Instead, the
picture for the frustrated models is much richer. The linear dependence on L is preserved for
both the critical (λ = 1), and the gapped case (λ > 1). On the contrary, for λ < 1 we see a
non-linear dependence on L.

While it is easy to extrapolate the behavior of the SRE for the unfrustrated systems with
large L, thanks to the linear trend visible even at small sizes, for the frustrated models the
situation is more complex. Analyzing the data, we can identify two clearly different behaviors.
In the thermodynamic limit, in the topologically frustrated phases, the SRE can be seen as
the sum of a local term equal to the one of the corresponding unfrustrated model, and a
second contribution coming from the delocalized |Wk⟩ state. This means that, at least for
large L, we expect that, in the frustrated phase,

M2(J = 1, L, λ) = M2(J = −1, L, λ) + MW
2 (L). (7)

where MW
2 (L) is the SRE of a W -state that is given in (3). On the other hand, M2(J =

1, L, λ) stands for the SRE for the frustrated model while M2(J = −1, L, λ) stands for the
SRE evaluated in the unfrustrated one, obtained changing the sign of J but keeping fixed
the values of both L and λ. On the contrary, immediately outside such a phase, the effect of
frustration tends to disappear as L increases.

To highlight this picture, in Fig. 4 we plot the difference between the SRE for the frustrated
and the unfrustrated models, for fixed values of λ and L, normalized with MW

2 (L), i.e. the
quantity

R(L, λ) = M2(J = 1, L, λ) − M2(J = −1, L, λ)
MW

2 (L)
. (8)

In all the cases analyzed in the figure, the results are consistent with our picture. In fact,
for λ < 1, i.e. when the system is in the frustrated phase, the quantity R(L, λ) tends
asymptotically to 1 for large chains. In all other cases, it tends to vanish with L.

It is worth noting that the values of the ratio are not exactly 1 or 0 but tend to these
thresholds only for large L. Indeed, in the thermodynamic limit quantities defined on finite
supports converge to the same value for a frustrated system and its unfrustrated counterpart,
but when the size is finite there are corrections scaling like 1/L [51]. We stress that these
corrections cannot explain the logarithmic dependence of the SRE on the size of the chain,
since it provides only a size-independent correction to the extensive SRE of the frustrated
model. Nevertheless, it allows quantifying the finite size effects on R(L, λ). In fact, in
Ref. [42] the authors proved the local nature of the SRE for the unfrustrated Ising model by
showing how its behavior is well mimicked by the SRE of the reduced density matrix of a
single spin. In other words, labeled α1(λ) the SRE of the reduced density matrix of a single
qubit

α1(λ) = log2

(
1 +m2

z

1 +m4
z

)
, (9)

where mz = ⟨σz
j ⟩ is the translational invariant expectation value of the local magnetization

along z over the ground state of the unfrustrated model.
Correspondingly, in Ref. [42] it was shown that away from criticality we have M2(J =

−1, L, λ ̸= 1) ≃ Lα1(λ). In the frustrated case, the expectation value of σz
j acquires a

9
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Figure 4: Behavior of the function R(L, λ) in (8) as function of L for different models and
values of λ: TFIM (panels A); CIM with L not an integer multiple of 3 (panels B); CIM with
L an integer multiple of 3 (panels C).

correction proportional to L−1 (⟨σz
j ⟩ = mz + 2/L), which, when plugged into (9), gives

M2(J = 1, L, λ ̸= 1) ≃ Lα1(λ) + 4mz

(
1

1 +m2
z

− 2m2
z

1 +m4
z

)
. (10)

We see that even accounting for the correction, a local approximation for the SRE fails to
reproduce the non-local logarithmic growth coming from the W -states. This feature can
also be connected to MPS representations. States that can be represented as translational
invariant MPSs, such as the ground state of the unfrustrated Ising model, have extensive
SRE [39]. In contrast, the W -state has no efficient representation as a translational invariant
MPS [13], thus a violation of the extensive property of SRE is possible.

Furthermore, we note that (10) is not valid for the CIM since mz = 0. This fact implies
that in order to mimic the SRE for the unfrustrated model, we cannot limit the reduced
density matrix of a single spin, but we have to take larger partitions, where we can recover
similar behaviors.

5 Conclusions

In conclusion, in our work, we have considered a well-known family of states in the field of
quantum information, namely the W -states. For this family, we have calculated the value of
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the SRE, and we have highlighted the logarithmic dependence of the latter on the size of the
system. This non-zero SRE does not come from the individual states whose combination gives
life to the W -states, but from the particular, non-local, superposition of them, which produces
a completely delocalized SRE. In fact, the W -states are written in terms of states that are
eigenstates of Pauli strings and therefore, taken individually, they have a null non-stabilization
value.

