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Abstract

These notes are intended to be a pedagogical introduction to higher-form symmetries, which

are symmetries whose charged objects are extended operators supported on lines, surfaces, and

etc. This subject has been one of the most popular and effervescent topics of theoretical physics in

recent years. Gauge theories are central in the study of higher-form symmetries, with Wilson and ’t

Hooft operators corresponding to the charged objects. Along these notes, we discuss in detail some

basic aspects, including Abelian Maxwell and Chern-Simons theories, and SU(N) non-Abelian

gauge theories. We also discuss spontaneous breaking of higher-form symmetries.
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I. INTRODUCTION

Recent years have witnessed incredible progress with the discovery of new forms of symme-

tries, usually referred to as generalized symmetries. Although the embryo of the generalized

symmetries is already contained in some previous works as in [1–8], and also in the splendid

Ref. [9], by Nussinov & Ortiz, the foundational paper recognizing all their glory is [10], by

Gaiotto, Kapustin, Seiberg, & Willett, providing a new status to this subject.

Intensive exploration of these new types of symmetries has led to a very deep and powerful

framework, enriched with ideas from different sides of physics like quantum computing,
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topological phases of matter, quantum field theory, strings, and quantum gravity. In addition

to providing several new ideas and insights on a variety of physical systems, the study of

new forms symmetries has enforced us to rethink about certain pillars of modern physics. A

remarkable example is the UV/IR mixing inherent to the so-called subsystem symmetries,

which is a feature defying one of the central organizational principles of physics, namely,

that physics is organized by scales and different scales are decoupled. Other popular types

of generalized symmetries are higher-form and non-invertible symmetries. Recent overviews

that provide a valuable guide to the literature are [11, 12]. A mathematically-oriented review

can be found in [13]. Since the first version of these notes other reviews have appeared in

the literature [14, 15].

Higher-form symmetries are quite common and are present in many ordinary relativistic

theories, for example, in Abelian and non-Abelian gauge theories, and follow from the ex-

istence of completely anti-symmetric conserved currents J [µν...]. The anti-symmetric nature

of the indices implies that we can construct conserved charges by integrating over certain

subdimensional spatial manifolds, rather than in the whole space as in the case of an ordi-

nary symmetry. As a consequence, the charged objects are no longer local operators, but

are instead extended objects (line, surface, and etc). In addition, the charges are topolog-

ical in the sense that they are independent of coordinates. As we shall discuss extensively

along these notes, the topological meaning becomes more transparent by rephrasing the

conservation laws in terms of links between geometric objects1.

Subsystem symmetries are intrinsically connected with the subject of fractons [16–18],

which are excitations with restricted mobility appearing in certain exotic phases of matter

(recent reviews can be found in [19, 20]). They are similar to the higher-form symmetries in

that they also lead to conserved charges along certain subdimensional manifolds, but with

the crucial difference that the charges are coordinate-dependent. In a discretized (lattice)

system, this implies that there are as many charges as the size of the system. This enormous

amount of conserved charges leads to a huge degeneracy of the states. In particular, the

ground state degeneracy, which is of course a low-energy quantity, is affected by the number

of sites that constitute the system. This is an example of the UV/IR mixing mentioned

above.

The notion of a non-invertible symmetry lies in the existence of topological operators

1 For example, in D = 4, a line has a nontrivial link with a two-dimensional sphere S2.
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which are non-unitary, and consequently do not have an inverse. This type of operator

appears abundantly in two-dimensional conformal field theories (CFT) in the form of fusion

rules. One of the simplest examples of this structure is the Ising CFT [21, 22], which contains

a non-invertible line N whose fusion is N × N = 1 + η, where η is the Z2 symmetry line.

Constraints on the renormalization group (RG) flow can be obtained from the existence of

such non-invertible symmetry [23]. More recently, the existence of non-invertible symmetries

has been discovered in four dimensional gauge theories like QED and QCD, where the chiral

anomaly operator can be attached to a fractional quantum Hall phase, turning it into a non-

invertible operator [24]. This construction leads to nontrivial selection rules in the theory.

Non-invertible symmetries in the full Standard Model are discussed in [25, 26].

Generalized symmetries also have important consequences, leading in general to powerful

constraints on the dynamics. As in the case of ordinary symmetries, they can be sponta-

neously broken [27, 28], resulting in Goldstone excitations when the generalized symmetry

is continuous. They can also have anomalies, in particular, ’t Hooft anomalies, which have

implications on the IR structure of the theory because of the anomaly matching [29]. This

enables to uncover valuable information even in the strongly coupled regime, as in the case

of SU(N) gauge theory at θ = π, which has a mixed ’t Hooft anomaly between time-reversal

and the 1-form center symmetry [30] (see [31] for a rigorous derivation of the anomaly from

the point of view of a five-dimensional invertible topological field theory).

These notes are entirely dedicated to the higher-form symmetries, and are intended to

be a pedagogical introduction to the subject. They are far from being a comprehensive

account, but instead focus specifically on certain basic aspects, providing a reasonably de-

tailed exposition. They are organized as follows. In Secs. II and III, we discuss briefly some

aspects of ordinary symmetries that are useful for the later sections. Sec. IV presents a

general introduction to the higher-form symmetries. Secs. V, VI, and VII are dedicated

to the study of higher-form symmetries in Maxwell theory in various dimensions. In Sec.

VIII, we discuss the 1-form Zk symmetry in U(1)k Chern-Simons theory. In Sec. IX, we

discuss the 1-form center symmetry in SU(N) gauge theories. Sec. X studies spontaneous

symmetry breaking of the 1-form symmetry in Maxwell theory. We conclude in Sec. XI with

some final comments. Two appendices summarize useful properties of differential forms and

Lie algebras.
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II. ASPECTS OF ORDINARY SYMMETRIES

In this section we review some basic aspects of ordinary symmetries in quantum field

theory, which will be useful in the generalization to the case of higher-form symmetries.

This discussion is quite standard and can be found essentially in every QFT textbook, so

that we will be brief.

A. Symmetries in Classical Field Theory

Noether theorem deeply connects continuous symmetries to conservation laws. This re-

lationship can be derived in a simple way. Consider an action S = ∫ d
DxL(ϕ) involving a

generic set of fields ϕ’s and assume that under an infinitesimal transformation of the fields,

ϕ→ ϕ + ϵaδϕa, (2.1)

with ϵa being a set of constant (global) parameters2, the action is invariant. This corresponds

to a symmetry in the classical theory.

To find the associated conserved current we promote the global parameters ϵa to local

ones, ϵa → ϵa(x). In this case, the transformation

ϕ→ ϕ + ϵa(x)δϕa (2.2)

is no longer a symmetry. The variation of the action must involve the derivative of the

parameters, ∂µϵa(x), which recovers the invariance under global transformation in the case

of constant parameters. Then we can write

δS = ∫ dDxJµ
a ∂µϵa(x), (2.3)

with arbitrary coefficients Jµ
a . It is interesting to note how the index structure of the

parameters ϵa is reflected in such coefficients (currents). Now, the local transformation

ϕ → ϕ + ϵa(x)δϕa can be viewed simply as arbitrary variations of the fields, in which case

(2.3) vanishes upon using the equations of motion, i.e.,

δS = ∫ dDxJµ
a ∂µϵa(x) = 0 (eq. of motion). (2.4)

2 The index a represents generically a set of indices which can be spacetime or internal.
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With an integration by parts and using the fact that ϵa(x) are arbitrary, we conclude that

the coefficients Jµ
a are actually conserved currents,

∂µJ
µ
a = 0 ⇒

d

dt
Qa = 0, (2.5)

where we have defined the Noether charges

Qa ≡ ∫ dD−1xJ0
a , (2.6)

which remain constant along time evolution.

Note that the currents Jµ
a are not uniquely determined, as we can always define a new

current

J̃µ
a = J

µ
a + ∂νΩ

µν
a , (2.7)

where Ωµν
a = −Ω

νµ
a , which are conserved and lead to the same Noether charges (2.6).

In the canonical formalism, the Noether charges (2.6) are the generators of infinitesi-

mal transformations in the sense that their Poisson brackets with some field furnishes the

transformation of the field,

δϕa = {ϕ,Qa}. (2.8)

The quantum counterpart of this relation replaces the Poisson brackets by commutators.

We shall discuss this point in a moment.

B. Symmetries in Quantum Field Theory

1. Canonical Formalism

The celebrated Wigner theorem (see for example [32]) asserts that in quantum theory

the symmetries (not spontaneously broken) must be implemented through either unitary

or anti-unitary operators. Unitary operators accommodate both continuous and discrete

symmetries, whereas anti-unitary operators serve only for the discrete ones.

For continuous symmetries, the unitary operator implementing the corresponding trans-

formation can be systematically constructed from the Noether charge:

U = eiϵaQa . (2.9)

They act on the fields as

ϕ → ϕ′ = U ϕU †. (2.10)
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For an infinitesimal transformation, this expression leads to

δaϕ = i[Qa, ϕ], (2.11)

which is the quantum counterpart of (2.8).

For discrete symmetries, even though a Noether charge does not exist, the unitary oper-

ator U is meaningful. For example, consider a real scalar free theory

S = ∫ dDx(
1

2
∂µϕ∂

µϕ −
m2

2
ϕ2) . (2.12)

This action has a discrete Z2 symmetry, which acts on the field as ϕ→ −ϕ. It is implemented

through the unitary operator U according to

ϕ′ = U ϕU † = −ϕ. (2.13)

An explicit form for U can be written in terms of creation and annihilation operators.

