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Abstract

A system having macroscopic patches in different topological phases have no well-defined
global topological invariant. To treat such a case, the quantities labeling different areas
of the sample according to their topological state are used, dubbed local topological
markers. Here we study their dynamics. We concentrate on two quantities, namely local
Chern marker and on-site charge induced by an applied magnetic field. The first one
provides the correct information about the system’s topological properties, the second
can be readily measured in experiment. We demonstrate that the time-dependent local
Chern marker is much more non-local object than the equilibrium one. Surprisingly, in
large samples driven out of equilibrium, it leads to a simple description of the local Chern
marker’s dynamics by a local continuity equation. Also, we argue that the connection
between the local Chern marker and magnetic-field induced charge known in static
holds out of equilibrium in some experimentally relevant systems as well. This gives
a clear physical description of the marker’s evolution and provides a simple recipe for
experimental estimation of the topological marker’s value.
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1 Introduction

A defining property of topological insulators is the formation of robust conducting modes
between patches with different topological indices [1,2]. This property has many potential
applications such as dissipationless power lines [3], new generations of inductors [4] and
other electronic devices [5], as well as quantum computation [6]. Therefore, the ability to
detect topologically homogeneous patches inside a sample and control their position is of both
fundamental and practical interest.

Topologically inhomogeneous samples require special care from a theoretical perspective.
Global topological indices, e.g. Chern number [7], are not applicable directly to such systems,
as they characterise the whole system. Recently, a family of quasi-topological quantities,
called local topological markers, has been developed and studied [8–11]. In equilibrium, such
markers depend on the exponentially localized density matrix’s elements. Thus, one uses local
information to estimate a global topological index. Topological markers are not necessarily
strictly quantized; rather the average of the marker over large areas of a system tends towards
a quantised value [12]. The requirement that a marker is a local representative of a global
index does not produce a unique definition. Indeed, the Chern number has several local
counterparts [8–11,13], each coming with its own merits and drawbacks.

It is very tempting to use local markers to understand the evolution of the topological
properties of a system out of equilibrium. Every marker has its own “natural” time-dependency.
This raises the question, what physical information the time-dependence of markers contain
and whether it is the same information for different markers. Also, for dynamical systems
there are additional requirements for a quantity to be considered well-behaved. Perhaps most
importantly, one expects that a local quantity would have local dynamics. That is, the evolution
of a local quantity should obey a local continuity equation. In gapped systems one might also
hope that the information needed to calculate the value of a marker is local. In equilibrium
this condition follows [12,14] from the exponential decay of correlations with distance [15].

Several intriguing properties of time-dependent topological markers have been found
[16–19]. Local topological markers in finite systems can change [18,19], unlike the global Chern
number, which is unaffected by unitary evolution [16,20]. Previous work has conjectured [19]
that the dynamics of the local Chern marker [9] are governed by local currents emanating
from the system’s boundaries, defined implicitly through the lattice continuity equation on the
marker.

In the present manuscript we discuss the locality of the markers’ dynamics and the physical
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information contained in them for free fermionic systems out of equilibrium. We concentrate on
two quantities, the local Chern marker [9] and the localized version of the Streda formula [21,
22]. We demonstrate that in general, nonequilibrium markers are highly non-local quantities, in
contrast to the equilibrium case. That is, the calculations require knowledge of the density matrix
elements 〈ĉ†(r)ĉ(0)〉 at large distances |r|>> 1 in units of the lattice spacing. Paradoxically,
we will see that this non-locality leads directly in large finite samples to a local continuity
equation for the local Chern marker. Also, we argue that the equilibrium connection between
the local Chern number and the Streda-like on-site response holds under dynamics in some
experimentally relevant systems.

The manuscript is organized as follows. In Section 2 we introduce the systems that we study
and the local topological markers suitable for them. In Section 3 we define their counterparts
out of equilibrium and discuss the localization properties of their dynamics. Thereafter, the
limits when the connection between the local Chern marker and local Streda formula holds
are considered. In Section 4 we numerically test our observations in quench dynamics. In
Section 5 we numerically study the possibility to change the position of phase boundaries in a
finite 2D Chern insulator. For a start, we studied an almost adiabatic case. We conclude with a
discussion of possible directions for the further research and possible experimental verification
of our results.

2 Chern insulators and their local topological markers

We consider non-interacting lattice fermions in two spatial dimensions. In the absence of
symmetries other than U(1), topological phases of such systems are classified by the Chern
number C [7,23]. Physically, it corresponds to the Hall conductivity of the system. We suppose
that the Hamiltonian has the following form:

Ĥ =
∑

r1,r2

Hss′(r1,r2)ĉ
†
s (r1)ĉs′(r2) + h.c., (1)

where the index s stands for on-site degrees of freedom, e.g. spin and orbital. We assume
exponential decay of the Hamiltonian’s matrix elements with distance. In an insulating phase
this leads to exponentially decaying density matrices [15,24].

Strictly speaking, topological phases with C ≠ 0 [7] are realized in the thermodynamic
limit on a torus. Real-world samples subjected to open boundary conditions necessarily contain
topological boundaries. Furthermore, a sample may contain macroscopically large patches
in different phases. Local topological markers allow us to label different parts of the system
according to their “Chern number” in such settings [8–11].

Topological markers come in different forms and have been suggested based on different
lines of thought about the physics of Chern insulators. Let us briefly review the main types
and the physical intuition behind them. Kitaev’s marker [8] was proposed as a bulk estimation
of the energy flow at the edges of a system – the chiral central charge. The Bott index [10]
physically originated as an obstruction for Wannier orbitals to be exponentially localized. The
local Chern marker [9,25] was proposed as a local real space estimation of the Chern number.
Finally, local response functions [13,22] can be used to extract the information about the Hall
conductivity, and thus amount to a topological index.

In the following we concentrate our attention on the two local markers: the Local Chern
Marker (LCM) and a local version of the Streda formula for the Hall conductivity [21].

Local Chern Marker can be considered as a localized form of a generalization of the Chern
number suitable for systems without a notion of momentum space, as appeared for the first
time in Ref. [26]:

C(r) = −2πi Tr
�

δ̂r P̂ X̂ P̂ Ŷ P̂
�

+ c.c.= Tr
�

δ̂rĈ
�

. (2)
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where δ̂r =
∑

s |rs〉〈rs| is the the single-particle projection to a site at the position r, with s
labelling any on-site degrees of freedom, P̂ =

∑

i∈occ |ψi〉〈ψi| is the projector to the occupied
single-particle states. X̂ and Ŷ are the position operators. We use the notation Ĉ for the Chern
marker operator Ĉ = −2πi P̂ X̂ P̂ Ŷ P̂+h.c. The locality of the marker results from the exponential
localization of the projector P̂(r,r′) in gapped systems [24].

