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Abstract

Remote detectability is often taken as a physical assumption in the study

of topologically ordered systems, and it is a central axiom of mathematical

frameworks of topological quantum field theories. We show under the entan-

glement bootstrap approach that remote detectability is a necessary property;

that is, we derive it as a theorem. Starting from a single wave function on a

topologically-trivial region satisfying the entanglement bootstrap axioms, we

can construct states on closed manifolds. The crucial technique is to immerse

the punctured manifold into the topologically trivial region and then heal the

puncture. This is analogous to Kirby’s torus trick. We then analyze a spe-

cial class of such manifolds, which we call pairing manifolds. For each pairing

manifold, which pairs two classes of excitations, we identify an analog of the

topological S-matrix. This pairing matrix is unitary, which implies remote

detectability between two classes of excitations. These matrices are in general

not associated with the mapping class group of the manifold. As a by-product,

we can count excitation types (e.g., graph excitations in 3+1d). The pairing

phenomenon occurs in many physical contexts, including systems in differ-

ent dimensions, with or without gapped boundaries. We provide a variety of

examples to illustrate its scope.

2024/10/16

1



Contents

1 Introduction 4

1.1 Reader’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Central pillars of entanglement bootstrap 14

2.1 Axioms and existing tools . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Immersed regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Constrained fusion space . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Regions dual to excitations 25

3.1 2d bulk and 3d bulk regions . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 ?Systems with gapped boundaries in 2d and 3d . . . . . . . . . . . . 31

4 Closed manifolds completed from immersed regions 35

4.1 Vacuum block completion . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Examples of vacuum block completion . . . . . . . . . . . . . . . . . 49

4.3 Other examples of completion in N . . . . . . . . . . . . . . . . . . . 56

5 Pairing manifolds 60

5.1 Motivating questions and Kirby’s torus trick . . . . . . . . . . . . . . 61

5.2 Pairing manifolds, the definition . . . . . . . . . . . . . . . . . . . . . 62

5.3 Consequences of pairing . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Examples of pairing manifolds 76

6.1 Pairing manifold examples in the bulk . . . . . . . . . . . . . . . . . 78

6.2 ?Pairing manifold examples with gapped boundaries . . . . . . . . . . 86

6.3 Natural partitions used in examples . . . . . . . . . . . . . . . . . . . 90

6.4 Non-examples of pairing manifolds . . . . . . . . . . . . . . . . . . . 94

7 Pairing matrix and remote detectability 100

7.1 Pairing Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Relation to remote detectability . . . . . . . . . . . . . . . . . . . . . 105

8 Discussion 106

A Notation glossary 112

2



B Consistency Relations with Quantum Dimensions 114

C Information convex set for handlebodies 119

C.1 Relations between quantum dimensions and fusion probabilities of
graph excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.2 Quantum double examples . . . . . . . . . . . . . . . . . . . . . . . . 123

D Quantum double illustration of pairing manifold relations 129

References 131

3



1 Introduction

Topological quantum field theory (TQFT) [1, 2, 3] is a machine that eats arbitrary

manifolds and produces invariants. The entanglement bootstrap [4, 5, 6] begins with

a single state on a topologically-trivial region, e.g., a ball or a sphere. How can

it incorporate the data on nontrivial closed manifolds? In this work, we provide a

method to construct quantum states on various manifolds from the reference state

on a ball. With this technique at hand, we further give a general proof of the remote

detectability for topologically ordered systems.

Remote detectability [7, 8] is the statement that, in topologically ordered sys-

tems, each nontrivial topological excitation (which can be a particle or a loop or

something else) must be detectable by a remote process involving another (possibly

different) class of excitations. It is a broad phenomenon that is believed to occur in

many physical setups, including topologically ordered systems in arbitrary dimen-

sions (d ≥ 2) [7, 9, 10, 11] and systems with gapped boundaries [12, 13, 14]. Remote

detectability is a vast generalization of the braiding non-degeneracy of anyons; see

Ref. [15] Appendix E. In these previous approaches, remote detectability was an

axiom (or principle). In entanglement bootstrap, we shall derive this property as a

theorem.

The main idea in our derivation of remote detectability is as follows. We start

with a reference state σ on a topologically trivial region, which can be either a ball

Bn or a sphere Sn.1 We immerse (i.e., locally embed) a closed manifoldM of interest

into the ball or sphere upon removing a ball from it, that is, we considerW =M\Bn

and an immersion W # Bn or W # Sn. Then with a trick to heal the puncture,

we construct a state on the manifold M. We identify a specific class of manifolds

that is important for the study of remote detectability; we refer to them as pairing

manifolds. Each pairing manifold (M = XX̄ = Y Ȳ 2) pairs two excitation types,

namely the excitation types characterized by the information convex sets of regions

X and Y respectively. For each pairing manifold, we identify a “pairing matrix”,

which is a finite-dimensional unitary matrix analogous to the topological S matrix

in the anyon theory. The remote detectability of the excitations follows from the

1We use boldface letters Bn and Sn (instead of the more standard topological notation Bn and

Sn) to indicate that these regions are those on which we define the reference state.
2Here X̄ is the complement of X in M, that is X̄ =M\X.
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unitarity of the pairing matrix. (See Ref. [16] for an entanglement bootstrap study

of the topological S matrix in the anyon theory, which contains a trick we adopt.)

Our method can be thought of as a quantum analog of Kirby’s torus trick [17]: it

uses immersion and pulls back structures from a topologically trivial region to closed

manifolds (e.g., the torus). Then, because the structure on the closed manifold

(i.e., the stability in Kirby’s case) is better understood, insight into the topologically

trivial region (i.e., Rn in Kirby’s case) is gained by the consistency. In our method, we

pull back quantum states to punctured manifolds and then heal the puncture3. The

structures, i.e., universal data, associated with the quantum state on the topologically

trivial region understood by our method include the pairing matrix, best defined on

the pairing manifolds, as well as various consistency relations derived by making

use of the pairing manifolds. Intriguingly, Hastings considered an application of

Kirby’s torus trick for gapped invertible phases [18], where the local Hamiltonian is

pulled back. In comparison, our approach works for gapped invertible phases as well

as intrinsic topological orders, and we only make use of the quantum states. One

innovation is the use of building blocks, which carry the instruction for picking the

right state on the punctured manifold. Such states allow a “smooth” healing of the

puncture.

Why are we interested in the entanglement bootstrap approach to topological

orders and TQFT? The entanglement bootstrap is an independent theoretical frame-

work: it requires an input reference state that satisfies two axioms on bounded-sized

regions (see Eq. (2.1)). From there, various rules are derived as information-theoretic

consistency relations of the quantum theory. In the process of deriving such consis-

tency relations, mathematical objects are identified that capture the universal data of

the gapped phase. These data are encoded in the reference state, which is physically

the ground state. Below are some additional perspectives:

1. TQFT and its categorical description, while standing as the best-known candi-

date of the underlying mathematical theory for topological field theory, are not

without ambiguities. In mathematics, it is possible to add various adjectives

to TQFTs and tensor category theories. Therefore, there has always been the

3The quantum state lives on the 0-cells of a cell decomposition of the ball. As in the original

application of the torus trick, the immersion can be used to pull back the information about this cell

decomposition. Thus, the pulled-back quantum state lives on a cell decomposition of the immersed

manifold.
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question of which adjective is the right one for a given physical setup. Further-

more, the study of TQFT and topological orders in higher dimensions (d ≥ 3)

(see e.g. [7, 8, 11, 19]) is an ongoing research direction.

2. The entanglement bootstrap is a bridge between the program of classifying

gapped quantum phases and the classification of quantum states. This is be-

cause any data we identify (such as the pairing matrix), becomes a label of

the reference state which satisfies an entanglement area law captured by the

axioms. In this way, entanglement bootstrap puts labels on quantum states

satisfying the axioms and thus classifies them.

3. One expects to discover new connections between the ground states and uni-

versal properties. For instance, in this work, we identify excitations that have

not been studied, e.g., the graph excitations in 3d topological order. They

are excitations occupying a thin handlebody. Handlebodies in 3d are classified

by genus, and for each genus, we identify a class of “graph excitations”. The

remote detectability for this new class of graph excitation is one of the many

examples we give. As a byproduct, we provide a counting of the number of

graph excitations for an arbitrary genus. As we shall explain, the counting

manifests the fact that the coherence in the fusion space in the particle cluster

is needed in detecting the graph excitations.

Recently, some of the tools developed in entanglement bootstrap have been use-

ful guidelines for finding new topological invariants calculable from a ground

state wave function. (See [20] for a proposed formula for the chiral central

charge, in terms of the modular commutator. See [21] for a proposed formula

for the Hall conductance, in the context of which the reference state is sym-

metric under a U(1) onsite symmetry.) These studies suggest that the ground

state wave function on a topologically-trivial region contains data beyond those

captured by a tensor category. One may wonder if this line of ideas generalizes

into higher dimensions.

4. Lastly, entanglement bootstrap, rooted in earlier related works, suggests a new

philosophical relation between the universal data and the ground state(s). It

suggests, in a concrete manner, that many (possibly all) data of the gapped

phase of matter (or TQFT) can be extracted from a topologically trivial patch

of the ground state wave function. In other words, the universal data is encoded
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Figure 1: Illustrated is an analog to the growth of a plant from a seed.

in the seed or its “DNA” (reference state on a patch larger than the correlation

length) of the “plant” (topologically ordered system). Our approach is to

first grow a plant from the seed and then study the morphology of the plant;

therefore, we do not need to start with the whole plant. See Fig. 1 for an

illustration.

The pairing matrices we identify are analogs of the topological S matrix in the

anyon theory. A surprise is that, while each of these pairing matrices is associated

with a closed manifold, the matrix is not associated with its mapping class group

(MCG), unless the two classes of excitations characterized by X and Y are identical.

This distinguishes them from a previous generalization of the topological S matrix in

3d, associated with the 3-tori [22, 10]. Some of the matrices considered in [10, 23, 24]

are examples of pairing matrices. Pairing matrices fall into three kinds, depending

on whether X and Y encode a nontrivial fusion space; see Table 1 for the examples

we consider.

1.1 Reader’s guide

This section is a reader’s guide. It includes a figure that summarizes the key concept

developed (or reviewed) in each section and the relations between the sections (see

Fig. 2), and a table that summarizes the examples of pairing manifolds (see Table 1).
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Below are some more details.

1.1.1 Content of the sections

In §2, we collect useful tools of entanglement bootstrap, that are developed in previ-

ous works. We start by reviewing the axioms in general dimensions. The structure

theorems of the information convex sets enable us to talk about superselection sec-

tors and fusion spaces. The merging theorem allows us to glue regions on either an

entire entanglement boundary or part of the entanglement boundary. The associa-

tivity theorem tells us how the dimensions of the fusion spaces match upon gluing

an entire entanglement boundary. We introduce the idea of constrained information

convex set, which allows a nice reformulation of the associativity theorem. We recall

the definition of quantum dimensions and the properties of the vacuum. Finally, we

recall the concept of immersed regions4, which will play an important role in this

work.

In §3, we explain the duality between excitations and regions. In the bulk, we

shall consider excitations (which can be one excitation or a cluster of excitations)

that live on a sphere Sn. The region dual to the excitations is homeomorphic to

the subsystem of a sphere that occupies the complement of the excitations. We also

discuss the immersed version of such regions. These regions will be used as “building

blocks” for constructing closed manifolds. We further discuss similar dualities in the

physical context of gapped boundaries. We also discuss excitation types that are new

to our knowledge. For instance, in the 3d bulk, we identify graph excitations which

are located in “graphs”.5 They are more general than the familiar loop excitations.

The regions that detect them are also handlebodies. These graph excitations are

classified into subclasses labeled by the genus.

In §4, we discuss the main conceptual progress of this work: that is the idea of

making closed manifolds M from immersed regions W # Sn, where W =M\ Bn.

4As is explained in Ref. [6], the idea is essentially the same as topological immersion: a continuous

map from a topological manifold where every point in the source has a neighborhood on which the

map restricts to an embedding. We only need immersion maps between manifolds of the same

dimension, and in this case, the immersion in question is also a submersion.
5An accurate statement is the excitations are supported on thin handlebodies. Handlebodies in

3d are solid genus-g surfaces.
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§2: Backgrounds & Tools

axioms, information convex sets

structures, vacuum, associativity

immersion

§3: Regions ↔ Excitations

bulk and gapped boundaries:

§4 Manifolds completed from immersed regions

completion (M,W # Sn or Bn)

building blocks {V ,V3,V4}

vacuum block completion (M, {Vi},W # Sn or Bn) completion trick

“torus trick”

§5 and §6 Pairing manifolds & examples

pairing: (M, {X, X̄}, {Y, Ȳ },W # Sn or Bn)

consequences of pairing:∑
a∈C∂X Na(X)2 =

∑
α∈C∂Y Nα(Y )2 = dim V(M)

capacity matching: Q(X) = Q(Y ), TEE = lnQ.

§7 Pairing matrices

S(a,i,j)(α,I,J) = 〈a(i,j)
X |α

(I,J)
Y 〉/ ∼

three types depending on X, Y

Figure 2: A summary of the content of the main text. The focus is on the concepts developed

and the relations between the sections.
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The concepts and techniques to achieve this goal include completion (Definition 4.1),

completion trick (Lemma 4.4), building blocks (Definition 4.5), and vacuum block

completion (Definition 4.9). Intuitively, if a closed manifoldM allows a completion,

then there exist quantum states onM, which are assembled from the reduced density

matrices of the reference state on small patches. The completion trick is a general

trick to achieve that. Vacuum block completion is a special type of completion; it

carries an instruction to build the closed manifold from a set of building blocks. Each

manifold so constructed has a canonical state with respect to the choice of building

blocks. This canonical state is obtained by assembling the “vacuum” states of these

building blocks. Importantly, the canonical state satisfies the entanglement bootstrap

axioms on all balls contained in M. We provide many examples to illustrate these

concepts and techniques.

In §5, we introduce the concept of pairing manifold (Definition 5.3). It is a special

class of manifolds that allows a pair of vacuum block completions, as

M = XX̄ = Y Ȳ , (1.1)

in addition to a couple of extra conditions. The most important condition is that X

and Y cut each other into balls and thus hide information from each other completely.

From the definition, we prove a set of properties of pairing manifolds. For instance,

the Hilbert space dimension on M is determined by the information convex set of

either X or Y . In short, this is a manifestation that a pairing manifold is a machine

that pairs two classes of excitations.6 One class is that detected by the region X,

and another is that detected by the region Y .

In §6, we provide many examples of pairing manifolds in various spatial dimen-

sions and systems with or without gapped boundaries. See Table 1 for the examples

in 2, 3, and 4 spatial dimensions. As a by-product of this analysis, we count the total

number of graph excitations for any given genus. The result is expressed in terms

of the fusion multiplicity of point particles. We show that some manifolds can be a

pairing manifold in multiple ways.

In §7, we introduce the pairing matrix (S), a generalization of the well-known

topological S-matrix. This is a different generalization that has been considered

in [22], and the pairing matrices are not necessarily associated with the mapping

6When eitherX or Y is not sectorizable, it is useful to think of these as two clusters of excitations.
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class group. A pairing matrix generates a unitary transformation between two bases

specified by the two cuts, and it is a unitary matrix. The pairing matrices fall into

three types, depending on whether a fusion space needs to be involved in the remote

detection process; see Table 1 for some examples. A pairing matrix of the first type

can be thought of as the braiding matrix between two classes of excitations; these

excitations detect each other without making use of fusion spaces, and the number

of excitations in each class must be identical. A pairing matrix of the second type

provides an example of remote detection involving nontrivial fusion spaces. The

physical picture to keep in mind is that a cluster of coherently-created excitations

detects the excitations in another class. A pairing matrix of the third type generically

requires the fusion spaces of both excitation clusters (one detected by X and another

detected by Y ) to participate in the remote detection process.

§8 discusses open questions. In Appendix A, we summarize the notations and

provide a glossary. In Appendix B, we prove a set of consistency conditions on

quantum dimensions and fusion rules, generalizing those found in [6]. This is used

in Appendix C, which gives an exposition of graph excitations, and exemplifies them

using quantum double models. Appendix D illustrates some of the consequences of

the fact that (S2 × S1)#(S2 × S1) is a pairing manifold in two ways, in the family

of 3d quantum double models.

We have placed a ? next to sections and items that refer to gapped boundaries.

A reader uninterested in gapped boundaries may skip these items without losing the

logical flow of the paper.

1.1.2 Why Kirby’s torus trick?

Finally, we explain the somewhat mysterious statement that our method is an analog

of Kirby’s torus trick. The first question is what is the torus trick? The general idea

of using such an immersion to pull back structure from Rn to another topological

manifold is sometimes called the Kirby’s torus trick [17]. In Kirby’s work, this idea

is used to pull back smooth or piecewise-linear structures. In [18] this idea was used

to pull back local Hamiltonians for invertible phases. Hastings [18] and Freedman

[25, 26] also used this idea to pull back Quantum Cellular Automata.

We pull back the information about the universal property of the gapped phases

encoded in the quantum (ground) states, and therefore, it can be thought of as a

11



quantum analog of Kirby’s torus trick [17]. We use immersion to pull back structures

from a topologically trivial region to closed manifolds, e.g., the torus. More specifi-

cally, we first construct quantum states on immersed punctured manifolds and then

heal the puncture. The structures associated with the topologically trivial region

understood this way include the pairing matrix, best defined on the pairing mani-

folds, as well as various consistency relations derived by making use of the pairing

manifolds.

The second question is: which sections of this work contain the analog of the

torus trick? An answer is indicated in Fig. 2. It says that the trick is most relevant

to §4 and §5. The reason is as follows. Section 4 solves the problem of how to

pull back quantum states from a ball (or a sphere) to a closed manifold. Section 5

identifies a class of closed, connected manifolds that can provide insights into some

mathematical structures, e.g., consistency relations and the braiding nondegeneracy.

(The discussion of pairing matrices in Section 7 is a continuation of this analysis.)

That a canonical state on a closed manifold can be constructed with the addi-

tional instruction carried by the building blocks is a new feature. This enables us

to construct a state on the punctured manifold W , for which a “smooth” healing of

puncture is possible even for intrinsic topological orders (i.e., non-invertible phases).

This provides one way to overcome a difficulty about intrinsic topological orders,

emphasized by Hastings [18] (we also note that we are dealing with quantum states

rather than Hamiltonians).
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context pairing manifold, M X Y
excitation detected by

X

excitation detected by

Y
2d bulk T 2 annulus annulus particle pair particle pair

2d bulk genus-g > 1 Riemann surface g-hole disk g-hole disk g + 1-particle cluster g + 1-particle cluster
2d gapped

boundary

cylinder with two identical

gapped boundaries
half-annulus boundary annulus

boundary particle

pair

bulk anyon condensed

on boundary

2d gapped

interface

striped

sphere
n-shape interface annulus

interface particle

pair

bulk anyon condensed

on interface

2d gapped

interface

striped

torus

x-striped

annulus
y-striped annulus

interface particle

pair

P − Q anyon pair

3d bulk S2 × S1 solid torus sphere shell loop particle pair

3d bulk (S2 × S1)# · · ·#(S2 × S1)︸ ︷︷ ︸
g times, g>1

secret

genus-g

handlebody
ball minus g balls︸ ︷︷ ︸

≡Bg

genus-g graph excita-

tion

g + 1-particle cluster

3d bulk (S2 × S1)#(S2 × S1) ball minus torus ball minus torus
loop-particle cluster loop-particle cluster

3d gapped

boundary

sphere shell with

two gapped boundaries
solid cylinder boundary sphere shell

boundary string exci-

tation

bulk anyon condensed

on boundary

3d gapped

boundary

solid torus with

gapped boundary
bundt cake half sphere shell

string excitation end-

ing on the boundary
boundary particle

pair

3d gapped

boundary

genus-g handlebody

with gapped boundary

genus-g

bundt cake
Bg cut in half

g-arch bridge excita-

tion

g + 1 boundary parti-

cles

4d bulk S3 × S1

secret

3-sphere shell,

B1 × S3
B3 × S1 particle 2-brane

4d bulk S2 × S2 S2 ×B2 B2 × S2 loop loop

Table 1: This table summarizes some examples of the pairing manifolds we study. The examples of X or Y that are not sectorizable are this color, while those that are

sectorizable are this color. In the cartoons, gapped boundaries are depicted in thick black; entanglement boundaries are in blue here. In the two rightmost columns, the

support of the excitation is in red; in grey is a possible support of the flexible operator that creates the excitations. The icing on the bundt cake is decorative.
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2 Central pillars of entanglement bootstrap

In this section, we summarize the essential working tools of the entanglement boot-

strap [4, 5], as extended to three spatial dimensions in [6]. These tools are available

in a general space dimension, as the previous works give a clear clue to such general-

izations. As the proofs were given in previous works, we shall focus on the statements

and physical explanations. In §2.2, we give an in-depth discussion of the topology

of immersed regions. In §2.3, we introduce the concept of constrained fusion spaces,

which will be useful later.

In appendix A, we review the notations and terminology that we use often. In

particular, because we shall also discuss physical systems with gapped boundaries,

we need to distinguish between gapped boundaries and entanglement boundaries : an

entanglement boundary is a component of the boundary of a region that is not part

of the gapped boundaries.

2.1 Axioms and existing tools

The entanglement bootstrap axioms can be stated in an arbitrary dimension. In the

bulk, we always have two axioms. For concreteness, we start by stating the axioms

for the entanglement bootstrap in three dimensions (Eq. (2.1)). We assume given a

reference state σ supported on a large ball B3. (Note the distinction between Bn and

an arbitrary ball Bn. We shall denote the large ball with the reference state as Bn for

n-dimensional entanglement bootstrap.) We assume that the reference state σ lives

on a many-body quantum system whose Hilbert space is the tensor product of local

onsite Hilbert spaces Htotal = ⊗iHi. This assumption means that we restrict our

attention to systems made of bosons.7 We further assume that each local Hilbert

space Hi is finite-dimensional. This is for the purpose of avoiding possible exotic

cases that arise only in infinite dimensions.

For the purposes of the present paper, we also assume that the sites i hosting

the local Hilbert spaces are the 0-cells of a cell decomposition of the large ball. This

means that we have a set of boundary maps specifying which sites are in the boundary

of each link (1-cell), and which links are in the boundary of each face (2-cell), and

7Fermionic systems have a Z2-graded Hilbert space instead.
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so on in higher dimensions, in such a way that these maps are nilpotent. This data

allows us to speak meaningfully about the topology of regions without taking any

continuum limit.

We assume that the following two axioms hold on ball-shaped subsystems con-

tained in B3, for the reference state σ:

C

B

A0 : (SBC + SC − SB)σ = 0

C

B

D

A1 : (SBC + SCD − SB − SD)σ = 0
(2.1)

where (SX)σ = −Tr(σX lnσX) is the von Neumann entropy of the state σ reduced

to the region X. Each partition of the balls shown in Eq. (2.1) is topologically

equivalent to the volume of revolution of the indicated 2d region.

We shall denote the entropy combinations appearing in the axioms as

∆(B,C) ≡ SBC + SC − SB, ∆(B,C,D) ≡ SBC + SCD − SB − SD. (2.2)

We shall refer to the two axioms as A0 and A1. As in the 2d case [4], the strong

subadditivity (SSA) [27] implies that if the axioms hold for balls of a certain length

scale,8 the same conditions must hold for all larger balls. In other words, there is no

problem zooming out to a larger length scale. Because of this, we shall assume that

we have a fine enough lattice, and we only consider large enough regions consisting

of enough (but finite) lattice sites and having sufficient distance separation between

each other. This continuum limit allows us to borrow topology concepts such as ball,

8We remark that the balls are topological balls. They do not need to be round, as they are a

collection of sites whose topology is associated with a cell complex. We only require that the region

is topologically equivalent to the one shown in Eq. (2.1). (Physically speaking, the sites in B and D

may be thought of as coarse-grained sites so that B and D are thicker than the correlation length.)

We introduced the volume of revolution in figures only for the visualization of the topology, and

rotational symmetry is not required.
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annulus, and sphere.9 10

The axioms A0 and A1 can be defined in an arbitrary space dimension n. For

axiom A0, B will be the sphere shell, and for axiom A1, BD will be the sphere

shell, where B and D are hemisphere shells. We shall study the generalizations of

the axioms to systems with gapped boundaries as well, see §3.2 for the axioms in

that setup.

The axioms A0 and A1, are closely related to two well-known quantities, respec-

tively, the mutual information I(A : C) ≡ SA+SC−SAC and the conditional mutual

information I(A : C|B) ≡ SAB +SBC−SB−SABC . SSA refers to the statement that

I(A : C|B) ≥ 0 for any tripartite mixed state. If a tripartite state ρABC satisfies

I(A : C|B)ρ = 0, i.e., if it saturates the strong subadditivity, we say it is a quantum

Markov state (with respect to this partition).

One important object that can characterize various nontrivial structures is the

information convex set, denoted as Σ(Ω). It depends on the region Ω and on the

reference state σ. We suppress the dependence of σ in the notation Σ(Ω) since

the reference state is fixed at the beginning. There are equivalent ways to define

Σ(Ω). One intuitive definition is: Σ(Ω) is the set of density matrices on Ω which

can be smoothly extended to any larger regions Ω′ (Ω′ regular homotopic to Ω and

Ω′ ⊃ Ω), where the state on Ω′ is locally indistinguishable with the reference state.11

As the name suggests, Σ(Ω) is a convex set of density matrices. The region Ω can

be immersed, as we shall explain.

From the axioms A0 and A1, properties of information convex sets can be proved

as theorems. Results appearing in previous literature [4, 5, 6] include:

9The mathematical theory for going from the lattice to the continuum topology is nontrivial,

but will not be needed for our purposes. It is unknown if an existing branch of mathematics can

formulate this idea with full rigor. This is a meaningful topic for future studies.
10In realistic settings, and in particular for gapped chiral phases, these axioms may not be exact.

Known models of gapped chiral phases all have finite (nonzero) correlation length, at least when

the local Hilbert space is finite dimensional. Nonetheless, we believe that they are satisfied in a

renormalization group sense for a large class of physical systems. That is, the violation of the axioms

decay towards zero (at a fast enough speed) as we coarse grain the lattice further. Justification of

this conjecture is an interesting future problem.
11A state on an immersed region is locally indistinguishable with the reference state if the reduced

density matrix on any (small) embedded ball is identical to that of the reference state. This is

equivalent to two other definitions that appeared in [4] by the isomorphism theorem.
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• Merging technique: It includes the merging lemma [28] and the merging

theorem [4]. When we use the word merging as a physical process, we always

refer to the process described by the merging lemma [28]. That is, it is possible

to construct a unique quantum Markov state τABCD (with I(A : D|BC)τ = 0)

from two quantum Markov states ρABC (with I(A : C|B)ρ = 0) and λBCD
(with I(B : D|C)λ = 0), as long as ρBC = λBC . The resulting “merged” state

τABCD is identical with ρABC and λBCD on marginals ABC and BCD.

In entanglement bootstrap, merging theorem [4, 5] says that whenever two

quantum Markov states in two information convex sets can merge,12 the re-

sulting state must be an element of a third information convex set.

• Immersed region: The concept of immersed region [6, 16] is a natural gen-

eralization of subsystems. An immersed region is locally embedded and has

the same dimension as the physical system. For each immersed region, one can

consider the information convex set. Since immersed regions will be crucial in

this work, we shall introduce them further in §2.2.

• The isomorphism theorem: If two immersed regions are connected by a

path, then the information convex sets are isomorphic. In other words,

Ω0 ∼ Ω1 ⇒ Σ(Ω0) ∼= Σ(Ω1). (2.3)

Here, a path between Ω0 and Ω1 is a finite sequence of immersed regions {Ωt},
t ∈ {0, 1/N, 2/N, · · · , 1} such that adjacent regions in the sequence are related

by adding (removing) a small ball in a topologically trivial manner. This rela-

tion is an elementary step; see Fig. 3 for an illustration. In the remaining of

the paper, when two regions are connected by a path, we say one region can be

“smoothly” deformed into another. The isomorphism ∼= refers to the isomor-

phism of two information convex sets as convex sets, as well as the preservation

of distance measures and the entropy difference. (We do not require the entropy

to be preserved, only the entropy difference.) The isomorphism ∼= between the

two information convex sets can depend on the path. Nonetheless, it can be

shown that only the topological class of the path matters.

12The regions in question need to be above a minimum (finite) thickness for the merging theorem

to apply. See Theorem II.3 of [5] for a review of the statement of the merging theorem. (Concrete

choices of regions can be explicitly constructed in a given coarse-grained lattice. See, e.g., (9.12)

and (9.16) in Chapter 9 of [29].) This requirement is satisfied in all our applications.
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Figure 3: An illustration of an elementary step. Here the ball C and added to AB in a topologically

trivial manner. A can be large and has an arbitrary topology. BC is part of a small ball BCD

on which the axioms are imposed. A is contained in the complement of BCD. AB → ABC is an

elementary step of extension, whereas ABC → AB is an elementary step of restriction. Axiom A1,

on BCD (with D not shown such that BD separate C from the “outside”) implies that I(A : C|B)

must vanish for any element of information convex set Σ(ABC).