2. Path Integral and Ward Identities

The quantum counterpart of the classical conservation laws (2.5) are the so-called Ward

identities, which lead to relations among correlation functions of the theory. They can be

derived in a simple way using path integral. Consider the partition function

Z = ∫ Dϕe
iS. (2.14)

Correlation functions are expressed as

⟨X⟩ ≡
1

Z ∫
DϕX eiS, (2.15)

where X represents a generic product of fields, X ≡ ∏j ϕ(xj). As the fields are merely

integration variables, we are free to rename them or to make changes of the integration

variables. First we rename the fields ϕ → ϕ′ and then perform a variable changing in the
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path integral according to (2.2). This amounts to

⟨X⟩ =
1

Z ∫
Dϕϕ(x1) . . . ϕ(xN)e

iS[ϕ]

=
1

Z ∫
Dϕ′ϕ′(x1) . . . ϕ

′(xN)e
iS[ϕ′]

=
1

Z ∫
DϕJ (X +∑

j

ϕ(x1) . . . ϵaδϕa(xj) . . . ϕ(xN)) e
iS+iδS

=
1

Z ∫
Dϕ(1 + iδA)(X +∑

j

ϕ(x1) . . . ϵaδϕa(xj) . . . ϕ(xN)) (1 + iδS)e
iS

=
1

Z ∫
Dϕ(X +∑

j

ϕ(x1) . . . ϵaδϕa(xj) . . . ϕ(xN) + iXδS + iXδA +⋯) . (2.16)

We have admitted a possible Jacobian J ≡ 1+iδA, accounting for eventual anomalies3. Using

the variation of the action in the form (2.3), we obtain

0 = ∫ dDxϵa(x) [∑
j

δ(D)(x − xj)⟨ϕ(x1) . . . δϕa(xj) . . . ϕ(xN)⟩

− i∂µ⟨J
µ
a (x)X⟩ + i⟨Oa(x)X⟩] , (2.17)

where we have parametrized the anomaly as δA ≡ ∫ d
DxϵaOa. In the absence of anomalies

(Oa = 0), the above relation enables us to find the Ward identities

∂µ⟨J
µ
a (x)X⟩ = −i∑

j

δ(D)(x − xj)⟨ϕ(x1) . . . δϕa(xj) . . . ϕ(xN)⟩, (2.18)

which provide a set of relations among correlation functions and conservation laws at non-

coincident points (x ≠ xj,∀j). In particular, by integrating both sides over spacetime, we

obtain

δ⟨ϕ(x1) . . . ϕ(xN)⟩ = 0, (2.19)

which is the reflection of symmetry on the correlation functions. This is a nontrivial state-

ment about symmetry because it is computed as

∫ Dϕδ [ϕ(x1) . . . ϕ(xN)] e
iS = 0. (2.20)

The path integral version of (2.11) can be derived as it follows. Taking X as a single field

ϕ(y), the relation (2.18) with Oa = 0 reduces to

∂µ⟨J
µ
a (x)ϕ(y)⟩ = −iδ

(D)(x − y)⟨δaϕ(y)⟩. (2.21)

3 See [33] for a modern perspective on anomalies.
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By integrating x over the region V ≡ [y0 − ϵ, y0 + ϵ] ×RD−1, we get

⟨Qa(y
0 + ϵ)ϕ(y)⟩ − ⟨ϕ(y)Qa(y

0 − ϵ)⟩ = −i⟨δaϕ(y)⟩, (2.22)

because of the time-ordering inherent to the path integral. In the limit of ϵ → 0 the left

hand side is identified with the equal-time commutator

⟨[Qa, ϕ(y)]⟩ = −i⟨δaϕ(y)⟩, (2.23)

which is the expectation value of (2.11).

C. Spontaneous Symmetry Breaking and Goldstone Excitations

The Goldstone theorem states that when a global continuous symmetry is spontaneously

broken, then there are massless excitations (Goldstone bosons) in the spectrum. This result

can be derived directly from the Ward identity (2.21). Taking the Fourier transform with

respect to x, it follows that

∫ dDxeipx∂µ⟨J
µ
a (x)ϕ(y)⟩ = −i∫ dDxeipxδ(D)(x − y)⟨δaϕ(y)⟩

−i∫ dDxeipxpµ⟨J
µ
a (x)ϕ(y)⟩ = −ie

ipy⟨δaϕ(y)⟩

pµ⟨J
µ
a (p)ϕ(y)⟩ = e

ipy⟨δaϕ(y)⟩

pµ⟨J
µ
a (p)e

−ipyϕ(y)⟩ = ⟨δaϕ(y)⟩, (2.24)

where we have identified the Fourier transform of the current as Jµ
a (p) = ∫ d

DxeipxJµ
a (x).

Then, integrating both sides over y,

pµ⟨J
µ
a (p)ϕ(−p)⟩ = ∫ dDy⟨δaϕ(y)⟩ = ⟨δaϕ(p = 0)⟩. (2.25)

The object ⟨δaϕ(p = 0)⟩ in the right hand side is the order parameter characterizing the

possible phases of the theory [34]. The symmetric phase corresponds to ⟨δaϕ(p = 0)⟩ = 0,

whereas ⟨δaϕ(p = 0)⟩ ≠ 0 implies spontaneous symmetry breaking. In the broken phase,

therefore, the correlation function ⟨Jµ
a (p)ϕ(−p)⟩ must have a pole at zero momentum,

⟨Jµ
a (p)ϕ(−p)⟩ ∼

pµ

p2
. (2.26)

This, in turn, signals the presence of massless physical excitations in the spectrum. These

excitations are the Goldstone bosons.
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III. REPHRASING ORDINARY SYMMETRIES IN TERMS OF TOPOLOGY

Now let us discuss the ordinary symmetries in a language that is useful in generalizing

to the case of higher-form symmetries. Differential forms are helpful here and we have

summarized some of their properties in the Appendix A.

In terms of differential forms, the Noether current can be thought as the components of

a 1-form,

J = Jµdx
µ, (3.1)

whereas its Hodge dual,

∗J ≡
1

(D − 1)!
Jµ ϵ

µ
µ1...µD−1dx

µ1 ∧⋯ ∧ dxµD−1 , (3.2)

is a (D − 1)-form. For simplicity, from now on we omit the index a of the current. The

conservation law in (2.5) is written as

d ∗ J = 0. (3.3)

This means that ∗J is a closed form. In components the left hand side reads

d ∗ J =
1

(D − 1)!
(∂αJµ)ϵ

µ
µ1...µD−1dx

α ∧ dxµ1 ∧⋯ ∧ dxµD−1

=
1

(D − 1)!
(∂αJµ)ϵ

µ
µ1...µD−1ϵ

αµ1...µD−1dx0 ∧⋯ ∧ dxD−1

= (−1)D−1(∂µJ
µ)dx0 ∧⋯ ∧ dxD−1, (3.4)

where we have used the convention ϵ01...D−1 ≡ +1, and

ϵµµ1...µD−1ϵ
αµ1...µD−1 = (−1)D−1(D − 1)! ηµα, (3.5)

with the metric ηµν = (+,−,−, . . . ,−). In the Euclidean, we simply drop out the factor

(−1)D−1 on the right hand side and replace the metric ηµν with δµν . In this case, the

conservation law is simply

d ∗ J = ∂µJ
µdx0 ∧⋯ ∧ dxD−1. (3.6)

A. Assigning Topological Meaning to Charges

The Noether charges (2.6) can be written as an integral over a closed (D−1)-dimensional

submanifold Σ:

Q(Σ) = ∫
Σ
∗J = ∫

Σ

1

(D − 1)!
Jµ ϵ

µ
µ1...µD−1dx

µ1 ∧⋯ ∧ dxµD−1 . (3.7)
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To see this, we consider the Euclidean spacetime, where time and space coordinates are

treated on an equal foot. Then, more generally, we can integrate the Ward identity in (2.21)

over a D-dimensional region ΩΣ so that its boundary is the (D−1)-dimensional submanifold

Σ, i.e., ∂ΩΣ = Σ. With this, the left hand side of (2.21) becomes

∫
ΩΣ

⟨d ∗ Jϕ(y)⟩ = ∫
Σ
⟨∗Jϕ(y)⟩

= ⟨Q(Σ)ϕ(y)⟩, (3.8)

where in the first line we have used the Stokes theorem (A6). According to (2.21), we obtain

⟨Q(Σ)ϕ(y)⟩ = −i∫
ΩΣ

dDxδ(D)(x − y)⟨δaϕ(y)⟩. (3.9)

In the right hand side we identify ∫ΩΣ
dDxδ(x − y) as the intersection number of ΩΣ and y.

This, in turn, is equal the link number of Σ and y,

Link(Σ, y) = ∫
ΩΣ

dDxδ(D)(x − y), (3.10)

which is 0 or 1 depending whether y is inside the region ΩΣ or not. With this we can write

(3.9) as

⟨Q(Σ)ϕ(y)⟩ = −iLink(Σ, y)⟨δϕ(y)⟩. (3.11)

The link number defined in (3.10) is clearly topological since it is unaffected by deformations

of the surface Σ as long as the deformations do not cross the point y. We can understand

that the charge Q(Σ) is also a topological invariant by considering a deformation of the

original region ΩΣ to Ω′Σ′ = ΩΣ ∪Ω0, such that y does not belong to Ω0. This implies

Q(Σ + ∂Ω0) = ∫
ΩΣ∪Ω0

⟨d ∗ Jϕ(y)⟩ = ∫
ΩΣ

⟨d ∗ Jϕ(y)⟩ + ∫
Ω0

⟨d ∗ Jϕ(y)⟩

= ∫
ΩΣ

⟨d ∗ Jϕ(y)⟩ = Q(Σ), (3.12)

where, as y /∈ Ω0, we have set d ∗ J = 0 inside the correlator in the last term of the first

line. Therefore, the conservation law is translated into the fact that the operator Q(Σ) is

topological. We notice that for any spacetime dimensionality D, a point can always link

with a closed D − 1 manifold like SD−1 that surrounds it, as shown in Fig. 1.