Local Streda Marker. The LCM can be connected to localized Hall response. Explicitly
the connection was demonstrated in Ref. [13] for a local cross-conductivity. Less rigorously,
a thermodynamical argument was used [11, 12] to connect the LCM to the response in the
form of a localized Streda formula. Throughout the manuscript we will call it the local Streda
marker:

CS(r) = φ0
δn(r)
δφ

= φ0 Tr

�

δ̂r
δP̂
δφ

�

. (3)

Here, the variation of the average on-site density n(r) is taken with respect to a uniform
magnetic field Bz perpendicular to the sample, with a flux φ through a unit cell. The field is
supposed to be turned on adiabatically. Throughout the paper we will measure magnetic flux
in units of the flux quanta φ0 =

2πħh
e .

In Appendix A we demonstrate that the two markers coincide in the equilibrium at least in
two limits. First, along the same lines as in Ref. [27] we prove the equivalence for spectrally flat
two-band Hamiltonians. Second, we prove it for translationally invariant patches of systems
with a symmetric spectrum.

For the following discussion we would also need explicit corrections to the projectors linear
in φ. In Appendix A, we demonstrate, that in the two discussed limits the corrections are:

δP̂
δφ
= πi
�

Q̂X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ Q̂
�

+ h.c.= −2πi P̂ X̂ P̂ Ŷ P̂ +πi(X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ ) + h.c.. (4)

Let us note that in general the Streda marker and Local Chern marker do not coincide even
in equilibrium. For instance, while in the presence of weak diagonal disorder their values are
very close to each other [11], however once disorder is introduced in the hopping amplitude,
the discrepancy between the two becomes quite noticeable, see Appendix A.

3 Topological markers’ dynamics

3.1 Local Chern Marker

An appealing approach to define LCM out of equilibrium is to use the same function of the
projector onto filled states as in Eq. (2) and allow the projector to evolve [16–19]:

C(r, t) = −2πi Tr
�

δ̂r P̂(t)X̂ P̂(t)Ŷ P̂(t)
�

+ c.c., (5)

Thus defined, the local Chern marker is guaranteed to give correct topological information if a
steady-sate is reached with well defined topological properties.

Previous works on the dynamics of topological markers [16,17,19] have revealed several
important features. First, in finite systems the average of such topological markers can change
in contrast to global topological indices [16,18,20]. Importantly, their evolution reflects the
change in a topological phase [16,17,19]. Second, it was conjectured, based on the simulations
that the dynamics of the LCM is governed by local currents [19].

The equations of motion for the Chern operator Ĉ are not the Heisenberg ones because Ĉ

depends on an instantaneous state of a system. Therefore, the operator evolves even in the
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Figure 1: Real-space diagrams corresponding to the LCM C(r) (2) and the two
contributions Jc(r) and M(r) to its time-derivative, see Eq. (6). All the quantities
are the sums of terms represented by all possible polygons in the figure. Each green
line on the diagram corresponds to a multiplication by the density matrix element
connecting two sites. A circle with a greek letter in it, corresponds to multiplication
by x or y component of a site position r. Distinct letters imply distinct components.
The blue line represents the Hamiltonian matrix elements between a pair of sites. The
red line represents matrix elements of the current operator Ĵα = −i[Ĥ, R̂α]

Schrodinger picture. Explicitly the time derivative of the marker can be expressed as:

Ċ(r, t) = −2πTr
�

δ̂r[Ĥ, P̂]X̂ P̂ Ŷ P̂ + P̂ X̂ [Ĥ, P̂]Ŷ P̂ + P̂ X̂ P̂ Ŷ [Ĥ, P̂]
�

+ c.c.

= −2πTr
�

δ̂r[Ĥ, P̂ X̂ P̂ Ŷ P̂]− P̂[Ĥ, X̂ ]P̂ Ŷ P̂ − P̂ X̂ P̂[Ĥ, Ŷ ]P̂
�

+ c.c.

=
∑

ri

Jc(r,ri) +M(r).
(6)

Here in the last line we have separated two contributions. The usual Heisenberg-like term
Jc(r):

Jc(r, t) = i Tr(δr[Ĥ(t), Ĉ(t)]), (7)

describes the current of the marker to neighboring sites. The remaining part in the r.h.s. of
Eq. 6, denoted as

M(r, t) = 2πTr
�

δ̂r P̂[Ĥ, X̂ ]P̂ Ŷ P̂ + δ̂r P̂ X̂ P̂[Ĥ, Ŷ ]P̂
�

+ c.c., (8)

describes “teleportation” of the marker values from a given site to all sites it is correlated with,
as we shall see in Section 4.3 and in more detail in Appendix D. This teleportation is local
only when the projectors are localized. That is, if the matrix elements of P̂ in the position
basis satisfy P(r,r1) ≈ 0 for |r − r1| ≫ 1. For out-of-equilibrium dynamics the long-range
correlations are also important. Surprisingly, in the presence of long-range correlations the
equations of motions are almost exactly local in large finite samples.

Dynamics of the Chern marker are dominated by the Jc term whenever the correlations are
spread across the sample. That is, when the r matrix elements of the instantaneous projector
P̂ in the position basis are non-zero at large separations: P(r,r1) ̸= 0 for |r− r1| ≈ N , where
N is the system size. Then the following holds:

Jc(r)
M(r)

∼ N (9)
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This can be seen most clearly from the real-space diagrams, corresponding to the terms shown
in Fig.1. These are drawn to represent the trace in definitions 7 and 8 as a sum in the position
basis. Both Jc(r) and M(r) can be represented as a sum of all possible quadrangles with the
sides representing the matrix elements of P̂ and Ĥ. In the two vertices a contribution to the
current term Jc(r) is multiplied by the x and y coordinates of a point. In the case of long-range
correlations, these coordinates can be of the order of the systems’ size N . On the other hand,
the M(r) term is multiplied by a coordinate of order N only once, as one of the coordinate
operators is commuted with the Hamiltonian. Thus, the H(r1,r2)(rα1 − r

α
2 ) is of order unity,

where rα stands for x or y component of the vector r. Therefore Eq. (9) holds, provided
that the largest contribution to Jc(r) and M(r) are due to the terms corresponding to the
long-ranged diagrams.

When Jc(r) >>M for all times, the Chern marker always satisfies the lattice continuity
equation and the Chern marker can be approximated by

C(r, t)≈ Tr
�

δ̂rÛ(t)Ĉ(0)Û†(t)
�

≡ C(r, t). (10)

Here C(0) is the Chern marker operator at the initial moment t = 0. Note the von Neumann-like
ordering of the evolution operators Û(t) around the operator C(0).

Eq. (10) can be used for estimation of LCM for all the times of evolution in large translation-
ally invariant patches. In the thermodynamic limit on torus bulk marker can not change [16,20].
Evolution of the marker in such systems always starts at the boundaries and then penetrates
the bulk at the Lieb-Robinson [28] velocity vLR. Therefore, in the bulk, the marker starts to
evolve only when long-range correlations with the edges are built.

3.2 Local Streda Formula

One could use the same approach as with the local Chern marker to define the local Streda
marker out of equilibrium . That would result in Eq. (4) with the projectors P substituted
with the time-dependent ones P(t). This way the equivalence between local Chern marker
and local Streda marker would hold in the two discussed limits. However, from experimental
point of view this approach requires ability to freeze the evolution of P(t) at the moment t and
then adiabatically slow turning on uniform magnetic field. This is hardly achievable in real
experiment.