• Structure theorems: The geometry of information convex sets must be of

a certain form. While the isomorphism theorem says that we only need to

consider topological classes of regions, the structure theorems describe powerful

statements on the topological dependence:

1. Simplex theorem: If an immersed region S is sectorizable13, the informa-

tion convex set is a simplex:

Σ(S) =

{∑
I∈CS

pIρ
I
S

∣∣∣∣∣ ∑
I

pI = 1, pI ≥ 0

}
. (2.4)

Here CS is the (finite) set of labels, where each label represents a supers-

election sector. The set of density matrices {ρIS} are the extreme points,

and they are mutually orthogonal.

2. Hilbert space theorem: For any immersed region Ω, the information convex

set Σ(Ω) is a convex hull of mutually orthogonal convex subsets ΣI(Ω),

where I ∈ C∂Ω. (Here ∂Ω is the thickened entanglement boundary14 of

Ω, and it is always sectorizable.) Each subset is isomorphic to the state

13A region X is said to be sectorizable if it contains two disjoint pieces X ′ and X ′′ such that each

can be deformed to X via a sequence of extensions.
14A thickened entanglement boundary is always of the form m× I, where m is a manifold and I

is an interval. In this work, we always consider thickened entanglement boundaries that are thick

enough so that the interval I, though being a lattice analog, can be partitioned into smaller intervals.
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space (i.e., the set of density matrices) of a finite-dimensional Hilbert space

VI(Ω). We denote this by ΣI(Ω) ∼= S(VI(Ω)), where S(V) denotes the state

space of V. The dimension of the Hilbert spaces, denoted as {NI(Ω) ≡
dim VI(Ω)}, are the fusion multiplicities. We refer to the finite dimensional

Hilbert spaces VI(Ω) as fusion spaces. (The origin of this name is the case

where Ω is the 2-hole disk, and these numbers are associated with the

fusion of two anyons into a third.)

We comment that the Simplex Theorem can be understood as a special instance

of the Hilbert space theorem, whether the fusion multiplicities are either 0 or 1.

• Associativity theorem: If an immersed region Ω can be cut into halves by

a hypersurface that does not touch the entanglement boundary of Ω, then the

fusion space dimensions associated with Ω are completely characterized by the

multiplicities of its subsets (ΩL and ΩR) and the way the hypersurface connects

them:

dim VaRaL (Ω) =
∑
i∈CS

dim ViaL(ΩL) · dim VaRi (ΩR), (2.5)

where S is the thickened hypersurface, and aL ∈ CAL and aR ∈ CAR . Here

AL = ΩL ∩ ∂Ω and AR = ΩR ∩ ∂Ω. It is guaranteed that S is sectorizable and

CS denotes the set of superselection sectors on S. (Alternatively, one can write:

NaR
aL

(Ω) =
∑

i∈CS N
i
aL

(ΩL)NaR
i (ΩR).) This theorem [6] is proved by considering

the merging of whole boundary components and making use of the Hilbert

space theorem.

• Vacuum and sphere completion: Let Ω ⊂ Bn be a subsystem of the ball.

The vacuum state on Ω is defined as σΩ, i.e., the reduced density matrix of

the reference state. It is shown that the vacuum state is an isolated extreme

point of Σ(Ω) [6]. If S is a sectorizable region embedded in Bn, then ρ1
S ≡ σS

corresponds to a very special label in CS, i.e., the vacuum sector, denoted as

1 ∈ CS.

Moreover, a reference state on a sphere Sn always has a vacuum, that is the

unique pure state in Σ(Sn) [4]. A vacuum state on a sphere can be obtained

from one on the ball by the “sphere completion” [6]. We shall generalize the

completion trick in later sections.
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To what extent can the definition of vacuum generalize to immersed regions

that are not embedded? This largely remains an open problem, but we report

some progress in §4.1.

Figure 4: Partitions of sphere shells relevant to the quantum dimension of point excitations.

• Quantum dimension: For a sectorizable region S embedded in Bn, the quan-

tum dimension of a sector I can be defined as

dI = exp

(
S(ρIS)− S(σS)

2

)
, ∀I ∈ CS. (2.6)

We shall need another definition of quantum dimension for point-like excita-

tions, which are characterized by the information convex set of a sphere shell.

Let the sphere shell be Sn−1 × I = BCD, where I = [0, 1] is an interval.

Sn−1 = NS, where N is the northern hemisphere and S is the southern hemi-

sphere. Let C = Sn−1 × [1/3, 2/3], B = (N × I) \ C and D = (S × I) \ C.

This partition for the case n = 3 is shown in Fig. 4(a). Then, the quantum

dimension for point excitation a is

da = exp

(
∆(B,C,D)ρa

4

)
, a ∈ CSn−1×I, for Fig. 4(a). (2.7)

If instead, C = Sn−1× [1/3, 2/3], B = N × [2/3, 1] (or B = (N × [0, 1/3] ) and

D is the rest, the quantum dimension is15

da = exp

(
∆(B,C,D)ρa

2

)
, a ∈ CSn−1×I, for Fig. 4(b) and (c). (2.8)

15The technically nontrivial part of the claim in Eq. (2.8) is that the partitions in Fig. 4(b)

and (c) are related by turning the sphere shell inside-out. The proof is written by one of us; see

Appendix A of [30]. (Note however, in 3d, this is intuitively related to the fact that any sphere

shell immersed in a 3-dimensional ball can be turned inside out.)
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If we know ∆(B,C,D)ρa for any one of the three partitions, we have a definition

of quantum dimension for point particles. This alternative definition has an

advantage. We only need the state ρa on the sphere shell, and there is no need

to compare it with the vacuum. This makes Eq. (2.7) and Eq. (2.8) work for

immersed sphere shells. Moreover, there are generalizations of them for many

other excitation types [6]. Moreover, from Eq. (2.7) and Eq. (2.8) it is manifest

that da ≥ 1. This is because ∆(B,C,D) is nonnegative.

2.2 Immersed regions

The concept of immersed region is a natural generalization of subsystems. A subsys-

tem is an embedded region that has the same dimension as the physical system. An

immersed region is a region that is locally embedded and has the same dimension as

the physical system. By this definition, embedding is a special case of immersion.

Figure 5: Illustration of the three kinds of immersed regions.

Immersed regions come in three kinds (see Fig. 5):

1. Regions of the first kind can always be smoothly deformed to embedded regions.

An example is a ball in any dimension; see Fig. 5(a).

2. Regions of the second kind have inequivalent immersions into the physical

system. One is an embedding, and at least one other is a nontrivial immersion.

One such example is the annulus in 2d; the figure eight at right in Fig. 5(b)

cannot be deformed by regular homotopy to the embedded annulus at left

because their boundaries have different winding numbers.

15We say two immersions are inequivalent if no path can connect the pair of regions. In the

continuous limit, this is the statement that the two immersions are not regular homotopy equivalent.
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3. Regions of the third kind cannot be embedded in a ball. One example is a

torus with a ball removed; see Fig. 5(c).

In particular, because of the existence of the third kind, immersed regions are strictly

more diverse than embedded regions.

Below, we give a few examples of immersed regions, focusing on the topology that

cannot be obtained from regions embedded within a ball. Let W ≡ M \ Bn. Here

M is a n-dimensional closed manifold and Bn is a solid ball. In other words, W is

a closed manifold with a ball removed. Here are some choices of such W , which can

be immersed in a ball W # Bn, for n = 2, 3:

1. In 2d, any closed connected orientable surface (classified by genus-g) with a

ball removed is a choice ofW . It is not hard to visualize these immersions [31].

2. In 3d, it is shown recently that every closed connected orientable 3-manifold can

be immersed in a ball upon removing a ball [32]. In particular, the immersions

of the following manifolds16 are known explicitly.

(a) (S2 × S1) \B3.

(b) (S2 × S1)# · · ·#(S2 × S1)︸ ︷︷ ︸
g times

\B3 ≡ #g(S2 × S1) \ B3. Here # means con-

nected sum.17

(c) T 3 \ B3, where T 3 is the three-dimensional torus. This case is nontrivial

to visualize. In the math literature, the existence proof of such immersion

appeared first [33], and was generalized to arbitrary dimensions later on

[34, 35]. Several explicit constructions followed, see [36, 37] for example.

We shall describe other examples of immersion in §3; some of these examples are

related to the physical setup of gapped boundaries. Furthermore, in §4, we shall find

ways to obtain reference states on various closed manifolds with the combination of

16We shall extensively use the standard notation for manifold topology, e.g., Sn refers to n-sphere,

Tn refers to n-dimensional torus; see Appendix A for other notations we frequently use in this work.
17A connected sum of two n-dimensional manifolds is also a n-dimensional manifold. It is formed

by first deleting a ball in the interior of each manifold and then gluing together the resulting

boundary spheres.
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two powerful techniques: immersion and the completion trick, which we shall discuss.

For later convenience, we shall always consider immersed regions that leave enough

space so that we can thicken them while keeping them immersed.

2.3 Constrained fusion space

We have discussed information convex set Σ(Ω) and the subsets ΣI(Ω) in which the

sectors (I) on the thickened entanglement boundaries are specified. One motivation

for studying these sets is to characterize how quantum information is distributed in

subsystems of a quantum state.

For this purpose, it is sometimes useful to specify a constraint that is not on the

thickened entanglement boundary. This motivates us to define information convex

sets with constraints, and their constrained fusion spaces (or constrained Hilbert

space).

Definition 2.1 (Constrained information convex sets and constrained fusion spaces).

Let Ω = AE and choose ρκA ∈ ext(Σ(A)), the set of extreme points of Σ(A). We

define the constrained information convex set as

Σ[κA](Ω) ≡ {ρΩ ∈ Σ(Ω)|TrE ρΩ = ρκA}, and

ΣI[κA](Ω) ≡ {ρΩ ∈ ΣI(Ω)|TrE ρΩ = ρκA}.
(2.9)

According to Lemma 2.2 below, ΣI[κA](Ω) ∼= S(VI[κA]), for some fusion space VI[κA](Ω).

We shall refer to VI[κA](Ω) as a constrained fusion space.

Remark. We further allow the usage of [ρκA] as an alternative for [κA], where ρκA is

the extreme point of Σ(A) in question. Constrained fusion spaces are particularly

convenient for the study of closed manifolds. When Ω =M is a closed manifold the

index I is dropped, we have constrained fusion spaces V[κA](M).

Lemma 2.2. The various constrained sets defined in Definition 2.1 satisfy:

1. Σ[κA](Ω) and ΣI[κA](Ω) are compact convex sets.

2. ΣI[κA](Ω) ∼= S(VI[κA](Ω)), where VI[κA](Ω) is a finite-dimensional Hilbert space,

and it is a subspace of VI(Ω).
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3. If A is sectorizable, we can relabel κ as J ∈ CA. In this case,

VI(Ω) = ⊕JVI[JA](Ω), (2.10)

is a direct sum.18

Proof. The proof of statement 1 is as follows. It is evident that Σ[κA](Ω) and ΣI[κA](Ω)

are convex sets. The compactness follows from that of Σ(Ω). In more detail, the

convex set Σ(Ω) is compact, and the subsets are defined by a set of constraints that

are linear equalities.

To prove statement 2, we can shrink A a little bit, without changing its topology.

Let Ã = A \ ∂A and Ẽ = E ∪ ∂A (recall that E ≡ Ω \ A). Then Ã and Ẽ share an

entire boundary. The extreme point label κ on A induces a label Φ(κ) of the extreme

points of Σ(∂A). This follows from the structure theorem for the information convex

set. Note that ∂A is a sectorizable region. While κ may be a continuous label,

Φ(κ) must be a discrete finite set. The state is a Markov state on Ã, ∂A,E whose

marginal on A is ρκA. Thus, any element of ΣI[κA](Ω) is obtained by merging some

element of ΣIΦ(κ)(Ẽ) with the same state ρκA. Thus, ΣI[κA](Ω) ∼= S(VIΦ(κ)(Ẽ)). Thus,

statement 2 is true, and furthermore dim VI[κA](Ω) = dim VIΦ(κ)(Ẽ).

Statement 3 is a corollary of statement 2. To see this, we observe that density

matrices in ΣI(Ω), which reduces to the extreme points of Σ(A) associated with

J, J ′ ∈ CA must be orthogonal, for J 6= J ′. This follows from the monotonicity of

fidelity and that F (ρJA, ρ
J ′
A ) = 0 for J 6= J ′. Second, if we take all different choices of

J , the right-hand side of Eq. (2.10) gives the Hilbert space dimension that matches

that for the left-hand side.

With the language of constrained Hilbert space, we can usefully refine the Asso-

ciativity Theorem as:

Theorem 2.3 (Associativity theorem, new form). Let S be the thickened hypersur-

face that appeared in the setup of the Associativity Theorem (see around Eq. (2.5)),

then

dim VaRaL[iS ](Ω) = dim ViaL(ΩL) · dim VaRi (ΩR), ∀i ∈ CS. (2.11)

18A Hilbert space is a direct sum when the subspaces in the sum are mutually orthogonal.
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3 Regions dual to excitations

In this section, we discuss various regions that can detect either an excitation or

a cluster of excitations. As reviewed in §2.1, immersed regions can be classified

into sectorizable regions and non-sectorizable regions. A sectorizable region has an

information convex set isomorphic to a simplex; the extreme points correspond to

the superselection sectors. For non-sectorizable regions, information about fusion

spaces can be detected; in the case of a nontrivial fusion space, the information is

quantum.19

Sometimes, we say a region can detect the superselection sector of some excitation

or the fusion space associated with a cluster of excitations. When does this happen?20

The purpose of this section is to explain this. We further provide many examples,

the physical setups of which differ in the dimensions and the presence (absence) of a

gapped boundary.

The basic intuition is as follows. Imagine a ground state |ψ〉 of a topologically

ordered system, on a sphere. Consider an excited state |ϕ〉 with a few excitations on

the sphere. The state |ϕ〉 on a region Ω separated from the excitation(s) by a few

correlation lengths must be locally indistinguishable from the ground state. Roughly

speaking, the region Ω is the complement of the excitations. If the excitations are

nontrivial, that is, if the excitations cannot be created by local operators, the region

Ω must be able to detect them.

In entanglement bootstrap, this intuition is guaranteed. The reference state plays

the role of the ground state. The reduced density matrix of |ϕ〉 on Ω must be an

element of the information convex set Σ(Ω). From the “sphere completion lemma”

of Ref. [6], we can always construct a reference state on the sphere (Sn), where

the axioms A0 and A1 are satisfied everywhere. (We shall not review the sphere

completion technique here. Instead, we review it after proving a more powerful

version Lemma 4.4; see Fig. 21.) In the context of gapped boundaries, as we discuss in

§3.2, the analog of sphere completion is the fact that we can always define a reference

19When we say the information is quantum, we mean that the information cannot be copied.

This happens when we have a fusion space of at least 2 dimensions.
20The question becomes nontrivial when the region is not embedded in a ball or a sphere. The

thickened Klein bottle in 3d is one example where we don’t know what are the excitations it

characterizes, or whether these excitations can be identified as excitations living in a sphere.
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state on a ball with an entire gapped boundary, which we denote as Bn. String

operators and membrane operators creating the excitations can also be constructed

in entanglement bootstrap, and the properties of these operators can be useful in

proving things; see [16]. In this work, we will not rely on string or membrane

operators to prove any statement, but as they provide complementary intuition,

we sometimes draw them in figures. They will be discussed more explicitly in [38].

All regions considered in this section can be embedded in a ball Bn (or Sn, or

Bn in the presence of a gapped boundary). However, we also consider the immersed

version of these regions. They will be useful later, as building blocks (see §4.1). We

start with the 2d bulk and 3d bulk. Then we discuss the boundary generalizations.

3.1 2d bulk and 3d bulk regions

The setup and axioms of the 2d bulk and 3d bulk have been discussed in §2.1.

The intuition to keep in mind is that the combination of the two axioms (especially

axiom A1) makes it possible to deform the regions smoothly: if two regions can be

connected by a path, i.e., if two regions are related by a regular homotopy, then the

information convex sets associated with the pair of regions are isomorphic. Thus, we

shall only be interested in the topological class of immersed regions.

3.1.1 2d bulk regions

The 2d bulk is the physical context of anyons and topological orders, and it is the

context in which 2+1d TQFT [2, 3, 39] is expected to apply. As studied in detail

in [4], there is a finite set of basic regions: the disk, the annulus, and the pair of

pants.

(3.1)

These regions are closely related to anyons and the string operators creating them;

see Eq. (3.1). First, the regions are homeomorphic to the complement of the anyon

excitations on S2. The string operators pass through the regions and cut them into
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disks. Note that a single excitation on the sphere always carries a trivial superselec-

tion sector.

In the topology literature, it is well-known that any compact orientable surface

can be constructed by gluing these basic topology types along closed curves. This

is known as the pants decomposition [40]. This intuition is known in the framework

of topological quantum field theory (TQFT), see e.g. [3] and [39]. In §4.1, we will

construct reference states on more interesting manifolds by building them from pieces

of a state on a topologically trivial region. To achieve that, we shall make use of

immersed versions of these regions. To gently prepare the reader for this discussion,

we illustrate immersed versions of regions in Fig. 6.

Figure 6: Immersed versions of embedded regions. For every example shown here, there exists a

smooth deformation that connects the two configurations. The deformation is done on S2. Note

that the deformation is more flexible on S2 compared with B2.

Even for the simple class of embedded regions, e.g., a sphere minus k-balls, non-

trivial immersed versions exist. If we only allow deformations within B2, the im-

mersed regions described in Fig. 6 are not regular homotopic to embedded regions.

This is denoted as Ω
B2

� Ω′. Nonetheless, they are regular homotopic to embedded

regions on the background manifold S2, (denoted as Ω
S2

∼ Ω′). In other words, the

deformation is more flexible on S2 compared with B2. This is one of the reasons why

the notion of manifold completion, detailed in §4, is useful.

3.1.2 3d bulk regions

The 3d bulk provides more diverse topology types. One simple class of regions is

genus-g handlebodies; see Fig. 7. Note that it is already an infinite series. While there

are other interesting topologies, we remark that the seemingly simple list of handle-

bodies is surprisingly fundamental: every closed compact orientable 3-manifold can

be divided into two handlebodies; this is known as Heegaard splitting [41]; see Fig. 8

for an illustration. (The Heegaard genus, which is the smallest number of handles of

a Heegaard splitting, is additive under connected sums of 3-manifolds. Therefore, all
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genus-g handlebodies are needed to construct an arbitrary closed compact orientable

3-manifold in this approach.)

Figure 7: Genus-g handlebodies, where g = 0, 1, 2, · · · .

Figure 8: A Heegaard splitting of a 3-sphere, inspired by [41].

Figure 9: Two ways to fuse flux loops: (left) along the whole loop or (right) along a segment. The

latter produces a genus-two graph excitation.

Interestingly, all these handlebodies are sectorizable. The excitations detected by

these regions are supported on thin handlebodies of the same genus. Thin handlebod-

ies look like graphs, and for this reason, we call these excitations graph excitations.

For genus g = 1, the graph excitations are detected by the solid torus; they are

familiar in the literature, and known as pure flux loops; see, e.g., [7, 8, 11, 6].

How about graph excitations with a higher genus? Are they intrinsically new?

Shouldn’t they be labeled by two flux loops as is suggested by the fusion process

of loops, illustrated in Fig. 9? As it turns out, the answer is ‘no’ in general. For

instance, the G = S3 quantum double model has 3 flux sectors and 11 > 3× 3 graph

excitations21 for genus g = 2. Here S3 is the permutation group of three elements.

21Among the 11 types, 6 are genuine graph excitations, meaning that they cannot be reduced to

a single loop. This number is greater than the number (9−5 = 4) predicted by the naive approach.
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This is illustrated in the example of the 3-dimensional S3 quantum double model

below.

Here are the various superselection sector labels for 3d topological orders, which

we shall use in Example 3.1 and later. We use the same notation as Ref. [6]. Cpoint =

{1, a, b, · · · } refers to the superselection sectors of point particles detected by the

sphere shell. Cflux = {1, µ, ν} is the set of pure flux loops, i.e., graph excitations

supported on g = 1 graphs. Below, we shall use Cg to denote the superselection

sectors for the graph excitations on an unknotted genus g graph; they are detected

by a genus g handlebody.

Example 3.1 (3d S3 quantum double). The finite group S3 is the smallest non-

abelian group: S3 = {1, r, r2, s, sr, sr2|r3 = s2 = 1, sr = r2s}. The quantum double

with S3 group has the following superselection sectors:

1. Cpoint contains 3 labels, with {da} = {1, 1, 2}.

2. Cflux contains 3 labels, with {dµ} = {1,
√

2,
√

3}.

3. Cg contains 6g−1 + 3g−1 + 2g−1 labels. In particular, Cg=2 contains 11 labels.

The reader familiar with the 2d S3 quantum double model may be disturbed by the

square roots in the quantum dimensions of the fluxes. One way to see this choice is

sensible is to check the matching rule
∑

a d
2
a =

∑
µ d

2
µ.

Proposition 3.2 (Graph sectors for 3d quantum double). For 3d quantum dou-

ble with finite group G, the set (Cg) of superselection sectors of graph excitations

characterized by the information convex set of genus-g handlebody has

|Cg| =
1

|G|
∑
h∈G

|E(h)|g (3.2)

elements, where E(h) is the centralizer group of h : E(h) ≡ {k ∈ G|kh = hk}. |G|
denotes the order of finite group G. In particular when G = S3, |Cg| = 6g−1 + 3g−1 +

2g−1.

The proof of Proposition 3.2 is given in Appendix C.
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A few other basic topologies are shown in Fig. 10. The first one detects a par-

ticle,22 the second one detects a three-particle cluster and the third one detects a

particle-loop cluster. Only the sphere shell is sectorizable. These regions are studied

in [6].

Figure 10: (a) A sphere shell. (b) A ball with two balls removed. The two removed balls are

smaller, disjoint, and are within the interior of the large ball. (c) A ball with a solid (unknotted)

torus removed.

The sphere shell and B3 with two balls removed, shown in Fig. 10(a) and (b)

are direct analogs of the 2d region we discussed in §3.1.1. In fact, every region in

Fig. 10 is the volume of revolution of a 2d region along an axis, and therefore, the

dimensional reduction consideration in [6] applies. Clearly, this list is incomplete.

For instance, there are regions with knotted or linked torus entanglement boundaries;

some of them are studied in [6].

As with the 2d bulk, we can make immersed versions of these basic regions. Intu-

itively speaking, immersion can let the region “flip” along an entanglement boundary;

see Fig. 11.

Figure 11: Examples of embedded regions in S3 and immersed regions obtained by a “smooth”

deformation starting from embedded ones on S3. Whether the rightmost region can be obtained

by the indicated deformation is unclear to us, and this is indicated by the question mark.

22On a 3-sphere, the complement of a sphere shell is two disjoint balls. For this reason, one can

say the sphere shell detects a particle-antiparticle pair.
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Connected components of thickened entanglement boundaries provide another

basic class of 3d region. The topology of any such region is of the form m× I, where

m is a genus-g surface and I is an interval. In other words, such regions are thickened

genus-g surfaces. Therefore, it is always possible to embed them in S3. Interestingly,

when g ≥ 1, it is also possible to immerse such a region in S3 nontrivially, in a way

not regular homotopic to any embedding; see, e.g., Corollary 1.3 of Ref. [42].

3.2 ?Systems with gapped boundaries in 2d and 3d

We shall first describe the setup and the axioms of entanglement bootstrap for the

gapped boundary problems [5]. They are direct analogs of the axioms in other

previously studied contexts [4, 6]. After that, we describe the basic choices of regions

and the excitations or fusion spaces they characterize. Although we focus here on

gapped boundaries, the same technology applies to the more general case of gapped

domain walls between topological phases [5].

3.2.1 ?Axioms for gapped boundaries in 2d and 3d

2d setup: The entanglement bootstrap setup of the 2d gapped boundary problem is

a reference state (σ) on a half disk (B2) adjacent to the gapped boundary. The total

Hilbert space is the tensor product of finite dimensional Hilbert spaces on lattice

sites. The number of such lattice sites is a finite number but is large enough. These

lattice sites make a sensible discretization of a topological manifold. One can, for

example, obtain such a lattice by coarse-graining a realistic many-body system made

of qudits on a manifold.23 Each site has a finite-dimensional Hilbert space. The

region with the gapped boundary is depicted in Fig. 12, where the thick black line

is the gapped boundary. We assume that nontrivial Hilbert space only exists on

one side of the boundary, and the other side is empty. Two boundary axioms are

assumed in addition to the bulk axioms. These axioms are of similar forms, in the

sense that we always partition a small region into two or three pieces, labeled by BC

or BCD:

• If we partition the region into two pieces, we call the interior C and call the

23The same considerations as in footnote 10 apply here.
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thickened entanglement boundary B, then we require ∆(B,C)σ = 0 on the

reference state, for the indicated region (yellow disk or half-disk in Fig. 12).

• If we partition the region in three pieces, we call the interior C and call the

thickened entanglement boundary BD, where the topology of B and D are

indicated in Fig. 12 (green regions). We require that ∆(B,C,D)σ = 0.

Figure 12: The setup of 2d entanglement bootstrap with a gapped boundary. One may start from

a reference state on either: (a) a “half disk” adjacent to the boundary (B2), or (b) a disk with an

entire boundary (B2). Axioms are imposed on bounded radius disks both within the bulk and on

the gapped boundary. The gapped boundary is represented by a thick black line.

An equally simple setup is a reference state on a disk with an entire boundary,

with analogous axioms imposed; see Fig. 12(b) for an illustration. The justification

is a direct analog of the sphere completion lemma (Lemma 3.1 of Ref. [6]). See

e.g. [43, 44] for some solvable models of gapped boundaries in 2+1d and see [45] for

explicit computation of information convex sets in a related context. We note that

there are systems that admit only gapless boundaries, see [13, 46]; we expect that

the boundary axioms are violated for these systems.

We clarify the distinction between terminologies. The gapped boundary should

not be confused with the entanglement boundary. The entanglement boundary is

a boundary that has nontrivial physical degrees of freedom lying on both sides,

and for the quantum states we are interested in, these physical degrees of freedom

have entanglement across the entanglement boundary. Another perspective is that

it is possible to pass the entanglement boundary with the extensions allowed by the

(generalized) isomorphism theorem. When we write ∂Ω for an immersed region Ω,

we always mean the thickened entanglement boundary. (In the remainder of the

paper, we sometimes refer to an entanglement boundary as a boundary for short,

but we always say gapped boundary.)
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Figure 13: The setup of 3d entanglement bootstrap with a gapped boundary. We impose bulk

and boundary versions of axioms A0 and A1 on bounded radius balls. Here the reference state is

given on a 3-dimensional ball with an entire gapped boundary, denoted as B3, where the reference

state is pure. (As in 2d, another reasonable starting point is a reference state on a half ball B3

adjacent to a gapped boundary. The “completion trick” shows that these two starting points are

equally simple.)

3d setup: Below we describe the entanglement bootstrap setup for the gapped

boundary of a 3d gapped system. It is very similar to the 2d setup, as can be seen

in Fig. 13. We refer to the half-ball adjacent to the boundary as B3. An alternative

starting point is the (pure) vacuum state on a ball with an entire boundary B3.

Remark. A topologically ordered system in 2d and 3d usually has multiple gapped

boundary types. In 3d, models of gapped boundaries have been studied by several

authors (see e.g. [47, 48] and references therein), where we expect our axioms to

apply. A complete classification of gapped boundaries of 3d topologically ordered

systems is an open problem. These gapped boundary types cannot be converted

to each other by finite depth circuit, and they should be thought of as different

“boundary phases” separated by a phase transition. These different boundary types

have different universal data and a “defect” on the boundary is necessary to separate

two boundary phases. (Here the defect is codimension 1 to the gapped boundary.)

Axiom A1 is expected to be violated on such defects. Each reference state we

consider in Fig. 12 or Fig. 13 is associated with a particular boundary type.
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3.2.2 ?2d: regions adjacent to a gapped boundary

Figure 14 shows a few basic topology types of regions, for a 2d system with a gapped

boundary. We draw them either on B2 or B2, whichever is more convenient.

Figure 14: A few basic topologies of regions adjacent to a gapped boundary.

For some of the topology types, one can make immersed versions of the regions.

Two examples are shown in Fig. 15. In particular, in the second example, the “clock”

region cannot be smoothly deformed into the “mushroom” region within B2. This

is a new feature, and because of this, it is not obvious whether the two regions have

isomorphic information convex sets. Nevertheless, it is possible to show that the

information convex sets of the “clock” and the “mushroom” are isomorphic.

Figure 15: Immersed versions of embedded regions. (a) The immersed region is regular homotopic

to the embedded one on B2. (b) The immersed region is not regular homotopic to the embedded

one on B2, although the two regions are homeomorphic.

We also note that the gapped boundary of a 2d system only contributes one type

of thickened entanglement boundary. That is the half annulus, i.e., the second region

in Fig. 14(a). On B2, any immersion of the half annulus is regular homotopic to the

embedded one.