We can also write the finite form of the relation (3.11), namely,

⟨U(g,Σ)ϕ(y)⟩ = R(g)⟨ϕ(y)⟩, (3.13)
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D = 2 D = 3 D = 4

S1 S2 S3

FIG. 1: Link of spheres SD−1 and a point.

if y and Σ are linked. U(g,Σ) is the unitary topological operator associated with the

symmetry group g and R stands for the representation in which the fields transform,

U(g,Σ) = eiαaQa and R(g) = eαata , (3.14)

with ta corresponding to the generators in the representation that ϕ belongs. For infinites-

imal parameters αa this recovers immediately the relation in (3.11), with the identification

δaϕ ≡ taϕ. We refer to this as a 0-form symmetry, in the sense that the charged objects

under the symmetry are local operators ϕ(y) supported in a point, i.e., in a 0-dimensional

region. Equivalently, the parameter of transformation is a closed 0-form, which is simply a

constant.

For discrete symmetries, even though a conserved charge does not exist, we can neverthe-

less define a topological unitary operator precisely as in (3.13). In fact, consider the unitary

operator for a discrete symmetry, U(g) (with no parameter involved), and the corresponding

action over a local operator,

⟨U(g)ϕ(y)U−1(g)⟩ = R(g)⟨ϕ(y)⟩. (3.15)

In this relation, the operator U(g) is interpreted as defined at a time y0+ ϵ and the operator

U−1(g) at the time y0 − ϵ. The equal-time is understood as the limit ϵ → 0. Furthermore,

we can associate a spatial slice with the operator U(g). Next we assume that [U(g), Pµ],

where Pµ is the generator of spacetime translations. This implies that the spacetime region

associated with U(g) can be continuously deformed into a closed one, through the sequence

of steps shown in Fig. 2. In this case, the left hand side of (3.15) can be written as

⟨U(g)ϕ(y)U−1(g)⟩ = ⟨U(g,Σ)ϕ(y)⟩, (3.16)

when y and Σ are linked. This leads to the conclusion that the relation (3.13) is also valid

for discrete symmetries.
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space

y
y0 + ϵ

y0 − ϵ

U(g)

U−1(g)
space

t

y

space

t

y

U(g)

U−1(g)

U(g, Σ)

FIG. 2: Sequence of deformations to associate a closed surface Σ to U(g,Σ).

The above construction provides an interesting perspective on symmetries in relativistic

theories, namely,

Symmetry Generator ⇔ Topological Operator, (3.17)

with the charged operators corresponding to the objects with nontrivial link with the topo-

logical operator. This perspective is illuminating and provides a natural way to generalize

the notion of symmetry to the case of higher-forms.

IV. HIGHER-FORM SYMMETRIES

Now we generalize the previous discussion to the case of a 1-form symmetry4. To this,

it is useful to reconsider the case of an ordinary symmetry. It is referred to as a 0-form

symmetry, in the sense that the involved parameter ξ is a closed 0-form, i.e., dξ = 0 (since

it corresponds to a global symmetry). In terms of differential forms, the expression (2.3)

becomes

δS = ∫
M(D)

∗J ∧ dξ, (4.1)

where we have promoted ξ to a local parameter, i.e., dξ is no longer closed in this expression.

Upon an integration by parts, and using the equation of motion, the above expression leads

to

d ∗ J = 0. (4.2)

Now let us study a generalization of the above setting by considering a global symmetry

whose parameter is a closed 1-form ξ1 = ξµdxµ, namely, dξ1 = 0. We emphasize that the global

nature of the transformation is translated into the flatness condition on the parameter,

4 We will discuss the general case of q-form symmetries a little later.
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∂µξν − ∂νξµ = 0. The analogue of expression (4.1), obtained by removing the closeness

condition on the parameter ξ1, is

δS = ∫
M(D)

∗J ∧ dξ1, (4.3)

where now ∗J is a (D − 2)-form or, equivalently, J is a 2-form,

J =
1

2!
Jµνdx

µ ∧ dxν . (4.4)

In components, the conservation law d ∗ J = 0 reads

∂µJ
µν = 0, with Jµν = −Jνµ. (4.5)

As ∗J is a (D − 2)-form, in analogy to what we did in the ordinary case (eq. (3.7)), we can

define the charge on a closed ΣD−2 submanifold,

Q(ΣD−2) ≡ ∫
ΣD−2
∗J. (4.6)

Next we look for the charged objects under this symmetry operator or, in other words, the

objects that possess nontrivial link with ΣD−2.

A. Charged Operators

We wish to understand now the nature of the charged objects under the 1-form symmetry.

To address this, it is convenient to reconsider the ordinary case but under a perspective

that is helpful in generalizing. We remember the case of a 0-form symmetry, where under

an infinitesimal global transformation characterized by the constant parameter ξ, a local

operator transforms as

ϕ(x) → ϕ′(x) = ϕ(x) + ξδϕ(x). (4.7)

In other words, we have assumed from the beginning that charged operators under the

symmetry are the local operators, i.e., operators with support in a 0-dimensional region of

spacetime.

So the question is whether there is a unambiguous way to see that the charged objects

are in fact local operators. From the perspective of the Hilbert space, the transformation in

(4.7) can be interpreted as coming from the actuation of the charge operator defined over

a spatial D − 1 = d dimensional slice (without boundaries) at a fixed time. Then we can

15



use the notion of Poincaré duality to associate a form with a manifold. More precisely, the

Poincaré duality provides a way to associate a (d − p)-form with a p-dimensional manifold.

The components of the Poincaré dual (d − p)-form are defined as

ξip+1...id(x) ≡
1

p! ∫Σp

ϵi1...ipip+1...idδ
(d)(x⃗ − y⃗)dyi1 ∧⋯ ∧ dyip . (4.8)

The paramater of the global symmetry is then identified as the (d − p)-form ξd−p(Σp) con-

structed from the submanifold of dimension p. As we shall see, this automatically ensures

that ξd−p is closed, which is the condition for the symmetry to be global.

In this context, the parameter of the transformation of an ordinary symmetry is identified,

up to a constant factor, as the Poincaré dual of the Σd spatial manifold, which is just a 0-form

constant. This follows simply by setting p = d in (4.8),

ξ(x) =
1

d! ∫Σd

ϵi1...idδ
(d)(x⃗ − y⃗)dyi1 ∧⋯ ∧ dyid = 1. (4.9)

This means that the parameters of ordinary symmetries are closed 0-forms, which are sup-

ported on 0-dimensional regions (points) of the manifold. Accordingly, they can be as-

sociated with the transformation of similar objects, namely, objects also supported on 0-

dimensional regions of the manifold - the local operators.

Now it is easy to see how this picture generalizes for higher-form symmetries. If we have

a submanifold of dimension p = d − 1, then the Poincaré dual is a 1-form ξ1(Σd−1) with

components

ξid(x) =
1

(d − 1)! ∫Σd−1
ϵi1...id−1idδ

(d)(x⃗ − y⃗)dyi1 ∧⋯ ∧ dyid−1 . (4.10)

Therefore, the objects that are charged under the 1-form symmetry are operators with

support along a line - the line operators. So given an operator supported along a line C, the

parameter of the transformation (up to a constant factor5) is

∫
C
ξ1(Σd−1) = ∫

C
ξidx

i. (4.11)

More explicitly, the infinitesimal transformation of a line operator reads

W [C] →W [C]′ =W [C] + ∫
C
ξ1(Σd−1)δW [C], (4.12)

It is worth to emphasize that, even when the line C is closed, the integral ∫C ξ1(Σd−1) may

not vanish in spite of the fact that dξ1 = 0. Naively, if we use the Stokes theorem, we could

5 We can think that the parameter of the transformation is absorbed into the Poincaré dual ξ1.
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convert the line integral to a surface integral that has C as the boundary, ∫C ξ1(Σd−1) = ∫S dξ1.

However, this may not be true because of eventual topological obstructions to employing

the Stokes theory caused by Σd−1, when C and Σd−1 intersect. We shall discuss this in a

moment.

Now we can check that ξ1 = ξidxi is closed because Σd−1 has no boundary. In fact, we

first write it as

ξi(x) = ∫
Σd−1
(dΣd−1)i(y)δ

(d)(x⃗ − y⃗), (4.13)

where (dΣd−1)id(y) is the oriented integration element over the subspace Σd−1 with coordi-

nates y. Then we take the exterior derivative

dξ1 = ∂
x
kξi(x)dx

k ∧ dxi

= ∫
Σd−1
(dΣd−1)i(y)∂

x
kδ
(d)(x⃗ − y⃗)dxk ∧ dxi

= −∫
Σd−1
(dΣd−1)i(y)∂

y
kδ
(d)(x⃗ − y⃗)dxk ∧ dxi. (4.14)

Suppose that Σd−1 dimensional manifold is the infinite space (without boundary) associated

with the directions x1, . . . , xd−1, so that the element (dΣd−1)id(y) is oriented along direction

xd. In this case, the above expression becomes

dξ1 = −∫
Σd−1
(dΣd−1)d(y)∂

y
kδ
(d)(x⃗ − y⃗)dxk ∧ dxd

= −∫
Σd−1
(dΣd−1)d(y)∇⃗y ⋅ (δ

(d)(x⃗ − y⃗)dx⃗ ∧ dxd) = 0, (4.15)

i.e., it vanishes upon using the divergence theorem and taking into account that Σd−1 has

no boundaries.