In a real experiment, one would rather apply magnetic field to an initial state and when
allow the system to undergo dynamics. From this perspective, time dependent CS should be
defined as:

CS(r, t) =
δn(r, t)
δφ

= Tr

�

δr
δP̂(t)
δφ

�

, (11)

where we have assumed that at t = −∞ the magnetic field was adiabatically turned on. Thus,
at t = 0 the system is initialized in the ground state of the system with a vanishingly small
uniform magnetic field Bz perpendicular to the sample with a flux φ through each unit cell.
Importantly we require that no magnetic field is present during the evolution. Otherwise
local Streda marker does not behave well at late times of order t ≈ 2N

vLR
, see the discussion in

Appendix B.
Let us stress that CS(r, t) does not guarantee to convey the correct information about a

steady-state’s topological properties. However in some cases the correspondence between
CS(r, t) and C(r, t) can be established.

Suppose that at time t = 0 a system is prepared in the ground state of Hamiltonian such
that the conditions for the formula Eq. (4) are met. Therefore we can express the evolution of
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the correction to the projector, to first order in B, as:

δP̂(t)
δφ

= Û(t)Ĉ(0)Û†(t) +πiÛ(t)
�

X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ − h.c.
�

Û†(t). (12)

If only the first term is taken into account, one come to an approximation:

CS(r, t)≈ Tr
�

δ̂rÛ(t)Ĉ(0)Û†(t)
�

≈ C(r, t). (13)

The other terms in Eq. (11) give no contribution to the marker in the equilibrium, see
Appendix A. In time-dependent case, they are responsible for deviations of the local Streda
marker from both C(r, t) and C(r, t). Numerically we have found that for the times C(r, t)
and C(r, t) are different, these additional terms put the local Streda marker between the two,
making CS(r, t) even a better estimation for a time-dependent local Chern marker.

The locality of the Streda marker evolution is evident. Indeed, the markers’ evolution can
be described in terms of a local continuity equation by comparing the evolution of two systems.
One that evolving in a probing magnetic field and another that evolves without it:

ĊS(r, t) = −∂t
δn(r, t)
δφ

= −i
δ[H, n(r)]
δφ

= −
δ
∑

r1
J e(r, r1)

δφ

ĊS(r, t) = −divJc
S(r, t).

(14)

Here we have denoted the variation of electric current w.r.t. probe magnetic field as the Streda
marker current: Jc

S(r, r′, t) = −δJe(r,r′,t)
δφ . Eq. 11 forces the markers’ dynamics to be local.

Therefore, one can think about the currents of the local Streda Marker in terms of the real
electron currents caused by a uniform probe magnetic field.

4 Quench Dynamics

In this section we discuss the markers’ evolution after a sudden change of parameters in
concrete models. We shall see three different regimes of the markers’ dynamics. First, we
discuss examples of quench dynamics in a sample with a translationally invariant bulk. Here,
Jc prevails over M over the whole evolution. Therefore, the Streda marker and local Chern
marker should be approximately equal to each other. Next, we consider quench dynamics in
the Hofstadter-Harper model [29,30]. In this case, the translation invariance of the bulk bulk
is formally broken. As we shall see, it is enough to allow the marker to evolve in the bulk from
the very start. Thus, at early times M and Jc are comparable. As we shall see, it results in a
larger discrepancy between the Streda and Chern markers. Finally we will present an example
of the opposite limit, M≫ Jc . In this case the Chern and Streda marker are very different.

4.1 Translationally Invariant Bulk. QWZ model.

We use a Chern insulator model introduced in Ref. [31] by Qi, Wu and Zhang (QWZ) to
illustrate the case of a translationally invariant bulk. It is a two-band particle-hole symmetric
model, thus its spectrum is symmetric with respect to the Fermi level. Therefore, Eq. (4) applies
to the case. The QWZ Hamiltonian is given by

ĤQW Z =
∑

r

th

�

ĉ†
s (r)

σz − iσx

2
ĉs′(r + ex) + ĉ†

s (r)
σz − iσy

2
ĉs′(r + ey) + h.c.

�

+

+
∑

r

m(r, t)ĉ†
s (r)σz ĉs′(r),

(15)
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(a)

(b)

(c)

C(r,t)

Figure 2: Quench dynamics in the QWZ model. (a) Distribution of the LCM (5) over
a 25x25 sample at different times. (b) Distribution of the LCM C(r, t), local Streda
marker CS(r, t) (11) and the norm of matrix elements |P(re,r, t)| along the middle
y = 0 slice of the system. The site re is chosen at the left edge. Right (blue) y-axis
is for the projector matrix elements |P(re,r, t)|; left (red) y-axis is for the markers’
distributions. The red arrows points direction of the maximum of the correlation
propagation front. The blue shadows mark the area there markers has already started
to evolve. (c) Distributions of Jc(r, t) (7) and M(r, t) (8) along the middle y = 0
slice of the system at different times.

where the Pauli matrices σi act on the spin subspace indexed by s, ex and ey are the unit
vectors to the neighboring sites of a square lattice, th is the hopping parameter, which we set
to one.

In the translationally invariant case where m(r) is constant, the Chern number is determined
by the parameter m1:

−2< m< 0 topological; C = 1
0< m< 2 topological; C = −1
m< −2, m/ > 2 trivial; C = 0

(16)

Let us consider a finite system subject to open boundary conditions initialized in the ground
state of the Hamiltonian H0 with m equal to −1. This corresponds to a topological phase
with C = 1. Then at t = 0, m suddenly changes its value to −3, corresponding to a trivial
Hamiltonian H1. Thus:

Û(t) = exp
�

−iĤ1 t
�

(17)

The edges are characterized by long-range correlations and thus Jc is larger then M due to the
larger contribution from the long ranged diagrams. As time progresses, the points at the edges
become correlated with the points at the bulk. Therefore, the value of the marker starts to
evolve also in the bulk. The spread of the LCM currents to the bulk is presented in Fig. 2. The
top row shows the distribution of the local Chern marker over a finite sample at different times.

1Note, that the model appears in the literature in different flavours. Also, topological indices used, may differ in
sign. We hold to the conventions of the book [32], so that the topological index and the Hall conductivity have the
same sign.
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(a)

(b)

(c) (d)

(e)
F(tf)

tf

Figure 3: Quench dynamics in QWZ. (a) Time evolution of Jc(rb) and M(rb) (6)
at a fixed site rb = (−7,−6) in the bulk of a 25x25 sample. Vertical red line marks
the moment t f = 5 when both Jc(rb, t) and M(rb, t) have their first pronounced
extrema. (b) Time evolution of the LCM C(rb, t) at rb and integral contribution to
the local Chern marker C(rb, t) from Jc(rb, t) and M(rb, t) (c) The square root of
the ratio of spectral powers of Jc(rb, t) and M(rb, t) (see Eq. (18)), as a function of
the system’s linear size N . Insets demonstrates ten the most contributing real-space
diagrams as in Fig. 1 for Jc(rb, t f ) and M(rb, t f ). The diagrams are plotted above
the distribution |P(rb,r)|. (d) The contribution of diagrams of the length L to the
Jc(rb, t f ) and M(rb, t f ). L is defined as perimeter of each polygon in Fig. 1 in the
Manhattan metric. (e) The square root of the ratio of spectral powers of Jc(rb, t) and
M(rb, t) F (see Eq. (18)) as a function of the upper limit t f of the integration over
time.

