Matrix product operator representations for the local conserved quantities of the Heisenberg chain

Kyoichi Yamada* and Kohei Fukai ${ }^{\dagger}$
The Institute for Solid State Physics, The University of Tokyo,
Kashiwa, Chiba 277-8581, Japan
* kyamada.phys@gmail.com, ${ }^{\dagger}$ k.fukai@issp.u-tokyo.ac.jp

June 8, 2023

Abstract

We present the explicit expressions for the matrix product operator (MPO) representation for the local conserved quantities of the Heisenberg chain. The bond dimension of the MPO grows linearly with the locality of the charges. The MPO has more simple form than the local charges themselves, and their Catalan tree patterns naturally emerge from the matrix products. The MPO representation of local conserved quantities is generalized to the integrable $\operatorname{SU}(N)$ invariant spin chain.

Contents

1 Introduction 2
2 Local conserved quantities of the Heisenberg chain 3
2.1 spin-1/2 Heisenberg chain 3
2.2 $\mathrm{SU}(N)$ generalization 4
2.3 Doubling-product representation for $\operatorname{SU}(2)$ case 4
3 MPO representation for the local conserved quantities 5
3.1 MPO for the Hamiltonian 5
3.2 Building blocks of MPO 5
3.3 Explicit expressions of MPO 6
4 Proof of the MPO 8
4.1 Catalan number identity 8
4.2 Demonstration of equivalence of MPO and Q_{k} 9
5 Summary and Outlook 11
A Rigorous proof for bulk term 12
B Boundary treatment 14
C Recursion equation for Θ_{k} 15
References 15

1 Introduction

Quantum integrable models are special many-body systems that allow for exact solutions [1,2]. The Bethe Ansatz, with its origins tracing back to Hans Bethe's seminal work on the exact solution of the spin-1/2 Heisenberg spin chain [3], enables the exact calculation of energy spectrum and physical observables. Through various generalizations, the Bethe Ansatz has become the most renowned method for solving integrable models.

The defining feature of quantum integrable systems is the presence of an extensive number of local conserved quantities, denoted as $\left\{Q_{k}\right\}_{k=2,3,4, \ldots .}$. They are local in the sense that they are a linear combination of operators that act on a finite range of local sites. In our notation here, Q_{k} is the site translation sum of the local operator that acts on the adjacent k sites. The existence of these local conserved quantities has been well established by the quantum inverse scattering method [4]: the local conserved quantities can be derived from the expansion of the transfer matrix $T(\lambda)$ with respect to the spectral parameter λ, given by $\log T(\lambda) \sim \sum_{k \geq 2} \lambda^{k-1} Q_{k}$, where Q_{2} is usually the Hamiltonian itself. The commutativity of the transfer matrix, $[T(\lambda), T(\mu)]=0$, ensures the mutual commutativity of the local conserved quantities, $\left[Q_{k}, Q_{l}\right]=0$. Another way to obtain Q_{k} is the usage of the Boost operator, denoted by B, if it exists. Q_{k} can be calculated recursively by $\left[Q_{k}, B\right]=Q_{k+1}$.

Although the formal methodology for generating local conserved quantities Q_{k}, through the expansion of the transfer matrix and the usage of the Boost operator, has been known, determining their general expressions in practice still remains a formidable challenge. This difficulty stems not only from the exorbitant computational expense associated with higherorder charges but also from finding a general pattern within the vast data sets generated by these calculations. The general forms of local conserved quantities were firstly found for the spin-1/2 Heisenberg chain(XXX chain) independently by [5] and [6] and subsequently found for its $\operatorname{SU}(N)$ generalization [7]. For these models, the structure of the local charges has the Catalan tree pattern [8]: Q_{k} is constructed from the linear combination of the polynomial of spin operators with the coefficient of generalized Catalan number. More recently, the general forms of the local charges were found in the spin- $1 / 2 \mathrm{XYZ}$ chain [9], the Temperly-Lieb models [10], which include the spin-1/2 XXZ chain, and the one-dimensional Hubbard model [11]. Nonetheless, their expressions are still slightly complicated, even for these models where the general forms of the local charges are now known. A universal, more simple description of the general form of local conserved quantities is highly desirable.

Over the past two decades, there has been a growing trend to introduce tensor network techniques [12-14] to reformulate quantum integrability. The matrix product state(MPS) representation of the Bethe eigenstate of quantum integrable systems has been studied [15-22]. The symmetry of integrable systems was also investigated in terms of matrix product operator(MPO). In [23], the MPO commuting with the Hamiltonian of the Heisenberg chain was constructed, which was probed to be the product of two transfer matrices with different spectral parameters. More recently, the non-commutative symmetry of models with fragmented Hilbert space was obtained in the form of MPO, even for non-integrable cases [24]. The hidden symmetry of an integrable Lindblad system, which leads to multiple non-equilibrium steady states, was exactly given by MPO [25]. However, despite the transfer matrix, which is the source of Q_{k}, being defined by the MPO constructed from the Lax operator, there has yet to be an exploration of the MPO representation for local conserved quantities themselves.

In this work, we present the MPO representation of the local conserved quantities for the spin-1/2 Heisenberg spin chains. The local conserved quantity Q_{k} can be represented by the MPO whose bond dimension is $3 k-1$. We found the Catalan tree pattern of the local conserved quantities [8] naturally emerges from the product of the MPO along with the identity of the generalized Catalan number. Unlike the local conserved quantities themselves, their MPO
representation is only involved with the usual Catalan number, implying that the complexity of these expressions is folded within the product of the MPO. This MPO representation of the local conserved quantities can be immediately generalized for the integrable $\operatorname{SU}(N)$ invariant spin chains of fundamental representation. To our knowledge, this is the first study investigating the MPO representation for local conserved quantities of quantum integrable systems.

This paper consists of the following Sections: in Section 2, we review the local conserved quantities for the Heisenberg chain and the $\operatorname{SU}(N)$ integrable spin chain. In Section 3, we present the main result of the MPO for the Heisenberg chain. In section 4, we give the demonstration that the MPO introduced in section 2 actually reproduces the local conserved quantities of [5-7]. Section 5 contains the summary of our work and future outlooks.

2 Local conserved quantities of the Heisenberg chain

In this section, we review the result of the local conserved quantities of the Heisenberg chain [5, $6]$ and its $\operatorname{SU}(N)$ generalization [7].

2.1 spin-1/2 Heisenberg chain

The Hamiltonian of the spin-1/2 Heisenberg chain is given by:

$$
\begin{equation*}
H=\sum_{i=1}^{L} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{i+1} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\sigma}_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$ stands for the vector of the usual Pauli matrices acting non-trivially on i-th site, and L is the system size. We assume the periodic boundary condition: $\boldsymbol{\sigma}_{i+L}=\boldsymbol{\sigma}_{i}$. The Hamiltonian (1) is integrable [3] and has macroscopic number of local conserved quantities $\left\{Q_{k}\right\}_{k=2,3,4, \ldots}$. The key sign of its integrability is the mutual commutativity $\left[Q_{k}, Q_{l}\right]=0$, and $Q_{2}=H$ is the Hamiltonian itself.

To represent the expression of Q_{k}, we introduce some notations. A sequence of n sites $\mathcal{C}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ with $i_{1}<i_{2}<\ldots<i_{n}$, will be called a cluster of order n. A cluster \mathcal{C} can be further classified by hole, defined by $i_{n}-i_{1}+1-n$, which is the number of the sites between i_{1} and i_{n} that are not included in \mathcal{C}. For example, the cluster $\mathcal{C}=\{1,3,4,7\}$ is the cluster of order 4 , and whose hole is 3 .