3.2.3 ?3d: regions adjacent to a gapped boundary

In the context of 3d systems with a gapped boundary, we discuss two classes of basic

topologies. One class is the boundary analog of genus-g handlebodies; see Fig. 16.

There are three subclasses. Each region is sectorizable. Another class can be thought

of as the boundary analog of ball minus k-ball; see Fig. 17.

34



Figure 16: Boundary analogs of genus-g handlebodies. There are three subclasses.

Figure 17: Boundary analogs of ball minus k balls.

Connected components of thickened entanglement boundaries adjacent to the

gapped boundary provide another class of basic regions. They are of the form genus-

g handlebody shell cut by circles. We note that there can be inequivalent ways to “fill

in” the shell and obtain connected sectorizable regions. In fact, the orange regions

and the blue regions in Fig. 16 are related in this way. To see this, we observe that

the orange regions and blue regions in Fig. 16 complement each other in B3.

4 Closed manifolds completed from immersed re-

gions

In this section, we shall be interested in finding reference states on closed manifolds.

If a gapped many-body system is described by topological quantum field theory

(TQFT) [2, 3, 39], it is natural to put the system on various space manifolds (and

spacetime manifolds). If an entanglement bootstrap reference state secretly obeys

the TQFT description, as is suggested by all the progress up to now, one should

expect that a reference state can be put on various orientable space manifolds. The

justification of this for general space dimensions remains an important open problem.

Below, we solve the 2d case and make concrete progress on the 3d case.
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Our progress rests on the idea of completing immersed regions to compact man-

ifolds. As before, we use A # B to denote A immersed in B. When it is necessary

to specify the immersion map, we use A
ϕ
# B. We start with a general definition.

Definition 4.1 (Completion in N ). Let N be a connected manifold, possibly with

entanglement boundaries, equipped with a reference state σN that satisfies the en-

tanglement bootstrap axioms. We say a closed manifold M allows a completion in

N , (M,W
ϕ
# N ), if

1. W ⊂M is obtained by removing a finite number of separated balls from M.

2. W
ϕ
# N is an immersion for which Σ(W) is non-empty.

If N = Bn or Sn, we call (M,W
ϕ
# N ) a completion for short.

M = T 2 W = T 2 \3 W # S2

Figure 18: The completion (T 2, T 2 \ B2 # S2) as an illustration of Definition 4.1. When M is

a torus T 2, we remove a small ball B2 (which we refer to as a completion point, represented in the

figure as a “diamond” 3) to obtain W. The immersion W # S2 is explicitly shown in the figure.

In many of the later figures, we omit the drawing of the black circle indicating Sn whenever this is

convenient and not confusing.

The reason we are interested in completion is that it provides a state on manifold

M which possesses a few nice properties (Proposition 4.2). The state satisfies axioms

A0 and A1 except possibly at a number of “completion points”. Moreover, on

Bn ⊂ W the state is locally indistinguishable from the reference state σ. The reason

we are interested in the specific choice N = Bn is that it is the “cheapest” choice: a

ball is a subsystem of any manifold. While we require N to be connected, M does

not have to be connected. An equally simple choice is a sphere Sn; it is equally simple

because of the sphere completion lemma, which we shall review; see Fig. 21. (We
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shall also consider versions of completion in the context related to gapped boundaries,

whereM is a compact24 manifold with boundaries and the simplest choices of N are

Bn and Bn.)

Proposition 4.2. Let (M,W
ϕ
# N ) be a completion in N of the closed manifold

M, where the thickened boundary ∂W has k connected components. Then, there

exists a choice of superselection sector labels {ai}ki=1 and a state |φ{ai}〉 on M such

that

TrM\W |φ{ai}〉〈φ{ai}| ∈ ext(Σa1···ak(W)). (4.1)

Furthermore, A0 and A1 hold everywhere on |φ{ai}〉 expect for possible violations

of A1 at the completion points: for a ball centered at the ith completion point,

∆(B,C,D)|φ{ai}〉 = 2 ln dai. Here, dai is the quantum dimension of ai. The in-

formation convex set Σa1···ak(W) is determined by the immersion W
ϕ
# N as well as

the reference state σN .

Proof. The proof follows from the completion trick (Lemma 4.4).

Intuitively speaking, Proposition 4.2 says that, if a manifold M allows a com-

pletion in N , we can obtain a state onM that satisfies the entanglement bootstrap

axioms, up to possible violations at a finite number of isolated completion points.

These violations are well-controlled and are attributed to non-Abelian superselection

sectors of point particles25 at those completion points. Furthermore, the state is lo-

cally “vacuum-like” since it is locally indistinguishable from the reference state on

N for all small balls contained in W .

Proposition 4.3. If (M,W
ϕ
# N ) is a completion in N ofM, and N is orientable,

then M is orientable.

24In entanglement bootstrap, we always consider regions consisting of a finite number of sites.

We shall refer to a manifold without entanglement boundaries as compact, and if entanglement

boundaries and gapped boundaries are both absent, we say the manifold is closed.
25For topologically nontrivial choices of N , such non-Abelian superselection sectors may also

come from topological defects. By ”topological defects” in this context, we meant extrinsic defects,

such as the point defect in the toric code on which the duality wall ends. More generally, these

defects exhibit interesting phenomena such as permuting anyons, [43]. See Example 4.27 in §4.3 for

more discussion.
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Proof. We provide proof by contradiction. Suppose that the manifold M is nonori-

entable. Then there exists a small ball in W , which can be transported around and

back to the original place and gets its orientation flipped; the whole process hap-

pens within W . This happens no matter how small the ball is. However, because

W # N , we can always choose the ball small enough so that it remains embedded

in N during the whole process. Such a process cannot flip the orientation of the

small ball because N is orientable. This leads to a contradiction and accomplishes

the proof.

Remark. Here is the more general observation in differential geometry terms. An

immersion W # N implies that all nontrivial characteristic classes of the tangent

bundle TW must agree with those of TN . This includes the first Stieffel-Whitney

class w1 whose vanishing is required for orientability. Therefore, M is orientable if

N is orientable, and M is spin if N is spin (see e.g. [49] Corollary 6.2.4).

Next, we describe the completion trick (Lemma 4.4). It is a direct generalization

of the idea of sphere completion introduced in [6]; see Lemma 3.1 therein. The

completion trick allows us to collapse an arbitrary subset of spherical entanglement

boundaries, each of which becomes a completion point. See Fig. 19 for an illustration.

Lemma 4.4 (Completion trick). Let W̃ be an n-dimensional manifold with l bound-

ary components. W ⊂ W̃ is obtained by deleting k internal balls (see Fig. 19 for

an illustration). W is an immersed region, which carries a non-empty information

convex set Σ(W). Let ∂W = (X1∪· · ·∪Xk)∪ (Y1∪· · ·∪Yl), where Xi and Yj each is

a connected component. Xis are spherical boundaries (i.e., Xi = Sn−1 × I) obtained

by deleting balls from W̃. For each ρW ∈ Σa1···akb1···bl(W), there is a state ρ̃W̃+
(where

W̃+ is a thickening of W̃) such that

1. TrW̃+\W ρ̃W̃+
= ρW .

2. If l = 0, and ρW ∈ ext(Σa1···ak(W)), then W̃ has no entanglement boundary,

and ρ̃W̃ is pure.

3. Axioms A0 and A1 hold on W̃+ except for possible violation of A1 on the

“completion points”. On a ball centered at the ith completion point,

∆(B,C,D)ρ̃ = 2 ln dai , ai ∈ CXi , for the partition in Fig. 20(b). (4.2)
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In particular, A1 holds on the i-th completion point if ai is Abelian.

Figure 19: Illustration of the completion trick (Lemma 4.4). For illustration purposes, we consider

a region W (gray) in the 3d bulk, which has 2 spherical entanglement boundaries and 3 torus en-

tanglement boundaries. We wish to collapse both spherical entanglement boundaries, and therefore

this corresponds to the case with k = 2 and l = 3 in Lemma 4.4. The dark gray area in the leftmost

figure is ∪ki=1Xi ∪lj=1 Yj , the thickened entanglement boundary of W. (1) Expand W passing its

entanglement boundary and obtain its thickening W+. ∂W+ = W+ \ W = ∪ki=1X̃i ∪lj=1 Ỹj . The

orange sphere shells are ∪ki=1X̃i. The green torus shells are ∪lj=1Ỹj . (2) Purify each spherical

entanglement boundary of W+ separately, where each purple box represents a purifying system Ei.

E = ∪ki=1Ei. (3) Collapsing each spherical entanglement boundary (labeled by i ∈ {1, . . . , k}) to a

single site. In terms of quantum states, this is done by identifying each purifying region Ei and the

thickened spherical entanglement boundary X̃i (which we choose to collapse) as a site. Each site

so obtained is a completion point. The resulting region is W̃+.

Note that we do not need to assume that the spherical entanglement boundaries

are embedded. This trick will be useful in “filling the holes” for various immersed

spherical entanglement boundaries. The key idea, as is illustrated in Fig. 19, is (1)

for an extreme point, each connected component of the entanglement boundary can

be purified separately, and (2) each spherical boundary, together with its associated

purifying region, can be collapsed to a completion point.

Remark. For most applications, it is sufficient to thicken the subset of (spherical)

entanglement boundaries that we wish to purify. Nonetheless, we choose to thicken

all entanglement boundaries, both orange and green ones in Fig. 19. (For this reason,

the final region we obtain is W̃+, which contains W̃ .) This is convenient in some
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applications: the extra layer can sometimes be useful when considering information

convex sets.

Remark. Implicit in our statement of the completion trick is the following fact. Part

of the data associated with the reference state is a cell decomposition of the manifold

on which the state lives. In the completion trick, we are using the immersion ofW to

pull back information from N toW . As in the original applications of the torus trick

[17], the immersion can be used to pull back the structure of the cell decomposition

from N toW . In the completion step, we extend this cell complex by gluing in balls.

Proof of Lemma 4.4, items 1 and 2. First, we expand W passing every entangle-

ment boundary to obtainW+, so that ∂W+ =W+\W . See Fig. 19 for an illustration.

We further write W+ \ W = (X̃1 ∪ · · · ∪ X̃k) ∪ (Ỹ1 ∪ · · · ∪ Ỹl), where the labels of

the connected components match that of ∂W . By the Hilbert space theorem (in

particular, Proposition D.4 of Ref. [5]), any state ρW+ ∈ Σa1···akb1···bl(W+) allows a

simple factorization along the thickened boundaries:

ρW+ =

(
k⊗
i=1

ρai
AiBLi

)
⊗

(
l⊗

j=1

ρ
bj
Ak+jB

L
k+j

)
⊗ λ(∪k+l

i=1B
R
i )∪Ĉ , (4.3)

where Ĉ is W+ \ ∪iAiBi. Here, for i ∈ {1, · · · , k}, AiBi ⊂ X̃iXi, Ai ⊃ X̃i, and Bi

can deform to Xi by extensions; similarly, for i ∈ {k+1, · · · , k+ l}, Ak+iBk+i ⊂ ỸiYi,

Ak+i ⊃ Ỹi and Bk+i can deform to Yi by extensions. HBi = (HBLi
⊗ HBRi

) ⊕ · · · .
Note that BL

i and BR
i do not represent subsystems in general. The density matrices

{ρai
AiBLi
} are supported on HAi ⊗HBLi

, {ρbi
Ak+iB

L
k+i
} are supported on HAk+i

⊗HBLk+i
,

and the state λ(∪k+l
i=1B

R
i )∪Ĉ is supported on (⊗k+l

i=1HBRi
)⊗HĈ . {ai}ki=1 and {bj}lj=1 are

labels of superselection sectors, and the states on ρai
AiBLi

and ρ
bj
Ak+jB

L
k+j

only depend on

the choice of them; other information of ρW+ ∈ Σa1···akb1···bl(W+) are in λ(∪k+l
i=1B

R
i )∪Ĉ .

To summarize the intuition behind Eq. (4.3), we say a “fuzzy cut” is contained in

Bi for any i.

Next, we introduce a purifying system supported on E = ∪ki=1Ei. Each Ei carries

a Hilbert space HEi , whose dimension is finite but large enough. For i ∈ {1, · · · , k}
we purify ρai

AiBLi
with Ei and let the resulting state be |φai

AiBLi Ei
〉. We topologically

collapse X̃iEi to a single site (i.e., a completion point). We call the region obtained by

collapsing all the k sphere shells as W̃+, which is equipped with a topology associated
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with topologically collapsing the entanglement boundaries into points (i.e., “healing

the punctures”). The state we obtain can be written as

ρ̃W̃+
=

(
k⊗
i=1

|φai
AiBLi Ei

〉〈φai
AiBLi Ei

|

)
⊗

(
l⊗

j=1

ρ
bj
Ak+jB

L
k+j

)
⊗ λ(∪k+l

i=1B
R
i )∪Ĉ , (4.4)

From this expression, we can immediately verify statement 1. Because λ(∪k+l
i=1B

R
i )∪Ĉ

is pure for extreme points (Eq. D.9 of Ref. [5]), statement 2 holds. This completes

the verification of statements 1 and 2 of Lemma 4.4.

(a) (b)

∆(B,C)ρ̃ = 0 ∆(B,C,D)ρ̃ = ∆(B,C ′, DD′′)ρ̃ = ∆(B,C ′, DD′)ρ̃ = 2 ln dai

Figure 20: About axiom A0 and the potential violation of axiom A1 centered at a completion

point. Note that X̃iEi is within the completion point.

Proof of Lemma 4.4, item 3. For axiom A0 on i-th completion point in statement

2, consider the partition of a ball centered around the i-th completion point as BC,

shown in Fig. 20(a). We can choose BC so that Xi ⊂ C. Here the state considered

is ρ̃ in Eq. (4.4). To prove ∆(B,C)ρ̃ = 0, we can first prove ∆(Xi, X̃iEi)ρ̃ = 0. Then

∆(B,C)ρ̃ = 0 follows from the extension of the axioms [4]. The structure of the

state ρ̃ (and the relation between AiBiCi and XiX̃i) is shown in (4.5); the horizontal

direction in the figure is the distance to the hole labeled i. The wiggly yellow line

indicates the “fuzzy cut” that separates BL
i and BR

i .

(4.5)
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The reduced density matrices on XiX̃iEi for ρ̃W̃+
can be directly computed from

Eq. (4.4) as ρ̃XiX̃iEi = |φai
AiBLi Ei

〉〈φai
AiBLi Ei

| ⊗ λR, where Ai, Bi were defined below

Eq. (4.3), and λR is λ reduced to the Hilbert spaceHBRi
⊗HXiX̃i\AiBi . Using the tensor

product structure of ρ̃XiX̃iEi and ρ̃Xi , it is straightforward to see that ∆(Xi, X̃iEi)ρ̃ =

0.

Next we show that axiom A1 is violated by an amount 2 ln dai on the i-th com-

pletion point, where dai is the quantum dimension of the point excitation ai ∈ CXi .
(Note that the sphere shell may not be embedded, and therefore, we use the defini-

tion of the quantum dimension in Eq. (2.8).) The proof idea is shown in Fig. 20(b)

and is similar to the use of the Decoupling Lemma in Appendix D of [6]. The first

step is to show

∆(B,C,D)ρ̃ = ∆(B,C ′, DD′′)ρ̃ (4.6)

for the partitions illustrated in Fig. 20(b). This is true because ∆(C ′, D′′)ρ̃ = 0 and

∆(BC ′, D′′)ρ̃ = 0, which are extended axiom A0 at the i-th completion point, as

verified in the earlier part of the proof. The second step is to prove

∆(B,C ′, DD′′)ρ̃ = ∆(B,C ′, DD′)ρ̃ (4.7)

This follows from ∆(D′, D′′\D′)ρ̃ = 0 and ∆(C ′DD′, D′′\D′)ρ̃ = 0, where we applied

axiom A0 twice again.

From the second definition of the quantum dimension of a point particle Eq. (2.8),

we see that the correction is ∆(B,C ′, DD′)ρ̃ = 2 ln dai , and it is nonzero only when

the point particle is non-Abelian. This completes the proof.

Immediate corollaries of the completion trick (Lemma 4.4) are: (1) It is possible

to complete to a sphere Sn with a reference state on a ball Bn. This is discussed in

Ref. [6]. (2) It is possible to obtain a reference state on Bn from a reference state on

Bn. In both cases, the reference state on the compact manifolds (Sn or Bn) satisfies

the axioms everywhere, including the ball containing the completion point. (This

also means that the Hilbert space dimensions on compact manifolds Sn and Bn are

one dimensional, i.e., dim V(Sn) = dim V(Bn) = 1.) We illustrate the two cases in

Fig. 21.

For a given closed manifoldM, is it possible to determine if allows a completion

(M,W
ϕ
# Sn)? There are a couple of challenges to answering this question generally.
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Figure 21: Sphere completion and its analog for systems with a gapped boundary. (Explicitly

shown here are the 2d cases.) They are immediate corollaries of the completion trick. Completion

points in the bulk are illustrated as a ‘diamond’ 3 and completion points adjacent to a gapped

boundary are illustrated as a ‘triangle’ 4. This convention will be adopted throughout the paper.

The first challenge is to understand what closed manifoldM can immerse in a sphere

upon removing a ball. In space dimensions d ≤ 4, some interesting topology results

have been obtained recently [32]. The second challenge is that even ifM can immerse

in a sphere, we still need to know if the information convex set Σ(W) is non-empty.

In the presence of topological order, where there are nontrivial superselection sectors,

we need to understand if the density matrices on pieces of the immersed regions can

be consistently merged. In addition, we wish to know if there is always a special

abelian superselection sector allowed on the punctures, so that they may be healed.

The general answer to this question will be explored elsewhere. Nonetheless, the

vacuum block completion, developed in §4.1, gives a constructive answer to many

interesting cases, including all orientable manifolds in two dimensions.

Let us point out that for invertible phases (i.e., systems with only trivial super-

selection sectors), the second challenge mentioned in the previous paragraph disap-

pears, and the task is simpler. Intriguingly, for invertible phases, Kitaev has devel-

oped a different approach for putting the ground state on a class of closed manifold;

see [50] at around 1 hour and 35 minutes, where the class of manifolds is referred to

as normally framed manifolds. We note that this is the same condition26 that allows

a punctured manifold to be immersed in a sphere, at least up to dimension four [32].

It is unclear to us, however, if our approach is related to Kitaev’s approach.

4.1 Vacuum block completion

In this section, we consider a specific type of completion, which we shall refer to as

vacuum block completion. It comes with two important features. First, the immersed

26Normally framed implies that the tangent bundle can be made trivial by adding trivial bundles.

Thus the characteristic classes must vanish.
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regionW ⊂M decomposes asW = ∪iV3
i , where {V3

i } is a set of building blocks, and

the “gluing” between any two building blocks is on whole entanglement boundaries.

Second, on each building block V3
i , a “vacuum” can be specified, even though V3

i

may not be embedded in the space on which the reference state lives.

In the rest of the paper, we will mainly be interested in the immersion of W in

Sn in the study of bulk phases and the immersion W in Bn in cases related to the

gapped boundaries. The reason, as explained in Fig. 21, is that it is always possible

to make a reference state on these compact manifolds starting from a reference state

on a ball (Bn or Bn). Nevertheless, we define building blocks in such a way that

they have the freedom to be immersed in balls.

4.1.1 Building blocks for vacuum block completion

We first give a precise definition of building blocks.

Definition 4.5 (Building blocks, bulk). We say a connected region V3 # Sn (or

Bn) is a building block if it satisfies:

1. ∂V3 = (∪ki=1Ei) ∪ F , where Ei, F are connected components of ∂V3. Eis are

embedded, F is either empty or an immersed sphere shell (Sn−1 × I); in the

former case, we may denote V3 as V .

2. Σ[1E ](V3) = {σ̂V3}, has a unique element, where E = ∪ki=1Ei. Furthermore,

σ̂V3 reduces to an Abelian sector on F . (We denote this Abelian sector27 as

1̂ ∈ CF .)

Remark. Note that, in writing Σ[1E ](V3), we are using the notation of constrained

information convex set (Definition 2.1). In other words, we want the convex subset of

Σ(V3), whose elements reduce to the vacuum on the embedded region E = ∪iEi. We

shall often drop the distinction between the abstract region V3 with its immersion in

the physical system, which is equipped with a Hilbert space and needs the immersion

map to specify.

27Note that 1̂ ∈ CF is a special Abelian sector and it is an analog of the vacuum. We use 1̂

instead of 1 because if F is not embedded, there will be no reference state (on F ) to compare with.

We do not know if 1̂ depends on V� or not for a given F . Below (in Example 6.5) we will give an

example where different vacuum block completions of the same manifold produce the same abelian

state on F .
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The generalization of building blocks to gapped boundaries is straightforward.

The difference is that we immerse the region in Bn or Bn (instead of Sn or Bn) and

allow a broader sense of immersed “spherical” entanglement boundary. These entan-

glement boundaries may either lie in the bulk or adjacent to the gapped boundary.

Definition 4.6 (?Building blocks, gapped boundary). We say a connected region

V3/4 # Bn (or Bn) is a building block if it satisfies:

1. ∂V3/4 = (∪ki=1Ei) ∪ F , where Ei, F are connected components of ∂V3/4. Eis

are embedded. F may be empty, an immersed bulk sphere shell in the bulk or

an immersed half-sphere shell28 attaches to the boundary. In these three cases,

we may alternatively denote V3/4 as V , V3, or V4.

2. Σ[1E ](V3/4) = {σ̂V3/4}, has a unique element, where E = ∪ki=1Ei. Further-

more, σ̂V3/4 reduces to an Abelian sector (1̂ ∈ CF ) on F .

At the moment, it should not be clear how hard it is to find such building blocks.

While the first requirement can be verified by looking at the topology, the require-

ment on the constrained information convex set Σ[1E ](V3/4) = {σ̂V3/4} may not be

easy to check. Nonetheless, it turns out that a large class of immersed regions can

be shown to be building blocks. Here are some examples.

Example 4.7 (Building blocks, bulk). A list of examples of building blocks V3

satisfying Definition 4.5:

1. Any dimension: any connected embedded region.

2. 2d bulk: S2 with (k + 1) balls removed. Here, k of the spherical boundaries

are embedded, and the remaining one is not. See Eq. (4.8) for some examples:

(4.8)

To see why these regions are building blocks, we let the thickening of the

immersed spherical boundary be F . Then the first condition in Definition 4.5

is verified. Some thought goes into the verification of the second condition. We

provide two methods.

28In n space dimensions, half-sphere shell Bn−1× I attaches to the gapped boundary at Sn−2× I.
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• We convert the immersed region to an embedded k-hole disk by a smooth

deformation, the same as the strategy illustrated in Fig. 6. Here, we want

a deformation that keeps the k embedded boundaries embedded (in S2) in

the whole process. Therefore, the sectors must still be the vacuum when

they reach the final configuration. The remaining boundary must also

carry the vacuum, according to the structure theorem of the information

convex set of embedded k-hole disks and the fusion rules for anyons.

• Alternatively, we use the completion trick (Lemma 4.4). The strategy is

outlined in Eq. (4.9) below.

(4.9)

First, Σ[1E ](V3) is non-empty. This is because we can always obtain the

immersed region in question by merging a state on an embedded disk to

the vacuum of the k disjoint embedded annuli (Ei). This gives a construc-

tion of an element of Σ[1E ](V3). With the completion trick, we collapse

the k embedded spherical boundaries and get a disk B2 with k completion

points. (Shown in Eq. (4.9) is the case k = 3.) Because the sector is the

vacuum at all these completion points, the axioms are satisfied on them.

Finally, the information convex set on a disk has a unique element, where

the boundary carries an Abelian sector. We identify this Abelian sector

as 1̂, and this completes the argument.

3. 3d bulk: S3 with k + 1 balls removed. Here, k of the spherical boundaries are

embedded, and the remaining one is not. This is true for the same reason as

case 2.

46



4. 3d bulk: some choices of regions with torus entanglement boundaries, e.g.:

(4.10)

The nontrivial feature of these regions is the existence of a torus entanglement

boundary, which cannot be collapsed to a point. We also do not know if it

is possible to deform the regions smoothly into an embedded region and keep

the torus boundary embedded in the whole process. Alternative justification

is needed. One justification comes from the dimensional reduction method

developed in Appendix E of [6]. This method maps the problem to a problem

in a 2d system with a gapped boundary. Then, according to Example 4.8

below, these 3d regions must be valid building blocks.

Example 4.8 (?Building blocks, gapped boundary). Here are a few examples of

building blocks adjacent to the gapped boundary. In this example, all embeddings

are in Bn, and in the figures, we only draw part of the gapped boundary of Bn.

1. Any dimension: connected embedded regions adjacent to the gapped boundary.

2. 2d with a gapped boundary: a few non-embedded examples as shown:

(4.11)

These are building blocks, as can be checked with the “collapsing” argument

explained around Eq. (4.9). The crucial observation is that, after we collapse

all the embedded entanglement boundaries, the region so obtained (with the

completion points included) is a half-disk adjacent to the gapped boundary.

Thus, the remaining entanglement boundary must be in an Abelian sector.

3. 3d with a gapped boundary: a few non-embedded examples as shown:

(4.12)
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It is evident that the topology of the regions satisfies the definition of building

blocks. We also need to verify the property related to the quantum state. The

first example can be shown to be a building block by the “collapsing” argument

explained around Eq. (4.9). However, the same trick does not apply to the

remaining two examples due to the existence of an embedded entanglement

boundary that is not spherical. Nevertheless, these are building blocks; we shall

establish this fact only after we understand pairing manifolds. Explicitly, the

first purple region is precisely the X̄4 of Example 6.7 in §6.2. The second purple

region is related to the first one by the collapsing of the spherical entanglement

boundary in the bulk.

4.1.2 Vacuum block completion: definition and properties

We give the precise definition of vacuum block completion and then discuss its prop-

erties. Examples will be presented in the next few sections.

Definition 4.9 (Vacuum block completion, bulk). We say a manifold M allows

a vacuum block completion (M, {Vi},W
ϕ
# Sn) if M = ∪iVi, glued along entire

boundaries, W ⊂M, and

1. Vi ∩ (M\W) is either an internal ball of Vi or empty.

2. V3
i ≡ Vi ∩W , equipped with the immersion ϕ restricted onto it, is a building

block (by Definition 4.5), where ∂V3
i = E ∪ F with E = ∂Vi embedded in Sn

and F = Vi ∩ ∂W .

Remark. We will also use a boundary version of vacuum block completion. We

omit the precise definition since it is obtained by replacing Sn with Bn and adopting

the boundary version of building blocks (Definition 4.6).

Proposition 4.10. Any vacuum block completion (M, {Vi},W
ϕ
# Sn) gives a com-

pletion of M. Furthermore, there is a special element σ̂W of Σ(W). It is the unique

state in Σ(W) that reduces to σ̂V3
i

for any building block V3
i . We call σ̂W the canon-

ical state on W.

Proof. First, since V3
i is a building block, it has a state σ̂V3

i
in its information

convex set. We can merge these states, after expanding the regions (V3
i ) slightly
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on their shared embedded hypersurfaces (i.e., embedded entanglement boundaries).

This merging is possible because these states all carry the vacuum sector on these

shared embedded hypersurfaces, and therefore, they also have the quantum Markov

state structure required in the merging theorem. The merged state on W is an

extreme point σ̂W ∈ Σ1̂(W). This follows from Lemma 2.20 of [6] (used to prove the

Associativity Theorem). Here 1̂ refers to the fact that the state carries an Abelian

sector 1̂ on every (spherical) entanglement boundary of W .

Definition 4.11 (Canonical state on M). For a given vacuum block completion

(M, {Vi},W
ϕ
# Sn), call the completion of the canonical state σ̂W of W (defined in

Proposition 4.10) onM (by the completion trick, Lemma 4.4) as the canonical state

on M. We denote this pure canonical state as |1{Vi}〉.

The immediate consequences of this definition are (1) |1{Vi}〉 reduces to σ̂V3
i

for

any building block V3
i , and (2) axioms A0 and A1 holds everywhere on M for

|1{Vi}〉.

Note that the state |1{Vi}〉 is not unique. Nevertheless, it is unique up to ten-

soring in extra product degrees of freedom and applying local unitaries {Ui} on the

completion points. Taking these operations as equivalence relations, we say |1{Vi}〉
is canonical.

4.2 Examples of vacuum block completion

4.2.1 Vacuum block completion in the 2d bulk

Proposition 4.12. Every 2d orientable manifold allows a vacuum block completion.

We construct each case as an example; they comprise a constructive proof of the

Proposition. We leave the generalization of this statement to nonorientable manifolds

to the interested reader. The trick is to consider the completion in a non-orientable

N .

Example 4.13 (Sphere S2). We already have a reference state on S2, and therefore

not much needs to be done. For pedagogical reasons, we discuss two methods. The

first method is to pick one building block V = S2. There is no completion point,
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andW =M = S2. The second method is to pick two building blocks {V1,V2}, both

of which are balls obtained by cutting the sphere in halves. In this construction,

again, we do not need any completion points. As the reader should expect, the state

completed on M is precisely the reference state on S2, for both constructions.