The speed of the markers’ currents front propagation is determined by the speed of prop-
agation of the correlations. This is illustrated in the middle row of Fig. 2, where we present
the distribution of the LCM C(r) along the middle y-section of the sample and the norm of
projector elements P(re,r) between site at the left boundary re and all other sites in the slice.
One can see that speed at which the correlator front propagates through the system is identical
to the speed of the marker currents. Two points become correlated when they could have
exchanged information. For non-interacting particles, the fastest way to convey information
is to produce an entangled particle-hole pair in the middle between the two sites. Then the
particle should propagate to one of the sites, while the hole to the other [33]. Therefore, the
Lieb-Robinson velocity and the speed of the LCM’s current propagation is vLR = vmax

h + vmax
p ,

in correspondence with the fitting of Ref. [19].
Let us now inspect more closely the suggestion that

Jc(r)
M(r)

∼ N . (9)

Both Jc(rb) and M(rb) oscillate and reach zero at some moments. Therefore we should
rather characterize the ratio of the amplitudes of their oscillations. We investigated the ratio of
their spectral power: P =

∫∞
0 dω|Jc(rb,ω)|2/|M(rb,ω)|2. Here Jc(rb,ω) and M(rb,ω) are

Fourier transforms of Jc(rb) and M(rb). According to Parseval’s theorem it is equal to the time
integrated ratio of their modulus squared: P =

∫∞
0 d t ′|Jc(rb, t ′)|2/|M(rb, t ′)|2. This quantity

should be quadratic in N according to Eq. (9). Therefore, we take a square root of the spectral
power to obtain a quantity linear in N :

9
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(a) (b)

(c)

Figure 4: Correspondence between CS and C . Time dependencies CS(r, t), C(r, t)
and C(r, t), Eq. (13) averaged over different number of bulk sites of a 64×64 sample.
The insets demonstrates schematically the sites over which the markers are averaged.
CS(r, t) was calculated as a numerical derivative of the density with respect to an
external probe magnetic field. (a) The markers are averaged over almost all the bulk
sites, the indent from the boundary is equal to two sites. (b) The average is taken over
a small 5× 5 region, with the coordinates (−15,−5) of the left bottom corner.(c)Top
row shows propagation of correlations between the site (−15,−5) and all the others.
Bottom row demonstrates the propagation of the density from the edge states to the
bulk.

F =

√

√

√

∫ t f

0

|Jc(rb, t ′)|2

|M(rb, t ′)|2
d t ′, (18)

at a fixed site rb in the bulk. The time t f is chosen such that the correlations are spread across
the whole system. In our units the speed of correlation propagation is vLR ≈ 2. Therefore, we
took t f = N/2. As can be seen in Fig. 3(e), the ratio Eq. (18) reaches a plateau close to t f .

F depends on the number of sites N linearly to a very good approximation, as demonstrated
in Fig. 3c. This can be attributed to the contribution from the long ranged diagrams in Fig. 1.
Both Jc(r) and M(r) get the largest contribution from such diagrams, as illustrated in Fig. 3e,
where the contribution to Jc(rb) and M(rb) from the diagrams of length L is plotted at time
t = 5, when Jc(rb) and M(rb) are reaching their first pronounced maximum. Also, the ten
diagrams giving the largest contribution are shown in the insets of Fig. 3c. These diagrams are
plotted on top of the |P(rb,r)| distribution. We can see that the typical diagrams contributing
the most are these, connecting the site rb to the front of the correlations’ spread.

Given that Jc ≫M for all times, we might expect that the approximation (13) should work.
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ϕ= 1
6
ϕ 0ϕ= 1

3
ϕ 0

(a)

(b)

(c)

(d)

C(r,t)

Figure 5: Quench dynamics of Harper-Hofstdater model. (a) The spectrum of
the Hofstadter-Harper model [30] shown against the strength of uniform magnetic
field and at particular values φ = 1/3φ0 and φ = 1/6φ0. The arrows marks the
initial φ = 1/3φ0 and post-quench φ = 1/6φ0 values of the field. The Hofstadter’s
butterfly is readopted from Ref. [34] (b) Distribution of the LCM over a 25x25 sample
at different times. (c) Distribution of the LCM C(r, t) and CS(r, t) along the middle -
y = 0 slice of the system. (d) Distributions of the Jc(r) and M(r) along the middle -
y = 0 slice of the system at different times.

The correspondence between CS(r, t) and C(r, t) is illustrated in the middle row of Fig. 2 and
in Fig. 4. At some moments the difference between CS(r, t) and C(r, t) is noticeable as we can
see at the times from around t = 13 till t = 19 in Fig. 2 and at the times around t = 20 in
Fig. 4. At these times correlation front is being reflected from the border and passes the site or
the area, as can be seen in top row of Fig. 4(c). Therefore, at these times local correlations
become more important. From the perspective of the local Streda marker, the times of deviation
correspond to the edge states density propagating through the site or area we are interested
in, see bottom row of Fig. 4(c). However, when the average over all bulk sites is taken, the
approximation (13) works better, see Fig. 4. Remarkably, it holds for very long times. In fact
we have not found upper bound limitations in time for Eq. (13).

4.2 Hofstadter-Harper model

Now, let us examine how the situation changes in the absence of translational symmetry in
the bulk. The conceptually simplest way to destroy it is to add an on-site disorder to the bulk.
We consider this case in Appendix C. Here, we discuss a more subtle example of a formal
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translation symmetry breaking. We discuss a quench across a topological phase transition in
the Harper-Hofstadter model [29,30,35]. It describes a single-band of electrons on a square
lattice in the presence of the uniform magnetic field. The Hamiltonian reads:

Hhh = −
∑

〈i, j〉,s

�

t i jc(ri)
†
s c(r j)s + h.c.
�

. (19)

The magnetic field is coupled to the system using Peierl’s substitution [36], which introduces a
site-dependent phase factor in the hopping matrix t i j

t i j = th · e
i 2π
φ0

∫ r j
ri

A(r)·dr
. (20)

Here, t i j denotes the hopping amplitude between neighboring sites at position ri and rj. The
spectrum of the Hamiltonian is the famous Hofstadter butterfly presented in Fig. 5(a). We
study quenches from the uniform magnetic field with a flux φ = 1/3φ0 through a unit cell to
one with φ = 1/6φ0, at a fixed chemical potential µ= −1/3 th. This corresponds to quench
from C = 1 three band system to a C = 2 six-band model, see Fig. 5(a).

