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Abstract

In this work we characterize the false vacuum decay in the ferromagnetic quantum Ising
chain with a weak longitudinal field subject to continuous monitoring of the local mag-
netization. Initializing the system in a metastable state, the false vacuum, we study
the competition between coherent dynamics, which tends to create resonant bubbles
of the true vacuum, and measurements which induce heating and reduce the amount
of quantum correlations. To this end we exploit a numerical approach based on the
combination of matrix product states with stochastic quantum trajectories which allows
for the simulation of the trajectory-resolved non-equilibrium dynamics of interacting
many-body systems in the presence of continuous measurements. We show how the
presence of measurements affects the false vacuum decay: at short times the departure
from the local minimum is accelerated while at long times the system thermalizes to
an infinite-temperature incoherent mixture. For large measurement rates the system
enters a quantum Zeno regime. The false vacuum decay and the thermalization physics
are characterized in terms of the magnetization, connected correlation function, and the
trajectory-resolved entanglement entropy.

Contents

1 Introduction 2

2 The model and the measurement scheme 4
2.1 The quantum Ising chain and its false vacuum decay: a short review 4
2.2 Continuous monitoring of the quantum Ising chain: stochastic quantum dynamics 6

3 Simulation protocol with Monte Carlo matrix product states 7

4 Results 9
4.1 Magnetization and metastability of the false vacuum in the presence of mea-

surements 10
4.2 Heating and the emergence of the quantum Zeno regime 13
4.3 Correlation functions 14
4.4 Entanglement Entropy 15

5 Conclusions 17

A Details on determining the FVD rate 18

1



SciPost Physics Submission

B Finite size effects 19

C The melting of order in the transverse Ising model 20

D Schrieffer-Wolff transformation and its application to the quantum Ising model 21
D.1 Schrieffer-Wolff transformation for open quantum systems 21
D.2 Application to the quantum Ising model 24

References 26

1 Introduction

Metastability is a ubiquitous problem in physics. This phenomenon takes place whenever a sys-
tem resides at a local minimum of the (free) energy landscape (also called the false vacuum),
which is not the the true ground state of the model (dubbed the true vacuum). Classically, and
at zero temperature, the system will remain in the false vacuum indefinitely. Thermal fluctu-
ations, however, could enable its decay towards the ground state configuration of the system.
When quantum effects are taken into account, the system can undergo quantum tunnelling,
and in an energy conserving scenario, can nucleate a resonant bubble of the true vacuum. In
both cases the dynamical departure from the false vacuum is known as the false vacuum decay
(FVD).

Examples of metastable systems include supercooled liquids [1], suspersaturated gases [2]
and ferromagnets misaligned with respect to the magnetic field [3]. In all these examples the
system is in the proximity of a first-order phase transition, but is found on the wrong side
of the associated hysteresis loop. Such a situation can naturally be achieved by quenching a
system initially in thermodynamic equilibrium across a first-order phase transition. In this non-
equilibrium state, the system needs to overcome or tunnel through a potential barrier in the
free-energy in order to reach a more stable state (frozen water, condensed gas, a ferromagnet
correctly aligned with the magnetic field). This transition generally occurs on very long time-
scales, since the two vacua are associated with two macroscopically different configurations
of the system. The system is said to be in a metastable state up until the equilibrium state is
reached.

For classical systems, the theory of metastability is well understood via statistical physics,
where the FVD is entirely driven by thermal fluctuations. In quantum systems, both thermal
and quantum flucutations can drive the FVD. The discussions of metastability driven primarily
by quantum fluctuations were pioneered in the context of high-energy physics [4,5] and cos-
mological inflation theory [6]. Such theories describe a scenario where our universe cooled
down into a metastable minimum, and could then nucleate bubbles of the stable vacuum via
quantum tunnelling. In this scheme nucleation of bubbles of the true vacuum occurs on an
exponentially long time scale. This FVD mechanism is quite general and has appeared in nu-
merous other areas of physics [7–11]. More recently, metastable dynamics have also been
found in open quantum systems [12,13] associated with the emergence of first-order dissipa-
tive phase transitions, and are connected to the critical slowing down [14] in bosonic [15,16]
and spin systems [17–19].

Remarkably it has recently been shown that the FVD can also be observed in one dimen-
sional quantum spin chains [20–22]. The simplest example of such a system is the quantum
Ising chain with transverse and longitudinal fields. In the ferromagnetic phase, the longitudi-
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nal field lifts the degeneracy between the two ground states with opposite magnetization. By
properly tuning the system parameters, one can achieve the needed separation of the different
timescales of the problem to observe the FVD.

In this class of systems, the magnetization can be used to quantify the departure from the
false vacuum, and is expected to decay exponentially with time. The decay rate itself was
predicted to be exponentially small in the inverse of the parameter lifting the degeneracy be-
tween the two minima [20, 22], i.e. the longitudinal field. This implies that one then has to
calculate the system dynamics up to very long times in order to observe such a phenomenon in
practice. Although there is agreement about the exponential behaviour of the FVD rate, there
exists inconsistencies in the literature concerning the prefactor that call for further investiga-
tions [20,22]. Furthermore, the introduction of a longitudinal field breaks the integrability of
the model; no exact solution exists. For these reasons the observation of the FVD in this class
of systems is extremely challenging, and its characterization remains largely unexplored, both
numerically and experimentally. Only recently have works appeared in the literature charac-
terizing the FVD [21,23] and non-integrable dynamics [24,25] of quantum spin chains using
tensor-network techniques.

Given the intrinsic quantum nature of the false vacuum decay in quantum spin chains, an
important question is how its features are affected by the presence of an external measure-
ment apparatus monitoring, for example, the local magnetization of the system. Indeed, the
presence of measurements will lead to a competition between the unitary dynamics, nucleat-
ing bubbles of the true vacuum and spreading coherence, and local measurements, destroying
correlations and heating up the system. Already, this interplay between coherent and dissipa-
tive dynamics at a continuous quantum transition has been shown to lead to novel physics like
peculiar scaling laws in the critical regime [26,27].

In this work we investigate the role of continuous monitoring on the physics of metastibil-
ity and FVD. We investigate this issue using a numerical approach based on the combination of
a matrix product state (MPS) [28–31] ansatz for the many-body wave function and stochastic
quantum trajectories [32–38]. The combination of these two techniques [36, 39], which we
call Monte Carlo Matrix product states (MCMPS) has recently gained an increasing amount of
attention due to the possibility to study measurement-induced phase transitions in the presence
of interactions [40] and the computational complexity of monitored systems [41]. Crucially,
this method gives access to the dynamics of single quantum trajectories. This resolution allow
us to go beyond the computation of standard quantum mechanical expectation values (that
could be obtained directly working with the statistical mixture generated by the stochastic
dynamics) and gives the possibility to compute nonlinear quantities (as the entanglement en-
tropy) that depends on the nature of the trajectory dynamics (and thus of the measurement
protocol).