We can generalize the manifold in which the charge is defined Σd−1 and consider instead

ΣD−2 as an arbitrary closed manifold in spacetime. We can also generalize the notion of

a line operator (an operator that acts on the Hilbert space at fixed time) to a defect line,

which is an operator also extended along the time direction6. In this case, we have a more

general symmetry transformation acting on a defect line,

W [C] →W [C]′ =W [C] + ∫
C
ξ1(ΣD−2)δW [C], (4.16)

where now the line C is extended along the time direction.

6 In relativistic theories this distinction is tenuous.
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FIG. 3: Intersection of the line C with the spatial point x1.

From this expression we can derive the corresponding Ward identities. Let us consider

the correlation function involving a single defect,

⟨W [C]⟩ = ∫ DϕW [C]e
iS[ϕ]

= ∫ Dϕ
′W ′[C]eiS[ϕ

′]

= ∫ Dϕ(W [C] + ∫
C
ξ1(ΣD−2)δW [C]) (1 + iδS) e

iS[ϕ′], (4.17)

with δS given in (4.3), which in components reads

δS = ∫ dDxJµν∂µξν = −∫ dDxξν ∂µJ
µν . (4.18)

Relation (4.17) implies

i∫ dDxξν(x)⟨∂µJ
µνW [C]⟩ = ∫

C
dyνξν(y)⟨δW [C]⟩

= ∫ dDxξν(x)∫
C
δ(D)(x − y)dyν⟨δW [C]⟩. (4.19)

By factorizing ξν(x), it follows that

⟨∂µJ
µν(x)W [C]⟩ = −i∫

C
dyνδ(D)(x − y)⟨δW [C]⟩, (4.20)

which is the Ward identity for a single line defect.

Now we are ready to explore further consequences of the 1-form symmetry.

B. Case Study: 1-Form Symmetry in D = 2

Let us start with the simplest situation of a 1-form symmetry in D = 2 spacetime dimen-

sions. In this case, the conservation law is quite simple,

∂0J
01 = 0 and ∂1J

10 = 0, (4.21)
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FIG. 4: Link of the curve C with the S0 sphere.

implying that J01 is conserved in a zero dimensional subspace, since it does not need to be

integrated along the x1-direction. The presence of a line operator may lead to the violation

of the conservation law according to the Ward identity in (4.20), which can be written more

explicitly as

⟨∂0J
01(x)W [C]⟩ = −i∫

C
dy1δ(2)(x − y)⟨δW [C]⟩. (4.22)

Assuming that W [C] is a true line operator, i.e., that the curve C is extended along the

spatial direction at fixed time y0, and integrating (4.22) along x0 from y0− ϵ to y0+ ϵ, we get

⟨[J01,W [C]]⟩ = −i∫
C
dy1δ(x1 − y1)⟨δW [C]⟩. (4.23)

The integral ∫C dy
1δ(x1−y1) is the intersection of the line C with the 0-dimensional subman-

ifold in which the charge is defined, namely, the spatial point x1. Whenever they intersect,

as shown in Fig. 3, this integral is equal to one, and thus the Ward identity shows how the

line operator transforms under the symmetry.

Now we can take a different perspective and consider the 0-dimensional region where the

charge is defined as a sphere S0, which consists of two points, as illustrated in Fig. 4. We

then integrate the Ward identity on a 1-dimensional space Ω1, whose boundary is ∂Ω1 = S0,

∫
Ω1

(dΩ1)ν⟨∂µJ
µν(x)W [C]⟩ = −i∫

Ω1

(dΩ1)ν ∫
C
dyνδ(D)(x − y)⟨δW [C]⟩, (4.24)

where (dΩ1)ν is the oriented element of integration on Ω1. With this, (4.24) can be written

as

⟨J01(S0)W [C]⟩ = −iLink(S0,C)⟨δW [C]⟩. (4.25)

On the left hand side, we have the charge defined on S0, whereas on the right hand side we

have the intersection number of Ω1 and C, which is equal to the link number of C and S0,

∫
Ω1

(dΩ1)ν ∫
C
dyνδ(D)(x − y) = Link(S0,C). (4.26)
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FIG. 5: Topological meaning of Link(S0,C).

As long as the curve C is infinitely extended or closed, the Link(S0,C) has a topological

meaning, as shown in Fig. 5. Relation (4.25) is the analog of relation (3.11).

C. Case Study: 1-Form Symmetry in D = 3

Now we consider a 1-form symmetry in D = 3 spacetime dimensions. The conservation

laws are

∂µJ
µν = ∂0J

0ν + ∂1J
1ν + ∂2J

2ν = 0, (4.27)

which give rise to

∂0J
01 + ∂2J

21 = 0 and ∂0J
02 + ∂1J

12 = 0. (4.28)

It follows that the charges,

Q1 = ∫ dx2J01 and Q2 = ∫ dx1J02, (4.29)

defined in spatial 1-dimensional submanifolds, are conserved. It is also interesting to notice

that the charge Q1 does not depend on the coordinate x1, even though it is integrated only

along direction x2. This follows from the conservation law (4.27), by setting ν = 0,

∂1J
10 + ∂2J

20 = 0, (4.30)

which implies that
∂Q1

∂x1
= 0. (4.31)

The same reasoning applies to the charge Q2, implying that it is independent on x2. This

is in contrast with the subsystem symmetries mentioned in the Introduction, where the

conserved charges carry dependence on the coordinates of certain submanifolds, so that
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FIG. 6: Intersections of lines at fixed time.

there are actually an infinite number of charges (in the continuum limit). In general, this

implies that the states of the spectrum are infinitely degenerated.

The violation of the conservation law due to the presence of a line operator is dictated

by the Ward identity

⟨∂µJ
µν(x)W [C]⟩ = −i∫

C
dyνδ(3)(x − y)⟨δW [C]⟩. (4.32)

The quantum counterpart of equations in (4.28) are

⟨∂0J
01(x)W [C]⟩ + ⟨∂2J

21(x)W [C]⟩ = −i∫
C
dy1δ(3)(x − y)⟨δW [C]⟩ (4.33)

and

⟨∂0J
02(x)W [C]⟩ + ⟨∂1J

12(x)W [C]⟩ = −i∫
C
dy2δ(3)(x − y)⟨δW [C]⟩. (4.34)

Integrating these expressions on 1-dimensional spatial submanifolds Σ1(1) and Σ1(2) and

over the time coordinate x0 from y0 − ϵ to y0 + ϵ, leads to

⟨[Q1,W [C1]]⟩ = −i∫
Σ1(2)

dx2∫
C1

dy1δ(2)(x⃗ − y⃗)⟨δW [C1]⟩ (4.35)

and

⟨[Q2,W [C2]]⟩ = −i∫
Σ1(1)

dx1∫
C2

dy2δ(2)(x⃗ − y⃗)⟨δW [C2]⟩. (4.36)

The integrals on the right hand side of these expressions correspond to the intersection of

the lines, which are shown in Fig. 6.

By following the previous strategy in assigning a topological meaning to the conservation

laws, instead of integrating on 1-dimensional submanifolds Σ1(1) and Σ1(2) at fixed time,

we can consider a closed general curve in spacetime like a S1. In this case, we integrate

both sides of the Ward identity (4.32) over a 2-dimensional manifold Ω2 whose boundary is

∂Ω2 = S1. Denoting the oriented integration element on Ω2 by (dΩ2)ν , it follows that

∫
Ω2

(dΩ2)ν⟨∂µJ
µν(x)W [C]⟩ = −i∫

Ω2

(dΩ2)ν ∫
C
dyνδ(3)(x − y)⟨δW [C]⟩, (4.37)
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FIG. 7: (a) Link of curves. (b) Link of two generic closed curves in D = 3.

which can be expressed as

⟨Q(S1)W [C]⟩ = −iLink(S1,C)⟨δW [C]⟩. (4.38)

The link is shown in Fig. 7(a). Fig. 7(b) illustrates the link of two generic closed curves.

D. Case Study: 1-Form Symmetry in D = 4

Next we consider a 1-form symmetry in D = 4 spacetime dimensions. The conservation

laws are

∂µJ
µν = ∂0J

0ν + ∂1J
1ν + ∂2J

2ν + ∂3J
3ν = 0. (4.39)

From these conservation laws it follows that the charges,

Q1 = ∫ dx2dx3J01, Q2 = ∫ dx1dx3J02, and Q3 = ∫ dx1dx2J03, (4.40)

defined in spatial 2-dimensional submanifolds, are conserved. As discussed in the case D = 3,

we emphasize again that Q1 is independent on x1, Q2 is independent of x2, and Q3 is

independent on x3, which follows from (4.39) with ν = 0,

∂1J
10 + ∂2J

20 + ∂3J
30 = 0. (4.41)

By integrating on the respective 2-dimensional subspaces we get the above conclusion.

Now we consider the Ward identity (4.20) in D = 4,

⟨∂µJ
µν(x)W [C]⟩ = −i∫

C
dyνδ(4)(x − y)⟨δW [C]⟩. (4.42)

Choosing, say, ν = 3, we have

⟨∂0J
03(x)W [C]⟩+⟨∂1J

13(x)W [C]⟩+⟨∂2J
23(x)W [C]⟩ = −i∫

C
dy3δ(4)(x−y)⟨δW [C]⟩. (4.43)
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FIG. 8: Intersection between a two-dimensional spatial slice (in red) and a curve C at a

fixed time.