In the symmetric gauge, the vector potential of a uniform magnetic field is given by
A(r)= 1

2 B(−y, x , 0). Here, both the initial and post-quench Hamiltonian cannot be diagonalized
in momentum space. Therefore, the preservation of the Chern number is not guaranteed by the
arguments in Refs [16,20]. As we shall see, in this case the evolution starts in the bulk as well
as at the boundaries. This is rather counter-intuitive, as the Hamiltonian can be diagonalized in
momentum space when one is working in the Landau gauge, provided that φ equals a rational
multiple of the magnetic flux quantum φ0 (i.e., φ= p

qφ0). Therefore it might be tempting to
conclude that the Chern marker can change its value only at the boundaries. That is indeed
what would happen if we were working in the Landau gauge. In fact, the two situations are not
gauge equivalent. At the very moment of quench (at t = 0) they differ by a very large electric
field applied to the system, see Ref. [37] for the details. Therefore the density evolution in the
two situations differs significantly.

Several differences w.r.t. to the QWZ model are noticeable. First, the evolution of the
LCM no longer starts at the edges, marker currents are present throughout bulk, see Fig. 5(b).
Therefore, at short times there is no guarantee that Jc(r, t)≫M(r). In fact, as can be seen
in Fig. 5(d), for some regions M(r) exceeds Jc(r, t). The difference in C(r, t) and CS(r, t) is
more pronounced than in the QWZ model. However, some resemblance can be still observed.
This suggests that the correspondence between C(r, t) and CS(r, t) might hold more generally
then in the discussed limits of symmetric or flat spectra, although some averaging procedure
might be necessary.

4.3 Non-local transport of the marker.

The currents described by the M term cannot be localized to neighboring sites. Most clearly,
it can be observed in the following exaggerated example. The scheme is shown in Fig. 6(a).
Consider a translationally invariant sample in the topological phase. At time t = 0 a central
site is cut off from the rest of the system. That is, all the hoppings to and from the site are
quenched to zero. Simultaneously, the on-site parameters are changed. If C(r, t) were to satisfy
a lattice continuity equation, no change of the marker would be observed on that site, however
as can be seen in Fig. 6(b), the on-site value of the marker does change.

Jc measures the distance in terms of the instantaneous Hamiltonian. That is Jc = i[Ĥ(t), Ĉ(t)]
is non-zero is only for the two sites i and j connected by the hopping term Ĥ(r1,r2) and Jc
decays at least as fast as the Hamiltonian does. Therefore, in the setting depicted in Fig. 6(a),
Jc vanishes at the central cite, as the hopping parameters from it are set to zero. Therefore, in
this particular case the evolution is governed solely by M.

12



SciPost Physics Submission

b
connected site
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с
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e

Figure 6: The dynamics of the LCM under quench isolating a single site in the
sample’s middle. a The scheme of the "cutt-off" scenario. At the t=0 the hoppings
from the central site are set to zero. Simultaneously the on-site parameters are
changed. b-c LCM C(r, t) (5) and the local Streda marker CS(r, t) (11) at the middle
section of the system at different moments of time. d-e The color map shows the
distributions of the markers. Blue arrows show topological marker currents defined
in Appendix D for LCM and in Eq. (14) for the local Streda marker.

The term M depends on the instantaneous Hamiltonian in a subtle way. M inherits its decay
properties from the instantaneous projector P, as can be seen from the real-space diagrams
Fig. 1. Therefore, it describes the transport of the marker from a site to the sites with which
it is most strongly correlated. In Appendix D we elaborate the explicit form of the non-local
marker’s currents.

The evolution of the Streda based marker CS is determined by local continuity equation
Eq. (14). Thus at the central cite its value cannot change, see Fig. 6c. As we can see, the on-site
behaviour of the two markers is very different.

5 Slow markers’ dynamics

In an inhomogeneous system, the spatial distribution of the topological regions can have a
decisive effect on the material’s properties. Indeed, the ability to control and modify the local
topological properties – and thus the position of the zero modes on the boundaries of topological
regions – would prove useful for a wide number of applications, such as dissipationless lines and
new generations of electronic devices [3–5,31]. In order to effectively control such properties in
systems undergoing dynamics, one must also be able to monitor these topological characteristics
through the use of a local marker. Here we consider a simple example of a problem of this kind.
That is, observing the slow transformation of a finite topological domain embedded in a larger
topologically trivial system. Let us describe in more detail the protocol under investigation.

Temporal Protocol — Let us consider the slow movement of a topological region inside an
otherwise trivial sample as presented in Fig. 7. After a time τ, the domain with “topological”
parameters shifts by one site to the right under a linear ramp. The topological phase in the
model Eq. (15) is controlled by the parameter m at each site, as dictated by Eq. (16). In our
case m1 = −3 and m2 = −1 were chosen for the trivial and topological phases respectively.

13



SciPost Physics Submission

c

Figure 7: Scheme of the setting. a The domain with ”Chern number” C = 1 (blue in
figure) is drifting inside a topologically trivial sample (grey C = 0). The dark blue
arrows indicate the drift direction of the topologically non-trivial domain. b The
initial distribution of the LCM. c The evolution of the characteristic parameter m,
controlling the phase in the QWZ model (15).

ym

x

a b

c

d e f g

Figure 8: The movement of the “topological” domain inside the Chern insulator
in the trivial phase. a The evolution of LCM (5) corresponding to one-site shift of
the area in the slice indicated in c. b Corresponding evolution of y component of
electric current in units of etha/ħh. The current was obtained after shifting of chemical
potential by 0.1∆. d-g The spatial distribution of the markers and their currents on
the lattice at different times. τ = 100 ħh/th. Lattice size is 22×21, topological domain
size is 10 by 10.

Initially, the system is prepared in the ground state of H(0). For the domain to move, we change
the parameter m at the right boundary of the domain from m1 to m2. Thus, m(x , t) may be
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parametrised as follows

m(x , t) =



















m1, for x < x l + [t/τ]
m2(1− t/τ) +m1 · t/τ, for x = x l + [t/τ]
m2, for x l + [t/τ]< x < xr + [t/τ]
m1(1− t/τ) +m2 · t/τ, for x = xr + [t/τ]
m1, for x > xr + [t/τ],

(21)

where x l , xr denote the two sites on the left and right border at the beginning of time protocol
respectively (see Fig. 7) and τ determines the period of protocol over which the domain shifts
by one site.
Numerical results — Does a shift in the parameter’s distribution mean a real shift of the
topological domain? To address this question, we calculate the electric currents generated by
shifting the position of the chemical potential of the system by ∼ 0.1∆. The amplitude of the
electric currents in the y-direction in the middle of the sample and the distribution of currents
on the bonds of the lattice is presented in Fig. 8 b-c. The shift of edge currents confirms that
the topological domain has moved one site to the right.

As the system evolves, the distribution of the marker changes. The distribution of the local
Chern marker follows the shift of the topological area, provided that the transformation is
sufficiently slow. Fig. 8 a demonstrates how the distribution evolves over a timescale τ= 100.
In this regime, the distribution resembles that of the equilibrium ground state transferred as a
whole one site to the right.