For a cluster $\mathcal{C}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ of order n, we define the nested products of Pauli matrices $f_{n}(\mathcal{C})$ by:

$$
\begin{equation*}
f_{n}(\mathcal{C}):=\sigma_{i_{1}} \cdot\left(\boldsymbol{\sigma}_{i_{2}} \times\left(\boldsymbol{\sigma}_{i_{3}} \times\left(\cdots \times\left(\sigma_{i_{n-1}} \times \sigma_{i_{n}}\right) \cdots\right)\right)\right) \tag{2}
\end{equation*}
$$

Then we define the components of the local conserved quantities:

$$
\begin{equation*}
F_{n, m}=\sum_{\mathcal{C} \in \mathcal{C}^{(n, m)}} f_{n}(\mathcal{C}) \tag{3}
\end{equation*}
$$

where $\mathcal{C}^{(n, m)}$ denotes the set of clusters of order n with m holes, satisfying $1 \leq i_{1} \leq L$.
The general expression of Q_{k} is given by [5, 6]:

$$
\begin{equation*}
Q_{k}=F_{k, 0}+\sum_{\substack{1 \leq n+m<\lfloor k / 2\rfloor \\ 0 \leq n, 1 \leq m}} C_{n+m-1, n} F_{k-2(n+m), m} \tag{4}
\end{equation*}
$$

where $C_{k, n} \equiv\binom{k+n}{n}-\binom{k+n}{n-1}$ is the generalized Catalan number.

2.2 $\operatorname{SU}(N)$ generalization

The structure of the local conserved quantities of the isotropic $\operatorname{SU}(N)$ version of the spin$1 / 2$ Heisenberg chain in the fundamental representation is the same as that of the spin- $1 / 2$ Heisenberg chain [7]. The Hamiltonian of $\operatorname{SU}(N)$ invariant chain is given by [26]:

$$
\begin{equation*}
H=\sum_{i=1}^{L} \sum_{a=1}^{N^{2}-1} t_{i}^{a} t_{i+1}^{a}, \tag{5}
\end{equation*}
$$

where $t_{i}^{a}, a=1, \ldots, N^{2}-1$ are the $s u(N)$ generators in the fundamental representation. For the $N=2$ case, (5) reduces to the Hamiltonian of the spin- $1 / 2$ Heisenberg chain. We choose the normalization of the generators so that t_{a} 's are the $s u(N)$ Gell-Mann matrix, satisfying the following algebra:

$$
\begin{align*}
{\left[t^{a}, t^{b}\right] } & =2 i f^{a b c} t^{c}, \tag{6}\\
t^{a} t^{b}+t^{b} t^{a} & =\frac{4}{N} \delta_{a b}+2 d^{a b c} t^{c}, \tag{7}
\end{align*}
$$

where $f^{a b c}$ is the structure constant of $s u(N)$, and $d^{a b c}$ is a completely symmetric tensor, which is non-trivial for $N>2$.

For the $\operatorname{SU}(N)$ case, $f_{n}(\mathcal{C})$ for a cluster $\mathcal{C}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ is defined by:

$$
\begin{equation*}
f_{n}(\mathcal{C}):=\mathbf{t}_{i_{1}} \cdot\left(\mathbf{t}_{i_{2}} \times\left(\mathbf{t}_{i_{3}} \times\left(\cdots \times\left(\mathbf{t}_{i_{n-1}} \times \mathbf{t}_{i_{n}}\right) \cdots\right)\right)\right) \tag{8}
\end{equation*}
$$

where $\mathbf{t}_{i}=\left(t_{i}^{1}, \ldots, t_{i}^{N^{2}-1}\right)$ stands for the vector of the $s u(N)$ Gell-Mann matrices acting nontrivially on i-th site. The outer product of the vector \mathbf{A}, \mathbf{B} with $N^{2}-1$ components is defined by $(\mathbf{A} \times \mathbf{B})^{c} \equiv f^{a b c} A^{a} B^{b}$.

The local conserved quantities of the $\operatorname{SU}(N)$ invariant chain are expressed in the same form as (4), with $f_{n}(\mathcal{C})$ defined in (8).

2.3 Doubling-product representation for $\mathrm{SU}(2)$ case

For the $\operatorname{SU}(2)$ case, the local conserved quantities can be represented using the doublingproduct notation, which was initially introduced in the proof of the non-integrability of the spin- $1 / 2 \mathrm{XYZ}$ chain in a magnetic field [27], and subsequently employed to construct the local conserved quantities of the spin-1/2 XYZ chain without a magnetic field [9].

A doubling-product is a notation for the product of the Pauli matrices, defined by:

$$
\begin{equation*}
\overline{A_{1} A_{2} \cdots A_{n}}:=\sum_{i=1}^{L}\left(A_{1}\right)_{i}\left(A_{1} A_{2}\right)_{i+1}\left(A_{2} A_{3}\right)_{i+2} \cdots\left(A_{n-1} A_{n}\right)_{i+n-1}\left(A_{n}\right)_{i+n}, \tag{9}
\end{equation*}
$$

where $A_{i} \in\{X, Y, Z\}$ and $A_{l} A_{l+1}$ is the product of A_{l} and $A_{l+1} .(\cdot)_{i}$ denotes the operator acting on the i-th site. The hole is equal to the number of j that satisfies $A_{j}=A_{j+1}$. We define the support of an operator as the range of sites on which it acts. The support of the doublingproduct of (9) is $n+1$.

With the doubling-product notation, the component of local conserved quantities for the spin- $1 / 2$ Heisenberg chain (3) can be rewritten by:

$$
\begin{equation*}
F_{n, m}=i^{n} \sum_{\bar{A} \in \mathcal{S}_{n+m, m}} \bar{A}, \tag{10}
\end{equation*}
$$

where $\mathcal{S}_{l, m}$ is the set of all doubling-products with (support, hole) $=(l, m)$. The local conserved quantities constructed from (10) differ from those constructed from (3) by the factor i^{k}.

3 MPO representation for the local conserved quantities

In this section, we present the matrix product operator (MPO) representation for the local conserved quantities of the spin- $1 / 2$ Heisenberg chain and its $\operatorname{SU}(N)$ generalizations. Given an operator as a sum of finite-range interactions, it is possible to construct the MPO representation for such a local operator using entirely upper (or lower) triangular matrices [28]. We show the MPO representation for the local conserved quantities with the upper triangular matrix Γ_{k}^{i}.

3.1 MPO for the Hamiltonian

The MPO component for the Hamiltonian of the spin-1/2 Heisenberg chain (1) has been known as the matrix with bond dimension 5 , the element of which are local operators acting on the physical Hilbert space [29]:

$$
\Gamma_{2}^{i}:=\left(\begin{array}{ccccc}
I & X_{i} & Y_{i} & Z_{i} & O \tag{11}\\
O & O & O & O & X_{i} \\
O & O & O & O & Y_{i} \\
O & O & O & O & Z_{i} \\
O & O & O & O & I
\end{array}\right)=\left(\begin{array}{cc:c}
I & \sigma_{i} & O \\
\hdashline & & \sigma_{i}^{\top} \\
O_{4,4} & I
\end{array}\right),
$$

where $\boldsymbol{\sigma}_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$ is treated as a row vector and $\boldsymbol{\sigma}_{i}^{\top}$ is its transpose and I is the identity operator. O denotes the zero-operator, and $O_{m, n}$ is an $m \times n$ matrix whose entries are all O.

The Hamiltonian is reproduced by the MPO constructed from Γ_{2}^{i} :

$$
\Gamma_{2}^{1} \Gamma_{2}^{2} \cdots \Gamma_{2}^{L}=\left(\begin{array}{cc:c}
I & \boldsymbol{\sigma}_{L} & H^{\mathrm{c}} \tag{12}\\
\hdashline O_{4,4} & \boldsymbol{\sigma}_{1}^{\top} \\
& I
\end{array}\right),
$$

where the $(1,5)$ component of the RHS, $H^{\mathrm{c}}=\sum_{i=1}^{L-1} \sigma_{i} \cdot \boldsymbol{\sigma}_{i+1}$, is the bulk term of the Hamiltonian, that misses the boundary term, $h^{\mathrm{B}}=\boldsymbol{\sigma}_{L} \cdot \sigma_{1}=\sigma_{L} \sigma_{1}^{\top}$. The Hamiltonian under the periodic boundary condition (1) is reproduced by the sum of the bulk term and boundary term: $H=H^{\mathrm{c}}+h^{\mathrm{B}}$. In the following, we generalize this result to the higher-order local conserved quantities Q_{k}.