We quantify this physics from the point of view of the magnetization, two-point correla-
tion function, and the bipartite entanglement entropy. We find that continuous monitoring
of the local magnetization provides a new pathway for the system to escape the false vac-
uum. Our numerical results suggest that this rate is exponentially small in the inverse of the
measurement rate. At the same time the monitoring also induces heating, driving the system
towards infinite temperatures at long times. We analyse the typical thermalization timescale,
and found signatures of the quantum Zeno effect for large measurement rates.

The paper is organized as follows: In Sec. 2 we briefly review the FVD decay mechanism in
the closed quantum Ising model and present the measurement scheme. In Sec. 3 we discuss the
simulation protocol used to compute the quantum trajectory dynamics within the framework
of matrix-product-states. The results are then presented in Sec. 4, followed by our conclusions
in Sec. 5.
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2 The model and the measurement scheme

2.1 The quantum Ising chain and its false vacuum decay: a short review

The system of interest is the quantum Ising model with both transverse and longitudinal fields:

Ĥ = −
L
∑

i=1

�

Jσz
iσ

z
i+1 + hxσ

x
i + hzσ

z
i

�

, (1)

where L is the length of the chain, {σa
i |α = x , y, z} are the Pauli matrices acting of the i-th

site, J > 0 the is the nearest-neighbour ferromagnetic coupling, and hx ,z set the magnitude of
the transverse and longitudinal fields, respectively.

For hz = 0, the ground state of the Hamiltonian (1) has a second-order quantum phase
transition at J/|hx | = 1 [42]. For J/|hx | > 1, the system spontaneously breaks the inherent
Z2 symmetry in the model (σz

i → −σ
z
i ,∀i), resulting in a ferromagnetic phase. In this fer-

romagnetic phase there are two degenerate ground states with opposite local magnetization
along the z direction: 〈σz

i 〉 = ±M with M = ±(1 − h2
x)

1/8. In the regime hz = 0, this sys-
tem can be solved exactly by exploiting the Jordan-Wigner transformation, and thus allows
for an analytical understanding of both the ground state and dynamical properties. Physically,
the excitations on top of the ferromagnetic ground states are topological defects, i.e. domain
walls (or kinks) interpolating between the two vacua. Since these domain walls map onto
free fermionic excitations when hz = 0, the energy of the system depends only on the number
of kinks and their kinetic energies, not on the size of the resulting domains. Furthermore,
since the fermionic excitations are non-interacting the model is integrable, hence there is no
possibility for thermalization.

When hz ̸= 0 the situation qualitatively changes. The degeneracy between the two ground
states is lifted and the energy difference between the two vacua scales extensively with the
system size, L, as ∆ ∼ |hz|M L, where M is the magnetization. The state where the spins are
aligned with the longitudinal field (the true vacuum) is energetically favoured, while the state
with the opposing magnetization is metastable and plays the role of the false vacuum. The
metastability of this false vacuum depends crucially on the system’s excitations. When hz ̸= 0,
the excitations above the true vacuum can no longer be described by non-interacting fermions
[43–45]. In particular, the domain walls now feel a potential linear in their separation, which
prevents them from proliferating and leads to the confinement of excitations. This can be
clearly seen by looking at the energy cost of forming a true vacuum bubble of size ℓ with
respect to the false vacuum:

Eb = 2m− (ℓ− 1)2hz M . (2)

where 2m is the energy needed to create two domain walls, while (ℓ− 1)2hz M is the energy
difference produced by the longitudinal field.

Since energy is conserved in the FVD process, there exists a resonant bubble size for which
the energy cost vanishes: ℓ̃= 1+m/hz/M . Such a bubble can be resonantly excited during the
dynamics. However, this process is very slow for large bubbles as the system can only virtually
create bubbles of size O(1) until the resonant bubble of size l̃ ≫ 1 is created. Thus creating
a resonant bubble is a high-order process in hz , resulting in a matrix element connecting the
two states that is exponentially small in l̃ ∝ 1/hz . In Ref. [20] the following expression for
the decay rate per site has been proposed:

γFVD =
π

9
hz Me−q/hz , (3)

where q and M are a function of hx only. The exponential part of the decay rate (3) has been
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continuous monitoring

Figure 1: A sketch of the system under consideration. The decay of the false vac-
uum of the quantum Ising chain takes place through the virtual occupation of O(l̃)
off-resonant states (l̃ being the size of the bubble). This metastable dynamics is con-
tinuously monitored by measuring the local magnetization. This process induces in-
coherent spin flips in random positions (denoted by red spins) and affects the closed-
system dynamics.

recently confirmed in numerical simulations [21] 1.
In order to observe the FVD, it is crucial hz/J ≪ 1 and that hx/J < 1. However, hx/J

can not be too close to unity, as the mass gap decreases as hx/J → 1. When this happens it
is no longer justified to assume that the system wants to populate states with only two kinks
(i.e. a single domain wall). When more kinks are generated there can be additional non-
trivial dynamics due to the collisions of different kinks, obscuring the FVD. In Ref. [21] the
authors proposed a parameter regime where the FVD could be unambiguously observed [25].
In particular for the quantum Ising chain this is found, for example, by setting hz/J ≈ 0.08
and hx/J ≈ 0.4− 0.8.

We conclude this subsection by remarking that the numerical simulation of the FVD in
quantum spin chains is computationally a hard task. Indeed, in order to probe the metastability
of the false vacuum, we need to simulate the long-time dynamics following a quantum quench
of an interacting spin system. Since we are dealing with a one-dimensional system, the most
promising approach makes use of an infinite matrix-product-state (iMPS) ansatz for the many-
body wavefunction. This ansatz accounts for the translational invariance of the system and
allows to efficiently compute the time-evolved state up to times J t ∼ 15 for the parameters
range mentioned above. This time window allows for a direct observation of the FVD, but not
of the final thermalization of the system expected for hz ̸= 0.

1The prefactor in Eq. (3) is non-universal, and is currently debated in the literature. See e.g. Ref. [22]. Fur-
thermore, by tuning the ratio between the longitudinal hz and the transverse field hx , one could activate new more
relevant decay paths giving rise to different decay behaviours [46].
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2.2 Continuous monitoring of the quantum Ising chain: stochastic quantum
dynamics

The physics discussed previously was for the case of an isolated 1D Ising spin chain and its uni-
tary evolution. In this work we will add a further measurement apparatus which continuously
monitors the local magnetization along the longitudinal, or z, direction.