Local currents of the marker were observed near the borders of the topological domain.
These currents are shown by the arrows in Fig. 8 d-g. The border plays the role of the charge
reservoir for the bulk in the presence of a small magnetic field.

6 Discussion

Let us summarize the main results. We have demonstrated that out-of-equilibrium topologi-
cal markers are highly non-local objects, due to a very large contribution from long-ranged
diagrams presented in Fig. 1 to the markers’ value. Surprisingly, the long-range character of
the correlations allows us to approximate the dynamics with a local continuity equation. We
have found that the approximate local continuity equation works well for all the times in large
translationally invariant patches. In such systems evolution always starts at the boundaries
between the patches and then penetrates the bulk with the Lieb-Robinson velocity [28].

We have found that the markers are able to evolve in the bulk at the very early times
in a large patch with a broken translation symmetry . We observe it in a quench dynamics
of disordered systems in Appendix C. Remarkably, even a seemingly formal breaking of the
translational symmetry, as in Hofstadter-Harper model treated in the symmetric gauge is enough
to change the character of the evolution. In this case the local continuity equation approximates
dynamics of the marker at late times only, when the correlations are spread across the sample.

The local continuity approximation allows us to connect the local Chern marker and on-site
magnetic field induced charge in systems containing large translationally invariant patches.
In such systems the local Streda marker can be used to estimate local Chern marker values.
The experimental recipe is to prepare a system in two ground states: one with a small uniform
magnetic field and another without. Then both samples should undergo the same evolution,
during which the densities should be compared. Let us stress the dynamical Streda marker
guaranties to provide topological information about the system only when it is connected with
the local Chern marker. Our numerical result hints that the connection between the local Chern
marker and the magnetic field response should hold more generally than we have proved
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analytically. One might attempt to prove the equivalence of the markers when averaged over
space and time. This might allow to obtain analytical results for disordered and many-band
systems.

The setting we have studied may be realized in experiment. The local Streda marker in an
inhmogeneous magic-angle twisted-bilayer graphene has been studied in [38]. The technique
is based on precisely measuring the magnetization using a SQID, while varying the filling in the
system. We expect that this technology can be effectively used to read the value of the Streda
response in a system undergoing dynamics. Also, modern cold atom and photonic platforms
have the technologies to create and control topological interfaces [39–41] in a single device.
For a Streda marker, the dynamics of the marker can be traced by the density measurements
only.

Out of equilibrium, the local Chern marker depends on the elements of the single-particle
density matrix at very large distances, as we have demonstrated. These are much harder to
measure in practice [42]. At equilibrium in a system with a synthetic dimensions the local
Chern marker was recently reconstructed directly [43]. Hopefully, it might be possible to track
its evolution as well.

Let us suggest possible extensions of our work. Interacting Chern insulators – in particular,
fractional Chern insulators – provide a very interesting context in which to apply a Streda-based
Chern marker. Its equations of motion can be applied to many-body systems as they do not rely
on single-particle projectors. In an interacting system, the projector onto the filled states is not
defined, complicating the generalization of such local markers [44]. On the other hand, recent
equilibrium calculations indicate that the Streda-based formula may be used as a local marker
for fractional phases [45]. Another important task is to find an optimal method for controlling
the distribution of topological properties. This requires further analytical and numerical studies
of non-homogeneous topological systems out of equilibrium.
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A Local Streda Marker in Equilibrium

The connection between the local Chern marker and local Streda formula have been noticed in
Ref [11]. It was made on basis of the Maxwell relations and connected the averages of local
Chern marker and local Streda formula over large areas in thermal equilibrium. The elaborated
version of the argument can be found in Ref [12]. However, this does not guarantee the local
equivalence of the two quantities. In fact even in the presence of a weak diagonal disorder LCM
and local Streda marker are not equivalent to each other. This is shown in Fig. 9(a). There the
LCM and local Streda marker were calculated numerically for the QWZ model Eq. (15) in the
presence of a gaussian disorder in on-site magnetization m. When a randomness introduced in
the hopping elements, the difference becomes more apparent, see Fig. 9(b).

(a) (b)

Figure 9: Topological markers in the presence of disorder The local Chern marker
C(r) (2) and on-site Streda response CS(r) (3) in the middle section in disordered
QWZ model. a Weak gaussian disorder with the mean value ∆m = 0.1 is added to
the on-site magnetization m in the QWZ model Eq. (15). b Weak gaussian disorder
with the mean value ∆th = 0.1 is added to the hoppings in the QWZ model Eq. (15).

However, for two-band systems we will prove the equivalence of the Chern markers in
two limits. Namely, the equivalence holds in the narrow band limit and in the particle-hole
symmetric systems. In fact, we shall need more out of equilibrium. Dynamics of the LCM
is determined by the non-diagonal elements of the Chern marker operator. While the local
Streda marker requires the knowledge of the first-order corrections to the projectors to the
filled states. Therefore we should prove Eq. (4). In the presence of a magnetic field hopping
matrices between a pair of sites modifies according to the Pierls substitution [36]:

H(r1,r2) = H(r1,r2) · e
i 2π
φ0

∫ r2
r1

A(r)·dr, (22)

where A(r) is vector potential. We chose symmetric gauge A(r) = 1
2B × r. For a vanishingly

small uniform magnetic field Eq. 22 can be Teylor expanded to the first order in flux φ = B ∗ a2

through a unit cell of area a2. We set flux quantum φ0 = 1, a is set to one as well. The first
order correction to the Hamiltonian is given by:

ĤB = iπφ(X̂ Ĥ Ŷ − Ŷ Ĥ X̂ ), (23)

First order corrections to projectors P̂ to the filled states can be obtained from the standard
perturbation theory:

δP̂
δφ
=
∑

n∈occ.,m

|m〉〈m|ĤB|n〉〈n|
ϵn − ϵm

+ h.c.=
∑

n,m

|m〉〈m|Q̂ĤB P̂|n〉〈n|
ϵn − ϵm

+ h.c. (24)

Here Q̂ is projector to the empty states: Q̂ = 1 − P̂ and ϵ are the eigenvalues of the
unperturbed hamiltonian Ĥ. In the second equality we used the fact that corrections to a
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state |n〉 below the Fermi level proportional to a vector corresponding to a filled state |m〉 gets
canceled out by the hermitian conjugate term in Eq. (24)

∑

n,m∈oc.

|m〉〈m|P̂ ĤB P̂|n〉〈n|
ϵn − ϵm

+
∑

n,m∈oc.

|m〉〈m|P̂ ĤB P̂|n〉〈n|
ϵm − ϵn

= 0. (25)

We can concentrate in consideration on the extended bulk states only. In the equilibrium
this can be readily seen. The total change in density in the bulk is proportional to C N2, when
a probe field applied. That cannot possibly be attributed to the edge states. The number of
edge states electrons is proportional to N . Therefore, one might expect corrections of order
of 1/N to the total change in bulk density in the presence of magnetic field. In dynamic we
consider the effect of the edge states in the next section.