3.2 Building blocks of MPO

We introduce a 3×3 matrix M_{i}, the element of which are local operators acting on the physical Hilbert space. M_{i} serves as the building block of the MPO for the local conserved quantities of the spin-1/2 Heisenberg chain. M_{i} is defined by:

$$
M_{i}:=\left(\begin{array}{ccc}
O & -Z_{i} & Y_{i} \tag{13}\\
Z_{i} & O & -X_{i} \\
-Y_{i} & X_{i} & O
\end{array}\right),
$$

where the off-diagonal elements are the Pauli matrices acting on the i-th site. Note that M_{i} has the form of the $s o(3)$ generator assigned with the Pauli matrices. The nested product of (2) is represented with these building blocks by:

$$
\begin{align*}
f_{n}\left(i_{1}, i_{2}, \ldots, i_{n}\right) & =\boldsymbol{\sigma}_{i_{1}} \cdot\left(\boldsymbol{\sigma}_{i_{2}} \times\left(\boldsymbol{\sigma}_{i_{3}} \times\left(\cdots \times\left(\boldsymbol{\sigma}_{i_{n-1}} \times \boldsymbol{\sigma}_{i_{n}}\right) \cdots\right)\right)\right) \\
& =\boldsymbol{\sigma}_{i_{1}} M_{i_{2}} M_{i_{3}} \cdots M_{i_{n-1}} \boldsymbol{\sigma}_{i_{n}}^{\top}, \tag{14}
\end{align*}
$$

where in the second line, $\boldsymbol{\sigma}_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$ is treated as a row vector, and $\boldsymbol{\sigma}_{i}^{\top}$ is its transpose.
For the more general $\operatorname{SU}(N)$ invariant chain, the building block for the MPO becomes the $N^{2}-1$ by $N^{2}-1$ matrix defined by:

$$
\begin{equation*}
\left(M_{i}^{(N)}\right)_{a c}:=\sum_{b=1}^{N^{2}-1} f^{a b c} t_{i}^{b} \tag{15}
\end{equation*}
$$

where the indices run $a, c=1,2, \ldots, N^{2}-1$. We note that $M_{i}^{(N=2)}=M_{i}$. The nested product (8) for the $\operatorname{SU}(N)$ case is represented by:

$$
\begin{equation*}
f_{n}\left(i_{1}, i_{2}, \ldots, i_{n}\right)=\mathbf{t}_{i_{1}} M_{i_{2}} M_{i_{3}} \cdots M_{i_{n-1}} \mathbf{t}_{i_{n}}^{\top} \tag{16}
\end{equation*}
$$

where $\mathbf{t}_{i}=\left(t_{i}^{1}, \ldots, t_{i}^{N^{2}-1}\right)$ is treated as a row vector, and \mathbf{t}_{i}^{\top} is its transpose.
We introduce another building block for the MPO, the 3 by 3 diagonal matrix e for the $\operatorname{SU}(2)$ case and the $N^{2}-1$ by $N^{2}-1$ diagonal matrix $e^{(N)}$ for the general $\operatorname{SU}(N)$ cases, the diagonal elements of which are the identity operators:

$$
e:=\left(\begin{array}{ccc}
I & O & O \tag{17}\\
O & I & O \\
O & O & I
\end{array}\right), \quad e^{(N)}:=\left(\begin{array}{ccc}
I & N^{2}-1 \\
& I & N^{\prime} \\
& & \ddots \\
& & I
\end{array}\right)
$$

where the non-diagonal elements are all O. We note that $e^{(2)}=e$.

3.3 Explicit expressions of MPO

Next, we construct the MPO for the local conserved quantities from the building block defined above. While we focus on the spin-1/2 Heisenberg chain ($\mathrm{SU}(2)$ case) here, the scenario for the more general $\operatorname{SU}(N)$ case is similar as well: simply replace M_{i}, e, σ_{i} with $M_{i}^{(N)}, e^{(N)}, \mathbf{t}_{i}$, respectively.

The MPO component for k-th local conserved quantity Q_{k} for $k>2$ is the upper triangle square matrix with bond dimension $3 k-1$:

$$
\Gamma_{k}^{i}:=\left(\begin{array}{cc:c:c}
I \boldsymbol{\sigma}_{L} & & \tag{18}\\
\hdashline & & \mathcal{M}_{k}^{i}+\Theta_{k} & \\
& & & \\
\hdashline & & & \boldsymbol{\sigma}_{1}^{\top} \\
& & & I
\end{array}\right),
$$

where \mathcal{M}_{k}^{i} and Θ_{k} are the square matrices of size $3(k-2)$, and the blank blocks are entirely filled with zero-operators. \mathcal{M}_{k}^{i} is defined by:

$$
\mathcal{M}_{k}^{i}:=\left(\begin{array}{cccc}
M_{i} & & & \tag{19}\\
& M_{i} & k-2 \\
& & \ddots & \\
& & & M_{i}
\end{array}\right),
$$

where the diagonal 3 by 3 block elements are all M_{i} and the non-diagonal elements are all $O_{3,3} . \Theta_{k}$ is defined by:

$$
\left(\Theta_{k}\right)_{a, b}:= \begin{cases}C_{n} e & (\exists n \in \mathbb{N}: b-a=2 n+1) \tag{20}\\ O_{3,3} & \text { (otherwise) }\end{cases}
$$

where a and $b(1 \leq a, b \leq k-2)$ indicate the coordinate for the 3 by 3 block matrices in Θ_{k}, and $\mathbb{N}=\{0,1,2, \ldots\}$ is the set of all natural numbers and $C_{n}=\binom{2 n}{n}-\binom{2 n}{n-1}$ is n-th Catalan number, which is the special case of the generalized Catalan number $C_{n, n}=C_{n} . \Theta_{k}$ can also be obtained from a simple recursion equation, which will be shown in the appendix C.

One can calculate the k-th local conserved quantity Q_{k} by taking the product of Γ_{i}^{k} over all the sites and doing some boundary treatment. To be specific, for $L \geq k$ one can write the explicit form of the matrix product as:

$$
\Gamma_{k}^{1} \Gamma_{k}^{2} \cdots \Gamma_{k}^{L}=\left(\begin{array}{c:c}
I & \mathbf{u}_{k, L} \tag{21}\\
\hdashline Q_{k}^{c} \\
O_{m, m} & \mathbf{v}_{k, 1}^{\top}
\end{array}\right)
$$

where $m \equiv 3 k-2$ and $\mathbf{u}_{k, L}=\left(u_{k, L}^{1}, \ldots, u_{k, L}^{3(k-1)}\right)$ and $\mathbf{v}_{k, 1}=\left(v_{k, 1}^{1}, \ldots, v_{k, 1}^{3(k-1)}\right)$ is the row vector of $3(k-1)$ dimension with its elements being the operator localized at the boundary. $u_{k, L}^{j}$ has non-trivial action on the sites from the $(L-k+1)$-th site to the L-th site, and $v_{k, 1}^{j}$ has non-trivial action from the 1 -st site to the k-th site. The local conserved quantity Q_{k} under the periodic boundary condition is given by:

$$
\begin{equation*}
Q_{k}=Q_{k}^{\mathrm{c}}+q_{k}^{\mathrm{B}}, \tag{22}
\end{equation*}
$$

where Q_{k}^{C} is the bulk term of Q_{k}. and $q_{k}^{\mathrm{B}} \equiv \mathbf{u}_{k, L} \mathbf{v}_{k, 1}^{\top}$ is the boundary term of Q_{k}. The boundary term q_{k}^{B} is constructed from the operators that jump over the boundary, i.e. the linear combination of the operators that act across the boundary from the L-th site to the 1 -st site. In the periodic boundary case considered here, the structure of the boundary terms is the same as that of the bulk term.

When taking products of Γ_{k}^{i}, we can treat each building block as if it was a non-commutative scalar because the building blocks appearing in the MPO are conformable for multiplication. Therefore, in the following, we denote the zero-operator block matrix $O_{n, m}$ just simply as O.