When the spins of the quantum Ising model are measured continuously in time, the evolu-
tion of the many-body wavefunction is governed by quantum trajectories |ψ(Nt)〉which follow
the following stochastic Schrödinger equation [47]:

d|ψ(Nt)〉= d t

�

−iH −
γd

2

L
∑

i=1

�

L†
i Li − 〈L

†
i Li〉Nt

�

�

|ψ(Nt)〉+
L
∑

i=1





Li
Ç

〈L†
i Li〉Nt

− 1



δN i
t |ψ(Nt)〉

(4)
where H is the system Hamiltonian (1) ruling the unitary evolution, γd is the measurement
rate, and Li are the jump operators that measure the +z longitudinal component of the spin:

Li = ni ≡
σz + I

2
. (5)

The vector Nt = [N1
t , N2

t , . . . , N L
t ] is a collection of uncorrelated Poisson processes which sat-

isfy δN i
t = 0, 1,
�

δN i
t

�2
= δN i

t and have expectation values E[δN i
t ] = γd d t〈L†

i Li〉Nt
where

〈•〉Nt
= 〈ψ(Nt)| • |ψ(Nt)〉.

The quantum jump trajectories, or simply quantum trajectories (QTs) of Equation (4) faith-
fully describe the dynamics when the monitoring apparatus acts occasionally but abruptly on
the system causing a random local spin to be projected along the +z direction (second term
in Eq. (4)) with probability pi(t) = E[δN i

t ] = γd d t〈ni〉Nt
proportional to the measurement

rate and to the probability of the spin on the i-th site to be in the +z direction. When no
jump occurs, the system evolves according to the non-Hermitian Hamiltonian (the first term
in Eq. (4)):

Heff = H − i
γd

2

L
∑

i=1

L†
i Li

= H − i
γd

2

L
∑

i=1

ni . (6)

with probability 1−
∑L

i=1 pi(t).
For simplicity, we label the wavefunction resulting from a single noise realization as |ψα(t)〉

and the conditional density matrix ρα(t) = |ψα(t)〉〈ψα(t)|. From these quantities we can
reconstruct the mean state of the system at a given time t as:

ρ(t) = lim
Ntraj→∞

1
Ntraj

Ntraj
∑

α=1

ρα(t), (7)

where Ntraj is the number of QTs. One can readily show that given the stochastic Schrödinger
equation in Eq. (4), the equation of motion for the mean density matrix ρ(t) is the Linblad
master equation [48]:

d
d t
ρ(t) ≡ L [ρ(t)]

= −
i
ħh
[Heff,ρ(t)] + γd

L
∑

i=1

niρ(t)ni , (8)
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where we have defined the Liouvillian superoperator L [•]. From Eq.(8) we can conclude
that the average dynamics induced by the continuous monitoring of the local magnetization
is equivalent to that of a system coupled to an infinite temperature thermal bath causing pure
dephasing at a rate γd .

Equation (8) admits a unique stationary state that is the maximally mixed density matrix:

ρss ≡ lim
t→∞

ρ(t) =
I

2N
. (9)

In other words, the continuous measurement protocol heats up the system, asymptotically
driving it toward an equally-probable incoherent mixture of all the many-body states, i.e. infi-
nite temperature. At large times the mean state is expected to relax exponentially to ρss, and
the typical relaxation rate γth would be given by the so-called Liouvillian gap (i.e. the spectral
gap of L), characterising the asymptotic decay rate of the system [14].

The quantum expectation values of generic quantities, O, which are independent of the
state of the system ρα are related to the average over QTs:

〈O〉(t) = Tr [Oρ(t)] = lim
Ntraj→∞

1
Ntraj

Ntraj
∑

α=1

〈ψα(t)|O|ψα(t)〉, (10)

i.e. we can sample the expectation value of a given observable by averaging over many stochas-
tic realization. However, if the quantity, O, we want to compute depends on ρα(t), the second
equality in (10) does not hold. A particular example relevant to our case is the bipartite en-
tanglement entropy:

Sα(t) = −Tr[ρA
α(t) lnρ

A
α(t)] (11)

where the reduced density matrix for region A is ρA
α(t) = TrB

�

ρ j(t)
�

, with TrB [•] denoting
the partial trace over the complimentary region B. One can immediately see that the average
of Eq. (11) over quantum trajectories:

S(t) = lim
Ntraj→∞

1
Ntraj

Ntraj
∑

α=1

Sα(t) ̸= −Tr
�

ρA(t) lnρA(t)
�

(12)

is not the same as the entanglement entropy one would obtain from using the mean reduced
density matrix over the subspace A, ρA(t). The entanglement entropy calculated from the re-
duced density matrix will contain classical contributions due to the fact that ρA(t) is a mixed
state, alongside the contributions from quantum entanglement. For this reason the entangle-
ment entropy S is a quantity that depends on the specific trajectory protocol arising from a
given measurement procedure.

Our approach based on MCMPS allows us to simulate the dynamics of individual QTs, thus
enabling the study of both trajectory-dependent nonlinear quantities (like the entanglement
entropy in (12)) as well as the quantum expectation value of standard observables like the
magnetization (as described in (10)). A sketch of the system under consideration is shown in
Fig. (1).

3 Simulation protocol with Monte Carlo matrix product states

In this work we numerically compute the system dynamics according to the stochastic Schrödinger
equation, Eq. (4), after that the system is initially prepared in the false vacuum. To this end
we adopt a MPS representation of the many-body state [28], and we evolve the wavefunction
using the Time Evolving Block Decimation (TEBD) scheme [30] combined with stochastic QTs
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|ψα(t)⟩ =

e−iĤeffdt |ψα(t)⟩ ≃ Lj |ψα(t)⟩ =

= e−ihj,j+1eff dt/2

|ψα(t + dt)⟩
non-Hermitian evolution quantum jump

= Lj

Figure 2: A sketch of the MCMPS method. At each time step d t the evolu-
tion of the MPS |ψα(t)〉 obeys the stochastic dynamics (4). With probability
1 −
∑L

i=1 pi(t) and pi(t) = γd d t〈ni〉α, the system evolves according to the effec-
tive non-Hermitian Hamiltonian Heff in its Trotterized form (15) (left side) or, with
probability
∑L

i=1 pi(t), undergoes a quantum jump. In this a quantum jump occurs
on the j-th site (right side).

accounting for the measurement process [39]. This method goes under the name of Monte
Carlo matrix product states (MCMPS). All numerical calculation were done using the ITensor
library [49,50] of the Julia Programming Language [51].

The main steps of the algorithm are summarized as follows:

• Ground state preparation. We first prepare the system in the ground state of the Hamil-
tonian in Eq. (1) with fields hx and hz , H(hx , hz). This is done using an imaginary time
evolution starting from an initially random MPS of L = 100 sites. The imaginary time
evolution is also done using the TEBD scheme with a cutoff of singular values set to 10−8,
which controls the truncation error for the state propagation. We evolved the system up
until an imaginary time Jτ = 10 with an imaginary time step Jdτ = 10−2. This choice
of parameters provided adequate convergence.

• Quench from the false vacuum. From the initial state, we suddenly quench the lon-
gitudinal field globally: hz → −hz , and evolve the initial state according to the same
stochastic Schrödinger equation, Eq. (4), but with the Hamiltonian to H(hx ,−hz). If
the magnitude of the longitudinal field hz is small compared to the other energy scales
this procedure can be seen as a quench to the the false vacuum of the Hamiltonian
H(hx ,−hz). However this procedure always produces some unwanted low-lying excita-
tions on top of the false vacuum that will affect the short-time behavior of the system.