Example 4.14 (Torus T 2). For the torus M = T 2, we need two building blocks

{V1,V3
2 } and one completion point. V1 is an embedded annulus. V3

2 is a 2-hole

disk, immersed in such a way that two of the three entanglement boundaries are

embedded. Here is an illustration:

(4.13)

The essence of vacuum block completion is that we can choose the vacuum state on

V1 and merge it with a unique state on V3
2 , so that the state has a special Abelian

sector (1̂) on ∂W . Then we heal the puncture to obtain a state on T 2 that satisfies

the axioms everywhere.

Figure 22: The vacuum block completion for a genus-g surface #g T 2. The case g=2 is shown

explicitly. V1 is a g-hole disk. V3
2 is an immersed (g + 1)-hole disk.

Example 4.15 (genus-g surface #g T 2). The genus-g surface is the connected sum

of g tori, and therefore we denote it as #g T 2. The vacuum block completion for

M = #g T 2 = T 2# · · ·#T 2︸ ︷︷ ︸
g times

, (4.14)

can be done in multiple ways. Consider the way shown in Fig. 22. This construction

needs two building blocks {V1,V3
2 }, and there is one completion point. V1 is an

embedded g-hole disk, and V3
2 is an (g + 1)-hole disk with g of its entanglement

boundaries embedded.
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4.2.2 Vacuum block completion in the 3d bulk

In this section, we provide examples of vacuum block completions in the 3d bulk.

Example 4.16 (3-sphere S3). This can be done in a way analogous to the completion

of S2 in Example 4.13. Essentially, nothing needs to be done, given that we have a

reference state on the 3-sphere already.

Example 4.17 (S2 × S1). The vacuum block completion of M = S2 × S1 can be

constructed as follows.

(4.15)

This construction needs two building blocks {V1,V3
2 }, and there is one completion

point. Here V1 = S2 × I is an embedded sphere shell, and V3
2 is a ball minus two

balls. W = M \ B3. (In Eq. (4.15), M is illustrated in such a way that a pair

of S2 are identified as indicated.) Note that this is a close analog of vacuum block

completion of the torus in 2d, considered in Example 4.14.

Example 4.18 (#g(S2 × S1)). Here g ≥ 2 is an integer. It is possible to choose

two building blocks {V1,V3
2 }, and there is one completion point, as the illustration

below shows.

(4.16)

Here, V1 is embedded and it is homeomorphic to a ball with g balls removed. V3
2

is a ball with g + 1 balls removed, immersed in such a way that g of its spherical

entanglement boundaries are embedded.

Remark. In many of the examples above, the immersed building block can be de-

formed to an embedded region keeping all (but one) entanglement boundary em-

bedded in the whole deformation process. If we keep track of the deformation, we
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can further use the isomorphism theorem to compute the Hilbert space dimensions

dim Va(W) and dim V(M). We omit the details. As we shall explain later, the pairing

manifold provides another way to compute the Hilbert space dimensions. Examples

will be given in §6.

4.2.3 ?Vacuum block completion in 2d with gapped boundaries

Entanglement bootstrap works for gapped boundaries, the setup and axioms are

reviewed in §3.2. Below, we provide examples of vacuum block completion in this

physical context.

Example 4.19 (Disk with an entire gapped boundary B2). Let M = B2. For

vacuum block completion, nothing needs to be done here, given that we already

have a reference state on B2; see Example 4.13 for an analog. (Recall that the

reference state on B2 can come from the boundary analog of the sphere completion;

see Fig. 21.)

Example 4.20 (A finite cylinder with a pair of gapped boundaries). LetM be the

finite cylinder S1 × I, with a pair of gapped boundaries. Here I = [0, 1] is a finite

interval. (Note that the cylinder with gapped boundaries is not a sectorizable region

because we cannot smoothly deform the region back toM if we trace out the region

along the boundary. This is in contrast with the annulus in the bulk.) The vacuum

block completion ofM needs two building blocks {V1,V42 }, and a completion point,

illustrated as follows.

(4.17)

Here V1 is a half-annulus embedded in the disk B2. V42 has two embedded entangle-

ment boundaries and its third entanglement boundary is not embedded. From the

construction, we see that the two gapped boundaries are of the same type because

they are copies of the same boundary of the disk B2.
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Another vacuum block completion of the cylinder still uses two building blocks

{Ṽ1, Ṽ42 } and has one completion point. This is illustrated as follows.

(4.18)

In this construction, which is different from the one above, Ṽ1 is the annulus that

covers the entire gapped boundary, and it is embedded in B2. Ṽ42 is a “mushroom”,

which has an embedded entanglement boundary in the bulk and an immersed entan-

glement boundary that touches the gapped boundary.

Example 4.21 (A sphere with k disks removed, with k gapped boundaries). LetM
be a sphere with k disks removed, where all the boundaries are gapped boundaries.

The vacuum block completion ofM can be done with k+1 building blocks, {Vj}kj=1∪
{V3

k+1} and a completion point 3 within the bulk, as follows:

(4.19)

Here {Vj}kj=1 are “identical copies” of the annulus that covers the entire boundary,

embedded in B2. V3
k+1 is an immersed region within the bulk, homeomorphic to a

(k + 1)-hole disk, and it is immersed in such a way that k of its k + 1 entanglement

boundaries are embedded.

Since the construction in Eq. (4.19) is sufficiently nontrivial, we recall the basic

intuition hidden in the abstract formulation of vacuum block completion for this

example. At an intuitive level, how do we obtain M by gluing the building blocks?

First, we need to deform the k copies of the boundary annulus {Vj}kj=1 such that

their entanglement boundaries match the positions of the embedded entanglement

boundaries of V3
k+1. Then we glue these entanglement boundaries. The remaining

entanglement boundary is in the bulk, and it is then filled using the completion trick,

resulting in the completion point in the bulk.
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Remark. It is also possible to construct vacuum block completions for nonplanar

regions with gapped boundaries. These are 2d regions that cannot be embedded

in a sphere, which have only gapped boundaries but no entanglement boundaries.

One example is illustrated below, and we leave the explicit construction to interested

readers.

(4.20)

4.2.4 ?Vacuum block completion in 3d with gapped boundaries

The setup of the following examples is the 3d entanglement bootstrap with gapped

boundaries, as stated in §3.2.

Example 4.22 (B3, the ball with an entire gapped boundary). As a region equipped

with a reference state, we can simply take one building block V = B3. No completion

point is needed here.

Example 4.23 (Solid torus with an entire gapped boundary). LetM be a solid torus

with an entire gapped boundary. It is possible to have a vacuum block completion of

M with two building blocks {V1,V42 }, and it has a completion point lying adjacent

to the boundary, as illustrated below.

(4.21)

Here, V1 is a half-sphere shell adjacent to the gapped boundary. V42 is a half-sphere

shell with a B3 removed, and it is immersed in B3 in such a way that two of its three

entanglement boundaries are embedded. In fact, the topologies of these regions are

closely related to those that appeared in Example 4.17, the vacuum block completion

of S2 × S1 in the 3d bulk. To see the relation, we notice that every region (and the

54



completion point) that appeared in this example is some region in Eq. (4.15) cut in

half by the “plane of reflection symmetry”.

Remark. Following the same idea, we can have a vacuum block completion for the

genus-g handlebody, whose gapped boundary is a genus-g surface. We left the details

as an exercise for the interested reader. An alternative (and more efficient) way

of constructing these manifolds follows from the “sequential completion” technique

discussed in §4.3. The idea is to use regions constructed from simpler manifolds to

assemble more interesting topologies.

Example 4.24 (Sphere shell S2×I with two gapped boundaries). The vacuum block

completion of S2 × I, a sphere shell in 3d with two spherical gapped boundaries, is

shown below.

(4.22)

In this construction, we used three building blocks {V1,V2,V3
3 }. V1 and V2 are sphere

shells that cover an entire gapped boundary. They are embedded in B3, and they

are identical copies up to deformations. Therefore, the two gapped boundaries must

match in their type. The third building blocks V3
3 is a ball with two balls removed,

within the bulk, and it is immersed in such a way that two of its three entanglement

boundaries are embedded.

How do we obtainM topologically? The idea is that we “glue” the entanglement

boundary of V1 (V2) to an embedded entanglement boundary of V3
3 . An important

detail is that we need to deform the regions slightly to get the position right! The

completion point in the bulk is obtained by collapsing the immersed entanglement

boundary of V3
3 .

Remark. Following the same idea that we used in Example 4.21, we can obtain a

vacuum block completion for the connected sum of k solid balls. It has k disjoint

spherical gapped boundaries of the same type. (The k = 2 case recovers Exam-

ple 4.24.) We simply need k copies V1 shown in Eq. (4.22) and generate the building

block in the bulk (V3
3 of Eq. (4.22)) in an obvious way.
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4.3 Other examples of completion in N

Here we provide a few examples of completions in N , which are either not vacuum

block completion or not obviously so.

Example 4.25 (Exotic immersion of punctured torus). Let M = T 2 be a torus.

Let W = T 2 \ B2 be a torus with a disk removed, i.e., a punctured torus. As

we have discussed, W can be immersed in S2; see Fig. 18. Moreover, W cannot be

embedded in S2 since every embedded region is homeomorphic to a k-hole disk. Here

we consider another immersion W # S2, as depicted in Fig. 23.

Figure 23: Another immersion of the punctured torus to S2. We think it is not regular homotopic

to the one shown in the rightmost of Fig. 18.

It is an inequivalent immersion compared with the one shown in Fig. 18. This

immersion has a non-empty information convex set Σ(W), and therefore (T 2,W
ϕ
#

S2) is a completion. However, we do not know if the immersion W # S2 in Fig. 23

allows a decomposition of W into building blocks. (The other immersion does, as is

discussed in Example 4.14 and Eq. (4.13).)

Example 4.26 (Torus with an anyon). LetM = T 2 andW = T 2 \B2. We take the

immersion W # S2 shown in Fig. 18, which is the immersion that allows a vacuum

block completion (4.13). However, for some topologically ordered systems, there are

states ρaW ∈ ext(Σa(W)), where a is a superselection sector of anyon that can exist

on the puncture ∂W , which is different from 1̂, the sector obtained in the vacuum

block completion. By the completion trick, we can then obtain a state |ϕa〉 on M.

The most interesting case is when a is Abelian (and different from 1̂). In this case,

the state |ϕa〉 onM satisfies axioms A0 and A1 everywhere onM. A simple model
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where this happens is the Ising anyon model. C = {1, σ, ψ}, where ψ is Abelian and

σ is non-Abelian with dσ =
√

2 (which should not be confused with the reference

state σ). If we take |ϕψ〉 as the reference state on T 2, one can verify

dim V(T 2) = dim Vψ(W) = 1, |ϕψ〉 as the reference state on T 2. (4.23)

This is different from the answer we obtain from the vacuum block completion,

which gives dim V(T 2) = |C| = 3, where the reference state on T 2 is taken to be

the canonical state associated with the vacuum block completion; we postpone the

explanation of this fact in Example 6.1 in §6.1.

Remark. The Hilbert space dimension in both cases has a nice TQFT interpretation;

see, e.g., Appendix E of [15]. In the Ising anyon model, we omitted the subtlety that

the model is chiral. Its chiral central charge is c− = 1/2. It is likely that the

axioms can only hold approximately, although we expect the errors of the axioms to

decay towards zero at large length scales in realistic models with finite correlation

length, e.g., [15]. This phenomenon described in Example 4.26 also happens in zero

correlation length models; see, e.g., Appendix E of [51] and [52].

Example 4.27 (When N is an annulus with a defect line passes through). Let N be

an annulus, and suppose that a defect line29 passes through it; see the gray annulus

in Fig. 24. LetM = T 2 be the torus andW =M\B2. with the immersionW # N
in Fig. 24(a) and (b) by ϕ1 and ϕ2 respectively.

When a defect exists, N cannot be identified with any annulus subsystem of the

sphere S2. (Recall that when we call a sphere S2 rather than S2, we assume that

there is a reference state on it, which satisfies A0 and A1 everywhere.) This also

prevents the identification of the punctured tori W in Fig. 24(a) and (b) as regions

immersed in S2. While the punctured tori W in the figures are divided into two

building blocks, this example does not qualify as a vacuum block completion.

We explore the analog and distinction further. Interestingly, each subset of W
(i.e., V1 or V3

2 ) shown in Fig. 24(a) and (b) is still a building block. The reason is that

each piece is contained in a disk. (While the 2-hole disk V3
2 is not immersed in any

embedded disk, it is immersed in an immersed disk!) The reason this construction

is not a vacuum block completion is that the union W is not immersed in a disk or

29Defects are located at the endpoints of the defect line. Anyons are permuted when crossing the

defect line.
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Figure 24: Completion in N of a torus. Here N is an annulus with a defect line passes through.

W = T 2 \ B2. (a) W
ϕ1

# N , and the decomposition of W into two building blocks. (b) W
ϕ2

# N ,

and the decomposition of W into two building blocks.

sphere. Nonetheless, following the technique behind vacuum block completion, we

can learn a few things about this special type of completion in N .

1. The vacuum state on the building block can merge. The resulting state has an

Abelian sector 1̂ on ∂W .

2. After healing the puncture, we have a state on T 2 which satisfies the axioms

everywhere. The Hilbert space dimension dim V(T 2) for this reference state

can be different from that of models without defects. For instance, if we take

the defect to be the “duality wall” of the toric code [53], we should expect

dim V(T 2) = 2, not 4.

The immersions in Fig. 24 generalize into a class of immersions that differ from

one another by the “winding number” around the defect annulus; those shown in

Fig. 24(a) and (b) correspond to the winding number equal to 1 and 2.

Example 4.28 (Sequential completion). Here is another way to obtain states on a

nontrivial manifold that satisfies the axioms everywhere. The idea is that we first

start from a ball Sn or Bn and construct a state on a relatively simple manifoldM1,

by vacuum block completion. Then, we make use of pieces of density matrices on

M1 to construct more interesting manifolds M2. We can do it this repeatedly and

obtain states on M3,M4, · · · . We call this approach sequential completion.
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Sequential completion is interesting for a few reasons. First, it gives a sequence

of completions of Mi+1 in Mi. Second, the states so obtained satisfy the axioms

everywhere on closed manifolds Mi+1. More interestingly, as long as we avoid the

completion points inMi in constructing the state inMi+1, the construction can be

translated into an immersion ofMi+1 with punctures into Sn or Bn. For this reason,

sequential completion can produce completions.

Below we explain the details of constructing a state onMi+1 fromMi, using the

idea of sequential completion. We are able to do the connected sum in the bulk and

adjacent to the gapped boundary.

Case 1, connected sums in the bulk: Here we obtain #gM from M, where

M is compact, connected, and may or may not have boundaries. (The way to obtain

#gT 2 from T 2 is illustrated in Fig. 25.) The idea is to remove a ball from M and

call the resulting region P . We take g copies of P and denote the them separately

as {Pi}gi=1. We pick V , a building block immersed in the ball, which is topologically

a ball with g balls removed, and it is immersed in such a way that g of its g + 1

entanglement boundaries are embedded. We merge the reduced density matrix of

a state on M to the regions {Pi}gi=1 and the state σ̂V , such that the merging glues

whole entanglement boundaries. The end result is a state on #gM with a puncture

in the bulk. The sector on the spherical entanglement boundary is Abelian (in fact,

a special Abelian sector, which we referred to as 1̂). Therefore, we can heal the

puncture as usual and obtain a state on #gM.

Figure 25: Sequential completion to obtain #gT 2 from T 2. The case g = 2 is illustrated explicitly.

Case 2, connected sums near the boundary: We can also obtain \gM from

M, whereM is compact, connected, and with a (connected) gapped boundary. (The

case of obtaining a genus-g handlebody with a gapped boundary from a solid torus

with a gapped boundary is illustrated in Fig. 26.) Similarly, we have a set of regions

{Pi}gi=1, which are “identical copies” obtained by removing a ball B3 from the solid

torus. We further need a region V , which is a building block adjacent to the gapped

boundary. V is a ball minus g balls cut in half by the gapped boundary: it has
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g+ 1 half-sphere entanglement boundaries; it is immersed in Bn ⊂M in such a way

that g of these entanglement boundaries are embedded. We can therefore attach

entire entanglement boundaries of Pi to V and obtain \gM\ Bn. Then we heal the

puncture to obtain the closed manifold \gM.

Figure 26: Sequential completion, to obtain a genus-g handlebody with a gapped boundary. The

case g = 2 is illustrated.

It is interesting to notice that the partition of all regions in Fig. 26, restricted to

the neighborhood of the gapped boundary, look similar to regions in Fig. 25.

5 Pairing manifolds

Compact manifolds without entanglement boundaries are interesting in many ways.

For instance, ground states on the torus in 2d encode the mutual braiding of anyons [54,

55] (see [56, 16, 57, 58] for other thoughts). In higher dimensions, one may hope that

certain closed manifolds can provide insight into why one class of excitations should

be paired with another class of excitations that braid nontrivially with it; this is

termed as remote detectibility [9, 7, 11] and assumed for physical reasons. Moreover,

as the existence of graph excitations (Fig. 9) shows, the understanding of remote

detectability should require a class of compact manifolds. An important motiva-

tion we have in mind is to justify remote detectability in entanglement bootstrap for

general dimensions.

For these purposes, we introduce a class of connected compact manifolds called

pairing manifolds. Each of these pairing manifolds can be constructed using vacuum

block completion, discussed in §4.1. Pairing manifolds satisfy a few extra conditions,

from which we derive concrete information-theoretic constraints. We shall find many

examples, in which the physical meaning of these constraints will be clear.

The structure of this section is as follows. In §5.1, we motivate the definition of

pairing manifolds by asking a few questions. In §5.2, we give the general definition of
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the pairing manifold (Definition 5.3). In §5.3, we derive several general consequences

from the definition. Furthermore, in §6, we provide examples of pairing manifolds in

a few physical setups and describe the explicit properties we derive for them.

5.1 Motivating questions and Kirby’s torus trick

To motivate the notion of pairing manifolds (which we define in Definition 5.3), we

discuss three examples and consider a few questions. The three examples are the

torus T 2, the finite cylinder with a pair of gapped boundaries, and the manifold

(S2 × S1)#(S2 × S1) in 3d. These examples are illustrated in Fig. 27.

Figure 27: Three motivating examples (M = XX̄ = Y Ȳ ) for pairing manifolds. (a) The torus

T 2 in 2d. (b) The finite cylinder with a pair of gapped boundaries, in 2d. (c) The manifold

(S2 × S1)#(S2 × S1) in 3d. It is visualized as the gluing of a pair of solid genus-two handlebodies.

As can be seen from the figure, common features of these examples include:

• There are two ways to partition the manifold into pieces: M = XX̄ = Y Ȳ .

Here X̄ =M\X and Ȳ =M\ Y are the complements of X and Y on M.

• The regions, X, Y , and their complements, cut each other into balls. These

balls can be Bn or Bn depending on whether we consider the gapped boundary.

Some natural questions arise: (1) Can we count the excitations characterized by

X in terms of those characterized by Y ? (2) Is the “ground state degeneracy” onM,

i.e., dim VM, determined by the information convex set of either X or Y ? (3) Can the

excitations characterized by X remotely detect those characterized by Y ? (4) Can

we extract an analog of the S matrix that characterizes the remote detectability?
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As we shall explain, the pairing manifold provides a general (sufficient) condition

for affirmative answers to all of these questions. Therefore, pairing manifolds are

closely related to remote detectability in very general settings.

The intuition we develop is that the two ways of cutting M into pieces char-

acterize two classes of excitations (or two classes of excitation clusters). One class

of excitations is associated with the information convex set Σ(X), and the other is

associated with Σ(Y ). The fact that each of X and Y cut the other into balls means

that they hide (classical and quantum) information from each other completely. Each

region is associated with a natural choice of vacuum by immersion into a large ball

or a sphere (possibly upon removing a ball). As a consequence of these relations,

we will show that X and Y enjoy an uncertainty relation: when the state on X is

a minimum entropy state of Σ(X) the state on Y must be the maximum-entropy

state on Σ(Y ) and vice versa (Lemma 5.9). X and Y provide two natural bases

of states on the closed manifold, and therefore, a braiding matrix can be extracted,

which shall be referred to as the pairing matrix (see Section 7). In general, this is not

associated with any mapping class group, and therefore, our approach is a different

generalization than the S matrix on T 3 [22].

Finally, we comment on the use of immersion in our approach and its relation to

Kirby’s torus trick. Of conceptual interest is the fact that we only needed a reference

state on a topologically trivial region, that is, either a ball or its completion to a

sphere. By immersing the pairing manifolds (with a ball removed) into the trivial

region, we are able to “pull back” several finite-dimensional consistency relations,

and a finite-dimensional “pairing matrix.” This is, in spirit, a close analog of Kirby’s

torus trick, which uses immersion of a compact manifold to pull back mathematical

structures. (See [18] for a different application of Kirby’s torus trick, which applies

to the local Hamiltonian of gapped invertible phases.)

5.2 Pairing manifolds, the definition

In this section, we give a precise definition of pairing manifolds. For later convenience,

for vacuum block completion (M, {X, X̄},W
ϕ
# Sn), we will use a short-hand nota-

tion for the canonical state

|1X〉 ≡ |1{X,X̄}〉, (5.1)
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where |1{X,X̄}〉 is the canonical state in the notation introduced in Definition 4.11.

(Everything said here applies to the context with a gapped boundary once we replace

Sn by Bn.) The notation on the left-hand side of Eq. (5.1) is well-motivated, noting

that the constrained Hilbert spaces all contain a single element, i.e., dim V[1X ](M) =

dim V[1X̄ ](M) = dim V[1∂X ](M) = 1. This simplification happens because W is

decomposed into precisely two building blocks. To prepare the definition, we further

introduce two concepts.

Definition 5.1 (Transverse intersection). Let A and B be two subsystems of a

manifold X . We say the intersection between A and B is transverse if

• It is possible to write ∂A ∪ ∂Ā as a topological product m × I, where I is an

interval, such that B ∩ (∂A∪ ∂Ā) = mB× I for a suitable mB ⊂ m. (Note that

both m and mB may be empty.)

• The same holds if we switch A and B.

Remark. Our terminology “transverse intersection” comes from the analogous ter-

minology used in the smooth category (see e.g. [59, 60]). In that context, a transverse

intersection of submanifolds A,B is one where the tangent vectors to A and B at

each point of intersection span the tangent space of the ambient manifold X .

Figure 28: Transverse intersection, examples, and non-examples. A is yellow, and B is blue. For

illustration purposes, they are chosen to be disk-like regions in the 2d bulk. (a), (b) and (c) are

examples, whereas (d) is a non-example.

Informally speaking, a transverse intersection between A and B is an intersection

such that B (A) intersects with the entanglement boundary of A (B) in a non-

singular way. In other words, there is enough room such that a small deformation

of the entanglement boundary of A will not change the topology of the intersection.

Fig. 28(a), (b), and (c) are examples of transverse intersections between two 2d disk-

like regions. The intersection between A and B in Fig. 28(d) is not transverse, and

this can be seen from the fact that B ∩ ∂A and B ∩ ∂Ā are topologically different.
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Definition 5.2 (Natural partition). Let Ω be an immersed region. We say the

ordered triple {B,C,D} is a natural partition of Ω for an element ρΩ ∈ Σ(Ω), if

1. C = Ω \ ∂Ω is the interior, and BD = ∂Ω is the thickened boundary.

2. B and D are of the form mB × I and mD × I, where I is the interval appears in

∂Ω = m× I and m = mB ∪mD. Note that either B or D can be empty.

3. ∆(B,C,D)ρ = 0.

Definition 5.3 (Pairing manifold, bulk). A connected compact manifold M is a

pairing manifold if it allows a pairing (M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn). Here, a pairing

is the requirement that the following properties are satisfied:

1. (M, {X, X̄},W
ϕ
# Sn) is a vacuum block completion.

2. (M, {Y, Ȳ },W
ϕ
# Sn) is another vacuum block completion whose canonical

state on W agrees with the canonical state of the other vacuum block comple-

tion on ∂W .

3. The intersection between X and Y is transverse.

4. X ∩ Y , X̄ ∩ Y , X ∩ Ȳ and X̄ ∩ Ȳ are balls.

5. {(∂X) ∩ Y,X \ ∂X, (∂X) ∩ Ȳ } is a natural partition of X for the canonical

state |1X〉; the same holds if we switch X and Y .

Remark. The requirement that X∩Y is a ball (Bn) can be understood physically as

the demand that one cannot detect any information stored in the information convex

set Σ(X) by analyzing the reduced density matrix on X ∩ Y , the piece of X that is

available in Y . Therefore, the information in X is hidden from Y completely and

vice versa. As before, the generalization of pairing manifold to the gapped boundary

context is straightforward. We omit the precise statement since it can be obtained by

replacing Sn by Bn, using the boundary version of building blocks (Definition 4.6),

and allowing the “balls” in condition 4 to be either Bn or Bn.

In Definition 5.3, the following symmetries are either manifest or implied: (1) the

switch of X ↔ X̄, (2) the switch of Y ↔ Ȳ , and (3) the switch X ↔ Y combined

with X̄ ↔ Ȳ . To see why, we observe that the intersection between X and Y is
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transverse, implying that the intersections involving their complements (X with Ȳ ,

X̄ with Y , and X̄ with Ȳ ) are transverse. In addition, if Y cuts X into a natural

partition, then it also cuts X̄ into a natural partition for the state |1X〉, thanks to

purity.

In fact, because X and Y cut each other into balls, the natural partitions that

appear in a pairing must have a special property, summarized in the following lemma:

Lemma 5.4. Let {B,C,D} be a natural partition of Ω, with respect to a state ρΩ ∈
Σ(Ω). Suppose, B ⊂ ω1 ⊂ Ω and D ⊂ ω2 ⊂ Ω, where ω1 and ω2 are balls. Then,

1. ρΩ is a minimum entropy state of Σ(Ω).

2. the same {B,C,D} is a natural partition for λΩ ∈ Σ(Ω) if and only if λΩ is a

minimum entropy state of Σ(Ω).

Proof. Considering an arbitrary state ρ′ in Σ(Ω), we notice that

∆(B,C,D)ρ′ = ∆(B,C,D)ρ′ −∆(B,C,D)ρ

= (S(ρ′BC)− S(ρBC)) + (S(ρ′CD)− S(ρCD))

= 2 (S(ρ′Ω)− S(ρΩ)) .

(5.2)

The first line follows from the natural partition condition ∆(B,C,D)ρ = 0. In

the second line, the canceled terms are due to the fact that S(ρ′B) = S(ρB) and

S(ρ′D) = S(ρD): since B and D are contained in ball-like subsystems of Ω, any state

in Σ(Ω) has identical reduced density matrices on them. The third line follows from

the fact that any smooth deformation of a region preserves the entropy difference

(isomorphism theorem), and that it is possible to deform BC and CD to Ω by

elementary steps of extensions.

Since ∆(B,C,D)ρ′ ≥ 0 by the strong subadditivity, S(ρ′Ω)−S(ρΩ) ≥ 0. Therefore,

ρΩ is a minimum entropy state of Σ(Ω) – the first statement holds. The second

statement also follows from Eq. (5.2).

Determining whether a manifold is a pairing manifold may not be easy. One

reason is that verifying two vacuum block completions and showing that the sec-
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ond completion is compatible with the first one (i.e., verifying condition 2 of Def-

inition 5.3) can be tricky. Luckily there are alternative sufficient conditions. We

describe one below.

Lemma 5.5 (Sufficient condition for pairing, bulk). Let M be a connected compact

manifold and (M, {X, X̄},W
ϕ
# Sn) be a vacuum block completion. M = Y Ȳ .

Suppose furthermore that the following two groups of conditions hold:

1. Topology conditions:

(a) X intersects transversely with Y .

(b) X ∩ Y , X̄ ∩ Y , X ∩ Ȳ and X̄ ∩ Ȳ are balls.

(c) On M, X ∪ Y =W \ ∂W.

(d) The immersion map ϕ embeds Y into Sn.

2. Natural partition conditions:

(a) {(∂X) ∩ Y,X \ ∂X, (∂X) ∩ Ȳ } is a natural partition of X for |1X〉.

(b) {(∂Y ) ∩ X, Y \ ∂Y, (∂Y ) ∩ X̄} is a natural partition of Y for σY . (Note

that, by assumption 1(d), Y is embedded, and σY is the reduced density

matrix of the reference state.)

Then (M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn) gives a pairing.

The advantage of this sufficient condition is that we only need to check one

vacuum block completion. Other properties (namely the group of topology conditions

and the group of natural partition requirements) are relatively easy to check. The

assumption that Y is embedded in the sphere makes the range of application of

Lemma 5.5 more limited than Definition 5.3. We note that Lemma 5.5 has the

ability to verify vacuum block completion {M, {Y, Ȳ },W
ϕ
# Sn} condition for some

nontrivial choices of Y .

We postpone the proof of Lemma 5.5 to the end of §5.3.1.
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5.3 Consequences of pairing

This section is a collection of consequences of the definition of pairing manifold

(Definition 5.3). The main consequences are the uncertainty relation (Lemma 5.9),

Propositions 5.10, 5.12 and Porism 5.13.