We give the expressions up to Γ_{8}^{i} below:

$$
\begin{aligned}
\Gamma_{2}^{i}=\left(\begin{array}{ccc}
I & \boldsymbol{\sigma}_{i} & O \\
& O & \boldsymbol{\sigma}_{i}^{\top} \\
& & I
\end{array}\right), & \Gamma_{3}^{i}=\left(\begin{array}{cccc}
I & \boldsymbol{\sigma}_{i} & O & O \\
& O & M_{i} & O \\
& & O & \boldsymbol{\sigma}_{i}^{\top} \\
& & & I
\end{array}\right), \\
\Gamma_{4}^{i}=\left(\begin{array}{cccccccc}
I & \sigma_{i} & O & O & O \\
& O & M_{i} & C_{0} e & O \\
& & O & M_{i} & O \\
& & & O & \boldsymbol{\sigma}_{i}^{\top}
\end{array}\right), & \Gamma_{5}^{i}=\left(\begin{array}{cccccc}
I & \boldsymbol{\sigma}_{i} & O & O & O & O \\
& O & M_{i} & C_{0} e & O & O \\
& & O & M_{i} & C_{0} e & O \\
& & & O & M_{i} & O \\
& & & & O & \boldsymbol{\sigma}_{i}^{\top} \\
& & & & & \\
& & & &
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{6}^{i}=\left(\begin{array}{ccccccc}
I & \sigma_{i} & O & O & O & O & O \\
& O & M_{i} & C_{0} e & O & C_{1} e & O \\
& & O & M_{i} & C_{0} e & O & O \\
& & & O & M_{i} & C_{0} e & O \\
& & & & O & M_{i} & O \\
& & & & & O & \boldsymbol{\sigma}_{i}^{\top} \\
& & & & & I
\end{array}\right), \quad \Gamma_{7}^{i}=\left(\begin{array}{cccccccc}
I & \sigma_{i} & O & O & O & O & O & O \\
& O & M_{i} & C_{0} e & O & C_{1} e & O & O \\
& & O & M_{i} & C_{0} e & O & C_{1} e & O \\
& & & O & M_{i} & C_{0} e & O & O \\
& & & & O & M_{i} & C_{0} e & O \\
& & & & & O & M_{i} & O \\
& & & & & & O & \sigma_{i}^{\top} \\
& & & & & & & \\
I
\end{array}\right), \\
& \Gamma_{8}^{i}=\left(\begin{array}{ccccccccc}
I & \sigma_{i} & O & O & O & O & O & O & O \\
& O & M_{i} & C_{0} e & O & C_{1} e & O & C_{2} e & O \\
& & O & M_{i} & C_{0} e & O & C_{1} e & O & O \\
& & & O & M_{i} & C_{0} e & O & C_{1} e & O \\
& & & & O & M_{i} & C_{0} e & O & O \\
& & & & & O & M_{i} & C_{0} e & O \\
& & & & & & O & M_{i} & O \\
& & & & & & & O & \sigma_{i}^{\top} \\
& & & & & & I
\end{array}\right),
\end{aligned}
$$

where the lower triangular elements are all zero operators and the O 's in these expressions represent zero-operator block matrices, suitably shaped for the position of their respective blocks.

In the following section, we treat the building block elements of Γ_{k}^{i} such as M_{i} and σ and e and O as a symbol, and the indices indicate the positions of these building block elements. For example, $\left(\Gamma_{k}^{i}\right)_{1,2}=\sigma_{i}$, and $\left(\Gamma_{k}^{i}\right)_{2,3}=M_{i}$ for $k \geq 3$, and $\left(\Gamma_{8}^{i}\right)_{2,8}=C_{2} e$.

We note that the component of the MPO is only involved with the usual Catalan number, unlike the local conserved quantities themselves.

4 Proof of the MPO

In this section, we give the demonstration that the MPO introduced in the previous section actually reproduces the local conserved quantities of the spin- $1 / 2$ Heisenberg chain.

4.1 Catalan number identity

There is the useful identity of generalized Catalan numbers $C_{n+m, n}$ and usual Catalan numbers C_{n} for the proof of the MPO:

$$
\begin{equation*}
C_{n+m, n}=\sum_{n_{0}+\cdots+n_{m}=n} C_{n_{0}} \cdots C_{n_{m}}=\sum_{\substack{\sum_{j=0}^{m} n_{j}=n \\ n_{j} \geq 0}} \prod_{j=0}^{m} C_{n_{j}} . \tag{23}
\end{equation*}
$$

One can prove this recurrence relation (23) by relating $C_{n+m, n}$ to the numbers of monotone lattice paths from $(x, y)=(0,0)$ to $(n, n+m)$ that never crosses the line $y=x+m$.

Let $\Omega_{n+m, n}$ represent the set of monotone lattice paths that meet this condition. For each $P \in \Omega_{n+m, n}$, let $x_{j}(P)$ be the smallest x coordinate of the point on the path where the path reaches the line $y=x+j$ for the first time for $1 \leq j \leq m$. We define $x_{0}(P) \equiv 0$ and $x_{m+1}(P) \equiv n$. We define the subset of $\Omega_{n+m, n}$ as follows:

$$
\begin{equation*}
\Omega_{n+m, n}^{n_{0}, \ldots, n_{m}}:=\left\{P \in \Omega_{n+m, n} \mid \forall j \in \mathbb{N}, 0 \leq j \leq m: x_{j+1}(P)-x_{j}(P)=n_{j}\right\} . \tag{24}
\end{equation*}
$$

Figure 1: Graphical explanation of the proof of the recurrence relations of generalized Catalan numbers eq. (23). $n=11, m=3$ case is shown. $C_{n+m, n}$ equals the number of possible lattice paths from $(0,0)$ to $(n+m, n)$ that never crosses the line $y=x+m$. If one divides a path P into $(m+1)$ pieces $P_{0}, P_{1}, \ldots, P_{m}$ by the point where P first reaches the line $y=x+j$, each P_{j} can be related one by one to a possible lattice path from $(0,0)$ to $\left(x_{j+1}-x_{j}, x_{j+1}-x_{j}\right)$ that never reaches the line $y=x$.
$\Omega_{n+m, n}$ can be represented by the direct sum of $\Omega_{n+m, n}^{n_{0}, \ldots, n_{m}}$:

$$
\begin{equation*}
\Omega_{n+m, n}=\bigsqcup_{\substack{n_{0}+\cdots+n_{m} \\ n_{j} \geq 0}} \Omega_{n+m, n}^{n_{0}, \ldots, n_{m}} . \tag{25}
\end{equation*}
$$

Let us denote P_{j} as the part of a path P from $\left(x_{j}, x_{j}\right)$ to $\left(x_{j+1}, x_{j+1}\right)$, corresponding to the element of $\Omega_{n_{j}, n_{j}}$, that is, to a monotone lattice path from $(0,0)$ to (n_{j}, n_{j}) that never crosses the line $y=x$ (see Fig. 1). Because the number of elements in $\Omega_{n_{j}, n_{j}}$ equals $C_{n_{j}}$, one gets

$$
\begin{equation*}
\#\left[\Omega_{n+m, n}^{n_{0}, \ldots, n_{m}}\right]=\prod_{j=0}^{m} C_{n_{j}} \tag{26}
\end{equation*}
$$

where \#[•] denotes the number of elements in a (finite) set. Using (25), we have

$$
\begin{equation*}
C_{n+m, n}=\#\left[\Omega_{n+m, n}\right]=\sum_{\substack{\sum_{j=0}^{m} n_{j}=n \\ n_{j} \geq 0}} \#\left[\Omega_{n+m, n}^{n_{0}, \ldots, n_{m}}\right]=\sum_{\substack{\sum_{j=0}^{m} n_{j}=n \\ n_{j} \geq 0}} \prod_{j=0}^{m} C_{n_{j}} \tag{27}
\end{equation*}
$$

Thus, we have proved (23).

4.2 Demonstration of equivalence of MPO and Q_{k}

In this subsection, we demonstrate the MPO actually reproduces the local conserved quantities, taking the case of Q_{12} as an example. The rigorous proof is given in appendix A for the bulk term and in appendix B for the boundary term.