• Stochastic quantum dynamics. The algorithm for implementing Eq. (4) was shown in
Refs. [36, 39], In order to implement the stochastic dynamics in Eq. (4), we discretize
the time evolution and after each time step, d t, we stochastically choose whether to
evolve the system with the non-Hermitian effective Hamiltonian (6) [with probability
1−
∑L

i=1 pi(t)]:

|ψα(t + d t)〉=
e−iHeffd t |ψα(t)〉
∥e−iHeffd t |ψα(t)〉∥

, (13)
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or, otherwise, to apply the i-th jump operator [with probability pi(t)]:

|ψα(t + d t)〉=
ni|ψα(t)〉
∥ni|ψα(t)〉∥

. (14)

The trajectory evolution scheme described above has to performed within the MPS repre-
sentation of the many-body wavefunction. The non-Hermitian evolution ruled by the effective
Hamiltonian in Eq. (6) can be easily cast into a MPS friendly form using the Trotter decompo-
sition:

e−id tHeff ≃

�L−1
∏

i=1

e−ihi,i+1
eff d t/2

��L−1
∏

i=1

e−ihL−i,L−i+1
eff d t/2

�

+O
�

d t3
�

, (15)

In defining Eq. (15) we used the fact that the effective Hamiltonian contains only local and
nearest neighbours terms and thus can be written as

Heff =
L−1
∑

i=1

hi,i+1
eff hi,i+1

eff = −(Jσz
iσ

z
i+1 + hxσ

x
i + hzσ

z
i ) (16)

The action of a given quantum jump can be easily computed by applying the local operator
Li = ni to the MPS structure. The whole MCMPS procedure is illustrated in Fig. (2).

As one may expect, the weak continuous measurement protocol is very sensitive to the time
step d t. From our explorations2 we found the optimal time step to be Jd t = 10−3. Unless
otherwise specified, we consider systems of size L = 100, and work with an initial Hamiltonian
with hx/J = 0.8 and hz/J = 0.08. This choice of parameters was used in Ref. [21] to observe
the FVD in the absence of measurement, and provides a benchmark against the closed system.

4 Results

We characterize the FVD and the thermalization dynamics using several physical observables.
The first is the following figure of merit:

F(t) =

∑L
i=1

�

〈σz
i (t)〉t + 〈σ

z
i (0)〉t
�

2
∑L

i=1〈σ
z
i (0)〉t

. (17)

Its behaviour quantifies the departure from the false vacuum starting from F(0) = 1. Since
we know that the density matrix will relax to the the infinite temperature state (9) which
has vanishing magnetization along all directions, we have at infinite time: limt→∞ F(t) = 1

2 .
In what follows we will study how F(t) interpolates between these two values and we will
quantify what is the typical relaxation rate γth towards ρss. The analysis of γth will be also
corroborated by studying the behaviour of the Liouvillian gap defined in Eq. (24) via an exact
diagonalization of L for a small system of size L = 6.

To quantify the behaviour of correlations we also compute the connected part of the equal-
time two-point correlation function:

C(r, t) =
1
Nr

L
∑

i=1

�

〈σz
iσ

z
i+r〉t − 〈σ

z
i 〉t〈σ

z
i+r〉t
�

(18)

2For any larger time steps, we observed discrepancies in the quantum trajectories for J t ≳ 10. The quantities
under consideration are always averaged over Ntraj ≥ 600.
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0 2 4 6 8 10 12 14
Jt

100

4 × 10 1

6 × 10 1

F(
t)

d/J = 0
d/J = 0.1
d/J = 0.3
d/J = 0.5
d/J = 0.7
d/J = 1.0

Figure 3: F(t) defined in Eq. (17) for various values of the coupling to the environ-
ment, γd . In these simulations we consider a system of size L = 100, and with param-
eters hx = 0.8 and hz = 0.08. Each solid line represents the average of Ntraj ≥ 600
trajectories. The dashed line corresponds to the infinite temperature steady state
where F(t) = 1/2.

In Eq. (18) we also average over all positions i, thus we have introduced a factor of Nr to count
all possible pairs of sites separated by a distance r. The quantities in Eq. (17) and Eq. (18)
will be evaluated by averaging over QTs [as described in Eq. (10)], and as they are linear in
the state of the system, are properties of the mean state ρ(t).

Finally, we compute the behaviour of the half-chain entanglement entropy S defined in
Eq. (12), averaging the single-trajectory entanglement entropy Sα defined in Eq. (11) where
A is the connected region embedding the sites i = 1, . . . , L/2. As discussed in Sec. 2.2 this
quantity in nonlinear in the state of the system and thus depends on the specific measurement
protocol performed on the quantum Ising chain.

4.1 Magnetization and metastability of the false vacuum in the presence of mea-
surements

Fig. (3) reports the results for the figure of merit of the average magnetization, Eq. (17), for
various values of γd . For all γd the system exhibits an exponential decay away from the false
vacuum, i.e. the FVD after an initial transient (lasting up to J t ∼ 1). Finally, at large times,
the system approaches the infinite temperature limit F(t →∞) = 1/2.

First, let’s consider the FVD physics. Increasing γd has two main effects, the first is that the
exponential decay rate appears to grow larger, while the second effect is to decrease the time
window where the exponential decay is observable. To quantify this more precisely, we extract
the FVD rate, γ, as a function of the measurement rate, γd . To do this we fit the dynamics of
F(t) to an exponential decay within the appropriate time-window and extract the decay rate.
The details of this procedure are shown in Appendix A, while the results are shown in Fig. (4).

Inspired by the analytical formula for the FVD rate in a closed system, we fit the numerical
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Figure 4: FVD rate, γ, as a function of γd/J . The solid dots correspond to the results
of the QT simulation, and the red line is a fit to Eq. (19).

results for the FVD rate, γ, to a phenomenological Arrhenius law:

γ∝ exp
�

−
AJ

Bγd + hz

�

(19)

The fit appears to describe the physics reasonably well 3 for the range of measurement rates
considered. Equation (19) is appealing as it smoothly connects to the expression (3) for van-
ishing measurement rate γ→ 04 and states that the departure from the false vacuum is expo-
nentially small in 1/γd up to γd ∼ J .

The fact that the FVD decay rate is still exponentially suppressed for quite large values of
γd is quite surprising. It suggests that the metastability of the false vacuum is not immediately
spoiled by measurements: the coupling to the environment assists the tunneling process and
renormalizes the decay rate, i.e. the general trend remains the same. This is even more striking
since the mechanism for departing from the false vacuum is quite different in the monitored
scenario; the measurements can make a a single site with virtual spin in the +z direction real
at a rate γd . This process then causes a cascade of further measurements as the probability for
a measurement to occur is proportional to 〈ni〉α, i.e. the probability for a spin to be oriented
along the +z direction.