Consider the case of a two narrow bulk band. The bulk Hamiltonian might be approximated
by a flat hamiltonian:

Ĥ f = P̂ϵ1 + Q̂ϵ2 = 1ϵ2 − P̂∆=⇒ Ĥ f
B = −iπφ∆(X̂ P̂ Ŷ − Ŷ P̂ X̂ ). (26)

Here∆ = ϵ2−ϵ1 and we have used Q̂ = 1− P̂. Substituting the expression for ĤB into Eq. (24),
we obtain desired result:

δP̂
δφ
=
∑

n,m

|m〉〈m|Q̂Ĥ f
B P̂|n〉〈n|

ϵn − ϵm
+ h.c.= iπ
∑

n,m

|m〉〈m|Q̂∆(X̂ P̂ Ŷ − Ŷ P̂ X̂ )P̂|n〉〈n|
∆

+ h.c.

= iπ
�

Q̂X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ Q̂
�

+ h.c.

(27)

Let us move to the case of a symmetric w.r.t. to Fermi level spectrum, e.g. in a system with
particle-hole symmetry. We require further that we consider a large enough transitionally-
invariant patch, so that the bulk eigenstates may be well approximated by k states. Then, the
bulk Hamiltonian might be approximated by

Ĥs =
∑

k

Ĥs(k) =
∑

k

�

−P̂(k)ϵ(k) + Q̂ϵ(k)
�

= 1ϵ(k)− 2P̂(k)ϵ(k) =⇒

Ĥs
B = −i
∑

k

2πϵ(k)φ
φ0

(X̂ P̂(k)Ŷ − Ŷ P̂(k)X̂ ).
(28)

Substituting the result to Eq. (24) we get the same expression as before:

δP̂
δφ
=
∑

n,m

|m〉〈m|Q̂Ĥs
B P̂|n〉〈n|

ϵn − ϵm
+ h.c.= i2π
∑

k

|m〉〈m|Q̂ϵ(k)(X̂ P̂ Ŷ − Ŷ P̂ X̂ )P̂|n〉〈n|
2ϵ(k)

+ h.c.

= iπ
�

Q̂X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ Q̂
�

+ h.c.
(29)

Therefore in both limits we considered we obtain the result from the main text:

δP̂
δφ
= −2πi P̂ X̂ P̂ Ŷ P̂ +πi(X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ ) + h.c. (30)

The first term in equal to the Ĉ. The other ones do not contribute to the Streda marker in
equilibrium:

CS(r) = Tr

�

δ̂r
δP̂
δφ

�

= Tr
�

δ̂rĈ
�

+πi Tr
�

δ̂r
�

X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ − Ŷ P̂ X̂ P̂ − P̂ Ŷ P̂ X̂
��

=

Tr
�

δ̂rĈ
�

+πi Tr
�

δ̂r
�

X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ − P̂ X̂ P̂ Ŷ − X̂ P̂ Ŷ P̂
��

= Tr
�

δ̂rĈ
�

= C(r).
(31)
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Figure 10: Bulk and edge contributions. Comparison of the bulk and edge con-
tributions to local Streda marker CS(r) and LCM C(r). C b

S (r) includes only the
contribution from the bulk extended states, see Eq. (33). The edge states are defined
as the states with the probability p > 0.8 to be found on the border.

Here we have used the cyclicity of trace and the fact that the δ̂r and the position operator
commute.

In Fig. 10 C(r) and CS(r) are presented for a finite sample of the QWZ model Eq. (15) in a
topological phase. The derivative with respect to φ in the definition of CS(r) Eq. (3) is taken
numerically. Also we calculated the response C b

S (r) corresponding to the bulk extended modes
only. That is we separated bulk and edge states in the projector to the filled states P̂ = P̂e + P̂b.
The edge states are defined as the states |ψ〉〈ψ| with the probability p > 0.8 to be found at the
edge of the sample:

p =
∑

r∈ed ge

Tr (δr|ψ〉〈ψ|)> 0.8 (32)

C b
S (r) is calculated using the projector to the filled bulk states only:

C b
S (r) = Tr

�

δ̂r
δP̂b

δφ

�

(33)

We can see that mostly the response is determined by the bulk extended states. The difference
is visible only close to the edges. Also we can see that C(r) is almost on top of the CS(r).

B Local Streda Marker out of Equilibrium

Let us consider now the out of equilibrium on-site response to the uniform magnetic field with a
flux φ≪ 1. Consider the Von Neumann equations with a general time-dependent Hamiltonian
H(t) for the projectors P(t) = P0(t)+φ

δP(t)
δφ in the presence of the small perturbation φHB(t),

caused by the applied magnetic field:

i ˙̂P(t) = [Ĥ(t) +φHB(t), P(t)] = [P0(t), H0(t)] +φ[P0(t), HB(t)] +φ[
δP̂(t)
δφ

, H(t)] +O(φ2).

(34)
Therefore, the first order corrections to the on-site density in magnetic flux φ are coming

from two sources. First source is the evolution of zeroth order projectors P0(t) governed by the
perturbation HB(t). Second, they are coming from the evolution of the first-order corrections
governed by the unperturbed Hamiltonian H(t). Let us separate the total variation of the
projector on two parts, corresponding to these two sources:
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(a) (b)

Figure 11: Local Streda Marker. (a) The average of C(r, t), C(r, t) and CS(r, t)
13 over the bulk sites of 32 × 32 sample of QWZ model Eq. (15) in topological
phase m= −1. CB

S (r, t) corresponds to numerically taken derivative δψn(r) with a
vanishingly small uniform magnetic field included in the post-quench Hamiltonian.
(b) Comparison of the bulk and edge contributions to CS(r, t). C bulk

S (r, t) includes
only the contribution from the bulk extended states. The edge states are defined as
the states with the probability p > 0.8 to be found on the border. CS(r, t) is averaged
over a 5× 5 square region with the left bottom corner at the site (−10,−5).

δP̂(t)
δφ

=
δP̂1(t)
δφ

+
δP̂B(t)
δφ

= Û(t)ĈÛ†(t) + Û(t)
�

X̂ P̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ
�

Û†(t) +
δP̂B(t)
δB

. (35)

The term δP̂1(t)
δφ corresponds to the evolution of the first-order corrections to the initial state,

given by Eq. (4) governed by the unperturbed Hamiltonian H(t). The second part δP̂B(t)
δφ is

obtained from the evolution in the external magnetic field. When magnetic field is included
in the evolution hamiltonian time-dependent local on-site response deviates greatly from the
local Chern marker at the times of order t ≈ 2N

vLR
. This is demonstrated in Fig. 11 (a). In the

figure CB(r, t) includes both δP̂1(t)
δφ and δP̂B(t)

δφ . We can see that in late times CB(r, t) averaged
over the bulk sites deviates hugely from the local Chern marker.

The bulk states give the main contribution the time dependent local Streda marker, as
Fig. 11 (b) indicates. There the bulk and edge states contributions to CS(r, t) averaged over a
5× 5 square region is presented.