Considering Eq. (4), we can see the operator $\sigma_{1} M_{2} M_{4} \boldsymbol{\sigma}_{6}^{\top}$ is included in $F_{12-2(n+m), m}=F_{4,2}$ for $(n, m)=(2,2)$, and therefore included in Q_{12}, particularly being included in the bulk term Q_{12}^{c} for $L>6$. The coefficient of $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ in Q_{12} is $C_{n+m-1, n}=C_{3,2}$. In the following, we demonstrate this coefficient and operator are reproduced by the MPO made from Γ_{12}^{i}.
Q_{12}^{c} is calculated as follows:

$$
\begin{equation*}
Q_{12}^{\mathrm{c}}=\left(\Gamma_{12}^{1} \Gamma_{12}^{2} \cdots \Gamma_{12}^{L}\right)_{1,13}=\sum_{\substack{1=a_{1} \leq a_{2} \leq \cdots \\ \cdots \leq a_{L} \leq a_{L+1}=13}} \gamma_{a_{1}, a_{2}}^{1} \gamma_{a_{2}, a_{3}}^{2} \cdots \gamma_{a_{L}, a_{L+1}}^{L} \tag{28}
\end{equation*}
$$

Figure 2: An intuitive method for calculating the coefficient of $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ in Q_{12}^{c}, which is one of the components of $F_{4,2}$. The three paths depicted by the teal, the bold blue, and the purple line contribute to the coefficients. For example, the bold blue line represents the path that picks $\sigma, M, C_{1} e, M, C_{1} e, \sigma^{\top}$ in this order, and the contribution is $C_{1}^{2} \sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$. To obtain the coefficients of $F_{k-2(n+m), m}$ in more general Q_{k}^{c}, we must take all the possible paths including $C_{n_{1}} e, \ldots, C_{n_{m}} e$ in this order that satisfy $n_{1}+\cdots+n_{m}=n$.
where the indices indicate the position of the building blocks, and $\gamma_{a_{p}, a_{p+1}}^{p}$ represents the (a_{p}, a_{p+1})-th block element of Γ_{12}^{p}, and the second equality holds from the fact that Γ_{12}^{p} is an upper triangular matrix. In the summation in (28), $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ is included in the restricted summation of (28) as follows:

$$
\begin{equation*}
\sum_{1=a_{1} \leq a_{2} \leq \cdots \leq a_{6} \leq a_{7}=13} \gamma_{a_{1}, a_{2}}^{1} \gamma_{a_{2}, a_{3}}^{2} \gamma_{a_{3}, a_{4}}^{3} \gamma_{a_{4}, a_{5}}^{4} \gamma_{a_{5}, a_{6}}^{5} \gamma_{a_{6}, a_{7}}^{6} \tag{29}
\end{equation*}
$$

where the other variables in (28) is fixed as $a_{p}=13$ for $p \geq 7$, and therefore $\gamma_{a_{p}, a_{p+1}}^{p}=I$ for $p \geq 7$.

Each term in (29) corresponds to the "path" from "start" to "end" traversing through the matrix in Figure 2, which has the same structure as Γ_{12}^{i}. A "path" is defined as follows: first, we pick up the element in the first row, where only $\boldsymbol{\sigma}$ is non-zero ${ }^{1}$. Thus we have to pick $\boldsymbol{\sigma}$ first, corresponding to $\gamma_{1,2}^{1}=\sigma_{1}$. Every time we pick an element, we then vertically descend within the same column till we reach the diagonal line, after which we move horizontally to the right within the same row and pick up an element on the row. The element chosen in our p-th pick corresponds to $\gamma_{a_{p}, a_{p+1}}^{p}$ in equation (29). At the final (sixth) pick, we have to pick $\boldsymbol{\sigma}^{\top}$, corresponding to $\gamma_{a_{6}, a_{7}}^{6}=\boldsymbol{\sigma}_{6}^{\top}$, and finish the procedure for this path. By considering all possible paths, we can compute equation (29). For calculating the coefficient of $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ in Q_{12}^{c}, we have to pick up the point of $\sigma, M, C_{n_{1}} e, M, C_{n_{2}} e, \sigma^{\top}$ in the matrix in Figure 2 in that order. There are three possible paths that generate $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ in Q_{12}^{c}, which are depicted by the teal, the bold blue, and the purple line in Figure 2, corresponding to (n_{1}, n_{2}) = (0,2), $(1,1)$, and $(2,0)$ respectively. These paths all satisfy $n_{1}+n_{2}=2$. All the contribution to the coefficient is

$$
\begin{equation*}
C_{0} C_{2}+C_{1} C_{1}+C_{2} C_{0}=C_{3,2} \tag{30}
\end{equation*}
$$

[^0]where we used the Catalan number identity (23). Thus, we have demonstrated that the coefficients of $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ in the MPO is actually $C_{3,2}$, which is the same as the case of the local conserved quantity Q_{12}.

Let us consider a more general situation, leaving the rigorous proof to the appendix A. We calculate the coefficient of the operator $\boldsymbol{\sigma}_{i_{1}} M_{i_{2}} \cdots M_{i_{j-1}} \boldsymbol{\sigma}_{i_{j}}^{\top}$ in Q_{k}^{c} for $j=k-2(n+m)$ and with m-holes, i.e. $i_{j}-i_{1}+1-j=m$. The paths that generate $\sigma_{i_{1}} M_{i_{2}} \cdots M_{i_{j-1}} \sigma_{i_{j}}^{\top}$ have to pick up the elements of $C_{n_{1}} e, \ldots, C_{n_{m}} e$, corresponding to the m-holes. Every time we pick up $C_{n} e$ on the paths, there is a horizontal move of $(2 n+2)$ columns to the right, and every time we pick up M, there is a horizontal move of one column to the right. The number of the columns between $\boldsymbol{\sigma}$ and $\boldsymbol{\sigma}^{\top}$ of the matrix corresponding to Γ_{k}^{i} is $k-2$, thus we have the relation $\sum_{p=1}^{m}\left(2 n_{p}+2\right)+j-2=k-2$. Solving this equation, we have $n_{1}+\cdots+n_{m}=n$, and all the contributions to the coefficients become

$$
\begin{equation*}
\sum_{\substack{n_{1}+n_{2}+\cdots+n_{m}=n \\ n_{j} \geq 0}} C_{n_{1}} C_{n_{2}} \cdots C_{n_{m}}=C_{n+m-1, n} \tag{31}
\end{equation*}
$$

where we used the Catalan number identity (23), and we can see the coefficient of (4) is reproduced by the MPO.

5 Summary and Outlook

In this work, we show the matrix product operator(MPO) representation of the local conserved quantities for the spin-1/2 Heisenberg chain and its $\operatorname{SU}(N)$ generalization. In terms of our MPO representation, the local conserved quantities are more simply written: the pattern in the expression of the MPO is more straightforward than that of the local conserved quantities themselves. The Catalan tree pattern of the local conserved quantities naturally appears from the product of the MPOs. This means the complexity of the local conserved quantities is folded into the product of the MPO.

Investigating the MPO representation of local conserved quantities in other quantum integrable models is an intriguing future research direction. Especially the generalization of our result to the spin-1/2 XYZ chain [9], the anisotropic case of the Heisenberg chain is an interesting topic. And it would also be worthwhile to verify how the mutual commutativity of the local conserved quantities can be explained with our MPO representation.

Another potential direction is the investigation of the open boundary case. In the periodic boundary condition, the boundary term of the local conserved quantity is trivial: they have the same structure as the bulk term. However, the boundary term in the open boundary condition is non-trivial, and the expressions have yet to be elucidated even for the most famous spin$1 / 2$ Heisenberg chain [30]. Using the MPO representation, we might infer the pattern of the boundary terms also in the open boundary case.

Acknowledgements

We thank Hosho Katsura for his helpful comment at the JPS 2023 Spring Meeting and his insightful comment on our manuscript. We thank Yoshitaka Okuyama for the fruitful discussion. K. F. was supported by Forefront Physics and Mathematics Program to Drive Transformation (FoPM), a World-leading Innovative Graduate Study (WINGS) Program, and JSR Fellowship, the University of Tokyo, and KAKENHI Grants No. JP21J20321 from the Japan Society for the Promotion of Science (JSPS).

A Rigorous proof for bulk term

In appendix A, we give the rigorous proof of the bulk part of (22).
In the following, the matrix indices indicate the position of the building blocks, i.e. treating the elements of Γ_{k}^{i} such as M_{i} and σ and e and O in Γ_{k}^{i} as a symbol.