To further study this mechanism, we examined the local magnetization for a single QT
for various γd , see Fig. (5). When γd = 0, we see the magnetization evolves slowly in the
bulk. There are also significant dynamics in the magnetization at the boundaries due to finite
size effects. When γd ̸= 0, we see that first, the change in the magnetization in the bulk is
slower than when γd = 0. This is due to the non-Hermitian evolution of the system which
favors the spins to stay oriented in the −z direction and suppresses the states with spins in the
+z direction. A nice consequence of the non-Hermitian evolution is that finite size effects do
not penetrate into the bulk, and one can access the thermodynamic limit more quickly. This
is discussed in more detail in Appendix B. The initial change in the magnetization primarily

3with A≈ 0.07 and B ≈ 0.3.
4For γd = 0 our results slightly differ quantitatively with respect to what reported in Ref. [21]. This is due to

finite size effects which are discussed in Appendix B.
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Figure 5: Local magnetization for a single quantum trajectory for various γd . For
γd = 0, the change in magnetization is dominated by the spins at the boundary, and
represent finite size effects. For finite and increasing γd one observes the appearance
of a single spin projected along the +z direction due to a quantum jump. This single
site domain wall appears to spread ballistically and causes further quantum jumps,
nucleating more spins. The number of quantum jumps increases both as a function
of time and of γd .

12
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comes from the measurement process creating a local spin oriented along the +z direction.
These excitations then expand ballistically, causing more measurements. We do not observe
the confinement of excitations on this time scale for finite γd due the cascade of further mea-
surements. For larger values of γd this process occurs at a larger rate thus driving faster the
system away from the false vacuum.

Since measurements are the leading mechanism driving the system away from its initial
state, it is quite natural to expect the same physics to occur in the limit of zero longitudinal field
hz = 0, i.e. the transverse Ising model. In this case, we study the dynamics when the system is
prepared in the ground state where the magnetization is in the−z direction. The measurement
apparatus can still project local spins onto the +z direction, which starts a cascade of further
measurements that melts the order in a manner similar to the case of finite hz . Thus we expect
there is an exponential decay in F(t) with a decay rate, γ, given by Eq. (19) but with hz = 0.
We have numerically confirmed that the melting of the order exhibits an exponential decay
that is described by an Eq. (19), as discussed in Appendix C.

4.2 Heating and the emergence of the quantum Zeno regime

The second major feature of the dynamics of the magnetization contained in Fig. (3) is a decay
towards the infinite temperature state at long times. The asymptotic decay (tJ ≫ 1) towards
ρss is exponential with a thermalization rate, γth:

∥ρ(t)−ρss∥ ∼ e−γth t , (20)

which implies |F(t)− 1/2| ∼ e−γth t for J t ≫ 1. For the parameters under consideration, we
witness thermalization for γd/J ∼ 1. For significantly smaller or larger values of γd/J the
thermalization time scale is longer than the time scales accessible to our MPS calculation.

To overcome these numerical limitations, we note that the thermalization rate must cor-
respond to the spectral gap of the Liouvillian superoperator defined in Eq.(24); the thermal-
ization rate is governed by the eigenvalue of L with the smallest absolute value of the real
part [14]:

γth = −Re [λ1] . (21)

Hence the thermalization rate can be accessed by diagonalizing the Liouvillian superoperator.
In Fig. (6) we report the thermalization rate for a quantum Ising spin chain obtained via

exact diagonalization for a system of size L = 6 for and various values of γd/J . The values of
the longitudinal and transverse fields, hz and hx , are the same as those used in the simulations
shown in Fig. (3). As one can see for small γd/J , the value of γth increases with measurement
rate γd . This intuitive behaviour indicates that the faster the system is monitored, the faster
the chain heats up toward ρss. However, for γd/J ≳ 5 we find that the thermalization rate
decreases with increasing γd . This signals the appearance of the quantum Zeno regime [52–55]
in our protocol. In this regime the system is governed by a reduced subspace of dark states
which are insensitive to the monitoring. In our case such dark states correspond to density
matrices with definite magnetization along z, see Appendix D.

In the limit γd ≫ hx (defining the quantum Zeno regime of the model and that in our case
also implies γd ≫ J) we can obtain an analytical expression for γth by employing a dissipative
Schrieffer-Wolff transformation [56] in order to construct an effective Liouvillian for these
dark states. The details of this calculation are shown in Appendix D. The result is that the
thermalization rate in the quantum Zeno regime is given by

γth ≈
8h2

x

γd
. (22)
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Figure 6: The Liouvillian gap γth as determined from exact diagonalization (E.D.) of
the Liouvillian for a small system of L = 6 alongside the analytical prediction in the
Quantum Zeno (Q.Z.) regime, Eq. (22). We consider hx/J = 0.8 and hz/J = 0.08.
For these parameters, the transition to the Q.Z. regime is denoted by the red dashed
line, and occurs for γd/J ≈ 5.

Equation (22) is independent of the system size, and applies equally to infinitely large systems
as local processes dominates over the non-local coupling rate J in the quantum Zeno regime.
One key feature to note is that Eq. (22) doesn’t depend on either J or hz to leading order,
which is a consequence of the fact that we monitor the z component of the spin.

In Fig. (6) we also present this analytical solution alongside the thermalization rate ob-
tained from the exact diagonalization of the Liouvillian. We find excellent agreement for large
γd/J . For small values of γd/J we find that the thermalization rate is proportional to γd/J . The
transition between these two regimes occurs when γd ≈ 8h2

x/J . For the value of hx/J = 0.8
used in our simulations the quantum Zeno regime is for: γd ≫ 5J .

4.3 Correlation functions

Next we consider the equal-time two-point connected correlation function, C(r, t), defined in
Eq. (18). The results of the numerical simulation for the connected correlation function are
shown in Fig. 7 for various values of γd/J . When γd = 0, we observe that the correlations
grow balistically, after an initial transient that last up to J t ≃ 1. At larger times J t ≈ 10
the correlations reach a maximum range, and then begins to turn back. This is related to the
confinement of excitations due to the longitudinal magnetic field.

The presence of continuous measurements progressively kills such correlations. For small
values of γd/J , one can still see that the correlations expand ballistically, but then decay at
large values of r and J t. This effect becomes more extreme as one increases the measurement
rate, γd , drastically restricting the range (both in space and time) of quantum correlations.