In §5.3.1, we prepare for the proof by showing what happens when a strict subset

of the conditions is satisfied. These lemmas often use some of the conditions in

pairing, not symmetric with respect to X and Y . In §5.3.2, we prove the main

consequences.

5.3.1 Prepare for the derivations

To prepare for the derivation, we prove a sequence of lemmas, each of which uses

some of the conditions in the definition of pairing. In particular, Lemma 5.7 and 5.8

are about a state |ΨX(M)〉 defined as follows:

Definition 5.6. We let |ΨX(M)〉 be a state on a connected compact manifold M
with the following three properties:

1. M = XX̄ = Y Ȳ , such that topology conditions 1(a) and 1(b) of Lemma 5.5

are satisfied.

2. |ΨX(M)〉 satisfies axioms A0 and A1 everywhere on M, and

3. {(∂X) ∩ Y,X \ ∂X, (∂X) ∩ Ȳ } is a natural partition of X for |ΨX(M)〉.

The state |1X〉 satisfying the statements in Definition 5.3 or Lemma 5.5 satisfy

the conditions of Definition 5.6, but Definition 5.6 does not refer to any immersion.

In the proofs of Lemma 5.7 and 5.8, transverse intersections play an important

role. Here is a reminder of a related convention. When we pick a thickened entangle-

ment boundary ∂Ω = m× I, we always choose one that is thick enough so that it can

be partitioned further into thinner pieces along the interval I when needed. Similarly,

when we choose the thickened entanglement boundaries for a transverse intersection

in proofs, we choose them such that these regions can be further extended outwards.

This convention applies to the partitions in Fig. 29.
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Lemma 5.7. The state |ΨX(M)〉 in Definition 5.6, reduced to Y , gives the maximum-

entropy state of Σ(Y ).

Proof. We relabel the natural partition of X for |ΨX(M)〉 from its transverse inter-

section with Y as {B = (∂X) ∩ Y,C = X \ ∂X,D = (∂X) ∩ Ȳ }. Choose A and

CY ⊂ C such that Y = ABCY . The partition is schematically shown in Fig. 29(a).

On the state |ΨX(M)〉 we have

I(A : CY |B) ≤ I(A : C|B)

≤ ∆(B,C,D)

= 0.

(5.3)

The first line and the second line follow from SSA. The last line uses the fact that

{B,C,D} is a natural partition of X for the state |ΨX(M)〉.

Therefore, I(A : CY |B)
ρ
|Ψ〉
Y

= 0, where ρ
|Ψ〉
Y ≡ trȲ |ΨX(M)〉〈ΨX(M)|. Note that

Y = ABCY , where AB and BCY are balls. (AB is a ball because A ≡ Y ∩ X̄ is

a ball, and the transverse intersection condition implies that A can extend to AB

smoothly.) The Markov condition implies30 that ρ
|Ψ〉
Y is the maximum-entropy state

of all states consistent with the state |Ψ〉 on balls AB and BCY . Then, because

ρ
|Ψ〉
Y ∈ Σ(Y ), and every state in Σ(Y ) has the same reduced density matrices on balls

AB and BCY , ρ
|Ψ〉
Y must be the maximum-entropy state in Σ(Y ).

Figure 29: Schematic picture for two useful sets of subsystems onM. (a) BD = ∂X, B = Y ∩∂X,

Y = ABCY . (b) B′D′ = ∂X̄ and A′B′ = Y ∩ X̄. X is on the left and Y is at the bottom, and the

orange and purple lines are their entanglement boundaries. The black box is not an entanglement

boundary.

30The basic statement we use here is that any quantum Markov state λXY Z (I(X : Z|Y )λ = 0)

is the maximum entropy state among all states that agrees with λ on marginals XY and Y Z.
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We continue the study of the state |ΨX(M)〉 in Definition 5.6. We have learned

a couple of facts about this state.

• Its reduced density matrix onX is a minimum entropy state on Σ(X); Lemma 5.4.

• Its reduced density matrix on Y is the maximum entropy state on Σ(Y );

Lemma 5.7.

• Its reduced density matrix on X ∪Y is a minimum entropy state on Σ(X ∪Y ).

This is because the complement of X ∪ Y on M is the ball X̄ ∩ Ȳ , where the

axioms hold on this ball. Axiom A0 applied to this ball implies the extreme

point condition for the state on X∪Y . An extreme point is a minimum entropy

state.

Moreover, this is sufficient to guarantee that the superselection sector on the

spherical boundary of X ∪ Y is Abelian, because the information convex set of

the ball has only one element. Therefore, the entropy of this state on X ∪ Y is

the absolute minimum among states in Σ(X ∪ Y ).

Next, we discuss a useful uniqueness property related to |ΨX(M)〉. We borrow

the notation of constrained Hilbert (fusion) space. Let Σ
[ρ
|Ψ〉
X ]

(X ∪ Y ) be the convex

subset of Σ(X ∪ Y ) with the constraint that it matches |ΨX(M)〉 on X.

Lemma 5.8. For the state |ΨX(M)〉 in Definition 5.6, Σ
[ρ
|Ψ〉
X ]

(X ∪ Y ) contains a

unique state, which is the reduced density matrix of |ΨX(M)〉.

Proof. First, Σ
[ρ
|Ψ〉
X ]

(X ∪ Y ) is nonempty because ρ
|Ψ〉
X∪Y , the reduced density matrix

of |ΨX(M)〉, is an element. We only need to show this is the only element. Consider

the regions XA′B′D′ in Fig. 29(b), where B′D′ = ∂X̄. Let λX∪Y ∈ Σ
[ρ
|Ψ〉
X ]

(X ∪ Y ),

then it is possible to do elementary steps of extension and obtain λXA′B′D′ . (This

uses the fact that the intersection between X and Y is transverse.) The natural

partition condition (Def. 5.2) implies

0 = ∆(B′, X,D′)λ ≥ I(A′ : X|B′)λ , (5.4)

where the inequality is a form of SSA. Therefore, I(A′ : X|B′)λ = 0. As a quantum

Markov state, λX∪Y is uniquely determined by the marginals on XB′ and A′B′. Be-

cause A′B′ = Y ∩ X̄ is a ball, λ reduced on it gives a unique state. Furthermore,
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since λ is in the information convex set, its reduced density matrix on XB′ is deter-

mined by that on X, because X can smoothly extend to XB′. (Again, this needs the

transverse intersection condition.) Thus, λX∪Y is uniquely determined by its reduced

density matrix on X, i.e., by ρ
|Ψ〉
X . This accomplishes the proof of the lemma.

Next, we give the proof of Lemma 5.5. Recall that |1X〉 in Lemma 5.5 is a valid

choice of |ΨX(M)〉. Furthermore, we use the notation of constrained fusion spaces:

Σ[1X ] is the information convex set constrained to agree with |1X〉 on X, and Σ[σY ]

is the information convex set constrained to agree with σY on Y .

Proof of Lemma 5.5. We only need to check the second statement of Definition 5.3,

i.e., the statement related to the vacuum block completion involving Y . Because Y

is embedded in Sn, the vacuum state σY is defined.

Let |1X〉 be the canonical state on M for (M, {X, X̄},W
ϕ
# Sn). The reduced

density matrix of |1X〉 on Y must be the maximum entropy state on Σ(Y ). (This

is by Lemma 5.7, noticing that |1X〉 is a valid choice of state |ΨX(M)〉.) Because

the maximum entropy state of the information convex set is a convex combination

of all extreme points with nonzero probability, |1X〉 reduces to Y , giving a nonzero

probability of getting the reference state σY .

Therefore, the set Σ[σY ](M) is nonempty, where the reference state is taken to

be |1X〉. To see why this is true, we observe that the state P 1
∂Y |1X〉 is one element

(not normalized) of Σ[σY ](M), where P 1
∂Y is the projector to the vacuum sector on

the embedded region ∂Y .

The remaining thing is to show Ȳ 3 is a building block, and to show that the

vacuum block completion involving Y provides a canonical state that matches the

other canonical state on ∂W . The state P 1
∂Y |1X〉 satisfies the conditions of Def. 5.6

with the roles of X and Y reversed. Therefore, from Lemma 5.8 and the fact that

W is the thickening of X ∪ Y on M, we know Σ[σY ](W) has a unique element.

W is Y and Ȳ 3 glued on whole entanglement boundaries. By the associativity

theorem, dim V[1∂Ȳ ](Ȳ
3) = 1. In other words, if we choose the vacuum sector on the

embedded entanglement boundary ∂Ȳ (embedded in Sn) of Ȳ 3, we get an isolated

extreme point of Σ(Ȳ 3), and the sector on ∂W must be determined uniquely. This

verifies that Ȳ 3 is a building block, and further shows that the 1̂ on ∂W for the

vacuum block completion (M, {Y, Ȳ },W
ϕ
# Sn) matches the sector on ∂W from the
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other vacuum block completion (M, {X, X̄},W
ϕ
# Sn). This completes the proof of

Lemma 5.5.

5.3.2 The main consequences of pairing

The consequences of pairing stated in this section are based on the full definition of

pairing manifold. Thus, they are properties of pairing

(M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn). (5.5)

All these statements generalize naturally to the context with gapped boundaries.

We start with the “uncertainty relation” between the state on X and the state on

Y . When we discuss information convex sets of subregions of M we implicitly take

either |1X〉 or |1Y 〉 as the reference state. This covers the observation in Refs. [61, 62]

as special cases.

Lemma 5.9 (Uncertainty relation). Given a pairing (5.5), the state |1X〉 reduced to

Y gives the maximum-entropy state of Σ(Y ). The same holds if we switch X ↔ Y

and/or X ↔ X̄.

Proof. We only need to prove one of the four statements. The proofs of other state-

ments are identical. The conclusion follows from Lemma 5.7, upon realizing that

|1X〉 is a valid choice of the state |ΨX(M)〉 there. This completes the proof.

Remark. Recall that |1X〉 reduces to a minimum entropy state on X. Furthermore,

any minimum entropy state on Σ(X) has the same natural partition (Lemma 5.4).

The uncertainty relation then implies that any pure state in Σ(M) which reaches

the minimum entropy on X must reduce to the maximum entropy state of Σ(Y ).

We shall denote the maximum-entropy state of Σ(X) as ρ?X . A useful fact (which

follows from the Structure Theorem of [4, 5]) is that the probability to find sector

I ∈ C∂X on ∂X in the state ρ?X is:

PI(X) =
NI(X)dI∑

J∈C∂X NJ(X)dJ
, ∀ I ∈ C∂X . (5.6)

Here dI is the quantum dimension of the superselection sector I ∈ C∂X , defined in

Eq. (2.6). (Note that we can use Eq. (2.6) because ∂X is embedded in Sn. Recall
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that X here participates in a pairing manifold, and it is a building block with its

immersed boundary filled in, according to Def. 4.9.)

Proposition 5.10. Given a pairing (5.5), Σ(X) ∼= Σ(X̄) and Σ(Y ) ∼= Σ(Ȳ ). More-

over, the fusion spaces match in each sector:

dim Va(X) = dim Va(X̄), ∀a ∈ C∂X ,
dim Vα(Y ) = dim Vα(Ȳ ), ∀α ∈ C∂Y .

(5.7)

Furthermore,31 ∑
a∈C∂X

dim Va(X)2 =
∑
α∈C∂Y

dim Vα(Y )2 = dim V(M). (5.8)

In Eq. (5.7), we have adopted an obvious isomorphism between C∂X and C∂X̄ as

follows. Considered is the isomorphism Σ(∂X) ∼= Σ(∂X̄) by the following path: first,

extend ∂X to ∂X∂X̄ and then restrict the region to ∂X̄. This path always exists

because ∂X and ∂X̄ lie on the opposite sides of an entanglement boundary. The

same convention is adopted for matching the sector labels of C∂Y and C∂Ȳ .

Proof. To derive Eq. (5.7), we consider the matching of probabilities of finding a ∈
C∂X on the entanglement boundaries ∂X and ∂X̄, in a particular state. To prove

the first line of Eq. (5.7), we consider the state |1Y 〉. According to Lemma 5.9, it

reduces to the maximum entropy state ρ?X and ρ?
X̄

. Therefore, the probability of

having a ∈ C∂X on ∂X for ρ?X and ∂X̄ for ρ?
X̄

must match. The rest of the analysis

follows from Eq. (5.6). First, we take a = 1, d1 = 1. It follows from the properties

of vacuum block completion that N1(X) = N1(X̄) = 1. Plugging in Eq. (5.6) and

P1(X) = P1(X̄), we find ∑
J∈C∂X

NJ(X)dJ =
∑
J∈C∂X

NJ(X̄)dJ . (5.9)

On the right-hand side, we wrote C∂X instead of C∂X̄ because the two sets are identi-

cal. Now take an arbitrary a ∈ C∂X and plug it into Eq. (5.6) again. With Eq. (5.9)

canceling the denominator, we find Na(X)da = Na(X̄)da for any a ∈ C∂X . This

31Here, V(M) is the Hilbert space whose state space (i.e., space of density matrices) is isomorphic

to Σ(M).
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implies the first line of Eq. (5.7), since Na(X) ≡ dim Va(X). The second line of

Eq. (5.7) is derived similarly.

From the associativity theorem, we have

dim V(M) =
∑
a∈C∂X

dim Va(X) · dim Va(X̄) =
∑
α∈C∂Y

dim Vα(Y ) · dim Vα(Ȳ ). (5.10)

Plugging in Eq. (5.7), we obtain Eq. (5.8).

The next few statements are best understood with the concept “capacity,” intro-

duced as follows.

Definition 5.11 (Capacity). We define the capacity of an immersed region Ω, as

Q(Ω) = exp (Smax(Ω)− Smin(Ω)), (5.11)

where Smax(Ω) is the entropy of the maximum entropy state in Σ(Ω) and Smin(Ω) is

the entropy of a minimum entropy state of Σ(Ω).

The physical meaning of capacity is the exponential of the entropy (this is the

effective number of states) that Ω can absorb without changing the local reduced

density matrix. As with the information convex set Σ(X), the capacityQ(Ω) depends

on the choice of the reference state.

If Ω is embedded in a ball (or more generally, immersed but has all its entangle-

ment boundaries embedded, aligned with the context of Eq. (5.6)), we can write

Q(Ω) =
∑
J∈C∂Ω

NJ(Ω)dJ . (5.12)

If S is sectorizable, the capacity is the square of the “total quantum dimension for

the sectorizable region S”:

Q(S) =
∑
a∈CS

d2
a. (5.13)

For a compact manifold M (i.e., without entanglement boundaries), the capacity is

the Hilbert space dimension, Q(M) = dim V(M).

Proposition 5.12 below says, given a pairing (5.5), the capacity must be the same

for both X and Y . Porism 5.13 below implies that if there are two pairings of the

same M, where one involves X, Y and another involves X ′, Y ′, the capacity of X is

the same as that of X ′, under an extra condition.
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Proposition 5.12. Given a pairing (5.5), the Hilbert space dimensions obey∑
a∈C∂X

dim Va(X) · da =
∑
α∈C∂Y

dim Vα(Y ) · dα. (5.14)

In other words, the capacity for X and Y match, Q(X) = Q(Y ).

Proof. OnM, let V = X∪Y . To derive Eq. (5.14), we consider two different ways to

compute Smax(V )− Smin(V ), which is the entropy difference between the maximum

entropy state32 (ρ?V ) and any minimum entropy state of Σ(V ). Note that there can

be multiple minimum-entropy states, and two will be useful soon: (i) the reduced

density matrix of |1X〉 on V , which we denote as ρ
|1X〉
V , and (ii) the reduced density

matrix of |1Y 〉 on V , which we denote as ρ
|1Y 〉
V .

To compute the entropy difference S(ρ?V ) − S(ρ
|1X〉
V ), we consider the partition

V = XA′B′ in Fig. 29(b). We notice that both states are quantum Markov states

for this partition, I(A′ : X|B′) = 0, and they have identical reduced density matrix

on A′B′. (For the maximum entropy state ρ?V , we know it is the merged state as

follows, ρ?V = ρ?XB′ ./ σA′B′ . Therefore,

S(ρ?V )− S(ρ
|1X〉
V ) = S(ρ?XB′)− S(ρ

|1X〉
XB′)

= S(ρ?X)− S(ρ
|1X〉
X )

= ln(
∑
a∈C∂X

dim Va(X) · da).
(5.15)

In the first line, we used the quantum Markov chain condition to write SV = SXB′ +

SA′B′ − SB′ for both states and cancel the terms on A′B′ and B′. In the second line,

we used the fact that X can be deformed to XB′ by elementary steps of extensions.

The third line follows from formula (5.12) for the capacity, noticing that ρ
|1X〉
X is

a minimum entropy state of Σ(X). A parallel analysis gives S(ρ?V ) − S(ρ
|1X〉
V ) =

ln(
∑

α∈C∂Y dim Vα(Y ) · dα). By comparing these two expressions, we are able to

verify the claim.

Remark. An analog of Eq. (5.14) is true under weaker assumptions about X and

Y . We leave this generalization, which is relevant for the punctured S-matrix or the

defect S-matrix of [63], for future work.

32The maximum entropy state is always unique, for any convex set. If there were more than one,

a higher-entropy state could be made by mixing them.
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If a region Y participating in a pairing manifold is embedded, its capacity Q(Y )

can be related to the topological entanglement entropy (TEE) of the phase of matter,

as defined in [64]. Specifically, the partition of Y = ABCY with CY = Y ∩ (X \∂X),

B = Y ∩ ∂X, and A = Y \X as in Fig. 29(a) gives

TEE = I(A : CY |B)σY = lnQ(Y ). (5.16)

For the case of M = T 2, this is the Levin-Wen partition of the annulus. Eq. (5.16)

follows because

I(A : CY |B)σY = −I(A : CY |B)|ρ
?
Y
σY = SY |

ρ?Y
σY = lnQ(Y ) (5.17)

where ρ?Y is the maximum entropy state in Σ(Y ). In the first step, we used the fact

that X cuts Y into a natural partition:

0 = ∆(B,C,D)|1X〉
SSA

≥ I(A : C|B)|1X〉
SSA

≥ I(A : CY |B)|1X〉
Lemma 5.9

= I(A : CY |B)ρ?Y .

(5.18)

In the second step of (5.17) we used the fact that AB and BCY are balls and B is

contained in a ball.

When both X and Y are embedded, Proposition 5.12 implies that the TEE

computed from X is the same as that computed from Y . We shall give yet another

general perspective of TEE in [38], recast into ∆(B,C,D)σ for some BCD partition

of a ball. These partitions are analogs of a partition considered by Kitaev [65]; see

around the 27th minute. Also see [66, 67] for examples with domain walls or gapped

boundaries.

A consequence of the proof of Proposition 5.12 is the following:

Porism 5.13. If regions X and X ′ participate in pairing manifolds with the same

W , with canonical states in the same sector of Σ(∂W), then they have the same

capacity, ∑
a∈C∂X

daNa(X) =
∑

a′∈C∂X′

da′Na′(X
′). (5.19)

Proof. In the proof of Proposition 5.12, we saw that the TEE is a property of the

immersionW : it is the entropy difference between the maximum-entropy state on V

and any minimum-entropy state on V . The immersion W is an extension of V .
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A non-trivial example we will give in the next section (Example 6.5) is X = genus-

two handlebody (or X = ball minus two balls) and X ′ = ball minus torus; each of

these regions participates in a certain pairing of the pairing manifold #2(S2 × S1),

with the same immersion of W = #2(S2× S1) \B3, and therefore all have the same

capacity.

6 Examples of pairing manifolds

Here we demonstrate that the examples in Table 1 all satisfy the requirements in the

definition of pairing manifold. These include examples in different space dimensions

as well as cases with gapped boundaries. It is worth noting that not every compact

manifold is a pairing manifold (see §6.4), and a manifold can be a pairing manifold

in more than one way (see Example 6.5).

This section is organized as follows. In §6.1, we present examples of pairing

manifolds in the bulk, namely, (M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn). In §6.2, we present

examples of pairing manifolds for systems with gapped boundaries. They are of the

form (M, {X, X̄}, {Y, Ȳ },W
ϕ
# Bn). In §6.3, we verify all the natural partition

requirements used in these examples. In §6.4, for pedagogical reasons, we provide

various non-examples.

In our way of presenting the examples, we develop some concise diagrams which

contain all the relevant information of a pairing manifold in a compact way. The

rules of the diagram are explained below and we will use these rules throughout the

section. Some efforts are taken to verify that the conditions for pairing manifolds are

satisfied in these examples. Furthermore, we translate the consequences of pairing

manifolds (described in §5.3) to these concrete examples and explain their physical

meaning.

The following notation for immersed regions will be useful. In the examples below,

we will form immersed unions of regions X and Y such that they only intersect on

a ball  ; elsewhere, they are disjoint, even when they occupy the same point in the

ambient space. More precisely, we define

X ∪ Y ≡ X q Y/ ∼ (6.1)
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where XqY denotes the disjoint union, and the equivalence relation identifies33 each

point in X ∩ with the corresponding point in Y ∩ . In the figures with room for

ambiguity, we will color the shared region of X and Y using this color.

For each example, we show two kinds of diagrams:

1. The global view: This is a figure with M shown and an indication of how

it is partitioned into XX̄ and Y Ȳ . Also shown are the completion point(s).

It is understood that the complement of the completion point(s) is W . This

diagram, however, misses the information about the immersion map ϕ. (The

illustration of the completion point is convenient because any region immersed

in M that does not touch the completion points must be immersed in Sn or

Bn, whichever applies.)

2. The immersion view: it contains the information of the immersion X ∪ Y
ϕ
#

Sn (or Bn). For all the examples we discuss in this section,W is the thickening34

of X ∪ Y and therefore the regular homotopy class of W
ϕ
# Sn (or Bn) is

implied, so does the way X3, X̄3 and Y 3, Ȳ 3 are contained in W .35 We put a

point of Sn at infinity, whenever this is convenient. In fact, the immersion view

by itself contains all the information about the pairing manifold. For instance,

it determines the topology ofM because there is a unique topology obtainable

by healing all the punctures of W .

In the illustrations of the global view and the immersion view, in this section, we

will use the following color setting. X is orange and Y is purple. The intersection

of X and Y (i.e., the place we take the immersed union) is green. The place where

X and Y “pass through” each other (without touching) is either illustrated as one

region on top and covers the other or shown with transparency.

These diagrammatic representations of pairing manifolds take some practice to

get used to, and we shall be pedagogical in some early examples by explicitly drawing

33This identification can be thought of as an analog of the “plumbing” used extensively in topol-

ogy [68]; see Page 129 therein.
34IfW is not the thickening of X ∪ Y , the immersion view will, instead, indicate the immersion

of W into the ball or sphere.
35In all the examples below, we are able to choose X,Y ⊂ W.
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the natural partition obtained from them. The justification of all the natural par-

tition conditions in the remaining examples uses similar ideas, and we collect these

partitions in §6.3.

6.1 Pairing manifold examples in the bulk

In this section, we provide examples of pairing manifolds in the 2d and 3d bulk. In

these physical contexts, a connected compact manifoldM is a pairing manifold if it

allows a pairing

(M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn). (6.2)

The 2d and 3d cases correspond to space dimensions n = 2 and n = 3. In all the

examples below, Lemma 5.5 is a more convenient list of properties to check compared

with Definition 5.3.

Example 6.1 (Torus T 2). The torusM = T 2 is a pairing manifold. This is because

it is possible to construct a pairing (6.2) for it. See Fig. 30(a) for the global view

and 30(b) for the immersion view. Below, we check all the conditions of Lemma 5.5.

Figure 30: A pairing for the pairing manifold M = T 2. (a) The global view. T 2 is the box with

opposite boundaries identified. Regions X and Y are annuli with a transverse intersection at a ball

(B2) and there is a single completion point. X is orange, Y is purple, with the intersection X ∩ Y
colored green. We will use this color setting throughout §6. (b) The immersion view. X∪ Y

ϕ
# S2

is explicitly shown, where a point of S2 is taken to be the point of infinity of R2. (W is the thickening

of X ∪ Y , which we omitted in the drawing for simplicity.)

First, (M, {X, X̄},W
ϕ
# S2) is a vacuum block completion. This follows from

Example 4.14 in §4.2. The essential idea is recalled here for readers’ convenience.

From the immersion view, we can see the topology of X and X̄3 and verify the fact
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Figure 31: The natural partition of X and Y , obtained from the transverse intersection between

them. This information can be read off from the immersion view, Fig. 30(b).

that they are building blocks. This is because X is an embedded annulus, and X̄3

is a 2-hole disk immersed in such a way that two of its three entanglement bound-

aries are embedded. Thus, (M, {X, X̄},W
ϕ
# S2) is a vacuum block completion.

Second, the conditions about the topological relations between regions (conditions

1) of Lemma 5.5 can be verified directly from Fig. 30. Lastly, we need to verify that

the intersection between X and Y gives two natural partitions. We explain this in

detail below.

First, we infer the partition for X and Y from the immersion view (Fig. 30(b)).

These partitions, which we refer to as X = BCD and Y = B′C ′D′ are illustrated in

Fig. 31. Then it is easy to explain the fact that

∆(B,C,D)σ = 0, ∆(B′, C ′, D′)σ = 0. (6.3)

These are true because σ is the vacuum state and the right-hand side of each equality

is 4 ln d1 = 0. (Here we are using the relation (2.7) for the quantum dimension.) This

completes the checking of all the conditions in Lemma 5.5. Therefore, Fig. 30 indeed

describes a pairing for the torus T 2.

Now we have verified that T 2 is a pairing manifold, we discuss a consequence:

|C| = dim V(T 2). This agrees with the intuition from minimally entangled states [54]:

for each sector on X ⊂ T 2, we have precisely one state reduced to the extreme point

ρaX ∈ Σ(X). This set of states has a clear TQFT interpretation and the state on the

torus we construct is free from topological defects.

Remark. Our requirement that X participates in a vacuum block completion ex-

cludes the possibility of adding a Dehn twist. Let XDehn be an annulus obtained from
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X by adding a finite number of Dehn twists on T 2, and suppose that the completion

point is away from XDehn. Then XDehn is immersed in S2 in such a way that both

boundaries of annulus XDehn are immersed instead of embedded. Then XDehn cannot

be a building block. On the other hand, once we construct W , immersed in S2 as

in Fig. 30(b), we can deform W on S2 to get more interesting immersions. This,

however, does not exhaust all possible immersions of the punctured torus; see Exam-

ple 4.25 for a related discussion. We left the relation between such transformations

and the mapping class group of T 2 as an open problem.

Figure 32: The genus g (here g = 2) Riemann surface is a pairing manifold. Illustrated here is a

particular pairing. (a) The global view. (b) The immersion view. Here X and Y are 2-hole disks.

Figure 33: Natural partitions for g = 2. (a) X = BCD according to its transverse intersection

with Y . Only part of Y is shown. (b) Using the decoupling lemma (Lemma D.1 of [6]), the problem

can be simplified into a set of natural partitions on annuli, {∂Xi}3i=1, where ∪3
i=1∂Xi = ∂X.

Example 6.2 (Genus-g Riemann surface, #g T 2). A genus-g Riemann surfaceM =

#g T 2 is a pairing manifold. See Fig. 32 for the explicit construction of a pairing.

For illustration purposes, we take g = 2 for concreteness. From the global view, we

see that X and Y are 2-hole disks. They are obtained by cutting the donut either

“horizontally” or “vertically.” There is precisely one completion point, located in

X̄ ∩ Ȳ .
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The immersion view shows how the pair of 2-hole disks X and Y immerse in

S2, and in this example, they are embedded. The region W is the thickening of

X ∪ Y , it is immersed in the sphere in a nontrivial way. We omit the explicit

drawing of W for simplicity since it can be inferred from X ∪ Y . The fact that

(M, {X, X̄},W
ϕ
# S2) is a vacuum block completion can be checked easily from the

definition. (In fact, this follows from Example 4.15 in §4.2.) Requirements about

the topological relations between regions (conditions 1 of Lemma 5.5) can be verified

by looking at Fig. 32. Explicitly, X and Y slice each other into two balls, and the

intersection between X and Y is transverse.

To see that the intersection between X and Y gives two natural partitions (con-

ditions 2a and 2b of Lemma 5.5), we only need to consider the decomposition of

X = BCD according to its intersection with Y and show ∆(B,C,D)σ = 0. This

partition is illustrated in Fig. 33(a). (The decomposition of Y is identical topologi-

cally.) A simplification is that ∂X has three connected components, each of which is

an annulus, ∂X = ∂X1∂X2∂X3. The “decoupling lemma” (Lemma D.1 in Appendix

D of [6]) converts this problem to the computation of the sum of ∆(B̃i, C̃i, D̃i)σ for

the decomposition ∂Xi = B̃iC̃iD̃i, on the connected components of ∂X. These parti-

tions, illustrated in Fig. 33(b), are natural partitions for the annuli, ∀i = 1, 2, 3, and

∆(B̃i, C̃i, D̃i)σ = 0. One way to see this is by noticing that d1 = 1 and 2 ln d1 = 0.

This completes the verification of sufficient conditions for pairing.