Calculating the product of the MPO explicitly, we have:

$$
\begin{equation*}
Q_{k}^{\mathrm{c}}=\left(\Gamma_{k}^{1} \Gamma_{k}^{2} \cdots \Gamma_{k}^{L}\right)_{1, k+1}=\sum_{1=a_{1} \leq a_{2} \leq \cdots \leq a_{L-1} \leq a_{L}=k+1} \prod_{1 \leq p \leq L} \gamma_{a_{p}, a_{p+1}}^{p} \tag{32}
\end{equation*}
$$

where the second equality holds from the fact that Γ_{k}^{i} is an upper triangular matrix and we denote the matrix element of Γ_{k}^{i} by $\left(\Gamma_{k}^{i}\right)_{a, b} \equiv \gamma_{a, b}^{i}$. Considering the first row and the last column of Γ_{k}^{p} is written by:

$$
\gamma_{1, a}^{p}=\left\{\begin{array}{ll}
I & (a=1) \tag{33}\\
\boldsymbol{\sigma}_{p} & (a=2) \\
O & \text { (otherwise) }
\end{array}, \quad \gamma_{a, k+1}^{p}= \begin{cases}I & (a=k+1) \\
\boldsymbol{\sigma}_{p}^{\top} & (a=k) \\
O & \text { (otherwise) }\end{cases}\right.
$$

and $\gamma_{a, a}^{p}=O$ for $2 \leq a \leq k$, the summation in (32) can be decomposed as:

$$
\begin{align*}
(32) & =\sum_{1 \leq i<j \leq L} \sum_{2=a_{i+1}<a_{i+2}<\cdots<a_{j-1}<a_{j}=k} \boldsymbol{\sigma}_{i}\left(\prod_{i+1 \leq p \leq j-1}^{\rightarrow} \gamma_{a_{p}, a_{p+1}}^{p}\right) \boldsymbol{\sigma}_{j}^{\top} \\
= & \sum_{1 \leq i<j \leq L} \boldsymbol{\sigma}_{i}\left(\prod_{i+1 \leq p \leq j-1}^{\rightarrow} \gamma_{b_{i+1}+\cdots+b_{j-1}=k-2}^{p}\right) \boldsymbol{\sigma}_{j}^{\top} \\
= & \sum_{1 \leq i \leq L-k+1} \boldsymbol{\sigma}_{i} \gamma_{1}^{i+1} \gamma_{1}^{i+2} \cdots \gamma_{1}^{i+k-2} \boldsymbol{\sigma}_{i+k-1}^{\top} \\
& +\sum_{1 \leq i<j \leq L} \sum_{\substack{b_{i+1}+\cdots+b_{j-1}=k-2 \\
b_{p}>0, \exists p^{\prime}: b_{p^{\prime}}>1}} \boldsymbol{\sigma}_{i}\left(\prod_{i+1 \leq p \leq j-1}^{\rightarrow} \gamma_{b_{p}}^{p}\right) \boldsymbol{\sigma}_{j}^{\top} \tag{34}
\end{align*}
$$

where the second summation on the first row is taken over a_{i+2}, \ldots, a_{j-1} and the other a_{p} 's are fixed by $a_{1}, \ldots, a_{i}=1, a_{i+1}=2, a_{j}=k, a_{j+1}, \ldots a_{L}=k+1$, and in the second equality we define $b_{p} \equiv a_{p+1}-a_{p}$ for $i<p<j$ and $\gamma_{b_{p}}^{p} \equiv \gamma_{a_{p}, a_{p+1}}^{p} \cdot \gamma_{b_{p}}^{p}$ is well-defined because $\gamma_{a_{p}, a_{p+1}}^{p}$ depends only on the difference $a_{p+1}-a_{p}$. In the last equality, we decompose the summation to the case that all $b_{p}=1$ for all p and the other cases that at least one b_{p} is greater than one. The explicit form of $\gamma_{b_{p}}^{p}$ is:

$$
\gamma_{b_{p}}^{p}= \begin{cases}M_{p} & \left(b_{p}=1\right) \tag{35}\\ C_{b_{p} / 2-1} e & \left(b_{p} \text { is even }\right) \\ O & \text { (otherwise) }\end{cases}
$$

The first term of (34) becomes

$$
\begin{align*}
\text { First term of (34) } & =\sum_{1 \leq i \leq L-k+1} \boldsymbol{\sigma}_{i} \gamma_{1}^{i+1} \gamma_{1}^{i+2} \cdots \gamma_{1}^{i+k-2} \boldsymbol{\sigma}_{i+k-1}^{\top} \\
& =\sum_{1 \leq i \leq L-k+1} \boldsymbol{\sigma}_{i} M_{i+1} M_{i+2} \cdots M_{i+k-2} \boldsymbol{\sigma}_{i+k-1}^{\top} \\
& =\sum_{\mathcal{C} \in \mathcal{C}_{\text {bulk }}^{k, 0}} f_{k}(\mathcal{C})=F_{k, 0}^{\mathrm{bulk}} \tag{36}
\end{align*}
$$

where $\mathcal{C}_{\text {bulk }}^{n+m, m}$ denotes the set of clusters $\mathcal{C}=\left\{i_{1}, \ldots, i_{n}\right\}$ of order n with m holes, satisfying $1 \leq i_{1}<i_{n} \leq L$, and we can see $F_{k, 0}^{\text {bulk }}$ is the bulk term of $F_{k, 0}$.

We denote the number of p 's that satisfies $b_{p}>1$ in the variable $\left\{b_{i+1}, \ldots, b_{j-1}\right\}$ of the second summation of (34) by m. Then the second term of (34) becomes:

Second term of (34)

$$
\begin{align*}
& =\sum_{1 \leq i<j \leq L} \sum_{\substack{b_{i+1}+\cdots+b_{j-1}=k-2 \\
b_{p}>0, \exists p^{\prime}: b_{p^{\prime}}>1}} \boldsymbol{\sigma}_{i}\left(\prod_{i<p<j}^{\rightarrow} \gamma_{b_{p}}^{p}\right) \boldsymbol{\sigma}_{j}^{\top} \\
& =\sum_{1 \leq i<j \leq L} \sum_{m=1}^{w-2} \sum_{i<i_{1}<\cdots<i_{w-2-m}<j} \sum_{b_{i_{1}^{\prime}}+\cdots+b_{i_{m}^{\prime}}=k-2-(w-2-m)} \boldsymbol{\sigma}_{i}\left(\prod_{r=1}^{m} \gamma_{b_{i^{\prime}}^{\prime}>1}^{i_{r}^{\prime}}\right)\left(\prod_{1 \leq r \leq w-2-m}^{\rightarrow} \gamma_{i_{r}^{\prime}}^{i_{r}}\right) \boldsymbol{\sigma}_{j}^{\top} \\
& =\sum_{1 \leq i<j \leq L} \sum_{m=1}^{w-2}\left(\sum_{\substack{b_{i_{1}^{\prime}}+\cdots+b_{i_{m}^{\prime}}=k-w+m \\
b_{i^{\prime}}>1}} \prod_{r=1}^{m} \gamma_{b_{i_{r}^{\prime}}}\right) \sum_{i<i_{1}<\cdots<i_{w-2-m}<j} \boldsymbol{\sigma}_{i} M_{i_{1}} M_{i_{2}} \cdots M_{i_{w-2-m}} \boldsymbol{\sigma}_{j}^{\top} \\
& =\sum_{w=2}^{k} \sum_{m=1}^{w-2}\left(\sum_{\substack{ \\
c_{1}+\cdots+c_{m}=k-w+m \\
c_{r}>1}}^{m} \gamma_{c_{r}}\right) \sum_{i=1}^{L-w-1} \sum_{i<i_{1}<\cdots<i_{w-2-m}<i+w-1} \boldsymbol{\sigma}_{i} M_{i_{1}} M_{i_{2}} \cdots M_{i_{w-2-m}} \boldsymbol{\sigma}_{i+w-1}^{\top} \\
& =\sum_{w=2}^{k} \sum_{m=1}^{w-2}\left(\sum_{\substack{ \\
c_{1}+\cdots+c_{m}=k-w+m \\
c_{r}>1}} \prod_{r=1}^{m} \gamma_{c_{r}}\right) \sum_{\mathcal{C} \in \mathcal{C}_{\text {bulk }}^{w-m, m}} f_{w-m}(\mathcal{C}) \\
& =\sum_{w=2}^{k} \sum_{m=1}^{w-2}\left(\sum_{\substack{ \\
2\left(d_{1}+\cdots+d_{m}\right)=k-w+m \\
d_{r}>1}} \prod_{r=1}^{m} \gamma_{2 d_{r}} \sum_{\mathcal{C} \in \mathcal{C}_{\text {bulk }}^{w-m, m}} f_{w-m}(\mathcal{C})\right. \\
& =\sum_{n=0}^{\lfloor k / 2\rfloor} \sum_{m=1}^{\lfloor k / 2\rfloor-n}\left(\sum_{\substack{ \\
d_{1}+\cdots+d_{m}=n+m \\
d_{r} \geq 1}}^{m} \prod_{r=1}^{m} C_{d_{r}-1} \sum_{\mathcal{C} \in \mathcal{C}_{\text {bulk }}^{k-2(n+m), m}} f_{k-2(n+m)}(\mathcal{C})\right. \\
& =\sum_{\substack{0<n+m<\lfloor k / 2\rfloor \\
n \geq 0, m \geq 1}}\left(\sum_{\substack{d_{1}+\cdots+d_{m}=n \\
d_{r} \geq 0}} \prod_{r=1}^{m} C_{d_{r}}\right) F_{k-2(n+m), m}^{\mathrm{bulk}} \\
& =\sum_{\substack{0<n+m<\lfloor k / 2\rfloor \\
n \geq 0, m \geq 1}} C_{n+m-1, n} F_{k-2(n+m), m}^{\text {bulk }}, \tag{37}
\end{align*}
$$