C The Effect of Disorder on the Dynamics

The simplest way to destroy translation invariance and thus avoid the conditions allowing to
conclude that the marker can not change in the bulk is to add disorder to the translationally
invariant system. Here we discuss the effects of the weak gaussian disorder with the mean
value ∆m = 0.1, added to the on-site magnetization m in the QWZ model Eq. (15) to the
dynamics of the markers. We consider the same quench protocol in QWZ model as before.

How different quantities propagate in a disordered sample is presented in Fig. 12. We can
see that the currents of the marker are non-zero in the bulk from the very start of evolution.
Therefore, it comes as a no surprise that M terms now are more significant when it was in the
translation-invariant case. This can be seen in Fig. 13b. However, at later times as long-range
correlations are built, Jc gives the dominant contribution. The scaling of the ratio Jc/M keeps
its linear form with the system size, as we can see from Fig. 13d. There the square root of their
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(a)

(b)

(c)

C(r,t)

Figure 12: Propagation of different quantities in a disordered QWZ model. Weak
gaussian disorder with the mean value∆m = 0.1 is added to the on-site magnetization
m in the QWZ model Eq. (15). (a) Distribution of the local Chern marker over a
25x25 sample at different times. (b) Distribution of the LCM C(r, t), CS(r, t) and
the norm of matrix elements |P(r0,r)| along the middle - y = 0 slice of the system.
The site r0 is chosen on the left edge. Right (blue) y-axis is for the projector matrix
elements |P(r0,r)|; Left (red) y-axis is for markers’ distributions. (c) Distribuitions of
the Jc(r) and M(r) along the middle - y = 0 slice of the system at different times.

spectral powers ratio is presented as in the main text Eq. (18) averaged over 50 realisations of
disorder.

D M currents

The M terms are responsible for the teleportation of the marker to the sites correlated to a
given one. Therefore they describe non-local currents Here we discuss a way to reasonably
define them.

Local electric currents
Consider a non-interacting lattice system with a generic tight-binding hamiltonian:

Ĥ =
∑

r1,r2

Hss′(r1,r2)ĉ
†
s (r1)ĉs′(r2) + h.c., (36)

here the index s stands for on-site degrees of freedom, e.g. spin and orbital.
For a physical quantity local in operators ĉ†

s (r) and ĉs(r) the locality of dynamics follow
from the equations of motion. Consider for example the electron density. The Heisenberg
equation for the density operator ρ̂(r) =

∑

s ĉ†
s (r)ĉs(r) reads:

˙̂ρ(r) = i[Ĥ, ρ̂(r)] = −i
∑

r1,s,s′
Hss′(r,r1)ĉ

†
s (r)ĉs′(r1) + h.c. (37)

Naturally, one interprets the right hand side as a flow of the electrons from the site r to
other sites r1. This leads us to the definition of bond currents:
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(a) (b)

(c) (d)

Figure 13: Quench dynamics in a disordered QWZ. Weak gaussian disorder with
the mean value ∆m = 0.1 is added to the on-site magnetization m in the QWZ model
Eq. (15). (a) Time evolution of Jc(rb) and M(rb) at a fixed site rb = (−7,−6) in the
bulk of a 25x25 sample. (b) Time evolution of the LCM C(rb, t) at rb and integral
contribution to C(rb, t) from Jc(rb, t) and M(rb, t) (c) Square root of the spectral
power F (see the main text Eq. (18)) of ratio of the time-dependencies Jc(rb, t) and
M(rb, t) as a function of the system’s size N averaged over 50 realization of the
disorder.(d) Time dependencies CS(rb, t), C(rb, t) and C(rb, t) averaged over a 4× 4
square region with the left bottom coordinate at a fixed site rb = (−7,−6) on a 25×25
sample. Solid lines correspond to a translationally invariant system, the dashed ones
to the disordered case.

Ĵ b(r,r′) = −i
∑

s,s′
Hss′(r,r′)ĉ†

s (r)ĉs′(r
′) + h.c. (38)

Non-local currents of LCM
The situation with the LCM is different as formally it contains all the operators ĉ†

s (r). Let
us concentrate on the M terms only, slightly changing notation as compared to the main text.

M(r) = −2πiϵαβ
∑

s

�

〈rs|
�

P̂ Ĵα P̂, P̂R̂β P̂
�

|rs〉
�

(39)

Here ϵαβ is the Levi-Civita symbol. This term could not be localized to the neighborhood
sites as was shown in Section 4.3. Therefore the best one can hope that it can be cast to a form
of quasi-local currents, so that the following conditions holds:

• Non-local continuity equation: Ċ(r, t) =
∑

r′ J(r,r′), here summation runs over all sites
of the system

• Skew-symmetry: J(r,r′) = −J(r′,r)
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(a) (b)

Figure 14: M currents. (a) Non-local currents JM(rb,r′)from the site rb = (−7,−6)
to all the others at time t f = 4.8, as in the main text Section 4.1.(b) Ten the most
contributing real-space diagrams as in Section 4.1 for M(rb, t f ). The diagrams are
plotted above the distribution |P(rb,r)|

• J(r,r′) decay is controlled by P̂.

• Invariant under a change of coordinates: R̂′ = ÎR0 + R̂. Note that under translation
P̂R̂′α P̂ = P̂R̂′α P̂ + P̂Rα0

Currents J satisfying these properties are no unique. For example, let us present a possible
form of a translationally invariant expression:

M(r) = −2πiϵαβ
∑

s

�

〈rs|P̂ Ĵα P̂R̂β P̂ − P̂R̂β P̂ Ĵα P̂ + P̂ Ĵα P̂R̂β P̂ − P̂ Ĵα P̂R̂β P̂|rs〉
�

=

= −2πiϵαβ
∑

s,s′,r′

�

〈rs|P̂ Ĵα P̂|r′s′〉〈r
′
s′ |P̂R̂β P̂|rs〉 − 〈rs|P̂R̂β P̂|r′s′〉〈r

′
s′ |P̂ Ĵα P̂|rs〉+

+ 〈rs|P̂|r′s′〉〈r
′
s′ |P̂ Ĵα P̂R̂β P̂|rs〉 − 〈rs|P̂ Ĵα P̂R̂β P̂|r′s′〉〈r

′
s′ |P̂|rs〉
�

=
∑

r′

JM(r,r′).

(40)

Here we added and subtracted terms 〈rs|P̂ Ĵα P̂R̂β P̂|rs〉 to insure the translation invariance
of the currents. Also, we inserted the resolution of identity in position basis |r′s′〉〈r

′
s′ | so that

the currents satisfy the other requirements. The procedure is quite arbitrary and thus we can
not guarantee the uniqueness of the currents.

The currents JM(r,r′) are indeed very non-local as we can see from Fig. 14 a. There we
calculated them numerically for the quench in QWZ model from the site rb = (−7,−6) to all
the others at time t f = 4.8, as in the main text Section 4.1. We can see that the M causes
teleportation of the markers’ current to all the sites correlated to a given one.
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