We anticipate that the detailed explanation of the two examples above introduces

the readers to the idea of the global view and the immersion view, and the fact

that they contain the necessary information to verify the sufficient conditions for

pairing (Lemma 5.5). The steps for verifying these conditions are similar to the

examples below. For this reason, in the remaining examples, we shall omit most of

the consistency checks, including the somewhat nontrivial checking of the natural

partition conditions. Nonetheless, the relevant details about natural partitions will

be collected and explained in a separate section §6.3. In the description of the

examples below, we shall shift the focus to explaining the consequence of the pairing

manifold (propositions in §5.3), because these consequences are of interest.

Example 6.3 (S2×S1). The 3d closed manifoldM = S2×S1 is a pairing manifold.

See Fig. 34 for an explicit pairing. Here X is a sphere shell and Y is a solid torus. W
is the thickening of the immersed union X ∪ Y . The verification of the conditions
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Figure 34: A way to make M = S2 × S1 a pairing manifold. (a) The global view. (b) The

immersion view. X is a sphere shell, Y is a solid torus. W is the thickening of the immersed union

X ∪ Y .

for pairing is similar to the examples above. In particular, one can verify that X

and Y cut each other into balls, and the transverse intersection between X and Y

gives natural partitions of X and Y . (See §6.3 for the detailed verification of natural

partitions.)

The fact that S2 × S1 is a pairing manifold leads to a few physical consequences

(propositions in §5.3). We explain them here. First, we note that Cpoint = CX and

Cloop = CY (this notation was introduced in [6]). By Proposition 5.10,

|Cpoint| = |Cloop| = dim V(S2 × S1). (6.4)

To see why this is true, we notice that both X and Y (sphere shell and solid torus) are

sectorizable. Therefore, the multiplicities in (5.8) are either 0 or 1, so the sums reduce

to the number of sectors. Remarkably, this is a derivation within the entanglement

bootstrap framework that the number of the point particles and the pure flux loops

must be identical in 3d. Furthermore, the number of groundstates on S2 × S1,

dim V(S2 × S1), equals the number of point particles (and fluxes). This agreement

with the TQFT prediction provides support for the following idea: the states on

S2 × S1 which we construct from the density matrix of a ball by the torus trick has

a TQFT interpretation, and the closed manifold is free from defects.

Moreover, Proposition 5.12 gives another derivation of the matching of total

quantum dimension in 3d topological orders:∑
a∈Cpoint

d2
a =

∑
µ∈Cflux

d2
µ, (6.5)

where the left-hand side is the total quantum dimension of point excitations, and the
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right-hand side is the total quantum dimension of the pure flux loops. This equation

is derived in [6] with a different method.

Figure 35: A pairing for the 3d manifold #g(S2 × S1), where #g(S2 × S1) is the connected sum

of g copies of S2 × S1. (a) The global view is shown as the gluing of a pair of solid tori. (b) The

immersion view. X is a genus-2 handlebody, and Y is a ball minus two balls. Again, W is the

thickening of the immersed union X ∪ Y .

Example 6.4 (#g(S2 × S1)). The 3d closed manifold #g(S2 × S1) is a pairing

manifold. Recall that # denotes the connected sum. See Fig. 35 for an explicit

pairing, illustrated for g = 2. For a general g, X is a genus-g handlebody and Y is a

ball minus g balls. The conditions for pairing can be checked explicitly. (Again, see

§6.3 for the verification of the natural partitions.)

The most interesting consequence of the pairing manifold construction, in this

example, is the counting of the graph excitations. According to Proposition 5.10,

|Cg| =
∑

a1,··· ,ag+1∈Cpoint

(
dim Vag+1

a1 ··· ag

)2

. (6.6)

On the left-hand side, Cg denotes the list of superselection sectors of genus-g graph

excitations. (We note that this includes sectors where some one-cycles of the graph

contain trivial excitations.) The right-hand side is the fusion space dimension of

g + 1 point particles, which is further determined by just the data {dim Vcab}, where

a, b, c ∈ Cpoint. In other words, the number of genus-g graph excitations can be

counted knowing just {dim Vcab}, the fusion multiplicities of the point excitations.

Another consequence (via Proposition 5.12) is that the total quantum dimension of

the graph excitations satisfies:∑
θ∈Cg

d2
θ =

∑
a1,··· ,ag+1∈Cpoint

dim Vag+1
a1 ··· agda1 · · · dagdag+1 = D2g. (6.7)
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The second equation follows by the associativity constraints and the relation dadb =∑
cN

c
abdc.

Figure 36: Another pairing for #2(S2×S1), compared with that in Fig. 35. (a) The global view.

Here #2(S2×S1) is visualized as a pair of S2×S1 connected by a “bridge”. (b) the immersion view.

Both X and Y are homeomorphic to a solid torus minus a ball. As before, W is the thickening of

the immersed union X ∪ Y .

Example 6.5 (#2(S2 × S1) again). The 3-manifold M = #2(S2 × S1) can be a

pairing manifold in more than one way. Here we describe a pairing of M, shown in

Fig. 36, which is different from that described in Fig. 35. From the global view in

Fig. 36, it can be seen that the topology of X and Y are identical (and so are their

complements X̄ and Ȳ inM). The topology of each of these regions is a solid torus

with a ball removed, which is non-sectorizable. This manifold can also be described

as a ball with a solid torus removed since it is S3 minus a disjoint ball and solid

torus.

The immersion view clearly shows how X and Y cut each other into balls. Their

intersection is transverse, and the resulting partitions are natural. (We refer to the

reader to §6.3 for the details, but point out that the decoupling idea used in Fig. 33

helps.) W is the thickening of the immersed union X ∪ Y . Its topology is #2(S2×
S1) \B3 (a demonstration is given in Fig. 37). Furthermore, (M, {X, X̄},W

ϕ
# S3)

gives a vacuum block completion. To see this, we observe that X, being an embedded

region (solid torus minus a ball), is a building block, and X̄3 =W\X is a solid torus

minus two balls immersed in S3 in such a way that the torus entanglement boundary

is embedded and can be filled in; moreover, one of the two spherical entanglement

boundaries are embedded. This verifies that X̄3 is a building block. This completes

the verification that (M, {X, X̄},W
ϕ
# S3) is a vacuum block completion.
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→ →

Figure 37: An explicit deformation (regular homotopy) that relates the two drawings of the

immersed regionsW = #2(S2×S1)\B3; one is that in Fig. 36(b) and another is that in Fig. 35(b).

Also shown is X (blue).

It might not be obvious that this immersed region W in Fig. 36(b) can be

smoothly deformed into the W considered in the other pairing shown in Fig. 35(b).

Nevertheless, this is true. We illustrate the series of deformations in Fig. 37. This

illustration also shows how the regions X ⊂ W deform in the process. From this in-

formation, we are able to verify that there is a non-vanishing probability of reducing

|1X〉 to the vacuum on the genus-2 handlebody contained in W . This implies that

the Abelian sector 1̂∂W must be identical for both pairings (i.e., the one considered

in Fig. 36 and Fig. 35). Then, by Porism 5.13, the capacities (or “total quantum

dimensions”) for both pairings must match. We summarize the implications below.

The matching of Hilbert space dimensions implies that∑
a∈Cpoint

∑
l∈Cloop

(dim Val )
2 = |Cg=2| =

∑
a,b,c∈Cpoint

(N c
ab)

2. (6.8)

Here Cloop is the set of ‘shrinkable loop excitations’, following the notation and ter-

minology in [6]. Cg is the set of extreme points of the information convex set of the

genus-g handlebody.

The matching of capacities implies∑
a∈Cpoint

∑
l∈Cloop

dadl dim Val = D4. (6.9)

In appendix D, we verify that both of these relations hold in any 3d quantum double

model.

Remark. First, Example 6.5 is an example in d = 3 where neither X nor Y is

sectorizable. Second, in Example 6.5, the extreme points of Σ(X) can be created
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by operators of the form shown in Fig. 38. Interestingly, the operator is neither a

string nor a membrane. Thirdly, as #2(S2 × S1) has two pairings, we obtain four

bases for its fusion space V(#2(S2 × S1)). Below, we will recognize the unitary

transformations between different bases of the fusion space of a pairing manifold as

analogs of the S-matrix. In this example, we have six such matrices. Two of them

are pairing matrices in the sense defined in §7; the other four are not. We leave the

interpretation of the other four for future work.

Figure 38: The form of the operator that creates a general extreme point of Σ(X), where X is a

ball minus a solid torus, as appears in Example 6.5. The interesting feature is that it is neither a

membrane operator nor a string operator. Rather, it is a “hybrid” type.

6.2 ?Pairing manifold examples with gapped boundaries

In this section, we consider a few examples of pairing manifolds with gapped bound-

aries. The setup corresponds to that discussed in §3.2. In this context, a connected

compact manifold is a pairing manifold if it allows a pairing

(M, {X, X̄}, {Y, Ȳ },W
ϕ
# Bn). (6.10)

The 2d and 3d cases correspond to space dimensions n = 2 and n = 3. We shall find

Lemma 5.5 handy in verifying the conditions required.

Example 6.6 (Cylinder with two gapped boundaries in 2d). TakeM to be a cylinder

with a pair of gapped boundaries. Fig. 39 describes a way to make M a pairing

manifold. Such anM should be physically interpreted as a cylinder with both of its

boundaries of the same type. As the global view shows, M = XX̄ = Y Ȳ such that

X is a half-annulus, and Y is an annulus that covers the entire gapped boundary.

From the immersion view, we are able to see the way X and Y are embedded in a

disk B2, and the way they make the immersed union X ∪ Y . W is the thickening

of X ∪ Y . We are able to verify all the sufficient conditions for pairing. (The

verification of the natural partition conditions will be reviewed in §6.3.)
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Figure 39: Cylinder with a pair of gapped boundaries as a pairing manifold. (a) The global view.

(b) The immersion view. As before, the regular homotopy class ofW # B2, can be inferred because

W is the thickening of X ∪ Y .

A consequence of the fact that the cylinder with identical gapped boundaries

(S1 × I) is a pairing manifold is

|Cbdy| =
∑
a∈C

(dim Va(Y ))2 = dim V(S1 × I). (6.11)

Here Cbdy is the set of superselection sectors of boundary excitations. C is the set of

anyons. dim Va(Y ) are the condensation multiplicities, i.e., integers that characterize

how a condenses to the boundary [43, 69, 70, 5]. Another consequence is the matching

of the total quantum dimension∑
α∈Cbdy

d2
α =

∑
a∈C

dim Va(Y ) da. (6.12)

This equality is known in Ref. [5], where it is also shown that
∑

α∈Cbdy
d2
α =

√∑
a∈C d

2
a.

Similarly, we can construct pairing manifolds in three dimensions with gapped

boundaries. Intriguingly, not only is it possible to generate a region with more than

one gapped boundary (Example 6.7), it is further possible to construct M with

interesting boundary topology (Example 6.8).

Example 6.7 (Sphere shell with gapped boundaries). The sphere shell with a pair

of gapped boundaries is a pairing manifold, and this can be seen by the construction

in Fig. 40. The global view makes the following manifest: X is a solid cylinder, which

attaches to the gapped boundary at two disks.36 Y is a sphere shell that covers an

36This is a generalization of the half annulus in the context of 2d gapped boundary. It further

has a generalization to the 3d domain wall, which gives an analog of the “parton sectors” described

in Ref. [5].
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entire gapped boundary. In other words, Y has one spherical gapped boundary and

one spherical entanglement boundary.

From the immersion view, we see that the two ends of X attach to the same

gapped boundary. Therefore, the two gapped boundaries in the global view must

be “copies” of the same gapped boundary, and they must be of the same type. As

before,W is the thickening of X∪ Y . We are able to verify the sufficient conditions

for pairing, and therefore, the construction in Fig. 40 gives a pairing of the sphere

shell, viewed as a 3d manifold with a pair of spherical gapped boundaries. (See §6.3

for the details of the verification of the natural partition conditions.)

Figure 40: Sphere shell with a pair of gapped boundaries as a pairing manifold. (a) The global

view. (b) The immersion view.

The physical consequence is the matching between two types of excitations and

their total quantum dimensions, as follows:

|Cbdy−flux| =
∑

a∈Cpoint

(dim Va(Y ))2. (6.13)

On the left-hand side, Cbdy−flux refers to the set of superselection sectors of loop

excitations lying on the boundary, which can exist alone on B3. They are close

analogs of the pure flux loops in the 3d bulk. On the right-hand side, dim Va(Y ) are

the condensation multiplicities of a bulk particle a ∈ Cpoint to the gapped boundary.

Another consequence is the matching between the “total quantum dimensions”:∑
m∈Cbdy−flux

d2
m =

∑
a∈Cpoint

dim Va(Y ) da. (6.14)

Example 6.8 (Solid torus with a gapped boundary). The solid torus with a gapped

boundary is a pairing manifold, by the construction in Fig. 41. From the global view,

it can be seen that X is a sphere shell cut in half by the gapped boundary and Y
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is half of a solid torus, cut by the gapped boundary like a bagel. There is a single

completion point, and it lies on the gapped boundary.

In the immersion view, everything is immersed in B3. We put a point of the

spherical gapped boundary implicit at infinity. In this example, we are able to make

a torus gapped boundary from pieces of a gapped boundary contained in a ball!

Indeed, if we look at X and Y and their intersection, in the neighborhood of the

gapped boundary, the topology is precisely the same as that shown in Fig. 30, the

pairing for the torus T 2. We verified the conditions for pairing in this example.

The physical consequences are as follows. First, the matching of the Hilbert space

dimension implies:

|Cbdy−point| = |Cbdy−arc| = dim V(solid torus). (6.15)

This is derived by noticing that both X and Y are sectorizable. Here Cbdy−point is

the set of superselection sectors of point excitations lying on the boundary, Cbdy−arc

is the set of superselection sectors of arcs (i.e., open string) excitations ended at the

boundary. Another consequence is the matching of the total quantum dimensions as

follows: ∑
α∈Cbdy−point

d2
α =

∑
η∈Cbdy−arc

d2
η. (6.16)

From both Eq. (6.15) and (6.16), we see that the arc excitations must exist whenever

the boundary loop excitations exist.

Some readers may have found the analogy of the above statement with the pow-

erful statement that in the 3d bulk: there must be nontrivial flux loops if and only if

there are nontrivial point particles. (The latter is a fact explained in Example 6.3.)

However, we would like to point out an important distinction. In the 3d bulk, all

the fluxes (other than the vacuum) are genuine loop excitations, i.e., their support

must be a loop and cannot be reduced further. The arc excitations here, however,

can either be genuine arc excitations or those whose support can reduce (i.e., the arc

can break). In fact, there can be models in which all the arc excitations are point

excitations adjacent to the gapped boundary. Examples are topological orders at-

tached to a trivial 3d bulk and the Walker-Wang models [71, 72]. (In both examples,

Σ(X) and Σ(Y ) are isomorphic, and they characterize the same set of excitations.)

On the other hand, models with genuine arc excitations do exist, the models studied

in Refs. [73, 74] are candidates.
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Figure 41: Solid torus with a gapped boundary in 3d as a pairing manifold. (a) The global view.

(b) The immersion view. X is a half-sphere shell adjacent to the gapped boundary and Y is a solid

torus cut in half by the gapped boundary. As usual, W is the thickening of the immersed union

X ∪ Y .

Remark. An interesting generalization is genus-g handlebody with a gapped bound-

ary. This will be related to a boundary analog of the graph excitations and the

counting of them.

Example 6.9 (Riemann surfaces with domain walls). So far, we have discussed

gapped boundaries; gapped boundaries are a special case of the more general notion

of gapped domain walls between topological phases. The entanglement bootstrap ax-

ioms have been generalized to the context of gapped domain wall [5]. (The following

examples require an extension of the notion of building blocks to this case.)

Consider a sphere whose polar caps are in topological phase P and whose equa-

torial region is in topological phase Q, separated by gapped domain walls satisfying

the domain wall entanglement bootstrap axioms. This is a pairing manifold where

X is the n-shaped region of [5], and Y is an annulus shape that straddles the gapped

domain wall. See Table 1 for an illustration.

Similarly, a torus partitioned into regions of P and Q separated by two gapped

domain walls is a pairing manifold where X and Y are annuli divided in half into P

and Q in two ways.

6.3 Natural partitions used in examples

In this section, we collect all the natural partitions useful in the examples in §6.1

and §6.2. The relevant partitions are summarized in Fig. 42. These are some X =

BCD (Y = BCD) associated with the transverse intersection with Y (X) in those
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examples.

S2

(a1) (a2) (a3)

S3

(b1) (b2) (b3)

(c1) (c2)

B2

(d1) (d2) (d3) (e)

B3

(f) (g) (h)

(i1) (i2) (i3)

Figure 42: A collection of useful natural partitions. Each BCD is embedded in S2, S3, B2 or

B3. In all these cases, C is the interior, and BD is the thickened entanglement boundary; C

is light-colored, B is dark-colored, and D is not colored. The natural partition condition reads

∆(B,C,D)σ = 0.

Before we explain why these partitions are natural partitions, we would like to

mention the general strategy of showing such relations. Some of the relations directly

follow from Appendix D of [6]. The useful simplification is the fact that the reference

states on S2, S3, B2 and B3 are pure states. Let A be the complement of BCD on

these compact manifolds. In all cases, one of the following two strategies works:

(I) On the pure reference state ∆(B,C,D) = ∆(B,A,D). Then we find relations

between the computation of ∆(B,A,D) to the axioms on balls, and show that

the value of this quantity vanishes.

(II) On the pure reference state ∆(B,C,D) = I(A : C|B). Then we use a deforma-

tion technique to show that I(A : C|B) = 0. Here the deformation technique

refers to the following idea.37 We “smoothly deform” B to AB by attaching

37This technique is known to be useful in several contexts. Notably, it is used in Lemma D.2 of

[4] and in Lemma 5.7 of [6].
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balls away from C, in a topologically trivial way. More precisely, we construct

a sequence of regions {AiB}Ni=0 such that A0 = ∅, AN = A, and

SCBAi − SBAi = SCBAi+1
− SBAi+1

, ∀i = 0, · · · , N − 1. (6.17)

This equation follows from strong subadditivity provided that the small ball

Ai+i \Ai is attached according to the instruction above. In particular, it allows

enough room to apply axiom A1 centered at the small ball Ai+1\Ai; see Fig. 43

for an illustration. Then it follows from Eq. (6.17) that, on the reference state

I(A : C|B) = I(AN : C|B) = I(A0 : C|B) = 0. (6.18)

The verification of the last equality uses the fact that A0 = ∅. At a high level,

why can this technique be useful? Although attaching these small balls cannot

make topology changes to B (that is, B can smoothly deform into AiB), the

topologies of the configurations in {Ai} need not be the same.

Figure 43: A schematic illustration of a step in strategy (II). Ai+i\Ai is always contained in a ball

away from C. Note that the topology of Ai+1 and Ai can either be (a) the same or (b) different.

Below we explain why all the partitions in Fig. 42 are natural partitions for the

regions in question:

• Regions embedded in S2: In Fig. 42, (a1), (a2) and (a3) are embedded in the

sphere S2. For all of them, we apply strategy (I) and compute ∆(B,A,D) = 0.

For (a1) and (a2) this boiled down to the fact that an enlarged version of

A0 and A1 are satisfied on disks. For (a3), this reduces to the fact that the

enlarged version of A1 is satisfied on two disjoint disks. (For all three cases,

we need A0 to show that the reduced density matrix of the reference state on

two disjoint disks factorizes as a tensor product.)
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• Regions embedded in S3: In Fig. 42, (b1), (b2), (b3), (c1) and (c2) are

embedded in the sphere S3. The logic for showing ∆(B,C,D) = 0 for (b1),

(b2) and (b3) are identical to the 2d analogs above. Namely, these follow

straightforwardly from strategy (I), and therefore, we omit the details. The

verification of (c1) and (c2) uses strategy (II). Namely, we use the deformation

technique, which involves a sequence of deformations, starting with B and

ending with AB, and in the intermediate steps, we attach balls in locations

away from C. This allows us to show I(A : C|B) = 0. Note that this strategy

generalizes to genus-g handlebodies. (A related observation is that for the case

X is a genus-g handlebody, both B and AB are genus g handlebodies.)

• Regions embedded in B2: In Fig. 42, (d1), (d2), (d3) and (e) are embedded

in the ball B2, where B2 is the compact disk with an entire gapped boundary.

Strategy (I) is useful for solving all these cases. For cases (d1), (d2), and

(d3), we need to verify ∆(B,A,D)σ = 0, and this is reduced to the fact that

boundary versions of A0 and A1 are satisfied. (We also need the fact that

the reference state on two disjoint B2 has zero mutual information, a property

follows from the boundary version of A0.) To verify (e), we notice that the

∆(B,A,D)σ = 0 for this case is precisely the bulk version of A1.

• Regions embedded in B3: In Fig. 42, (f), (g), (h), (i1), (i2) and (i3) are

embedded in ball B3. It is sufficient to say that the verifications for (g), (i1),

(i2), and (i3) follow directly from strategy (I). The verifications for (f) and (h)

follow directly from strategy (II).

Finally, we remark that the verification of natural partitions discussed in this

section are partitions of an embedded region of a ball (sphere) of the following forms:

some choice of B,C,D such that ∆(B,C,D)σ = 0, or some choice of A,B,C such

that I(A : C|B)σ = 0, for a reference state σ on the ball (sphere). Pairing manifolds

are further related to TEEs [75, 64], which are partitions of subsystems such that

I(A : C|B)σ or ∆(B,C,D)σ is nonzero. This connection was briefly discussed in a

paragraph above Porism 5.13.
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6.4 Non-examples of pairing manifolds

In this section, we discuss a few non-examples. Why non-examples? The goal is

twofold. The first goal is to provide examples ofM which are not pairing manifolds

and show that some choices of regions X and Y cannot appear in any pairing.

Besides the pedagogical motivations, these non-examples are also useful for attempts

to generate more examples of pairing manifolds. In some examples (in §6.4.1), a

topological obstruction explains why something does not work.

The second goal is to show that when some of the conditions of pairing manifolds

are violated or relaxed, some of the consequences can fail. This justifies the need for

various conditions stated in the definition of the pairing manifold. (Such examples

are given in §6.4.2.) Furthermore, we consider the presentation of non-examples as

an opportunity to show that some of the ideas and techniques we developed in the

study of pairing manifolds can be generalized to other contexts. For instance, we

give some interesting constructions of states on closed manifolds, even though these

broader constructions do not possess all the properties of pairing manifolds.

6.4.1 Topology types allowing no pairing

We provide examples of connected compact manifolds M which cannot be pairing

manifolds no matter how we attempt to partition them. In other words, there is no

way to find a pairing for it.

Non-Example 6.10 (?Manifolds with at least 3 gapped boundaries). Let M be a

compact connected manifold with at least 3 gapped boundaries, in any space dimen-

sion d ≥ 2. ThenM does not allow any pairing, and therefore it cannot be a pairing

manifold. (A corollary is that a pair of pants with three gapped boundaries does not

allow any pairing; see Fig. 44 for a partition that does not work.)

To see why this is true, suppose there is a pairing such that M = XX̄ = Y Ȳ .

Because X and Y slice each other into two balls (so do the complements), M must

be a union of 4 balls. Here a ball is either Bn or Bn. Therefore, each ball touches at

most one gapped boundary, and it only covers part of it. Therefore, four such balls

cannot cover three or more entire gapped boundaries. Since M has three or more

(entire) gapped boundaries, it cannot be a pairing manifold.
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Figure 44: A pair of pants allows no pairing, as is implied by non-Example 6.10. For instance, the

partition shown here does not work because the shaded region is not a disk (neither B2 nor B2).

Figure 45: Example of regions X and Y , which cannot appear in any pairing together. (a) The

topology of X and Y . (b) and (c) are two “misguided” ways to combine X and Y .

The next example shows that not every pair of regions X and Y can be combined

into a pairing manifold.

Non-Example 6.11 (X and Y are not compatible). In this example, we ask if a

given pair X and Y may appear in a pairing (M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn). An

illustrative example is the X and Y shown in Fig. 45, where X is an annulus and

Y is a 2-hole disk. It is clear that the “misguided” attempt shown in Fig. 45(b)

cannot be the way to combine X and Y . This is because X did not cut Y into two

balls. Furthermore, the attempt to combine X and Y as Fig. 45(c) cannot work

either. There, although X and Y cut each other into two balls, the intersection is

not transverse. Is it true that there is no way for the X and Y shown in Fig. 45(a)

to appear in any pairing? The answer is yes.

A general strategy is to verify the failure of the consequences of pairing (§5.3).

Suppose that X and Y participate in a pairing, then for any reference state, we must

have (Proposition 5.10) ∑
a∈C∂X

Na(X)2 =
∑
b∈C∂Y

Nb(Y )2. (6.19)

This equation generally does not hold for the X and Y in Fig. 45. For instance, for
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the reference state of the toric code, the left-hand side of Eq. (6.19) gives 4, whereas

the right-hand side gives 16. The existence of such a reference state shows that X

and Y cannot appear together in any pairing.

Non-Example 6.12 (T 3, open question). The 3-torus can be constructed as XX̄ =

Y Ȳ = ZZ̄ where X, X̄, Y, Ȳ , Z, Z̄ are torus shells (T 2×B1). If we take the T 3 as the

3d region identified by translations symmetry of a cubic lattice, they are standard

partitions parallel to the xy, yz, and zx-planes. It is clear that X and Y (similarly,

Y and Z, Z and X) cannot appear in any pairing together,38 because they cut each

other into solid tori, instead of balls. However, we do not know general proof that

there is no pairing for T 3. Below is a possible obstruction. Suppose there is no way

to divide T 3 into 4 balls (B3), then one can conclude that T 3 does not allow any

pairing.

6.4.2 Topologies are valid, quantum state conditions fail

Each non-example below has a set of regions and immersion mapsM, {X, X̄}, {Y, Ȳ }
and W

ϕ
# N , and a quantum state on M. The non-examples fail to fulfill at least

one of the requirements of a pairing (Definition 5.3, or its boundary generalizations).

In particular, the manifoldsM, X, and Y satisfy the topological requirements of the

definition, but some of the more interesting quantum state conditions fail.

Non-Example 6.13 (T 2 with an anyon). We have shown that T 2 has a pairing

(Example 6.1). Here we still considerM = T 2, and the same immersion W
ϕ
# S2 as

Fig. 30(b), but consider a different state on T 2. We then discuss why this reference

state is not what we can construct from a pairing.

Take the Ising anyon model considered in Example 4.26 with the set of anyon la-

bels given by C = {1, σ, ψ}. We consider the state |ϕψ〉 constructed in Example 4.26.

It turns out that this state reduces on X and X̄3 to extreme points. In particular,

|ϕψ〉 reduces to the extreme point of Σ(X) that carries the non-Abelian anyon label

σ. For the partition X = BCD in Fig. 31 (which would be a natural partition if we

consider the state |1X〉), ∆(B,C,D) = 4 ln dσ = ln 4, not 0. This is true for any state

38On the other hand, it is possible to relate T 3 to a pairing manifold by dimensional reduction.
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in the fusion space39 V〈ψ〉(T 2), since dim V〈ψ〉(T 2) = 1 for the chosen state |ϕψ〉. So,

the natural partition condition in Definition 5.3 is violated. Interestingly enough,

the reference state on T 2 still satisfies the axioms everywhere; this is because ψ is

Abelian.

At the same time, the state |ϕψ〉 reduces to the extreme point of Σ(Y ) labeled by

the non-Abelian particle σ on Y . Thus, both X and Y are at some extreme points.

These extreme points are neither the minimum entropy states nor the maximum en-

tropy states. This should be contrasted with the prediction in Lemma 5.9. However,

the uncertainty relation, in a broader sense (not stated) still holds. Furthermore, in

this example,
∑

a∈C∂X (dim Va)2 > dim V〈ψ〉(T 2), where the left-hand side is 3 and the

right-hand side is 1.

In this non-example, the following relations still hold:

|CX | = |CY |,
∑
a∈CX

d2
a =

∑
b∈CY

d2
b . (6.20)

Non-Example 6.14 (T 2 with a defect). Here is another way to violate the pairing

conditions on T 2. This is closely related to Example 4.27 in §4.3, which takes N
to be an annulus through which a defect line passes, and constructs T 2 with some

completion in N . (This already violates the immersion in S2.) Consider partitions

of T 2 into annuli, T 2 = XX̄ = Y Ȳ . Here X and Y are embedded in N , X is V1

of Fig. 24(a), and Y is regular homotopic to N . Thus the defect passes through Y .

If the defect is nontrivial, Y does not have any Abelian superselection sector at all.

This violates the natural partition requirement.

The violation of conditions of pairing in this non-example (stronger than the

previous one) leads to a violation of the consequence: |CX | 6= |CY |.

Defect disk: The next two non-examples take a state on a disk with two types

of gapped boundaries as the “reference state”. See Fig. 46. We use labels I and II to

label the two different40 boundary types. We assume that boundary A0 is satisfied

everywhere, but boundary A1 is violated at the points where the boundary condition

changes. This is enough to guarantee dim V( ) = 1.