Integrating both sides over ∫
y0+ϵ

y0−ϵ dx
0dx1dx2, it follows that

⟨[Q3,W [C1]]⟩ = −i∫ dx1dx2∫
C
dy3δ(3)(x⃗ − y⃗)⟨δW [C]⟩, (4.44)

where the integrals in the right hand side correspond to the intersection between the two-

dimensional surface in the plane x1-x2 and the line C in the direction 3, as shown in Fig. 8.

The same reasoning follows for curves along the remaining directions.

To assign a topological meaning to the charge we go back to the Ward identity (4.42)

and integrate both sides over a region Ω3, with ∂Ω3 = S2,

∫
Ω3

(dΩ3)ν⟨∂µJ
µν(x)W [C]⟩ = −i∫

Ω3

(dΩ3)ν ∫
C
dyνδ(4)(x − y)⟨δW [C]⟩. (4.45)

As in the previous cases, we identify the intersection number as the link between the curve

C and S2,

∫
Ω3

(dΩ3)ν ∫
C
dyνδ(4)(x − y) = Link(S2,C). (4.46)

Therefore, we can write (4.45) as

⟨Q(S2)W [C]⟩ = −iLink(S2,C)⟨δW [C]⟩. (4.47)

For a line oriented along direction 3, for example, the S2 surface is immersed in the three-

dimensional region x0-x1-x2, as depicted in Fig. 9.

E. Generalization: q-form Symmetries

The generalization for the case of a q-form symmetry is straightforward. Given a (q +1)-

form conserved current J , we can construct the charge by integrating the conservation law
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FIG. 9: The line C appears as a single point at the origin, which is linked with S2.

d∗J over a (D−q)-dimensional region ΩD−q, whose boundary is ∂ΩD−q = ΣD−q−1. The Stokes

theorem leads to

∫
ΩD−q

d ∗ J = ∫
ΣD−q−1

∗J, (4.48)

so that we identify the charge as

Q(ΣD−q−1) = ∫
ΣD−q−1

∗J. (4.49)

Given this (D − q − 1)-dimensional manifold, the Poincaré dual enables us to associate a

D − 1−(D − q − 1) = q-form, which is then identified as the parameter of the transformation.

Correspondingly, the charged objects are operators supported on a q-dimensional manifold.

V. HIGHER-FORM SYMMETRIES IN MAXWELL THEORY

The free Maxwell theory is the prototype of a physical theory with higher-form symme-

tries, and we wish to discuss it in detail. The action is defined in terms of a compact U(1)

gauge field a with dimension [a] = 1,

S[a] = ∫ −
1

2e2
f ∧ ∗f = ∫ dDx −

1

4e2
fµνf

µν , (5.1)

where fµν ≡ ∂µaν − ∂νaµ and the coupling constant e2 has dimension [e2] = 4 −D.

When we are working with a compact group U(1) rather than the noncompact one (R),

the gauge field a is an angular-type variable. An immediate consequence is that the U(1)

charges (electric) are quantized. A natural way to see this is to place the model in a lattice

[35]. In the continuum, a simple way to unveil the angular nature of the gauge fields is to

define the theory in a torus. In this case, we can construct large gauge transformations that

compactify the gauge field. We discuss this below.

What are the observables of the theory (5.1)? The immediate answer is that they are

related to the gauge-invariant objects, which can be constructed from the field strength fµν .
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These are the local operators. Is it possible to construct extended gauge-invariant operators?

The answer is yes - they are the Wilson line defect/operators

Wqe[C] ≡ exp(iqe∮
C
a) , (5.2)

where the curve C must be infinitely long or closed in order to be gauge-invariant. The

parameter qe ∈ Z is the charge of the Wilson line. It is an integer because of the compactness

of the gauge group. A simple way to see this is by considering the time direction as a S1 of

length L0. Then, we can construct a gauge function that wraps around it,

Λ = 2π
x0

L0

. (5.3)

This, in turn, leads to the compactness condition for the gauge field a0,

a0 ∼ a0 +
2π

L0

. (5.4)

Picking a Wilson (5.2) along time direction, the requirement that is must be invariant under

such large gauge transformation leads immediately to the quantization of qe.

What is the physical interpretation of line operator (5.2)? It represents the worldline of a

probe charged particle, i.e., a particle that has no dynamics. We can see this by considering

the expectation value of the Wilson loop

⟨Wqe[C]⟩ = ∫ Da exp(iqe∮
C
a) eiS[a]. (5.5)

Next we introduce a conserved current associated with a particle moving along a curve

parametrized by y⃗(x0)

J0(x0, x⃗) = qeδ
(d)(x⃗ − y⃗(x0)) and J⃗(x0, x⃗) = qe

dy⃗(x0)

dx0
δ(d)(x⃗ − y⃗(x0)), (5.6)

which can be written as

Jµ(x0, x⃗) = qe
dyµ(x0)

dx0
δ(d)(x⃗ − y⃗(x0)), (5.7)

with y0 = x0. In this way, the Wilson line can be written as

exp(iqe∮
C
dyµaµ(y)) = exp(i∫ dx0

dyµ(x0)

dx0
aµ(x

0, y⃗))

= exp(i∫ ddxδ(d)(x⃗ − y⃗(x0))∫ dx0
dyµ(x0)

dx0
aµ(x

0, x⃗))

= exp(i∫ dDxJµaµ) . (5.8)
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The upshot is that the expectation value of the Wilson loop corresponds simply to coupling

the theory with non-dynamical charged matter, parametrized by the current Jµ,

⟨Wqe[C]⟩ = ∫ Dae
iS[a]+i ∫ dDxJµaµ . (5.9)

The equations of motion of the action (5.1) are

1

e2
d ∗ f = 0 and df = d ∗ (∗f) = 0, (5.10)

which, in components, read

1

e2
∂µf

µν = 0 and ∂µ1 ∗ f
µ1µ2...µD−2 = 0. (5.11)

In the second expression, we have defined the components of the dual field strength, which

is a (D − 2)-form and hence can be written as

∗f =
1

(D − 2)!
∗ fµ1...µD−2dx

µ1 ∧⋯ ∧ dxµD−2 . (5.12)

Comparing this with the definition of the dual in (A5), we find

∗fν1...νD−2 =
1

2!
fµ1µ2ϵ

µ1µ2
ν1...νD−2 . (5.13)

The equations of motion in (5.10) or (5.11) imply that the theory has two types of higher-

form symmetries, namely, a 1-form electric and a (D − 3)-form magnetic symmetries, with

the currents Je ≡
1
e2f and Jm ≡

1
2π ∗ f , respectively. The corresponding charges are

Qe(Σ2) = ∫
ΣD−2
∗Je =

1

e2 ∫ΣD−2
∗f (5.14)

and

Qm(Σ2) = ∫
Σ2

∗Jm =
1

2π ∫Σ2

∗(∗f) =
1

2π ∫Σ2

f. (5.15)

These symmetries will be referred to as

U(1)
(1)
e ×U(1)

(D−3)
m . (5.16)

We see that there is no magnetic symmetry in D = 2. In D = 3, the magnetic symmetry is an

ordinary 0-form symmetry and in D = 4 both electric and magnetic are 1-form symmetries.

The unitary operators that implement the generalized symmetries can be obtained by

exponentiation of the charges (5.14) and (5.15),

Ue(αe,ΣD−2) = e
iαeQe(ΣD−2) and Um(αm,Σ2) = e

iαmQm(Σ2), (5.17)
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FIG. 10: Screening of charges due to the creation of virtual pairs.

where αe ∼ αe + 2π and αm ∼ αm + 2π are the parameters of the transformations.

The presence of dynamical charged matter with charge n > 1 explicitly breaks the U(1)
(1)
e

symmetry down to Z(1)n , because of screening of the charges due to the creation of virtual

pairs. Considering the electric charge Qe(ΣD−2) defined in a closed surface ΣD−2, it is able

to detect only charge mod n, since it can surround one of the partners of a virtual pair, as

illustrated in Fig. 10. Therefore, the unitary operator Ue(αe,ΣD−2) in (5.17) must act as

the identity on objects with charges that are multiples of n, i.e.,

eiαeQe(ΣD−2) = eiαenk ≡ 1, k ∈ Z. (5.18)

This implies that the parameter of the transformation must have the form αe =
2π
n or,

equivalently, eiαe is an element of the Zn group.