To examine this more carefully, in Fig. (8) we plotted the connected correlation function
as a function of J t at fixed r = 1 and as a function of γd . After some initial growth due
to the unitary dynamics, there is an exponential decay in the correlations. This exponential
decay is evident for all values of γd . The same behaviour can also be shown if one examines

14



SciPost Physics Submission

Figure 7: Logarithm of the connected correlation function, Eq. (18), for various γd/J .
In the absence of measurements, γd = 0, there is a clear growth of correlations with
time due to the unitary dynamics. For finite γd , there is a competition between the
fore mentioned unitary dynamics, and dissipation. The measurements decrease the
correlations at both large distances and times, in comparison to the closed system.

the connected correlation function as a function of r for fixed J t, where one observes an
exponential decay of the correlations in space, see Fig. (8) b). This decay of correlations is
a precursor to the eventual thermalization of the system, and is markedly different from the
case γd = 0. Indeed we know that, for any finite measurement rate, γd > 0, the system will
asymptotically approach ρss which implies

lim
t→∞

C(r, t) = 0, ∀r, (23)

since the steady-state is completely factorizable in space ρss =
⊗L

i=1 I/2.

4.4 Entanglement Entropy

In order to further characterize the behavior of correlations we have also studied the dynamics
of the entanglement entropy, Eq. (11). For simplicity we only consider the bipartite entangle-
ment entropy where we trace over half the system.

The entanglement entropy is presented in Fig. 9 for the same parameters as our QT sim-
ulations of the magnetization. In the absence of dissipation the entanglement strictly grows
and we observe: S∝ t at long times. For small values of γd/J , the entropy still grows linearly
in time for J t < 15, however the rate of entropy growth decreases as the measurements de-
stroy the correlations generated by the unitary dynamics. In the time-window observed, this
process seems to be non-monotonic with the strength of γd . It appears that for small values of
γd , the time range probed in our simulation belongs to a transient regime. Its actual duration
is hard to quantify as the unitary and measurement dynamics are competing on equal footing.
When γd > 0.5J we instead see that dynamics due to the measurements overcome the unitary
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Figure 8: Connected correlation function, Eq. (18), as a) function of J t at fixed r = 1
and b) a function of r at fixed J t = 5 for various γd/J . When γd ̸= 0, there is a clear
exponential decay. The decay rate of the correlation function as a function of J t and
r depends on γd and increases with increasing γd .
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Figure 9: Bipartite entanglement entropy as a function of time for various values
of γd . Again we simulate the dynamics using QT with L = 100, hx/J = 0.8, and
hz/J = 0.08.
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Figure 10: Entanglement entropy, S(t), for fixed γd = 1 and variable system size L.
When the system thermalizes, the entropy saturates at a value that only depends on
γd , not the system size. In this simulation we used Nt ra j = 600.

dynamics. For such values of γd the entropy approaches a stationary state value that decreases
monotonically with increasing γd .

We expect such a saturation of the entanglement entropy to occur when the system ther-
malizes. However, only for γd/J ≈ 1 can we observe such physics in the time frame which is
accessible to the numerics. As discussed previously, this is because either a) the thermalization
time is too long to be observed in our numerics for γd/J ≪ 1, or b) we enter the quantum
Zeno regime where the approach to the thermal state again becomes too slow to be observed
for γd/J ≫ 1.

Finally, for γd/J = 1 we show how the entanglement-entropy in the final steady state
satisfies an area law. This is evident in Fig. (10), where we find the entanglement entropy to
be independent of L, up to fluctuations in the trajectories. Such an area law is expected in
the quantum Zeno regime. Although we are not strictly in the quantum Zeno regime, we still
observe an area law. This is most likely due to the fact the relevant states of the system probed
the QTs are those with area law behaviours.

5 Conclusions

In this work we characterized the decay from the false vacuum of the quantum Ising model
in the presence of a measurement apparatus monitoring the local magnetization. To simulate
the system dynamics we employed a Monte Carlo matrix-product-state approach. The many-
body wavefunction is thus encoded in a matrix-product-state ansatz which evolves in time
accordingly to a stochastic Schrödinger equation describing quantum jump trajectories. This
protocol allows for the simulation of the real-time dynamics of individual quantum trajectories.

We find that the presence of the continuous monitoring affects the decay of the false vac-
uum, introducing novel decay paths. In particular, the measurements can locally nucleate
spins aligned along the +z and accelerate the departure from the false vacuum. We quantify
this process and show that the magnetization fidelity, Eq. (17), decays exponentially within a
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time window that depends on the measurement rate, and at a rate that is itself exponentially
small in the measurement rate.

At long times the system eventually approaches a thermal regime where the mean state of
the system is maximally mixed. The typical timescale characterizing the asymptotic approach
to the steady state depends on the measurement rate and shows signatures of the quantum
Zeno effect. We connect the emergence of this regime to the behaviour of the spectral gap
of the Liouvillian and we develop an analytical approach (based on the dissipative Schrieffer-
Wolff transformation) able to predict such the Zeno decay rate as well as the critical point.

From the methodological point of view, this work highlights the high potentiality of Monte
Carlo matrix product states for the simulation of metastable phenomena in monitored inter-
acting spin systems. This aspect paves the way for more general future explorations concern-
ing, for example, the study the dynamics of the entanglement under different measurement
protocols (from quantum jumps to quantum state diffusion [47,57]) in matrix-product simu-
lations [41].

This work also proposes another avenue for observing the FVD and thermalization in inter-
acting systems. The continuous monitoring can speed up both the FVD and thermalization in
a controllable way, rendering them visible on computational and experimental time scales. Al-
though the FVD decay in spin-chains have not been currently observed experimentally, trapped
ion experiments can already study non-integrable dynamics of meson confinement [58]. An-
other potential platform for studying the FVD is the two-component Bose-Einstein conden-
sates [59–62]. There the spin-degrees of freedom act as a quantum Ising model, but with the
added benefit of the long coherence time provided by condensates. Extending such studies to
optical lattice systems could then lead to direct realizations of similar physics studied in this
manuscript.

Finally we note that there are many other intriguing research directions. First and fore-
most, it would be interesting to develop an analytic treatment of the measurement apparatus
via perturbation theory in the regime of small measurement rates, γd . In particular, this could
be done for the the dynamics of the mean state by examining the Linbdlad master equation.
Beyond this, there are more general questions pertaining the FVD in open quantum systems;
such as how much does the FVD physics depend on the different unravelings (corresponding
to different measurement protocols) of the Lindblad master equation and on the symmetries
of the Hamiltonian.
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A Details on determining the FVD rate

We determine the FVD rate by examining the dynamics of the magnetization, as shown in
Fig. (3). As stated in the main text, the signature of the FVD is an exponential decay away
from the initial state, with a decay rate γ. To emphasize the fitting procedure we plot ln(F(t))
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Figure 11: Fitting Protocol for the FVD rate from F(t), Eq. (17). The time-window
where the FVD rate is unambiguous is shown in Tab. (1). Within the given domain
we fit ln(F(t))with a linear function, the slope of which is the FVD rate, γ. The linear
fits are shown by the dotted-dashed line, while the solid lines are the results of our
numerical simulation.