39Here, we use V〈ψ〉(T 2) to denote the Hilbert space associated with the torus T 2 given the

reference state |ϕψ〉. Note that, V〈ψ〉(T 2) = Vψ(T 2 \B2).
40We say two boundaries are different if a ribbon connecting the two boundaries does not have a

vacuum; see Fig. 46(b).
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Figure 46: (a) A disk with two gapped boundary types, labeled as I and II. Boundary defects

are points at the junction of the two boundaries. We shall call such a disk a “defect disk”. (b)

Axiom A0 holds on the defects, whereas A1 receives nontrivial correction at the defects. A ribbon

connecting (half-annulus) connecting the two boundary types. There is no vacuum on the ribbon

under the assumption that I and II are different boundary types.

We shall see that Example 6.15 makes more defect points, while Example 6.16

removes the defects and makes more boundaries of different types.

Figure 47: Make a square by immersion in a disk will two types of gapped boundaries. (a) The

global view. (b) The immersion view.

Non-Example 6.15 (?A “square” with two boundary types). Let M be a square

with 4 boundaries, where the types are I-II-I-II, as shown in Fig. 47(a). Suppose we

have a defect disk with a reference state on it. Let W be the immersed region in

the defect disk, as shown in Fig. 47(b). The observation we make here is that the

manifold M can be “completed” with the knowledge of the defect disk.

This construction is a close analog to the pairing manifold construction: we can

make M in two different ways, by first making W immersed in the defect disk, and

“healing” the puncture. The two ways can be summarized by saying M = XX̄ =

Y Ȳ , which involves regions cutting each other into two balls.
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However, this does not qualify as a pairing of M. This is because there are

defects lying in X ∩Y ; they violate the boundary version of axiom A1, and thus the

“disk” here is neither B2 nor B2. Related to this, the sector on ∂W cannot be an

Abelian sector since ∂W is a ribbon connecting two boundary types.

An interesting feature of this construction is that, although the original defect

disk had a unique ground state, M can have a nontrivial multiplicity (for example,

for the toric code with I = e and II = m, there are two ground states [43]).

What consequences of pairing manifold does this non-example violate? We leave

this for interested readers.

Figure 48: Starting from a “defect disk” we are able to construct a state on a cylinder with two

different gapped boundary types. This state satisfies the axioms everywhere. In non-Example 6.16,

we explain why this state cannot be obtained from any pairing that involves the region X indicated.

(a) A global view. There are three completion points. (b) The immersion view.

Non-Example 6.16 (?Cylinder with two different gapped boundaries). As we dis-

cussed in Example 6.6, a cylinder with two gapped boundaries allows a pairing. In

that case, the two gapped boundaries are of the same type. Here, starting with a

defect disk with two gapped boundary types, I and II, we construct a cylinder with

two different gapped boundaries of type I and II, free from defects.

In fact, we can construct the state from building blocks. As shown in Fig. 48,

there are three building blocks. There are three completion points; two are in the

bulk and one is on the gapped boundary.

In what sense this is a nonexample? No state in V(cylinder) allows a pairing

with X indicated in Fig. 48. The reason is that the ribbon X connects two different

boundary types, and therefore, it does not have a vacuum. The natural partition

requirement is violated.
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Remark. Consider the M, X and Y in non-Example 6.16. From the logic we

developed in deriving the consequences (§5.3) of the pairing manifold, it is not hard

to verify that if there is an Abelian sector in Σ(X), then Σ(Y ) ∼= Σ(Ȳ ). More

generally, it is possible that Σ(Y ) ∼= Σ(Ȳ ) but Σ(X) does not have a vacuum sector.

7 Pairing matrix and remote detectability

For each pairing

(M, {X, X̄}, {Y, Ȳ },W
ϕ
# Sn) or (M, {X, X̄}, {Y, Ȳ },W

ϕ
# Bn), (7.1)

we can uniquely define a pairing matrix. This is a generalization of the topological

S matrix in the anyon theory. However, it is a different generalization compared

with the 3d S matrix [22] which is associated with the mapping class group of the

three-dimensional torus. In contrast, a pairing matrix often does not associate with

the mapping class group of any manifold.

The pairing matrix pairs two types of excitations (or excitation clusters), those

detected by Σ(X) and those detected by Σ(Y ). We shall see that the pairing matrix,

denoted as S, is always unitary. The interpretation of this property is that the pair

of excitations remotely detect each other. The full explanation of the relation to

remote detectability will appear in [38, 76], where we relate the pairing matrix to

overlaps of open string or membrane (or other forms of) operators that create the

topological excitations. These operators act within a ball and overlap nontrivially

with each other. In the context of 2d gapped phases, this reduces to a braiding

definition of S-matrix appeared in [16]. We give a preview of the remaining steps in

§7.2.

As we shall explain in Definition 7.1, the most general pairing matrix is a square

matrix and is unitary. Loosely speaking, it is the following matrix,

S(a,i,j)(α,I,J) = 〈a(i,j)
X |α

(I,J)
Y 〉/[unfixed gauge] (7.2)

with some requirements on “fixing the gauge”. As we shall discuss, there will be

three types of pairing matrices depending on if X and Y are sectorizable. Type-I

pairing matrix has both X and Y sectorizable, and there is no unfixed gauge. For

the other two types, the unfixed gauge exists and is of physical relevance. We will

say more about this in [38].
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7.1 Pairing Matrix

Below we explain the notation in some detail to prepare for the accurate discussion

that follows. The Hilbert space VM has two bases, for a given pairing (7.1). The

first basis is

|a(i,j)
X 〉, a ∈ C∂X , i, j = 1, · · · , dim Va(X). (7.3)

Physically, a represents the sector that appears on the sectorizable region ∂X. The

first label i, in the superscript, labels a state on Va(X), and the second label j labels

a state on Va(X̄). Recall that dim Va(X) = dim Va(X̄). There is a vacuum sector,

1 ∈ C∂X for which dim V1(X) = 1. This is because X3/4 is a building block for

which ∂X is embedded in a sphere or a ball. For the vacuum sector, we often write

1 = (1, 1, 1) for short. The second basis is

|α(I,J)
Y 〉, α ∈ C∂Y , I, J = 1, · · · , dim Vα(Y ), (7.4)

where α is the sector that appear on ∂Y , the I and J in the superscript labels the

states on Vα(Y ) and Vα(Ȳ ), respectively. Similarly, there is a vacuum 1 ∈ C∂Y for

which dim V1(Y ) = 1.

Because these two are orthonormal bases, it is natural to consider the matrix of

inner products,

M(a,i,j),(α,I,J) = 〈a(i,j)
X |α

(I,J)
Y 〉, (7.5)

which must be a square and unitary. While the matrix of inner products can be

defined for any two bases, the pairing matrix is more special.

One thing that makes the pairing matrix special is the fact that X and Y cut

each other into balls. The uncertainty relation says that the state |1X〉 (that is |1(1,1)
X )

reduces to a minimum entropy state on Σ(X) and at the same time reduces to the

maximum entropy state on Σ(Y ) (Lemma 5.9). This implies that there is a way to

“fix the gauge” such that we can write:

|1X〉 =
∑
α∈C∂Y

dim Vα(Y )∑
I=1

√
dα
Dpair

|α(I,I)
Y 〉, (7.6)

|1Y 〉 =
∑
a∈C∂X

dim Va(X)∑
i=1

√
da
Dpair

|a(i,i)
X 〉, (7.7)
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where Dpair =
√
Q(X) =

√∑
a∈C∂X dim Va(X) da. Here Q(X) is the capacity of X.

(Recall that Q(X) = Q(Y ), by Proposition 5.12. Dpair is determined by the pairing.)

Why do Eqs. (7.6) and (7.7) hold, for some gauge choice? To answer it, we recall

a simple problem on a tensor product Hilbert space. Suppose |φ〉 is a maximally

entangled state in a 2-qudit system AB, where dimHA = dimHB = K. HAB =

HA ⊗HB. Then it is possible to find a unitary matrix UA such that

UA ⊗ 1B|φ〉 =
1√
K

K∑
i=1

|i〉A ⊗ |i〉B, (7.8)

where {|i〉A} and {|i〉B} appeared in the right-hand side are two orthonormal bases.

Back to the original problem. The states in the two bases (7.3) and (7.4) are not

in a tensor product Hilbert space in the sense that (i, j) do not associate with two

dim Va dimensional Hilbert spaces in a tensor product Hilbert space. Nonetheless,

we can still do a unitary rotation on the fusion space Va(X) by some unitary operator

supported within X. This explains the gauge choice (7.6) and (7.7).

Formally, a pairing matrix is defined by the following gauge choice.

Definition 7.1 (Pairing matrix). For a given pairing (7.1), the pairing matrix is the

unitary square matrix

S(a,i,j),(α,I,J) = 〈a(i,j)
X |α

(I,J)
Y 〉, (7.9)

written in a gauge choice of the bases {|a(i,j)
X 〉} and {|α(I,J)

Y 〉} such that Eqs. (7.6)

and (7.7) hold.

This definition implies that the “first row” and the “first column” are:

S(1,1,1)(α,I,J) =

√
dα
Dpair

δI,J , S(a,i,j)(1,1,1) =

√
da
Dpair

δi,j. (7.10)

Does this fix the gauge completely? If not, what is the residual gauge freedom? We

shall answer this question for each of the three types of pairing matrices.

Three types of pairing matrices: Pairing matrices fall into three types based

on whether X and Y are sectorizable or not. (If only one of them is sectorizable, we

shall use the convention that X is sectorizable.) We have summarized examples of

pairings with all three types in Table 1 and §6.
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Type-I: both X and Y are sectorizable, in which case the pairing matrix is a

matrix with entries Saα, where a runs over all sectors in C∂X such that dim Va(X) =

1 and α runs over all sectors in C∂Y such that dim Vα(Y ) = 1. This is because,

dim Va(X) and dim Vα(Y ) are either 0 or 1.

With a suitable change of notation, the pairing matrix becomes

Saα, with a ∈ CX α ∈ CY . (7.11)

This implies that |CX | = |CY |, i.e., the numbers of superselection sectors of sectoriz-

able regions X and Y match. The first row and column then becomes

S1α =
dα
Dpair

, Sa1 =
da
Dpair

, (7.12)

The absence of the square root on the numerator is because of the embedding of

a ∈ CX into C∂X (by a partition trace on X \ ∂X), which squares the quantum

dimension. In this case, there is no residual gauge symmetry, this is because all we

can do is to do phase rotation on each vector {|aX〉 and {|αY 〉}. Eq. (7.12) completely

determines the relative phases.

On general grounds, a type-I pairing matrix describes the overlap between two

sets of minimally entangled states (MES) [54] on sectorizable regions. In the most

familiar case where the pairing manifold is T 2, discussed in Example 6.1, these two

MESs are with respect to the two cuts of T 2 parallel to the horizontal and the vertical

direction. These MESs41 are precisely what appeared in [54] in their prescription for

extracting the S-matrix from the set of torus ground states (see also [55, 57, 58]).

Therefore, we expect that the pairing matrix for T 2 is identical to the S matrix

of the anyon theory. Moreover, the matrix that relates the point particle and the

flux loops, in 3d, considered in [23] can be understood as the type-I pairing matrix

associated with Example 6.3.

41Ref. [54] focuses on the case of abelian topological order, where all extreme points have the same

entropy, which is, therefore, a global minimum; more generally, the entropy of different MES will

differ and in general are only local minima of the entanglement entropy. The improved prescription

in [55] addresses problems of [54] that our construction does not share: those of identifying an MES

associated with the vacuum, and of prescribing an order for the bases of MES states associated

with each direction of the torus. We do not have these problems because of the existence of the

canonical states |1X〉 and |1Y 〉, and because in cases where X and Y are the same (such as the

annulus), both our bases are defined starting from the same set of extreme points.
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Type-II: X is sectorizable and Y is not. In this case, the pairing matrix reads

Sa (α,I,J), with a ∈ CX , α ∈ C∂Y . (7.13)

There is an apparently-unavoidable residual gauge symmetry when dim Vα(Y ) ≥ 2,

which rotates both indices I and J . (This is for the same reason that for the state in

Eq. (7.8), any unitary on A can be combined with some unitary on B, which leaves

the state invariant.) The first row of the matrix is proportional to δI,J , and so the

phases of the states |α, I, J〉 with I 6= J cannot be fixed by this method. In particular,

the half-linking matrix of [24] is an example of a type-II pairing matrix, where the

possible I, J comes from the condensation multiplicities. In our perspective, this is

the pairing matrix associated with Example 6.6.

Type-III: Neither X nor Y is sectorizable. Here we need pairing in its most

general form that appeared in Definition 7.1. While we have not been able to identify

related examples in previous literature, a concrete topological context where type-III

matrix appears is the partition of (S2 × S1)#(S2 × S1) discussed in Example 6.5.

Pairing matrices have the following curious features other than the relation to

braiding non-degeneracy.

First, for the case of the 3d quantum double model a finite group G, the pairing

matrix for S2 × S1 is the character table, properly normalized. The reader may

believe this statement on general grounds; we will give an explicit demonstration

using minimal diagrams in [38]. Other examples will be given as well in [38]. Our

general demonstration of the unitarity of the pairing matrix gives an independent

“proof” (not the most direct one) of the orthogonality theorem for characters of finite

groups.

Second, we shall present a pair of Verlinde-like formulas for each type of pairing

matrix. As we shall discuss in [38], a convenient way is to think in terms of the

algebras of flexible operators associated with the excitation clusters detected by X

and Y , respectively. The special features of type-II and III pairing matrices lead to

the noncommutativity of these operator algebras.
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7.2 Relation to remote detectability

In this brief subsection, we give a sketch of the steps relating the pairing matrix S

to a process by which the excitations involved remotely detect each other. The full

argument will appear in a sequel to this paper.

The idea is a generalization of the argument in [16] for the case ofM = T 2. The

idea there is to use unitary open-string operators to create and transport anyon-anti-

anyon pairs. The existence of these operators can be guaranteed by the axioms on

the reference state, and the phase produced by braiding the pair of anyons around

each other can be shown to participate in a Verlinde formula involving the fusion

coefficients for those anyons.

The first step to generalizing this construction to more general excitation types

(in general dimension, and including gapped boundaries) is the notion of flexible

operator algebra. This is an algebra of operators acting on a region Ω with the

property that when acting on the reference state, their support can be deformed

topologically within Ω. These are the generalizations of closed string operators in

the case of anyons. These operators are not necessarily unitary. In [38], we will show a

precise sense in which the flexible operator algebra contains information about fusion

rules and braiding properties. This algebraic view is dual to the information convex

set. In the special case of a reference state on a pairing manifold M = XX̄ = Y Ȳ ,

we can construct two bases of flexible operators {W (a,i,j)
Y } and {W (α,I,J)

X } such that

the pairing matrix can be represented as

S(a,i,j)(α,I,J) = 〈1X |W (a,i,j)†
Y W

(α,I,J)
X |1Y 〉. (7.14)

This expression requires operations on topologically nontrivial subsets X, Y ⊂ M.

(For the case M = T 2, X and Y will be two non-contractible annuli.)

The final step is to cut the flexible operators in half and “fold” the resulting open-

ended operators in a certain way [76] so that the right-hand side of Eq. (7.14) becomes

an expectation of open-ended operators supported within a ball. Their action on the

vacuum of the ball has an explicit interpretation in terms of the creation and adiabatic

transport of topological excitations. Explicitly, W (a,i,j) X∼
√
da (Uai

L )
†
Uaj
R , where the

equivalence relation
X∼ means that the two sides agree when acting on elements

of the information convex set of X. Using this relation, we can directly relate the

pairing matrix to the phases acquired by the associated topological excitations under
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braiding.

8 Discussion

In this paper, we have effectively constructed an entanglement bootstrap reference

state on closed manifolds, starting from a state on the ball. We have shown explicitly

that this can be done for arbitrary orientable 2-manifolds, and for various examples

in higher dimensions. The crucial technique is to immerse (i.e., locally embed) a

closed manifold with a puncture in the ball and to construct quantum states on the

immersed region. It is natural to ask: for which closed manifolds does this method

work?

Differential topology questions: The underlying technique of our construc-

tion makes it clear that the notion of immersion, i.e., local embedding, plays an

important role. Furthermore, this allows us to borrow tools from existing topology

literature, differential topology especially.

Our notion of immersion is not precisely the same as the notion from differential

topology because we work with a discrete lattice instead of smooth manifolds. Nev-

ertheless, because we work with a coarse-grained lattice that is large enough (but

finite), we expect that in this regime, differential topology should effectively apply.

In other words, an immersion in the sense of differential topology should imply an

immersion in our sense. The finiteness of lattice in our setup rules out pathologies

like the Alexander Horned Sphere, which has an infinite amount of structure in a

finite region. This differentiates our setup from the “topological category” in math.

So we believe that results in the smooth category should apply to our needs. It would

be nice to make this more precise. As those distinctions are for a small set of exotic

cases, one may expect them to be irrelevant physically. On the other hand, more

careful readers may wonder if there is another mathematical structure that precisely

captures our setup; a candidate is “coarse structure” [77], which provides a context

to answer “what happens on the large scale”.42

The result on immersion of differential manifolds most relevant to us is that of

Hirsch and Smale (see e.g. [49], chapter 6) showing that a punctured d-manifold W
42We thank Daniel Ranard for suggesting this possibility.
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may be immersed in the d-ball if and only if its tangent bundle TW is trivial. The

only-if is clear since the immersion provides a trivialization of the tangent bundle.

Since the tangent bundle of any oriented 3-manifold is trivializable, any oriented

3-manifold (minus a ball) can be immersed in the ball.

In the very recent paper [32], the case of 4-manifolds is shown to have the most

favorable possible conclusion for our purposes: the only obstruction to immersing a

punctured connected 4-manifold is the Stiefel-Whitney classes of its tangent bundle.

This means that any spin 4-manifold (for which w1(TW) and w2(TW) vanish) can

be immersed in the 4-dimensional ball. Another fact offered by the same reference is

that any punctured connected orientable 4-manifold can be immersed in CP2. These

results suggest what manifolds we can hope to construct by our approach in 4d,

starting with a reference state on either a ball or a CP2.

What precisely are the secrets hidden in the ground states on manifolds with

nontrivial characteristic classes, e.g. RP1 and CP2, (or obstruction for putting ground

states on them) is not clear to us. One interesting point is that the vanishing of the

characteristic classes of TM is also precisely the condition forM to be null-bordant,

that is, for M to be the entire boundary of a (d+ 1)-manifold. In the Atiyah-Segal

axiomatic approach to TQFT [78], a manifold M must be null-bordant in order to

construct a vacuum on M.

It is also worth noting that the characteristic classes of the tangent bundle ofM,

are also believed to be precisely the data characterizing the response to placing an

invertible phase with a finite internal symmetry group and vanishing thermal Hall

response onM [79]. Interestingly, hereM is a spacetime, whereas in our caseM is a

space manifold. (Relatedly, comparing to a TQFT, which produces a number for any

(d+ 1)-manifold, our approach so far only allows us to study spacetime manifolds of

the formMd×M1.) It is an interesting question if there is any connection between

the relevance of characteristic classes in the two seemingly different problems. An

optimistic possibility43 is that this is the only data that we miss because of this

obstruction to Kirby’s torus trick.

Kitaev’s unpublished work on the classification of invertible phases [80, 50] in-

volves an apparently different construction of ground states on closed manifolds from

a ground state on a ball. Intriguingly, there is an identical restriction on which mani-

43suggested by Jake McNamara
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folds can be constructed; see [50] at around 1 hour and 35 minutes. In particular, the

condition of a manifold having a stable normal frame implies that the characteristic

classes vanish.

Braiding nondegeneracy and beyond: In two dimensions, the braiding ma-

trix is called S because of its relation to the eponymous generator of SL(2,Z), the

modular group of T 2. The braiding matrices in 3d relating graphs and collections

of particles that we have studied in this paper are related to connected sums of

S2×S1 and lack such a connection. The orientation-preserving mapping class group

of S2×S1 is generated by two order-two elements. One of them reverses the orienta-

tion of each factor. The other generalizes the Dehn twist: as we go around the circle,

we do a 2π rotation of the S2. We expect that the latter generator is related to the

statistics of the excitations; note that, unlike the Dehn twist of T 2, this element is

of order two, reflecting the fact that the particle excitations in 3+1d can only be

bosons or fermions.

We anticipate that a full understanding of the braiding matrix for the Hopf exci-

tations [6, 81] will use T 3 as the analog of the pairing manifold and that the modular

transformations of T 3 [82, 83, 22] will play a role. However, as we mentioned in

non-Example 6.12, T 3 seems not to be a pairing manifold by the definition in this

paper: there are three apparent ways to divide T 3 = (S1)3 in half by cutting along

each of the three circles; however, these regions X, Y, Z intersect in pairs in solid tori

rather than balls. The excitations detected by Σ(X) are paired with some excita-

tions detected by Σ(Y ) and some excitations detected by Σ(Z). So there is a sort of

triality rather than a duality.

The concept of pairing manifold involves two partitionsM = XX̄ = XȲ , where

X and Y cut each other into balls. This is a somewhat intricate condition designed

in order to prove the nontrivial statement of braiding nondegeneracy. However, it

might be possible to relax some of the assumptions to cover other braiding-related

phenomena. For instance, is there a sense that a “thickened Klein bottle” in 3d can

be a choice of X in a pairing manifold or its generalization? Note that the thickened

Klein bottle can immerse (but cannot embed) in a three-dimensional ball.

Our derivation of braiding non-degeneracy generalized to systems with gapped

boundaries. The pairing matrix in that setup pairs excitations on the gapped bound-

aries and bulk excitations that condense on the boundary. One may hope to gener-
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alize this idea to higher-dimensional defects of TQFTs in higher dimensions. There

are interesting defects [84, 85] that have trivial braiding with all particle excitations

and do not modify the information convex set of a linked solid torus. One example44

of string-like defects (Cheshire charge loops) appear in Z2 × Z2 gauge theory, where

the loop is defined in the spacetime path integral by the insertion W (C) = ei
∫
C a1∪a2 .

It corresponds to inserting an SPT (specifically, a cluster state) along the worldsheet

of the loop. Based on the analog to the condensation to a gapped boundary (e.g.,

Example 6.6 and 6.7), we suspect that the solid torus that thickens the string should

contain some signature.

Universal data from a state on a ball: The construction of states on closed

manifolds from a reference state on a ball suggests that the ball may contain all the

information of a topologically ordered system (or an emergent TQFT).

The construction of closed manifolds in this work relies on the understanding of

the topology of immersed regions as well as the structure of information convex sets

on such regions. The diverse topology comes from the fact that immersed regions

are topologically more diverse than embedded regions.

There are two other rich properties offered by immersion that deserve further

study. First, immersion also provides inequivalent ways to immerse a manifold of

the same topology; see, e.g., Fig. 5(b) and Example 4.25 for illustrations. (A related

fact in 3d differential topology is that surfaces can immerse in multiple ways [42].)

One may wonder if inequivalent immersions of a region give isomorphic information

convex sets. This is an open question in 2d, even for the context illustrated precisely

in Fig. 5(b). Second, the presence of immersion also implies that regions can deform

through a sequence of immersed configurations. Each class of deformation that

maps a region back to itself gives rise to (potentially nontrivial) automorphisms of

the information convex set associated with the region. It is an interesting question

what information these automorphisms characterize.

As is known from previous studies, information convex sets do not characterize

all the data of a gapped phase by itself. One object we do not expect them to char-

acterize in 2+1d is the chiral central charge, which is, nonetheless, characterized in a

different way [20] by the density matrix on a ball. (See Ref. [21] for a related proposal

for systems with U(1) symmetry.) An open question is how to extract the higher

44We thank Shu-Heng Shao and Jake McNamara for mentioning this example to us.
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dimensional analogs of chiral central charge (which exists in 4n+ 2 space dimensions

based on TQFT arguments) and higher dimensional analogs of Hall response (which

exists in even space dimensions). Even for invertible phases, which necessarily have a

trivial information convex set, there are more questions to be answered. For instance,

there is an invertible phase in 4+1d, which has Z2 classification [79, 86, 87, 88, 89, 90].

A non-additive characterization may detect this classification.

The perspective offered above, namely that an arbitrary 3-manifold (with en-

tanglement boundaries) has a role to play in the entanglement bootstrap, begs the

question of whether this huge multiplicity of data is all independent or whether it

is determined from some finite subset. In two dimensions, the associativity theorem

implies that the data of the annulus and two-hole disk suffice to determine the fusion

multiplicities for any other region. In three dimensions, we do not yet know an anal-

ogous statement. There are multiple ways to partition a 3-manifold. One may ask

if the prime decomposition of the general 3-manifold allows for the existence of such

minimal data. While we do not know the answer to this question, we notice that the

“sequential completion” discussed in §4.3 provides a way to obtain connected sums

of 3-manifolds (as with the boundary analog). Three manifolds can also be split into

two handlebodies, a procedure known as Heegaard splitting. A third method is to

obtain 3-manifolds by gluing along torus boundaries, leading to the JSJ decompo-

sition. It is an interesting question if we can learn anything from the consistency

between different ways of obtaining a 3-manifold.
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A Notation glossary

notation meaning first appears in

Sd a d-dimensional sphere §1
Sd a d-dimensional sphere with a reference state §1
Bd a d-dimensional ball §1
Bd a d-dimensional ball with a reference state §1
Bd a d-dimensional half-ball adjacent to

a gapped boundary

Bd a d-dimensional half-ball adjacent to a gapped
boundary with a reference state

Bd a d-dimensional ball with an entire gapped
boundary with a reference state

Bg a ball minus g balls §1
A#B connected sum of manifolds A and B §1.1

entanglement a boundary of a region that §2
boundary is not part of the gapped boundaries

∂Ω thickened entanglement boundary of the region Ω §2.1
ext(Σ(Ω)) the set of extreme points of the convex set Σ(Ω) Def. 2.1

Σ[κA](Ω) convex subset of Σ(Ω) of density matrices Def. 2.1
that restrict to ρκA on A

ΣI[κA](Ω) convex subset of ΣI(Ω) of density matrices Def. 2.1
that restrict to ρκA on A

VI[κA](Ω) constrained fusion space Def. 2.1

X
N∼ X ′ regions X and X ′ can be smoothly deformed §3

into each other as immersed regions of N
E(h) the centralizer subgroup of an element h ∈ G Prop.3.2

W # X immersion of W into X §4
compact manifold a manifold with no entanglement boundaries §4
closed manifold a compact manifold with no gapped boundaries §4

#gT 2 genus-g Riemann surface Fig. 25

Q(X) e
SX |ρ

max

ρmin where ρmax is the maximum-entropy state Def. 5.11
in Σ(X) and ρmin is any minimum-entropy

state in Σ(X)
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notation meaning first appears in

SΩ|ρ1
ρ2

S(ρ1
Ω)− S(ρ2

Ω) (5.17)

A ∪ B the immersed union of two regions A and B (6.1)

Gg genus-g handlebody §C
E(C) the centralizer of a representative of §C.2

the conjugacy class C
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B Consistency Relations with Quantum Dimen-

sions

In entanglement bootstrap, two kinds of consistency relations are often derived and

then used; they are summarized in Table 2. The first kind is derived from merging

whole components of entanglement boundaries. The consistency relations derived this

way are associativity of fusion multiplicities, analogous of Nd
abc =

∑
iN

i
abN

d
ic. Con-

sistency relations of the second kind involve both fusion multiplicities and quantum

dimensions, and they are derived by merging part of the entanglement boundaries

of the given regions; see Fig. 49 for an illustration. One example is dadb =
∑

cN
c
abdc.

While the first kind may look more familiar to TQFT audiences, consistency rela-

tions of the 2nd kind are arguably more fundamental in entanglement bootstrap:

starting from the axioms A0 and A1, we need the second kind of merging to derive

the isomorphism theorem, the Hilbert space theorem, before we can talk about fusion

spaces.

merging consistency relation

1st kind
entire entanglement

boundaries

with only fusion

multiplicities N c
ab, N

c
[ab]

2nd kind
parts of entanglement

boundaries

with fusion multiplicities N c
ab, N

c
[ab]

and quantum dimensions da

Table 2: Two kinds of merging processes and the consistency relations they derive.

In [6], a general Associativity Theorem was derived, with which we read off the

desired associativity relations without repeating the proof in each context. This

simplifies the task of finding consistency relations of the first kind.

The goal of this appendix is to provide a few convenient results for the second

kind of consistency relation: the kind that requires merging part of the entangle-

ment boundaries. As indicated in Table 2, the fusion multiplicities include those

from constrained fusion spaces (Definition 2.1). We start with the general setup

(Definition B.1).

Definition B.1 (merging setup, as illustrated in Fig. 49). Consider a region ABCD

embedded in a ball.
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Figure 49: Schematic depiction of the merging setup of this appendix (Definition B.1). (a) The

thickened entanglement boundaries of ABC are Ω1 and Ω2, where Ω2 may be empty. (b) The

thickened entanglement boundaries of BCD are Ω3 and Ω4, where Ω4 may be empty. (c) After

merging, Ω5 appears as a newly formed entanglement boundary.

1. ABC and BCD are connected sectorizable regions of the form M× I, where

M is a connected manifold.