To further understand the magnetic symmetry it is convenient to parametrize ∗f in terms

of a new gauge field ã, according to

∗f = dã, (5.19)

where ã is a D − 3 form, namely,

ã =
1

(D − 3)!
ãµ1...µD−2dx

µ1 ∧⋯dxµD−2 . (5.20)

Relation (5.19) implies

∗fµ1...µD−2 = (−1)
D−1∂[µD−2 ãµ1...µD−3]

= ∂[µ1
ãµ2...µD−2]. (5.21)

Next it is also convenient to express the action in terms of ã. This should be thought as a

change of variables (in the path integral sense) from a → ã. We first change the variables
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a→ f , taking into account the Bianchi identity,

S[f, ã] = ∫ dDx −
1

4e2
fµνf

µν +
1

2
ãµ1...µD−3ϵ

µ1...µD∂µD−2fµD−1µD

= ∫ dDx −
1

4e2
fµνf

µν −
1

2
fµD−1µD

ϵµ1...µD∂µD−2 ãµ1...µD−3

= ∫ dDx −
1

4e2
fµνf

µν −
1

2

1

(D − 2)
fµD−1µD

ϵµ1...µD∂[µD−2 ãµ1...µD−3]

= ∫ dDx −
1

4e2
fµνf

µν −
1

2

(−1)D−1

(D − 2)
fµD−1µD

ϵµ1...µD ∗ fµ1...µD−2(ã), (5.22)

where ã entered initially as a Lagrange multiplier ensuring the Bianchi identity. Now we

can integrate out the field fµν (treated as a basic field) using its equation of motion,

fµD−1µD = e2
(−1)D

(D − 2)
ϵµ1...µD ∗ fµ1...µD−2 . (5.23)

Plugging this back into (5.22) and using the identity

ϵµ1...µD−2αβϵν1...νD−2αβ = 2(−1)
D−1 (δ

[µ1

[ν1
δµ2
ν2⋯δ

µD−2]
µD−2]) , (5.24)

we finally obtain

S[ã] = ∫ dDx
e2

2

(−1)D−1

(D − 2)
∗ fµ1...µD−2(ã) ∗ f

µ1...µD−2(ã). (5.25)

This action invariant under the gauge transformations

ã→ ã + dλ. (5.26)

In addition to the local gauge-invariant objects obtained from the field strength ∗f , we can

construct gauge-invariant extended objects as

Tqm[ΓD−3] = exp(i2πqm∫
ΓD−3

ã) , (5.27)

which are supported on a (D−3)-dimensional manifold ΓD−3, and qm is the magnetic charge.

They are the so-called ’t Hooft operators and are the natural candidates to be the charged

objects under the magnetic (D − 3)-form symmetry. We will discuss this explicitly in the

four-dimensional case below.

VI. MAXWELL IN D = 4

In D = 4 the higher-form symmetry is U(1)
(1)
e ×U(1)

(1)
m

7. The conservation laws in (5.11)

acquire the nicer form

∂µf
µν = 0 and ∂µ ∗ f

µν = 0. (6.1)

7 As the coupling constant e2 is dimensionless in D = 4, we set e2 ≡ 1 for simplicity.
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The charges (5.14) and (5.15) become

Qe(Σ2) = ∫
Σ2

∗Je = ∫
Σ2

∗f (6.2)

and

Qm(Σ2) = ∫
Σ2

∗Jm =
1

2π ∫Σ2

∗(∗f) =
1

2π ∫Σ2

f, (6.3)

where Σ2 is a closed manifold. The charged operators are Wilson and ’t Hooft lines,

Wqe[C] = exp(iqe∮
C
a) and Tqm[C] = exp(i2πqm∮

C
ã) . (6.4)

With the choice of the 2π factor in the ’t Hooft operator, the magnetic charge qm is quantized

as qm ∈ Z, in the same way as the electric charge qe. This can be seen by considering the

Wilson line in a closed curve and using the Stokes theorem. In this case, the curve is the

boundary of two surfaces, say X2 and X ′2, so that

Wqe[C] = exp(iqe∮
C
a) = exp(iqe∫

X2

f) = exp(iqe∫
X′2

f) . (6.5)

Taking into account the orientation of the surfaces X2 and X ′2, the last equality implies

1 = exp(iqe∫
Σ2=X2∪X′2

f)

= exp (i2πqeQm(Σ2)) = 1. (6.6)

Thus, we see that the magnetic charges inside Σ2 measured by Qm(Σ2) are integers. With

this result in hands, we can find the periodicity of the field ã by considering a large gauge

transformation. To this, we consider the way it was introduced in the first line of (5.22)

with D = 4,

S[f, ã] = ∫ dDx −
1

4e2
fµνf

µν +
1

2
ãµϵ

µνρσ∂νfρσ. (6.7)

Placing this system in a manifold with periodic time S1 ×Ω3, with ∂Ω3 = S2, a large gauge

transformation of ã that winds around time direction, ã0 → ã0 + λ0, yields

δS = ∫
L0

0
dx0∫ d3x

1

2
λ0ϵ

0ijk∂ifjk

=
1

2
λ0∫

L0

0
dx0∫

S2
dSiϵ

ijkfjk

= −λ0∫
L0

0
dx0∫

S2
dS⃗ ⋅ B⃗

= −λ0L02πZ. (6.8)
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Invariance of the quantum theory under such a large gauge transformation requires then

eiδS = 1, which implies that λ0 is of the form

λ0 =
n

L0

, n ∈ Z. (6.9)

This shows that the large gauge transformations compactify the field ã as

ãµ ∼ ãµ +
nµ

Lµ

. (6.10)

Using this large gauge transformation in the ’t Hooft line (6.4) leads immediately to the

quantization of the magnetic charge qm ∈ Z.

If we pick up Σ2 = S2 immersed in a purely spatial splice, then the above charges are

nothing else the electric and magnetic fluxes

Qe(S
2) =

1

4 ∫S2
dSµνϵµνρσf

ρσ = ∫
S2
dS⃗ ⋅ E⃗ (6.11)

and

Qm(S
2) =

1

4π ∫S2
dSµνfµν =

1

2π ∫S2
dS⃗ ⋅ B⃗. (6.12)

The charged objects under such charges (objects that links with S2 in D = 4) are line defects

that are extended exclusively along time direction, that is, they correspond just to electric

and magnetic charges at rest (in space). Thus, in a particular instant of time, the charges

in (6.11) and (6.12) can detect the presence of electric and magnetic charges through the

flux crossing the surface S2.

A. Canonical Quantization Perspective

In the canonical quantization perspective we study genuine line operators, i.e., operators

extended only along spatial directions. In the absence of charges, it is convenient to fix the

Coulomb gauge where a0 = 0 and ∇⃗ ⋅ a⃗ = 0. The canonical momentum is

Πi ≡
∂L

∂ȧi
= ȧi ≡ −Ei. (6.13)

This implies the following equal-time commutator

[ai(x),Ej(y)] = −iδijδ(3)(x⃗ − y⃗). (6.14)

We still need to implement the Gauss law, ∇⃗ ⋅ E⃗ = 0 (which is equivalent to ∇⃗ ⋅ a⃗ = 0). We

see immediately that the above commutation rules are not compatible with the Gauss law.
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To proceed, we can modify the commutation rule by replacing δij → δij −
∂i∂j
∇2 . Alternatively,

we can insist with (6.14) and impose the Gauss law not at the operator level, but instead

as selection rules for physical states,

∇⃗ ⋅ E⃗ ∣Phys⟩ = 0. (6.15)

This is more convenient for our discussions.

1. Electric Symmetry

The next step is to construct the unitary operators that act in the Hilbert space. Let

us study first the electric symmetry. The corresponding charge operator can be constructed

from (6.2), simply by picking up Σ2 as purely spatial slices,

Qe(Σ2) =
1

4 ∫Σ2

(dΣ2)
µνϵµνρσf

ρσ

= ∫
Σ2

(dΣ2)iE
i, (6.16)

where we have identified f 0i ≡ −Ei and (dΣ2)i =
1
2ϵijk(dΣ2)

jk. We have three charges

Q1
e = ∫ dx2dx3E1, Q2

e = ∫ dx1dx3E2, Q3
e = ∫ dx1dx2E3. (6.17)

Let us choose one of them, say Q3
e, to study in detail. The corresponding unitary operator

can be obtained by exponentiation

Ue(αe,3) = exp (iαeQ
3
e) , (6.18)

where αe ∼ αe + 2π is the parameter of the transformation. The charged object is the line

operator extended along the direction 3:

Wqe[C3] = exp(−iqe∫
C3

dy3a3) . (6.19)

We have to compute

W ′
qe[C3] = Ue(αe,3)Wqe[C3]U

†
e (αe,3). (6.20)

To this, we recall the BCH theorem in the form

eAeB = e[A,B]eBeA, (6.21)
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which is valid when [A,B] commutes with both A and B. The commutator in our case is

[iαeQ
3
e,−iqe∫

C3

dy3a3] = αeqe∫ dx1dx2∫
C3

dy3[E3(x1, x2, x3), a3(y1, y2, y3)]

= iαeqe∫
C3

dy3δ(x3 − y3), (6.22)

where we have used the commutation relations in (6.14). The integral ∫C3 dy
3δ(x3 − y3) is

the intersection of the curve C3 and the plane Σ2, which is equal to one when they intersect.

Therefore, the transformation of the line operator is

Ue(αe,3)Wqe[C3]U
†
e (αe,3) = exp{iαeqe∫

C3

dy3δ(x3 − y3)}Wqe[C3]. (6.23)

We notice that the factor in the exponential is essentially the line integral of the Poincaré

dual (4.13). In fact, in this case, it is given by

ξ3(y) = ∫ dx1dx2δ(3)(x⃗ − y⃗). (6.24)

By integrating it along the curve C3 gives

∫
C3

dy3ξ3(y) = ∫
C3

dy3δ(x3 − y3). (6.25)

For infinitesimal αe we see that (6.23) recovers the transformation given in (4.12). The same

reasoning goes for the remaining charges Q1
e and Q2

e.