We have shown how these states are realized naturally in a quantum spin chain close to
its classical point, when the system is topologically frustrated. The quantum term competing
with the Ising interaction, but preserving the parity of the magnetization in a transverse
direction selects a superposition of factorizable kink states which, through a Clifford circuit,
can be exactly mapped into the W -states. Since any measure of non-stabilization remains
unaffected by the application of a Clifford circuit, the ground state of the (nearly classical)
spin chain and the W -state share the same, non-vanishing SRE which grows logarithmically
with the number of qubits/spins. This behavior should be contrasted to that of non-frustrated
systems, which close to their classical point approach GHZ-state and have zero SRE.

Moving away from the classic point, the competition between the quantum interactions
gives rise to an additional contribution that scales linearly with L in a way that is analogous
to that of the unfrustrated counterparts. Therefore, in a topologically frustrated system the
SRE is the result of the coexistence of a dominant local contribution and a subdominant one
originating from the delocalized nature of the W -states.

This work combines quantities and concepts from two different fields: quantum computing
and the theory of complex quantum systems, and provides new insights for both. From the
many-body point of view, it offers further evidence on the difference between the same model
with and without topological frustration and shows that the former has a much richer (non-
local) complexity.

From a quantum information theory perspective, the results presented in this paper pro-
vide a new embedding of W -states in a physically realizable setting and a generalization of
these states to a finite correlation length. Furthermore, the additional SRE of the frustrated
systems, particularly relevant for microscopic and mesoscopic systems, can be a valuable
resource for the design of devices based on topological frustrated models. To provide an
example, let us consider fault-tolerant quantum computations that are commonly run by
state synthesis protocols, where a resource state |ϕ⟩ini combined with error-corrected Clif-
ford operations is transformed into a target state |ϕ⟩target [66]. Magic (SRE) quantifies the
non-stabilizer resources needed to synthesize a particular state or unitary [31, 67, 68]. As
the SRE is invariant under Clifford unitaries, a necessary condition for state synthesis is that
M2(|ϕ⟩target) ≤ M2(|ϕ⟩ini). Thus, it bounds the minimum amount of magic resource states
needed to simulate a state on a quantum computer.

For example, the commonly used magic state |T ⟩ defined as |T ⟩ = 1√
2(|0⟩ + e−iπ/4 |1⟩),

which can be used to realize a single T-gate, has a magic equal to M2(|T ⟩) = log2(4/3). But,
even if we consider L = 3, which represents the minimum size for which we can distinguish
among W and GHZ states, the SRE of a W -state is larger by log2(4/3). Hence, a single
three qubit W -state, and therefore any topological frustrated one-dimensional system, could
provide an amount of non-stabilizer resources sufficient for the realization of a T-gate.
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A Analytic derivations of SRE

In this Appendix, we detail the analytical derivations of the SRE for a W state. Let us start
by recalling the definition of the W state in the x-basis (see (2)) as

|W ⟩ = 1√
L

L∑
i=1

σz
i |−⟩⊗L . (11)

Denoting with P a generic Pauli string operator defined on the system of L qubit, to determine
the SRE given in (1), we have to evaluate the expectation value of the W state over P , i.e.

⟨W |P |W ⟩ = 1
L

L∑
i,j=1

⟨−|⊗L σz
jPσ

z
i |−⟩⊗L . (12)

Let us consider separately the two different cases, i = j and i ̸= j, that will provide two
different kinds of contribution to the SRE, i.e.

MW
2 (L) ≡ M2(|W ⟩) = − log2

[ 1
2L

(Oi=j +Oi ̸=j)
]
. (13)

When i = j, we have that only the string in which there is no σy
k either σz

k give a non-zero
expectation value. Hence, the non-vanishing contribution will arrive only by 2L strings that
can be put in the form P ′ =

⊗L
k=1 σ

α
k , where α ∈ {0, x}. The absolute value of each term

defined in eq. (12) depends on the number l = 0, . . . , L of σx
k operators in the string P ′ and

it is equal to ∥L−2l
L ∥. Taking into account all the possible combinations, the contributions of

these terms is

Oi=j =
L∑

l=0

(
L− 2l
L

)4 L!
l!(L− l)! . (14)

On the opposite, in the case i ̸= j, the terms that provide a non-zero contribution lives
in a different set. In fact, in this second case, only string operators of the form P ′′ =⊗L

k=1,k ̸=i,j σ
α
k ⊗ (σβ

i σ
β
j ) where α = 0, x while β = y, z provide a non-vanishing contribution

which absolute value is equal to 2
L . Since all of them provide the same contribution to the

magic, it is easy to see that Oi ̸=j can be written as

Oi ̸=j =
L−2∑
l=0

2
( 2
L

)4 L(L− 1)
2

(L− 2)!
l!(L− 2 − l)! . (15)

12
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Introducing both (14) and (15) in (13), and after a few simplifications we obtain

MW
2 (L) = 3 log2(L) − log2(7L− 6). (16)
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