2. ∂(ABC) = Ω1 ∪ Ω2, where Ω1 and Ω2 are separated, Ω2 ⊂ A may be empty

3. ∂(BCD) = Ω3 ∪ Ω4, where Ω3 and Ω4 are separated, Ω4 ⊂ D may be empty

4. ∂(ABCD) = Ω2∪Ω4∪Ω5, where Ω5 is the newly formed entanglement bound-

ary, obtained by merging part of Ω1 and Ω3. (Ω2, Ω4 and Ω5 are separated

from each other.)

5. We assume that I(A : C|B)ρa = 0, for any a ∈ CABC and I(B : D|C)ρd = 0 for

any d ∈ CBCD. In addition, we assume that, in our setup, ρaABC and ρdBCD can

be merged in a way required by the merging theorem as long as they match on

BC, that is TrA ρ
a
ABC = TrD ρ

d
BCD.

This reduced density matrix on BC, (TrA ρ
a
ABC) must then be an extreme point

of Σ(BC) because ABC is sectorizable (Proposition 2.23 in [6]).

6. Let a ∈ CABC , d ∈ CBCD, b ∈ C∂(BC) and e ∈ CΩ5 . We say a, d, b (a and d) are

compatible if Σ[adb](ABCD) (Σ[ad](ABCD)) is nonempty. Here and below, we

use [abd] ([ad]) as the short-hand notation of [aABCb∂BCdBCD] ([aABCdBCD]).

The quantum dimensions da, db, dd, de are defined from the entropy difference

Eq. (2.6), noting that the reference state (σ) exists on the respective sector-

izable regions. Let N e
[ad] be the dimension of the constrained fusion space

associated with Σe
[ad](ABCD). (See Lemma 2.2 to recall the notations.)
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7. We define d̂a and d̂d as

d̂a =

{
d2
a, Ω2 = ∅
da, Ω2 6= ∅

, and d̂d =

{
d2
d, Ω4 = ∅
dd, Ω4 6= ∅

. (B.1)

They allow simple physical interpretations. d̂a and d̂d are the quantum dimen-

sions of the superselection sectors on regions Ω1 and Ω3, obtained by reducing

ρaABC and ρdBCD respectively.

Proposition B.2. Under the setup in Definition B.1, when a, b, d are compatible

d̂ad̂d
db

= e−I(A:D|BC)σ
∑
e

N e
[ad]de, (B.2)

and moreover, the probability of finding e ∈ CΩ5 in the merged state of ρaABC and

ρdBCD is

Pad→e =
N e

[ad]de∑
eN

e
[ad]de

. (B.3)

Most of the consistency relations in §6.2, 6.3, and 6.4 of [6] are special cases of

Proposition B.2. In particular, the consistency relations about knot multiplicities in

§6.3 and 6.4 therein requires a non-vacuum state on BC. The consistency relations

in §6.4 of [6] (for the torus minus a torus knot) also follow from this theorem. An ex-

ample including a nonvanishing conditional mutual information factor I(A : D|BC)σ
is Eq. (6.4) of [6]. More broadly, Proposition B.2 can be used to derive analogous

consistency relations for torus links!

In §C.1 we will apply Proposition B.2 to more examples, including the genus-two

handlebody. In §C.2, we explicitly verify these consistency conditions for the case of

the S3 quantum double model in 3d.

It is possible that all connected sectorizable regions are of the form M× I, but

we do not know. In the latter case, it is interesting to generalize Proposition B.2.

Furthermore, there can be an analogous statement without the assumption that

ABC or BCD are sectorizable.

To prepare for the proof of Proposition B.2 we present one lemma B.3 and its

corollary.
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Lemma B.3. Under the setup in Definition B.1, and suppose a ∈ CABC and d ∈
CBCD are compatible. If e ∈ CΩ5 and ρadeABCD ∈ ext(Σe

[ad](ABCD)), then

SABCD|ρ
ade

σ = ln

(
d2
a

d̂a

)
+ ln

(
d2
d

d̂d

)
+ ln de. (B.4)

In particular, every extreme point of Σe
[ad](ABCD) has the same von Neumann en-

tropy.

Proof. Both σABCD and ρadeABCD are extreme points of Σ(ABCD). Therefore, the

contributions of entropy difference SABCD|ρ
ade

σ come from the three thickened entan-

glement boundaries, Ω2, Ω4 and Ω5:

SABCD|ρ
ade

σ =
1

2
(SΩ2 + SΩ4 + SΩ5)|ρadeσ

= ln

(
d2
a

d̂a

)
+ ln

(
d2
d

d̂d

)
+ ln de.

(B.5)

The second line follows from the physical meanings of d̂a and d̂d. Explicitly,

1

2
SΩ2|ρ

a

σ = SABC |ρ
a

σ −
1

2
SΩ2|ρ

a

σ

= ln d2
a − ln d̂a.

(B.6)

A similar derivation shows 1
2
SΩ4|ρ

d

σ = ln d2
d − ln d̂d.

Lemma B.3 implies that the state with maximal entropy in Σe
[ad](ABCD) is a

convex combination of mutually orthogonal extreme points in Σe
[ad](ABCD), as:

ρ
(ade)max

ABCD =
1

N e
[ad]

Ne
[ad]∑
i=1

ρ
(ade)i
ABCD, (B.7)

where {ρ(ade)i
ABCD}

Ne
ad

i=1 are mutually orthogonal extreme points of Σe
[ad](ABCD) associ-

ated with an orthonormal basis of Ve[ad](ABCD).45 The state ρ
(ade)max

ABCD has entropy

S(ρ
(ade)max

ABCD ) = S(σABCD) + ln

(
N e

[ad]

d2
ad

2
d

d̂ad̂d
de

)
. (B.8)

where σABCD is the reference state. Now we are ready to prove Proposition B.2.

45Note that the fusion space Ve[ad](ABCD) is well-defined because a, d, e fully determine the

superselection sector at ∂(ABCD).
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Proof of Proposition B.2. Suppose a ∈ CABC and d ∈ CBCD are compatible. Merge

ρaABC with ρdBCD to obtain the merged state τadABCD.

We are going to compute SABCD|τ
ad

σ ≡ S(τadABCD) − S(σABCD) in two different

ways. On one hand, SABCD|τ
ad

σ can be calculated from the entropies of the density

matrices of the sub-regions, knowing I(A : D|BC)σ. On the other hand, the merged

state τadABCD is the state with maximal entropy in Σ[ad](ABCD) and we use the

structure theorem of Σ[ad](ABCD) to express the entropy difference.

1. By definition of conditional mutual information,

SABCD|τ
ad

σ = (SABC + SBCD − SBC − I(A : D|BC))|τadσ . (B.9)

By the merging lemma [4], I(A : D|BC)τad = 0 for an arbitrary pair of com-

patible a and d. Since BC is embedded in ABC, from Proposition 2.23 in [6],

TrAρ
a
ABC is an extreme point of Σ(BC) (and also Σ(∂(BC)).) Let b ∈ C∂(BC)

be the sector label associated with this state. Using the definition of quantum

dimension dI ≡ exp(S(ρI)−S(σ)
2

) we get:

SABCD|τ
ad

σ = ln
d2
ad

2
d

db
+ I(A : D|BC)σ . (B.10)

The reason we have db instead of d2
b in the denominator is S∂(BC)|τ

ad

σ = 2SBC |τ
ad

σ .

2. On the other hand, τadABCD is the maximum-entropy state of Σ[ad](ABCD), fol-

lowing the “standard” maximization procedure [4, 92] of entanglement boot-

strap, we have

SABCD|τ
ad

σ = max
{Pad→e}

S(
∑
e

Pad→e ρ
(ade)max

ABCD )− S(σABCD)

= max
{Pad→e}

∑
e

Pad→e(SABCD|ρ
(ade)max

σ − lnPad→e)

= max
{Pad→e}

∑
e

Pad→e

(
ln

(
N e

[ad]

d2
a

d̂a

d2
d

d̂d
de

)
− lnPad→e

)

= ln

(∑
e

N e
[ad]

d2
a

d̂a

d2
d

d̂d
de

)
− max
{Pad→e}

D(Qad→e||Pad→e)

= ln

(∑
e

N e
[ad]

d2
a

d̂a

d2
d

d̂d
de

)
.

(B.11)

118



Here {Pad→e} is a probability distribution, i.e., Pad→e ≥ 0 and
∑

e Pad→e = 1.

The second equality is due to the orthogonality of different extreme points

in Σe
[ad](ABCD). The third line follows from Eq. (B.8). In the fourth line,

Qad→e =
Ne

[ad]
de∑

eN
e
[ad]

de
(which is a probability distribution), and

D({pi}||{qi}) ≡
∑
i

pi ln(pi/qi), (B.12)

is the classical relative entropy with two probability distributions {pi} and {qi}.
The last line is obtained by the fact that D({pi}||{qi}) ≥ 0 for any {pi} and

{qi}, where “=” holds if and only if {pi} = {qi}. This last step also implies

that the optimal probability distribution {Pad→e} is

Pad→e =
N e

[ad]de∑
eN

e
[ad]de

. (B.13)

An alternative way to find Eq. (B.13) uses the Lagrange multiplier. To get

the maximum of SABCD|τ
ad

σ with the constraint that
∑

e Pad→e = 1, we let

h(Pad→e) ≡
∑

e Pad→e(ln(N e
[ad]

d2
a

d̂a

d2
d

d̂d
de)− lnPad→e) +λ(

∑
e Pad→e− 1) be a func-

tion of Pad→e. When this function is at maximum, its first derivative is zero.

That is,
∂h

∂Pad→e
= ln(N e

[ad]

d2
a

d̂a

d2
d

d̂d
de)− lnPad→e − 1 + λ = 0. (B.14)

This equation gives Pad→e ∝ N e
[ad]de. After normalizing, we arrive at Eq. (B.13).

Comparing Eq. (B.10) and Eq. (B.11), we obtain Eq. (B.2).

C Information convex set for handlebodies

A genus-g handlebody, which we denote as Gg, is a boundary connected sum of solid

tori; its entanglement boundary is a genus-g Riemann surface. As we explained in

§3.1.2, its information convex set detects excitations supported on graphs living in

the complement of the handlebody, S3\Gg. We referred to these excitations as graph

excitations.
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In this appendix, we discuss some properties of graph excitations. In §C.1, we

write down general relations that arise by thinking of a graph as resulting from the

fusion of loops. In §C.2, we count graph excitation types for 3-dimensional quantum

double models. We also discuss a different fusion process of loops called Borromean

fusion, which was considered earlier in [6].

C.1 Relations between quantum dimensions and fusion prob-

abilities of graph excitations

Graph excitations can be created by the fusion of flux loops; see Fig. 9 for the case

of genus two. If we label the pure flux excitations of the two constituent loops as

µ, ν ∈ Cflux, as indicated in Fig. 50, we can ask about the probability P(µ×ν→λ) of

obtaining the sector λ ∈ Cflux near the “outer boundary” of the genus-2 handlebody.

Figure 50: An illustration fusion of two flux loops, viewed in the information convex sets. The

three solid tori and the genus-2 handlebody G2 are the regions we consider information convex sets.

Flux excitations are the red loops. (This view is complementary to Fig. 9 in the main text.)

As we shall discuss, P(µ×ν→λ) can be computed using the information convex set

of genus-2 handlebody. (However, unlike the fusion probabilities of point particles,

it is unknown to us if P(µ×ν→λ) are determined by a set of integers.) Let the genus-2

handlebody be G2. Since G2 is a sectorizable region, Σ(G2) is a simplex. We can

label the set of superselection sectors as

(µ, ν, λ)k ∈ CG2 , (C.1)

where µ, ν and λ are the sectors we can detect after doing a partial trace to reduce G2

to the three solid tori indicated in Fig. 50. k labels a discrete set of extra degrees of
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freedom, if necessary. (An example of its necessity is given at the end of Appendix C.)

The following facts follow:

1. (1, 1, 1)1 = 1.

2. Among (µ, 1, λ)k, there is only one possible choice, denoted as (µ, 1, µ).

3. Among (1, ν, λ)k, there is only one possible choice, denoted as (1, ν, ν).

4. Among (µ, ν, 1)k, there is only one possible choice, denoted as (µ, µ̄, 1). The

derivation is shown in Fig. 51.

Figure 51: The explanation of ν = µ̄ for (µ, ν, 1)k. After a smooth deformation of a genus-2

handlebody, we fill in the hole labeled by 1 with a disk (by merging). The result is a solid torus.

This relates µ and ν as ν = µ̄.

We can define the quantum dimension of an extreme point of Σ(G2) as

d(µ,ν,λ)k ≡ exp

(
S(ρ

(µ,ν,λ)k
G2

)− S(σG2)

2

)
. (C.2)

The quantum dimensions satisfy the following:

d1 = 1, d(µ,µ̄,1) = d(µ,1,µ) = d(1,µ,µ) = dµ . (C.3)

It is possible to choose a convention of labeling k such that

d(µ,ν,λ)k = d(ν,µ,λ)k = d(ν̄,µ̄,λ̄)k . (C.4)

We shall stick to this convention.
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Proposition C.1. In the general genus-2 handlebody setup, we have the matching

of quantum dimensions:

d2
µd

2
ν =

∑
λ,k

d2
(µ,ν,λ)k

, ∀µ, ν ∈ Cflux . (C.5)

The probability distribution {P(µ×ν→λ)} satisfies:

P(µ×ν→λ) =

∑
k d

2
(µ,ν,λ)k

d2
µd

2
ν

. (C.6)

Corollary C.1.1. A few special elements of {P(µ×ν→λ)} are:

P(µ×1→ν) = δµ,ν , P(µ×ν→λ) = P(ν×µ→λ), P(µ×ν→1) =
1

d2
µ

δν,µ̄. (C.7)

Figure 52: Merging two solid tori into a genus-2 handlebody. µ, ν ∈ Cflux label the sectors for the

two small inner solid tori. λ ∈ Cflux labels the sector for the “outermost” solid torus, indicated in

the figure.

Proof. Consider the merging process in Fig. 52: ρµABC ./ ρ
ν
BCD = τµνABCD. Note that

this merging setup is one example of the general setup in Definition B.1. The relevant
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data in the setup are substituted by

a→ µ, d→ ν

d̂a → d2
µ, d̂d → d2

ν , db → 1

de → d2
(µ,ν,λ)k

I(A : D|BC)σ → 0

N e
[ad] → N

(µ,ν,λ)k
[µν] = {0, 1}

Pad→e → P(µν→(µ,ν,λ)k)∑
e

→
∑

λ,k s.t.
(µ,ν,λ)k exists

(C.8)

Plugging these in Eq. (B.2) and Eq. (B.3) we get:

d2
µd

2
ν =

∑
λ,k

d2
(µ,ν,λ)k

(C.9)

and

P(µν→(µ,ν,λ)k) =
d2

(µ,ν,λ)k∑
λ,k d

2
(µ,ν,λ)k

=
d2

(µ,ν,λ)k

d2
µd

2
ν

. (C.10)

Note that P(µ×ν→λ) is different from P(µν→(µ,ν,λ)k), because λ is not a sector label of

∂(G2). To compute the former, we to do a sum of k, as:

P(µ×ν→λ) =
∑
k

P(µν→(µ,ν,λ)k) =
∑
k

d2
(µ,ν,λ)k

d2
µd

2
ν

. (C.11)

This completes the proof.

C.2 Quantum double examples

The graph excitations are not just pure fluxes stuck together. This is illustrated

by the case of the quantum double, where the label set on extreme points of the

genus-two handlebody {Cg,h} can be larger than C2
flux.

The minimal diagram for genus-g handlebody (see Fig. 53) requires only g bound-

ary links in a bouquet (meaning that they all begin and end at the unique boundary
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vertex v. Note that these links are in one-to-one correspondence with generators

of the fundamental group with base point v. There are no faces required, so these

group elements are all independent, and therefore

C(g1,··· ,gn) ≡ {(g1, · · · , gn)}/ ∼ (C.12)

where the equivalence relation is (g1, · · · , gn) ' (tg1t̄, · · · , tgnt̄). In the case of genus-

two, the extreme point labelled by (g, h) can be written as

ρ(g,h) =
1

d2

(
|g, h〉〈g, h|+ |tgt̄, tht̄〉〈tgt̄, tht̄|+ ((d2 − 2) more terms)

)
. (C.13)

Example C.2 (Information convex set of genus-two handlebody for S3 quantum

double). The list of genus-two graph excitations and their quantum dimensions are

given in Table 3.

(g, h) (1, 1) (1, r) (r, 1) (s, 1) (1, s) (r, r) (r, r2) (r, s) (s, r) (s, s) (s, sr)

d2
(g,h) 1 2 2 3 3 2 2 6 6 3 6

Table 3: Representative (g, h) for each extreme point of Σ(G2) for the S3 quantum double, and

the associated (squared) quantum dimension. This number is the number of representatives of the

equivalence class. For example, the density matrix on the minimal diagram for the sector (r, r) can

be written ρ(r,r) = 1
2 |r, r〉〈r, r| +

1
2 |r

2, r2〉〈r2, r2|. The fact that there are two extreme points that

have the labels (µ, ν) = (Cr, Cr) on the two one-cycles of the handlebody (namely (g, h) = (r, r)

and (g, h) = (r, r2)) is an example of the need for the label λ in Eq. (C.1). Similarly, there are two

sectors labelled (Cs, Cs), namely (s, s) and (s, sr).

We now give the proof of the formula for the number of genus-g graph excitations

for the quantum double model with any gauge group, which we restate here:

Proposition 3.2 (Graph sectors for 3d quantum double). For 3d quantum dou-

ble with finite group G, the set (Cg) of superselection sectors of graph excitations

characterized by the information convex set of genus-g handlebody has

|Cg| =
1

|G|
∑
h∈G

|E(h)|g (3.2)

elements, where E(h) is the centralizer group of h : E(h) ≡ {k ∈ G|kh = hk}. |G|
denotes the order of finite group G. In particular when G = S3, |Cg| = 6g−1 + 3g−1 +

2g−1.
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Figure 53: The minimal diagram for genus-g handlebody.

To prove Proposition 3.2, firstly we need a simple lemma in group theory.

Lemma C.3 (Burnside’s lemma, or Cauchy–Frobenius lemma). Let G be a finite

group that acts on a set X. For each h ∈ G, denote Xh as the set of elements in

X that are invariant under h, i.e. Xh ≡ {x ∈ X|h · x = x}. The orbit of element

x ∈ X is the set of elements in X that x can be moved by elements of G. Then the

number of orbits in X under the action of G is equal to

1

|G|
∑
h∈G

|Xh| . (C.14)

Proof. The proof can be found in textbooks on abstract algebra, for example [93].

Proof of Proposition 3.2. The minimal diagram [45, 6] for genus-g handlebody con-

sists of 1 vertex v0, g links {a1, a2, . . . , ag} and zero plaquette.

The vertex term acts on the links by

Ahv0
|a1, . . . , ag〉 =

∣∣ha1h
−1, . . . , hagh

−1
〉
. (C.15)

Therefore the number of elements in Cg is equal to the number of orbits of set

{a1, . . . , ag} under the action of G (Here the group action of G is left multiplication

by h ∈ G and right multiplication by h−1 ∈ G). The invariant set {a1, . . . , ag}h
for h ∈ G is a set of group elements that commute with h, i.e. {a1, . . . , ag}h =

{a1, . . . , ag|a1h = ha1, . . . , agh = hag}. Hence, its size is |E(h)|g.

From Lemma C.3, the number of orbits of {a1, . . . , ag} under G action is

1

|G|
∑
h∈G

|E(h)|g . (C.16)

125



Proposition 5.10 (in particular Eq. (5.8)) implies that the number of extreme

points of the information convex set of the genus-g handlebody is related to the

fusion dimensions of the ball minus g balls by the following relation:

|Cg| =
∑

a1···ag+1

(
N1
a1···ag+1

)2

. (C.17)

For the case of the 3d quantum double model, Prop. 3.2 then implies

Proposition C.4.

1

|G|
∑
h∈G

|E(h)|g =
∑

a1···ag+1

(
N1
a1···ag+1

)2

. (C.18)

We can give a direct proof of this relation using character orthogonality.

Proof. Since N1
a1···ag+1

is real, we can write

∑
a1···ag+1

(
N1
a1···ag+1

)2

=
∑

a1···ag+1

∣∣∣∣∣ 1

|G|
∑
g∈G

χa1(g) · · ·χag+1(g)

∣∣∣∣∣
2

(C.19)

=
1

|G|2
∑
g,g′

g+1∏
i=1

(∑
ai

χai(g)χ?ai(g
′)

)
(C.20)

Character orthogonality says∑
a

χa(C)χa(C
′)? = δCC′

|G|
nC

(C.21)

where C and C ′ are conjugacy classes of G, and nC is the number of elements in the

conjugacy class C. This does not completely fix g and g′:∑
ai

χai(g)χ?ai(g
′) = δg′∈Cg

|G|
ng

. (C.22)
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So ∑
a1···ag+1

(
N1
a1···ag+1

)2

=
1

|G|2
∑
gg′

δg′∈Cg

(
|G|
ng

)g+1

(C.23)

=
1

|G|2
∑
g

ng

(
|G|
ng

)g+1

=
1

|G|2
∑
C

n2
C

(
|G|
nC

)g+1

(C.24)

=
∑
C

(
|G|
nC

)g−1

=
∑
C

|E(C)|g−1 . (C.25)

Figure 54: Left: Borromean rings of flux. Right: The Borromean fusion process can be described

via the merging of two solid tori into a genus-two handlebody, G2 (in light blue). The outcome of

the process is measured by the solid torus labelled ρ, which is contained in G2. In terms of the two

edges of the minimal diagram for the genus-two solid (with holonomies g and h), the curve labeled

ρ has holonomy ghg−1h−1 = [g, h].

Graphs from fusion of loops. Here we discuss two fusion processes of pure

fluxes. One is the fusion process depicted in Fig. 55, and the other is the Borromean

fusion defined in [6]. In each case, we can extract the probabilities for each possible

outcome by the following method. Consider the merging of two solid tori in the

respective extreme points µ and ν as in Fig. 52. The resulting state on G2 is the

maximum entropy state consistent with the marginals µ and ν on ABC and BCD.

From the definition of the quantum dimension in terms of the entropy, this state has

the form

ρ?µν =
∑

C(g,h),Cg=µ,Ch=ν

d2
(g,h)

D2
ρ(g,h). (C.26)

Define λ as the state of the solid torus indicated by the dashed outer curve in Fig. 52.

In terms of the minimal diagram, the associated group element is just gh. Define ρ as
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the state of another solid torus, the one indicated in Fig. 54. In terms of the minimal

diagram, the associated group element is the group commutator ghg−1h−1 ≡ [g, h].

In each case, the value of λ and ρ is specified by the representative (g, h). The

probability of a given fusion outcome can be read off from the values of λ and ρ in

each of the summands in (C.26) and their respective quantum dimensions.

Figure 55: Fusion of two fluxes on top of each other. µ, ν ∈ Cflux, and the result λ is another flux.

Each excitation is created by a membrane operator supported on a disk.

(µ, ν)
C(g,h) λ = Cgh ρ = C[g,h] d2

(g,h) p

(C1, C1) C(1,1) C1 C1 1 1

(Cr, C1) C(r,1) Cr C1 2 1

(Cs, C1) C(s,1) Cs C1 3 1

(Cr, Cr) C(r,r) Cr C1 2 1/2

(Cr, Cr) C(r,r2) C1 C1 2 1/2

(Cr, Cs) C(r,s) Csr Cs 6 1

(Cs, Cs) C(s,s) C1 C1 3 1/3

(Cs, Cs) C(s,sr) Cr Cr 6 2/3

Table 4: Here, we specify the states (µ, ν) of the subsystems along the two cycles of the genus

two solid, G2. Then we construct the maximum entropy state on G2 consistent with this data. In

that maximum entropy state, we can ask about the state on the various solid tori embedded in G2

depicted in Figs. 52 and 54.

Example C.5 (Two kinds of fusion of pure fluxes for S3 quantum double). In Table

4, we show the outcomes of these two fusion processes for the case with G = S3.

From this table, we can verify the relation Eq. (C.5). In the sectors involving a 1

on one of the two cycles, the relation holds trivially. In the sector (Cr, Cr), the label

k takes two values and the RHS of (C.5) is 2 + 2 = 4 = d4
r. In the sector (Cr, Cs),

there is a unique sector whose dimension is d2
rd

2
s. In the sector (Cs, Cs) there are two

sectors and the RHS gives 3 + 6 = d4
s.

128



More generally, it is not a mystery that equation (C.5) is satisfied in any quantum

double model: the |µ||ν| = d2
µd

2
ν states labelled |(g, h)〉〈(g, h)| with g ∈ µ and h ∈ ν

form a collection of orbits under the equivalence relation in Eq. (C.12). Each orbit

is labeled with some λ specified by λ = Cgh. (For given µ, ν, if there is more than

one orbit with the same λ, then the label k in (C.1) is required.) In any case, the

number of elements in the orbit labelled (µ, ν, λ)k is d2
(µ,ν,λ)k

, and therefore∑
k,λ

d2
(µ,ν,λ)k

= d2
µd

2
ν . (C.27)

We should give an example of the need for the label k in (C.1). In a quantum

double model with gauge group G, this arises when there exist g, h ∈ G such that

Cgh = Cgtht̄ (so that µ, ν, λ are the same for (g, h) and for (g, tht̄), but C(g,h) 6= C(g,tht̄),

so they have different orbits. An example where this occurs is G = A5, the group of

even permutations on five elements, with (g, h) = ((123), (123)), in cycle notation.

D Quantum double illustration of pairing mani-

fold relations

As a consequence of the fact that #2(S2 × S1) is a pairing manifold in two ways,

we found a number of relations between genus-two graph excitations and shrinkable

loops in §6.1. Here, for illustration purposes, we verify some of these relations in a

class of examples.

For the example of the quantum double model with G = S3, we can directly

calculate the LHS of (6.8) from Table 7 of [6]. Since the entries are all 1 or 0, the

LHS is just the number of ones in the table:∑
`∈Cloop

∑
a∈Cpoint

(Na
` )2 S3= 11. (D.1)

This agrees with the number of genus-two graph excitations for this model, verifying

(6.8).

More generally, we can verify (6.8) for an arbitrary quantum double model with

gauge group G, using (C.13) of [6] and its complex conjugate. Repeated use of
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character orthogonality gives∑
`∈Cloop

∑
a∈Cpoint

(Na
` )2 =

∑
`=(Cb,R`)

1

|Eb|2
∑

a∈Cpoint

∑
g,g′∈Eb

χR`(g)χ?Ra(g)χR`(g
′)?χRa(g

′)

=
∑
Cb

1

|Eb|2
∑

g,g′∈Eb

∑
R`∈(Eb)ir

χR`(g)χR`(g
′)?

︸ ︷︷ ︸
=
∑
h∈Eb

δg′,kgk̄

∑
a∈(G)ir

χ?Ra(g)χRa(g
′)

=
∑
Cb

1

|Eb|
∑
g∈Eb

∑
a∈(G)ir

χ?Ra(g)χRa(g)

︸ ︷︷ ︸
=|Eg |

(D.2)

=
∑
Cb

1

|Eb|
∑
g∈Eb

|Eg| (D.3)

= Cgenus 2. (D.4)

To see the last relation, note that for any f(b, g),∑
b∈G

∑
g∈Eb

f(b, g) =
∑
b∈G

∑
g∈G

δg∈Ebf(b, g) (D.5)

=
∑
b∈G

∑
g∈G

δb∈Egf(b, g) (D.6)

=
∑
g∈G

∑
g∈Eg

f(b, g) (D.7)

since g ∈ Eb ⇔ b ∈ Eg ⇔ gb = bg. Therefore∑
Cb

1

|Eb|
∑
g∈Eb

|Eg| =
1

|G|
∑
b∈G

∑
g∈Eb

|Eg| (D.8)

=
1

|G|
∑
g∈G

∑
b∈Eg

|Eg| =
1

|G|
∑
g∈G

|Eg|2 (D.9)

=
1

|G|
∑
Cg

n(Cg)|Eg|2 =
∑
Cg

|Eg| = C2. (D.10)

Similarly, we can verify the relation for the capacities, (6.9), for an arbitrary

quantum double model. The ingredients are:

da = dimRa = χa(1), d`=(Cb,R`) = n(Cb) dimR` = n(Cb)χR`(1) (D.11)
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and (C.13) of [6] again. This gives∑
`∈Cloop

∑
a∈Cpoint

dad`N
a
` =

∑
`=(Cb,R`)

1

|Eb|
∑

a∈Cpoint

∑
g∈Eb

χR`(g)χ?Ra(g)χR`(1)?χRa(1)n(Cb)

=
∑

`=(Cb,R`)

n(Cb)

|Eb|
∑
g∈Eb

χR`(g)χR`(1)?
∑
a∈Gir

χ?Ra(g)χRa(1)︸ ︷︷ ︸
=|G|δg,1

(D.12)

= |G|
∑
Cb

n(Cb)

|Eb|
∑

R`∈(Eb)ir

χR`(1)χR`(1)?

︸ ︷︷ ︸
=
∑
R`∈(Eb)ir

dim(R`)2=|Eb|

(D.13)

=
∑
Cb

n(Cb)
2 = D4. (D.14)
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