where we denote $w \equiv j-i+1$ and we decompose the summation $\sum_{b_{i+1}+\cdots+b_{j-1}=k-2, b_{p}>0}$, after fixing m, to the summation over $\left\{i_{1}, \ldots, i_{w-1-m}\right\}$ where i_{r} satisfies $b_{i_{r}}=1$ and the summation over $\left\{b_{i_{1}^{\prime}}, \ldots, b_{i_{w_{m}^{\prime}}^{\prime}}\right\}$ where i_{r}^{\prime} satisfies $b_{i_{r}^{\prime}}>1$. Note that $\left\{i_{1}^{\prime}, \ldots, i_{m}^{\prime}\right\} \bigcup\left\{i_{1}, \ldots, i_{w-2-m}\right\}=\{i+1, \ldots, j-1\}$. In the third equality, we used the following relation:

$$
\boldsymbol{\sigma}_{i}\left(\prod_{r=1}^{m} \gamma_{b_{i_{r}^{\prime}}^{\prime}}^{i_{r}^{\prime}}\right)\left(\prod_{1 \leq r \leq w-2-m}^{\rightarrow} \gamma_{b_{i_{r}}}^{i_{r}}\right) \boldsymbol{\sigma}_{j}^{\top}=\left(\prod_{r=1}^{m} \gamma_{b_{i_{r}^{\prime}}}\right) \boldsymbol{\sigma}_{i} M_{i_{1}} M_{i_{2}} \cdots M_{i_{w-2-m}} \boldsymbol{\sigma}_{i+w-1}^{\top},
$$

where $\gamma_{b_{p}}$ is defined by $\gamma_{b_{p}} \equiv C_{b_{p} / 2-1}(0)$ for b_{p} is even(odd), and the factor on the left hand side $\left(\prod_{r=1}^{m} \gamma_{b_{i_{r}^{\prime}}}^{i_{r}^{\prime}}\right)$ can be treat as a c-number, and factored out on the right hand side because $\gamma_{b_{i_{r}^{\prime}}}^{i_{r}^{\prime}}$ is O or is proportional to e for $b_{i_{r}^{\prime}>1}$, and e behave as identity operator: $e M_{p}=M_{p} e=M_{p}$ and $\sigma_{i} e=\sigma_{i}$. In the fourth equality, we replace the variable by $c_{r}=b_{i_{r}^{\prime}}$. If c_{r} is odd for some r, we can see $\gamma_{c_{r}}=0$. Thus the non-zero contribution comes from the case that all c_{r} is even, and in the sixth equality, we rewrite c_{r} by $c_{r}=2 d_{r}$. For $k-w+m$ being an even integer, w and m have to satisfy the relation $w=k-2 n-m$ with $\exists n \in \mathbb{N}$. In the seventh equality, we change the variable by $d_{r}-1 \rightarrow d_{r}$, and in the ninth equality, we used the Catalan number identity (23). $F_{k-2(n+m), m}^{\mathrm{bulk}}$ is the bulk term of $F_{k-2(n+m), m}$.

Therefore, with (36) and (37), we have proved Q_{k}^{c} becomes:

$$
\begin{equation*}
Q_{k}^{c}=F_{k, 0}^{\text {bulk }}+\sum_{\substack{0<n+m<\lfloor k / 2\rfloor \\ n \geq 0, m \geq 1}} C_{n+m-1, n} F_{k-2(n+m), m}^{\text {bulk }} \tag{38}
\end{equation*}
$$

and we can see this is actually the bulk term of Q_{k}.

B Boundary treatment

We prove the boundary terms of the local conserved quantities Q_{k} are given by $q_{k}^{\mathrm{B}} \equiv \mathbf{u}_{k, L} \mathbf{v}_{k, 1}^{\top}$. We write the k-th matrix product operator from i-th site to j-th site $(j-i \geq k)$ by:

$$
\Gamma_{k}^{i} \Gamma_{k}^{i+1} \cdots \Gamma_{k}^{j}=\left(\begin{array}{cc:c}
I & \mathbf{u}_{k, j} & Q_{k,[i: j]}^{c} \tag{39}\\
\hdashline & \mathbf{v}_{k, i}^{\top} \\
& O & I
\end{array}\right)
$$

where $\mathbf{u}_{k, j}$ and $\mathbf{v}_{k, i}$ are the row vectors of dimension $3(k-1)$, whose elements are independent of i and j, respectively, and are constructed from the local operators that act on at most k adjacent sites between the $(j-k+1)$-th site and j-th site and between the i-th site and $(i+k-1)$ th site, respectively. $\mathbf{u}_{k, j}\left(\mathbf{v}_{k, i}\right)$ is independent of $i(j) . Q_{k,[i: j]}^{c}$ is constructed from the local operators that act on at most k adjacent sites between the i-th site and the j-th site.

We can decompose the products in the MPO for the k-th local conserved quantities as:

$$
\begin{align*}
\Gamma_{k}^{1} \Gamma_{k}^{2} \cdots \Gamma_{k}^{L+N} & =\Gamma_{k}^{1} \Gamma_{k}^{2} \cdots \Gamma_{k}^{L} \times \Gamma_{k}^{L+1} \Gamma_{k}^{L+2} \cdots \Gamma_{k}^{L+N} \\
& =\left(\begin{array}{cc:c}
I & \mathbf{u}_{k, L} & Q_{k,[1: L]}^{c} \\
\hdashline & & \mathbf{v}_{k, 1}^{\top} \\
& O & I
\end{array}\right)\left(\begin{array}{cc:c}
I & \mathbf{u}_{k, L+N} & Q_{k,[L+1: L+N]}^{c} \\
\hdashline & & \mathbf{v}_{k, L+1}^{\top} \\
& O & I
\end{array}\right) \tag{40}
\end{align*}
$$

and we have

$$
\begin{equation*}
Q_{k,[1: L+N]}^{\mathrm{c}}=Q_{k,[1: L]}^{\mathrm{c}}+Q_{k,[L+1: L+N]}^{\mathrm{c}}+\mathbf{u}_{k, L} \mathbf{v}_{k, L+1}^{\top} \tag{41}
\end{equation*}
$$

Now, we can see the term in $Q_{k,[1: L+N]}^{c}$ whcih acts across the L-site and the $L+1$-site is $\mathbf{u}_{k, L} \mathbf{v}_{k, L+1}^{\top}$. Consequently, the boundary term q_{k}^{B} in system size L for periodic boundary condition is given by $\mathbf{u}_{k, L} \mathbf{v}_{k, 1}^{\top}$.