γd J tmin J tmax

0 8 13
0.1 5 7
0.3 4 5

Table 1: Window where the FVD is observed in the dynamics of F(t), Eq. (17). These
bounds are only approximate, and the fitting to the FVD is done within these time-
domains.

for γd/J = 0,0, 1,0.3, where F(t) is the figure of merit defined in Eq. (17). As γd increases, the
time-window where the FVD is observable becomes smaller. In Tab. (1) we show the relevant
time-window for various values of γd . These time-windows are only approximate, and we fit
the dynamics of ln(F(t)) to a linear fit within these time windows. This procedure appears to
be accurate, as extrapolating said fit to the entire FVD regime provides excellent agreement.
Examples of this procedure are shown in Fig. (11). The linear fits are shown by the dotted-
dashed lines, while the solid lines are the results of the numerical simulation. Within the
concerned time-domain, the linear fit, i.e. the exponential decay, is a good description of the
dynamics.

B Finite size effects

In this work we focus on systems with L = 100. It is then natural to ask whether the system
is truly in the thermodynamic limit? We examined this issue by looking at both the magneti-
zation, or more exactly F(t) in Eq. (17), at a time J t = 15, both in the presence and absence
of dissipation. The results are shown in Fig. (12). From Fig. (12) one can conclude that finite
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Figure 12: Value of figure of merit, F(J t = 15), at a given time J t = 15 and for
various system sizes L in the presence (blue) and absence (red) of monitoring. In
the absence of monitoring, the system is more sensitive to finite size effects. For
γd = 0.1 we already see convergence to the infinite size limit for L = 100 sites.

size effects are more important in the absence of continuous monitoring. In our simulations
we work at L = 100 sites, and one does not see a direct convergence to the thermodynamic
limit for γd = 0. For γd = 0.1, we see that the system approaches the thermodynamic limit
for L ≈ 100 sites. This observation is quite natural; in the absence of unitary dynamics cor-
relations can spread throughout the whole system, while the presence of monitoring will kill
correlations, especially at larger distances.

This lack of finite size effects in the presence of continuous monitoring can also be demon-
strated by considering the entanglement entropy when the system has thermalized. We demon-
strated this fact by evaluating the entanglement entropy for various L when γd = 1, as shown
in Fig. (10).

C The melting of order in the transverse Ising model

In Sec. (4) we considered the FVD dynamics of the quantum Ising model, Eq. (1), in the pres-
ence of a finite longitudinal field. As discussed in the main text, the presence of measurements
can nucleate single site bubbles of the true vacuum at a rate γd . This mechanism is quite dif-
ferent than that of the closed quantum system, and suggests that one can observe metastability
and the melting of order in the transverse Ising model, i.e. when the longitudinal field is zero.

We confirmed this numerically by performing our stochastic matrix product state algorithm
on a system of L = 100 sites for hx = 0.8 and hz = 10−4. The finite value of hz was chosen
to guarantee convergence to the desired ground state, but is otherwise negligible. The results
of our simulations for Nt ra j = 200 QTs are shown in Fig. (13). In the absence of measure-
ments, the initial state is in an exact eigentstate of the system, hence there is no evolution of
the magnetization. In the presence of measurement, the magnetization decays in a manner
qualitatively similar to the case of finite longitudinal field, see Fig. (3).

Similar to the case of finite hz , we can identify a regime where there is an exponential
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Figure 13: F(t) defined in Eq. (17) for various values of the coupling to the environ-
ment, γd , in the absence of the longitudinal field, hz = 0. In these simulations we
set L = 100 and hx = 0.8, and Nt ra j = 200. The dashed line represents the infinite
temperature steady state with zero magnetization, i.e. F(t) = 1/2.

decay away from the initial state with a rate which we also call γ. Similar to the FVD, γ sets
the rate at which the initial magnetic order is melted by measurements. We expect γ to still
obey an Arrhenius law, i.e. Eq. (19) but with hz = 0. To test this we fit the measured decay
rates to an Arrhenius law. To simplify the fitting we consider: γd ln (γ). This transforms the
Arrhenius law to a linear fit which is shown in Fig. (14). The linear fit reproduces the data
quite well.

D Schrieffer-Wolff transformation and its application to the quan-
tum Ising model

In this section we consider the Schrieffer-Wolff transformation for open quantum systems [56],
and apply this approach to the open quantum Ising model with both longitudinal and trans-
verse magnetic fields in order to understand the quantum Zeno effect and thermalization time
scale.

D.1 Schrieffer-Wolff transformation for open quantum systems

The Schrieffer-Wolff (SW) transformation is a perturbative approach to generate an effective
Hamiltonian or equation of motion for a reduced subspace of relevance to the problem. This
can be done to arbitrary order in the coupling of the reduced subspace to the remaining Hilbert
space [63]. Here we apply a similar procedure but to the Linblad master equation:

∂tρ(t) = Lρ(t) (24)

where ρ(t) is the time-dependent density matrix and L is the Liouvillian super-operator of the
form:

Lρ(t) = −i [H,ρ(t)] +
∑

i

�

Liρ(t)L
†
i −

1
2

�

L†
i Li ,ρ(t)
	

�

(25)
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Figure 14: Arrhenius law behaviour for the decay rate γ, as a function of γd/J . The
data corresponds to the results presented in Fig. (13). The red line corresponds to
an Arrhenius law, with hz = 0, see Eq. (19).

Eq. (25) depends on the many-body Hamiltonian, H, and the jump operators Li which induce
dephasing in the system. For the moment we will consider general jump operators and a
general Hamiltonian.

As stated previously, Eq. (25) is a super-operator, i.e. it maps an operator onto another
operator, similar to how an operator maps one state onto another. In this way we can introduce
a Hilbert space of all density matrices ρ(t), which the super-operator acts on. A state in
this Hilbert space can be represented as a column vector, while the super-operator can be
represented as a matrix. This is known as the vectorized representation.

Consider a Liouvillian, L0. In general L0 is non-Hermitian and can have complex eigen-
values, These eigenvalues, λα, j , can be organized into sectors, α, where each eigenvalue in
that sector, j, is closely spaced. More plainly, the eigenvalue spacing between the sectors,
λα+1, j −λα, j , is much larger than the spacing within each sector, λα, j+1−λα, j . Without loss of
generality, we will consider α= 0 as the lowest lying eigenvalues of the Liouvillian, while the
other sectors have larger eigenvalues. The left and right eigenstates (or rather eigenmatrices)
corresponding to these eigenvalues are:

L0|α, v j〉= λα, j 〈α, u j|L0 = λα, j (26)

which satisfy the normalizaiton condition:

〈α, u j|β , vk〉= δα,βδ j,k (27)

Finally we note that the projector onto the α subspace can be written as:

Pα =
∑

j

|α, v j〉〈α, u j| (28)

The goal of the SW transformation will be to perturbatively integrate the couplings between
each subspace and to construct to construct an effective Liouvillian that is "block diagonal",
i.e. no coupling between sectors of differing α:
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Le f f =
∑

α

PαLe f f Pα (29)

In this way we can trivially trace out the irrelevant degrees of freedom to a problem.
To this end consider the Liouvillian:

L= L0 + ξL1 (30)

where ξ is a small dimensionless number. In order to implement the SW transformation we
use the following transformation:

L′ =QLQ−1 (31)

where the operator Q is given by

Q = eη Q−1 = e−η (32)

Eq. (31) is a similarity transformation which preserves the trace of the density matrix. Formally
speaking Eq. (31) can be written as a set of nested commutators:

L′ = L+ [η,L] + 1
2!
[η, [η,L]] + ... (33)

Eq. (33) can be evaluated to each order in ξ by also expanding L′ and η to the appropriate
order:

L′ = L(0) + ξL(1) + ξ2L(2) + ...