2. Magnetic Symmetry

Now we will study the magnetic symmetry. To this, it is convenient to write the Maxwell

action in terms of the dual field ã. Putting D = 4 in (5.25), we have

S[ã] = ∫ d4x −
1

4
∗ fµν ∗ f

µν = ∫ d4x −
1

4
(∂µãν − ∂ν ãµ)

2. (6.26)

By proceeding with canonical quantization, we first find the momentum

Π̃i ≡
∂L

∂ ˙̃ai
= ˙̃ai ≡ −Ẽi = −Bi, (6.27)

where we have used that ∗fµν =
1
2ϵµνρσf

ρσ. This implies the following equal-time commutator

[ãi(x),Bj(y)] = −iδijδ(3)(x⃗ − y⃗). (6.28)
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Now we can construct the charges of the magnetic symmetry according to (6.3),

Qm(Σ2) =
1

2π ∫Σ2

(dΣ2)iB
i. (6.29)

Like in the electric case, we have three charges

Q1
m =

1

2π ∫
dx2dx3B1, Q2

m =
1

2π ∫
dx1dx3B2, Q3

m =
1

2π ∫
dx1dx2B3. (6.30)

Let us consider the charge Q3
m. The corresponding magnetic unitary operator is

Um(αm,3) = exp (iαmQ
3
m) , (6.31)

where αm ∼ αm + 2π is the parameter of the transformation. The charged object under this

symmetry is the line operator

Tqm[C3] = exp(−i2πqm∫
C3

dy3ã3) . (6.32)

The computation of the transformation law of this ’t Hooft operators is essentially the same

as that one of the electric case. The result is

Um(αm,3)Tqm[C3]U
†
m(αm,3) = exp{iαmqm∫

C3

dy3δ(x3 − y3)}Tqm[C3]. (6.33)

B. Algebra of Wilson and ’t Hooft Operators

It is interesting to study the algebra between Wilson and ’t Hooft operators in the frame-

work of canonical quantization. To this, we need to express both operators in terms of the

same canonical pair. Let us choose to write the ’t Hooft operator in terms of electric field.

This can be done simply by considering the ’t Hooft operator defined in a closed curve in

space. Then, using the Stokes theorem we can write

Tqm[C
′] = exp(−i2πqm∫

C′
dy⃗ ⋅ ⃗̃a) = exp(−i2πqm∫

X2

⃗dX2 ⋅ E⃗) , (6.34)

where ⃗dX2 is the oriented integration element on the surface X2. The Wilson operator along

a closed or infinitely long purely spatial curve is

Wqe[C] = exp(−iqe∫
C
dx⃗ ⋅ a⃗) . (6.35)

By using the BCH theorem (6.21) and the commutation (6.14), the algebra of Wilson and

’t Hooft operators follows immediately

Wqe[C]Tqm[C
′] = exp(i2πqeqm∫

X2

dX i
2∫
C
dxiδ(3)(x⃗ − y⃗))Tqm[C

′]Wqe[C]. (6.36)

33



The object ∫X2
dX i

2 ∫C dx
iδ(3)(x⃗ − y⃗) is the intersection of the curve C and the surface X2,

which in turn is equal to the link between the curves,

∫
X2

dX i
2∫
C
dxiδ(3)(x⃗ − y⃗) = Link(C,C′) = Z. (6.37)

Therefore, the relation (6.36) can be written as

Wqe[C]Tqm[C
′] = ei2πqeqm Link(C,C′)Tqm[C

′]Wqe[C]. (6.38)

Due to the quantization of the charges qe and qm, it turns out that the phase factor is equal

to one, and the above algebra is commutative.

C. Path Integral Perspective

Now we want to derive the transformation of line operators that can be eventually ex-

tended along time direction. It is convenient to consider the path integral to compute the

correlation function of interest, namely, the correlation function of the unitary operator

associated with the charge Qe(Σ2) acting on a general Wilson line,

⟨eiαeQe(Σ2)eiqe ∮C a⟩ = ∫ Dae
iαeQe(Σ2)+iqe ∮C a+iS, (6.39)

where Σ2 is an arbitrary closed 2-dimensional manifold. The basic idea is that we can absorb

Qe into the action through a redefinition of the gauge field [36]. The first step is to use the

Stokes theorem to write the charge as

Qe(Σ2) = ∫
Σ2

∗f = ∫
Ω
d ∗ f, (6.40)

where Ω is a 3-dimensional volume whose boundary is Σ2, i.e., ∂Ω = Σ2. In components, it

reads

Qe(Σ2) =
1

4 ∫Ω
∂αf

µνϵµνρσdV
αρσ. (6.41)

We can express the volume element as

dV αρσ = ϵαρσγnγdV ⇔ nγdV =
1

3!
ϵγαρσdV

αρσ, (6.42)

where nγ is a unit vector normal to the volume dV αρσ. With this, the charge becomes

Qe(Σ2) =
1

3! ∫Ω
ϵνρσγ∂µf

µνdV ρσγ. (6.43)
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x0 + ϵ0

x0 − ϵ0
Ω

Σ

FIG. 11: A closed region Ω, in terms of very large spatial surface Σ. In the limit of ϵ0 → 0,

we take the surface Σ to be infinitely large.

Next we turn this expression into an integral over four dimensions with the help of a delta

function,

Qe(Σ2) = ∫ d4x∂µf
µν(x)Jν(x;Ω)

= −
1

2 ∫
d4xfµν [∂µJν(x;Ω) − ∂νJµ(x;Ω)] , (6.44)

where we have identified

Jν(x;Ω) ≡
1

3! ∫Ω
ϵνρσγδ

(4)(x − y)dV ρσγ(y), (6.45)

which is nonvanishing only when x ∈ Ω. Notice that this is nothing else the Poincaré dual

(4.8) but with the crucial difference that here the manifold Ω has a boundary (it is immersed

in the four dimensional spacetime). Consequently, Jν is not a closed form. This is the local

version of the global 1-form symmetry transformation, like we have used to derive the Ward

identities. If we set ν = i and choose the region Ω as depicted in Fig. 11, the expression

(6.45) reduces to

Ji(x;Ω) = ∫
Σ
ϵijkδ

(3)(x⃗ − y⃗)dV jk(y), (6.46)

which is precisely equation (4.10) with d = 3.

With the charge expressed as in (6.44), the correlation function in (6.39) reads

⟨eiαeQe(Σ2)eiqe ∮C a⟩

= ∫ Da exp [i∫ d4x −
1

4
f 2
µν −

αe

2
fµν [∂µJν(Ω) − ∂νJµ(Ω)] + iqe∮

C
dxµaµ] . (6.47)

Then, under the shift in the gauge field

aµ → aµ − αeJµ, (6.48)
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the expression (6.47) becomes

⟨eiαeQe(Σ2)eiqe ∮C a⟩ (6.49)

= e−iqeαe ∮C dx
µJµ(Ω)

∫ Da exp [i∫ d4x −
1

4
f 2
µν +

α2
e

2
[∂µJν(Ω) − ∂νJµ(Ω)]

2
+ iqe∮

C
dxµaµ] .

The term proportional to ∫ d
4x [∂µJν(Ω) − ∂νJµ(Ω)]

2
is just a local contribution independent

on the curve C and also independent on the dynamical gauge field, so that it can be absorbed

into the integration measure. Therefore, we obtain

⟨eiαeQe(Σ2)eiqe ∮C a⟩ = e−iqeαe ∮C dx
µJµ(Ω)⟨eiqe ∮C a⟩. (6.50)

Notice that the factor in the exponential outside the correlation function is the intersection

of the curve C and the volume Ω, which in turn is equal to the link between the surface Σ2

and the curve C,

∮
C
dxµJµ(Ω) = Link(Σ2,C). (6.51)

The relation in (6.50) is the transformation for a general curve C in spacetime. We can

recover the results of canonical quantization by specifying the curve C along the spatial

directions at fixed time. For example, take C to be along direction 3. In this case, (6.51)

reduces to

∫
C3

dx3J3(Ω) = ∫
C3

dx3∫
Ω
ϵ3012δ

(4)(x − y)dV 012(y)

= −∫
C3

dx3δ(x3 − y3), (6.52)

where the volume Ω was taken as [x0 − ϵ0, x0 + ϵ0]×R12 and we have used ϵ3012 = −ϵ0123 = −1.

Plugging this into (6.50) reproduces precisely the result obtained in (6.23).

VII. MAXWELL IN D = 3

Free Maxwell theory in D = 3 possesses a 1-form electric and a 0-form magnetic symme-

tries. The action is

S[a] = ∫ −
1

2e2
f ∧ ∗f = ∫ d3x −

1

4e2
fµνf

µν , (7.1)

where now e2 is dimensionful ([e2] = 1) so that we cannot set e2 = 1.

In this case, the dual field strength ∗f is a 1-form,

∗f =
1

2e2
fµν ∗ dx

µ ∧ dxν =
1

2e2
fµνϵ

µν
ρdx

ρ. (7.2)
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Relation (5.13) gives

∗fα =
1

2e2
fµνϵµνα ⇔ fµν = e

2ϵµνρ ∗ f
ρ. (7.3)

The electric and magnetic charges are

Qe =
1

e2 ∫Σ1

∗f and Qm =
1

2π ∫Σ2

f. (7.4)

We wish to discuss the ’t Hooft operators, which in this case turn out to be local operators.