C Recursion equation for Θ_{k}

Θ_{k} can be obtained from the following recursion equation:

$$
\Theta_{k+1}=\left(\begin{array}{cc}
O_{3(k-2), 3} & \left(\Theta_{k}\right)^{2} \tag{42}\\
O_{3,3} & O_{3,3(k-2)}
\end{array}\right)+E_{k+1}
$$

where E_{k} is a square matrix of order $3(k-2)$, defined by:

$$
\left(E_{k}\right)_{a, b}:=\left\{\begin{array}{ll}
e & (b-a=1) \tag{43}\\
O_{3,3} & \text { (otherwise) }
\end{array},\right.
$$

where a and $b(1 \leq a, b \leq k-2)$ indicate the coordinate for the 3 by 3 block matrices in E_{k}.
In the following, we prove (42). We first calculate the $\left(\Theta_{k}\right)^{2}$ is the RHS of (42) for $k \geq 3$. Substituting the expression of Θ_{k} of (20), we have

$$
\left[\left(\Theta_{k}\right)^{2}\right]_{a, b}=\sum_{n=1}^{k-2}\left(\Theta_{k}\right)_{a, n}\left(\Theta_{k}\right)_{n, b}= \begin{cases}\sum_{n=a+1}^{b-1}\left(\Theta_{k}\right)_{a, n}\left(\Theta_{k}\right)_{n, b} & (b-a>1) \tag{44}\\ O_{3,3} & \text { (otherwise) }\end{cases}
$$

where a and $b(1 \leq a, b \leq k-2)$ indicate the coordinate for the 3 by 3 block matrices in Θ_{k}. For the case of $b-a \equiv 1(\bmod 2)$, there do not exist any integers n that satisfy both $n-a \equiv 1$ $(\bmod 2)$ and $b-n \equiv 1(\bmod 2)$ simultaneously. Thus one gets:

$$
\begin{align*}
{\left[\left(\Theta_{k}\right)^{2}\right]_{a, b} } & = \begin{cases}\sum_{l=0}^{m}\left(\Theta_{k}\right)_{a, a+2 l+1}\left(\Theta_{k}\right)_{a+2 l+1, b} & (\exists m \in \mathbb{N}: b-a=2 m+2) \\
O_{3,3} & \text { (otherwise) }\end{cases} \\
& = \begin{cases}\sum_{l=0}^{m} C_{l} C_{m-l} e & (\exists m \in \mathbb{N}: b-a=2 m+2) \\
O_{3,3} & \text { (otherwise) }\end{cases} \\
& = \begin{cases}C_{m+1} e & (\exists m \in \mathbb{N}: b-a=2 m+2) \\
O_{3,3} & \text { (otherwise) }\end{cases} \tag{45}
\end{align*}
$$

From (45), we can see the RHS of (42) is equal to the Θ_{k+1} of (20). Then we have proved eq. (20) satisfies the recursion equation (42).

References

[1] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic, New York, ISBN 978-9971-978-11-2, doi:doi:10.1142/9789814415255_0002 (1982).
[2] B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems, World Scientific (2004).
[3] H. Bethe, Zur Theorie der Metalle, Zeitschrift für Physik 71(3), 205 (1931), doi:10.1007/BF01341708.
[4] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics. Cambridge University Press, doi:10.1017/CBO9780511628832 (1993).
[5] V. V. Anshelevich, First integrals and stationary states for quantum Heisenberg spin dynamics, Theor. Math. Phys. 43(1), 107 (1980).
[6] M. P. Grabowski and P. Mathieu, Quantum Integrals of Motion for the Heisenberg Spin Chain, Mod. Phys. Lett. A 09(24), 2197 (1994), doi:10.1142/s0217732394002057.
[7] M. P. Grabowski and P. Mathieu, Structure of the Conservation Laws in Quantum Integrable Spin Chains with Short Range Interactions, Ann. Phys. 243(2), 299 (1995), doi:https://doi.org/10.1006/aphy.1995.1101.
[8] M. P. Grabowski and P. Mathieu, Quantum chains with a Catalan tree pattern of conserved charges: The $\Delta=-1$ XXZ model and the isotropic octonionic chain, J. Math. Phys. 36(10), 5340 (1995).
[9] Y. Nozawa and K. Fukai, Explicit Construction of Local Conserved Quantities in the XYZ Spin-1/2 Chain, Phys. Rev. Lett. 125(9), 90602 (2020), doi:10.1103/PhysRevLett.125.090602.
[10] B. Nienhuis and O. E. Huijgen, The local conserved quantities of the closed XXZ chain, J. Phys. A: Math. Theor. 54(30), 304001 (2021), doi:10.1088/1751-8121/ac0961.
[11] K. Fukai, All Local Conserved Quantities of the One-Dimensional Hubbard Model, arXiv preprint arXiv:2301.03621 (2023), doi:10.48550/arxiv.2301.03621.
[12] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69(19), 2863 (1992), doi:10.1103/PhysRevLett.69.2863.
[13] F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems, Phys. Rev. Lett. 93(20), 207204 (2004), doi:10.1103/PhysRevLett.93.207204.
[14] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-Dimensional Quantum Lattice Systems: A Time-Dependent Superoperator Renormalization Algorithm, Phys. Rev. Lett. 93(20), 207205 (2004), doi:10.1103/PhysRevLett.93.207205.
[15] F. C. Alcaraz and M. J. Lazo, The Bethe ansatz as a matrix product ansatz, J. Phys. A: Math. Gen. 37(1), L1 (2004), doi:10.1088/0305-4470/37/1/L01.
[16] F. C. Alcaraz and M. J. Lazo, Exact solutions of exactly integrable quantum chains by a matrix product ansatz, J. Phys. A: Math. Gen. 37(14), 4149 (2004), doi:10.1088/03054470/37/14/001.
[17] F. C. Alcaraz and M. J. Lazo, Generalization of the matrix product ansatz for integrable chains, J. Phys. A: Math. Gen. 39(36), 11335 (2006), doi:10.1088/03054470/39/36/014.
[18] H. Katsura and I. Maruyama, Derivation of the matrix product ansatz for the Heisenberg chain from the algebraic Bethe ansatz, J. Phys. A: Math. Theor. 43(17), 175003 (2010), doi:10.1088/1751-8113/43/17/175003.
[19] I. Maruyama and H. Katsura, Continuous Matrix Product Ansatz for the OneDimensional Bose Gas with Point Interaction, J. Phys. Soc. Jpn. 79(7), 73002 (2010), doi:10.1143/JPSJ.79.073002.
[20] V. Murg, V. E. Korepin and F. Verstraete, Algebraic Bethe ansatz and tensor networks, Phys. Rev. B 86(4), 45125 (2012), doi:10.1103/PhysRevB.86.045125.
[21] Y. Q. Chong, V. Murg, V. E. Korepin and F. Verstraete, Nested algebraic Bethe ansatz for the supersymmetric $t-J$ model and tensor networks, Phys. Rev. B 91(19), 195132 (2015), doi:10.1103/PhysRevB.91.195132.
[22] Z. Mei and C. J. Bolech, Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions, Phys. Rev. E 95(3), 32127 (2017), doi:10.1103/PhysRevE.95.032127.
[23] H. Katsura, On integrable matrix product operators with bond dimension $D=4$, J. Stat. Mech. 2015(1), P01006 (2015), doi:10.1088/1742-5468/2015/01/P01006.
[24] M. Borsi, L. Pristyák and B. Pozsgay, Matrix product symmetries and breakdown of thermalization from hard rod deformations, arXiv preprint arXiv:2302.07219 (2023).
[25] M. de Leeuw, C. Paletta, B. Pozsgay and E. Vernier, Hidden quasi-local charges and Gibbs ensemble in a Lindblad system, arXiv preprint arXiv:2305.01922 (2023).
[26] B. Sutherland, Model for a multicomponent quantum system, Phys. Rev. B 12(9), 3795 (1975), doi:10.1103/PhysRevB.12.3795.
[27] N. Shiraishi, Proof of the absence of local conserved quantities in the XYZ chain with a magnetic field, EPL 128(1), 17002 (2019), doi:10.1209/0295-5075/128/17002.
[28] I. P. McCulloch, From density-matrix renormalization group to matrix product states, J. Stat. Mech. 2007(10), P10014 (2007), doi:10.1088/1742-5468/2007/10/P10014.
[29] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326(1), 96 (2011), doi:https://doi.org/10.1016/j.aop.2010.09.012.
[30] M. P. Grabowski and P. Mathieu, The structure of conserved charges in open spin chains, J. Phys. A: Math. Gen. 29(23), 7635 (1996), doi:10.1088/0305-4470/29/23/024.

[^0]: ${ }^{1}$ Indeed, the (1, 1)-component of Γ_{k}^{i} is I, presenting another non-zero component on the first row. Nevertheless, an initial pick of I does not yield $\sigma_{1} M_{2} M_{4} \sigma_{6}^{\top}$ in Q_{12}^{c}, thus these cases are not considered here.