η= ξη(1) + ξ2η(2) + .. (34)

At order O
�

ξ0
�

the effective Liouvillian is just L0. At O (ξ) one finds:

L(1) = L1 + [η(1),L0] (35)

As the goal of the SW transformation is to integrate out, i.e. decouple, the subspace α = 0
from the higher α ̸= 0 subspaces, we require that such "off-diagonal” elements vanish. That is
we require:

〈αuk|L(1)|β v j〉= 0 α ̸= β (36)

From Eqs. (35-36) one can then obtain the matrix elements for η(1):

〈α, uk|η(1)|β , v j〉=
〈α, uk|L1|β , v j〉
λα,k −λβ , j

(37)

for α ̸= β . For α= β we can choose: 〈α, u j|η(1)|α, vk〉= 0, without loss of generality.
Given Eq. (37), one can evaluate the leading correction to the Liouvillian is:

L(1) =
∑

α

PαL1Pα (38)

where we have used the property that η(1) only couples different sectors of eigenvalues to-
gether.
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At O(ξ2) one finds a similar expression for the effective Liouvillian:

L(2) =
�

η(1),L1

�

+
�

η(2),L0

�

+
1
2

�

η(1),
�

η(1),L0

��

(39)

Similar to the linear order case, we can again look at the matrix elements of Eq. (39). Just as
in the first order case, we set the "off-diagonal" matrix elements of Eq. (39) to zero, and solve
for η(2).

To simplify the calculation we note that from Eq. (35):

�

η(1),
�

η(1),L0

��

=
�

η(1),L(1) −L1

�

(40)

Thus:

〈αuk|η(2)|β v j〉=
1
2

1
(λα,k −λβ , j)

〈α, uk|
�

|
�

η(1),L
�

+
�

η(1),L(1)
��

|β , v j〉 (41)

valid forα ̸= β . A similar analysis to the linear case shows that againη(2) only couples different
sectors together, hence we only need to consider matrix elements with α ̸= β .

Eq. (41) allows one to evaluate the effective action at quadratic order:

L(2) = 1
2

∑

α

Pα
�

η(1),L(1)
�

Pα (42)

In terms of the original Liouvillian, the matrix elements of the new effective Liouvillian are:

〈αuk|Le f f |αv j〉= 〈αuk|L0|αv j〉+ ξ〈αuk|L1|αv j〉

+
ξ2

2

∑

β

∑

ℓ

〈αuk|L1|β vℓ〉〈βuℓ|L1|αv j〉

×
�

1
λα,k −λβ ,ℓ

+
1

λα, j −λβ ,ℓ

�

(43)

Eq. (43) is the final result which tells one how to construct an effective Liouvillian of the form
Eq. (29).

D.2 Application to the quantum Ising model

Let us now consider the application of the SW transformation to the study of the quantum
Zeno effect and the thermalization of a one dimensional quantum Ising model with transverse
and longitudinal magnetic fields that is coupled to an infinite thermal bath.

The dynamics of the density matrix are governed by Eq. (25). The unitary dynamics are
governed by the following Hamiltonian:

H = −
∑

i

�

Jσ̂z
i σ̂

z
i + hx σ̂

x
i + hzσ̂

z
i

�

(44)

where σ̂(x ,y,z)
i is the x , y, z Pauli matrix for the i = 1,2, ...N site. The dephasing is governed

by the set of jump operators for each site i:

Li =
p

γd
1
2

�

Îi + σ̂
z
i

�

(45)
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with γd as the dephasing rate and Îi is the identity operator for site i.
In the quantum Zeno limit, J ≪ γd , the unitary part of the Liouvillian acts as a small

perturbation. Hence we define the zeroth-order Liouvillian as:

L0ρ(t) =
∑

i

�

Liρ(t)L
†
i −

1
2
{L†

i Li ,ρ(t)}
�

(46)

It is straightforward to show that Eq. (46) has a set of states with zero-eigenvalue, the so-
called dark states. These states do not exhibit dissipation and have λ0, j = 0. These states are
associated with the probability density matrices:

|0, j〉= |{σi}〉〈{σi}| (47)

where |{σz
i }〉 is a many-body state with definite spin along the z-direction:

∑

i

σ̂z
i |{σ

z
i }〉=
∑

i

σi|{σz
i }〉 (48)

with σi = ±1.
The next degenerate set of states have eigenvalues λ1, j = −γd/2 and corresponds to den-

sity matrices of the form:

|1, i〉= |{σi}〉〈{σi}′| (49)

where |{σi}′〉 denotes a many-body state that differs from |{σi}〉 by a single flipped spin.
The unitary evolution will naturally couple these sets of eigenstates together. Thus we

treat:

L1 = −i[Hx ,ρ(t)] (50)

where Hx = −
∑

i hx σ̂
x
i is the contribution to the Hamiltonian from the transverse field. Then

we can apply the derived SW transformation to obtain an effective theory for the dark states.
Before proceeding further we note that in writing Eq. (50) we note that the remaining terms
of the Hamiltonian in Eq. (44) produce a vanishing result.

Upon substituting Eq. (50) into Eq. (43), on can immediately show that the term linear
in hx is zero and one needs to go to quadratic order. A careful examination of the matrix
elements shows that one can write the effective Liouvillian at second order in hx as:

Le f f =
4h2

x

γd

∑

i

�

σ̂x
i ρ0(t)σ̂

x
i −ρ0(t)
�

(51)

whereρ0(t) = P0ρ(t)P0 is the density matrix projected onto the set of dark states. Eq. (51) has
the form of a Liouvillian with no unitary time evolution, but with dissipation in the x-direction
with strength, 4h2

x/(γd).
It is well known that the system will thermalize on a time scale set by the Liouvillian

gap which in our case is simply the negative of the smallest finite eigenvalue of the effective
Liouvillian super-operator. This is because the Liouvillian gap represents the longest time scale
in the problem, while the larger eigenvalues of the Liouvillian represent motion that have been
damped out. Given Eq. (51) it is straightforward to show that the lowest Liouvillian gap is
8h2

x/γd , or equivalently the thermalization time scale, τth, is:

τth =
γd

8h2
x

(52)
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The linear dependence of τtherm. on γd in this regime is indicative of the quantum Zeno ef-
fect. Increasing the dissipation slows down the dynamics as the thermalization is ultimately
controlled by states that are dark to the dissipation.
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