In fact, the parametrization (5.19) implies that ã is a 0-form,

∗f = dã ⇒ ∗fµ = ∂µã, (7.5)

and the comparison with (7.3) provides the relation 1
2e2f

µνϵµνα = ∂αã. Consequently, the ’t

Hooft operator (5.27) is local

Tqm(x) = e
i2πqmã(x). (7.6)

It is usually called a monopole operator, with ã referred to as the dual photon. Being a

local operator it is conceivable that it can be included in the action, in contrast to the case

D = 4, where it is an extended object and thus cannot enter the action. To appreciate this

point, we consider the action in terms of the dual photon given in (5.25) for D = 3, with the

inclusion of the monopole operator through a Hermitian combination,

S[ã] = ∫ d3x
e2

2
(∂µã)

2 + λ cos(2πqmã). (7.7)

A simple dimensional analysis shows an interesting feature of the low-energy limit of this

model. In the deep IR, where E ≪ e2 and E ≪ λ
1
3 , which in effect corresponds to e2 → ∞

and λ→∞, we see that ã is pinned at 0. Small fluctuations around this point are governed

by the action

S[ã] = ∫ d3x
e2

2
(∂µã)

2 −
1

2
λ(2πqm)

2ã2, (7.8)

which shows that the theory is gapped! Therefore, the existence of monopole operators

changes drastically the low-energy behavior of the theory, opening a gap in the spectrum.

A consequence is that the theory is confining [35, 37].

Now we can proceed with canonical quantization. The momentum is

Π =
∂L

∂∂0ã
= e2∂0ã = B, (7.9)
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implying the equal-time commutation

[ã(x⃗),B(y⃗)] = iδ(2)(x⃗ − y⃗). (7.10)

This relation shows that the monopole operator is charged under the magnetic symmetry,

whose charge can be written as

Qm =
1

2π ∫
d2xB. (7.11)

The corresponding unitary operator is

Um(αm) = e
iαmQm , αm ∼ αm + 2π. (7.12)

The transformation of the monopole operator is

T ′qm(x) = Um(αm)Tqm(x)U
†
m(αm) = e

i2παmqmTqm(x). (7.13)

In terms of the field ã this corresponds to

ã→ ã + αm. (7.14)

The presence of the monopole operator with charge qm breaks this symmetry down to a Zqm ,

since the parameters of the transformation must be of the form αm =
n
qm

, with n ∈ Z.

As a final comment, it is interesting to express the electric symmetry in (7.4) in terms of

the scalar field ã. It reads

Qe =
1

e2 ∫Σ1

∗f =
1

e2 ∮
∂µãdx

µ. (7.15)

We see that it measures the winding number of the field ã around a closed path. Therefore,

the charged operators are vortices of ã, which are configurations carrying nontrivial winding

(vorticity). This is a manifestation of the particle-vortex duality (see [38, 39] for modern

perspectives).

VIII. CHERN-SIMONS THEORY IN D = 3

The Chern-Simons theory in D = 3 is defined by the action

SCS[a] = ∫
k

4π
ada = ∫ d3x

k

4π
ϵµνρaµ∂νaρ, (8.1)
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where k ∈ Z is the level of the theory. In general we do not use to think of the gauge field

a as the electromagnetic one, but instead as a sort of emergent8 U(1) gauge field, referred

to as a U(1)a field. An electromagnetic field, denoted here by capital A, can couple to the

emergent field and this enables us to associate electric charge to the probe excitations. The

corresponding gauge group is represented by U(1)A.

The quantization of the level k follows from large gauge transformations. We place the

system in a manifoldM= S1 ×S2, and define the flux due to the presence of a monopole as

in (5.15),
1

2π ∫S2
f ∈ Z. (8.2)

We can make large gauge transformations that wind around time direction as in (5.3), with

the gauge function Λ = 2π x0

L0 . This leads to the compactness of the gauge field

a0 ∼ a0 +
2π

L0
. (8.3)

To see the changing of the action under this transformation it is convenient first to write it

as

SCS[a] = ∫ d3x
k

4π
a0ϵ

ijfij +⋯ (8.4)

and then compute the variation,

δSCS[a] = 2πk∫
L0

0

dx0

L0
(
1

2π ∫S2
d2x

1

2
ϵijfij)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n∈Z

= 2πkn, (8.5)

which implies that k ∈ Z in order eiδSCS[a] (quantum theory) to be invariant9.

The equations of motion are simply

fµν = 0. (8.6)

This means that there are no local physical degrees of freedom. The only physical (gauge-

invariant) degrees of freedom are encoded in the line operators.

The above equations of motion imply that 2-form current

Jµν = ϵµνρaρ, (8.7)

8 This is a common nomenclature in condensed matter.
9 A careful discussion on level quantization can be found in [40].
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is conserved and consequently the theory has a 1-form symmetry, with charge

Q(Σ1) = ∫
Σ1

∗J = ∫
Σ1

a. (8.8)

The corresponding unitary operator is

Wn[C] = exp(in∮
C
a) , n ∈ Z, (8.9)

which is nothing else a Wilson line. Notice that invariance under large gauge transformations

enforces the parameter n to be an integer, so that the 1-form symmetry is a discrete one.

As we shall discuss below, there are further restrictions on the values of n.

To further understand the structure of the theory, we proceed with canonical quantization.

We write the action as

S = ∫ d3x
k

2π
a2∂0a1 +⋯, (8.10)

where we have done an integration by parts, and with the dots representing the terms that

do not involve time derivative. The canonical momentum is

Π1 =
∂L

∂∂0a1
=
k

2π
a2, (8.11)

which implies that a1 and a2 form a canonical pair,

[a1(x⃗), a2(y⃗)] =
2πi

k
δ(2)(x⃗ − y⃗). (8.12)

The consequences are interesting. Let us study the algebra of the lines

W1 ≡ exp(i∫ dx1a1) and W2 ≡ exp(i∫ dx2a2) . (8.13)

Using the commutation (8.12), it follows that

W1W2 = e
− 2πi

k W2W1, (8.14)

which is precisely a Zk-symmetry algebra. More generally, we have

(W1)
m(W2)

n = e−
2πimn

k (W2)
n(W1)

m, m,n ∈ Z. (8.15)

From this relation we see that (W1)
k and (W2)

k behave as the identity (more precisely, a

transparent line) in the sense that both commute with (W1)
m and (W2)

m, for all m. In a

unified way, the line

Wk[C] = exp(ik∮
C
a) (8.16)
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FIG. 12: Link between curves as the exchange operation.

behaves as the identity from the point of view of the algebra (8.15) (it does not induce

nontrivial holonomy). This implies that the unitary operators associated with the 1-form

symmetry are in fact Zk operators, thus realizing a discrete Z(1)k symmetry.

At first sight, it seems that the lines that induce the same holonomy can be identified,

i.e., the lines n and n + k can be identified, but we have to be careful10. To understand

the identification among lines, we need to study their quantum numbers. For this, it is

convenient to express the algebra (8.15) in terms of the link of curves,

Wm[C]Wn[C
′] = e−

2πimn
k

Link(C,C′)Wn[C
′]. (8.17)

The spin s or, equivalently, the statistics ν ≡ 2s of a probe particle whose trajectory is

represented by a line operator can be derived from this relation. The exchange of particles

in the definition of the statistics corresponds to the operation in which one particle goes

around the other by an angle of π (up to a translation). The statistics is defined in terms of

the phase e±iνπ that the wave function acquires under exchange. We see that ν is defined mod

2. When we consider a line infinitely extended along time and the another curve encircling

the first one at some fixed instant, as in Fig. 12, this corresponds to the operation in which

a particle goes around the other by an angle of 2π. Thus, the statistics is half of the value

in the exponent in (8.17),

ν =
n2

k
mod 2 ⇒ s =

n2

2k
mod 1. (8.18)

From this it follows that the curves n and n + k can be identified when k is even,

ν =
(n + k)2

k
=
n2

k
+ 2n + k. (8.19)

The theory with k even possesses k independent lines. In contrast, when k is odd, the

curves n and n + k have distinct statistics (spin) differing mod 1 (mod 1
2) and hence cannot

10 A comprehensive discussion can be found in [41].
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be identified, in spite of the fact that they have the same holonomy. In this case, the

identification is among the curves n and n + 2k, implying the existence of 2k independent

lines. In particular, a line with n = k odd is a fermion with spin s = 1
2 mod 1. This is

important in the description of the fractional quantum Hall effect [38, 41].

A. Coupling to Electromagnetic Field

Further quantum numbers can be assigned to the line operators. In particular, they

are endowed with electric charge. We can see this by coupling the theory with a U(1)

electromagnetic field A with the same flux condition as a, 1
2π ∫S2 F ∈ Z. A gauge invariant

coupling is of the form AµJµ, where Jµ is a conserved current. The only available (1-form)

current in the Chern-Simons theory is the topological one,

Jµ =
1

2π
ϵµνρ∂νaρ, (8.20)

where the normalization is chosen so that the coupling term is invariant under large gauge

transformations of both a and A.

The expectation value of the Wilson line is equivalent to inserting a term naµJ̃µ in the

action, where the current J̃µ of the proble particle can also be parametrized likewise (8.20),

but with a new gauge field b,

J̃µ =
1

2π
ϵµνρ∂νbρ. (8.21)

Thus we consider the action

S = ∫ d3x
k

4π
ϵµνρaµ∂νaρ +

1

2π
ϵµνρAµ∂νaρ +

1

2π
ϵµνρaµ∂νbρ. (8.22)

The electric charge of the probe particle can be determined from the coefficient qn of the

term qnAµJ̃µ in the action after the field aµ is integrated out. The result is

∫ d3x
n

k
AµJ̃

µ +⋯, (8.23)

showing that the line Wn has electric charge

qn =
n

k
, (8.24)

which is in general fractional. These excitations are identified as the anyons of the Laughlin

phase of the fractional quantum Hall phase [42, 43].
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B. Monopole Operators and Bosonization in D = 3

We have seen that the 1-form symmetry is a discrete Z(1)k symmetry. Comparison with

Maxwell theory, where the U(1)
(1)
e is broken down to a Z(1)n by the presence of n-charged

dynamical matter, suggests that there should be k-charged dynamical objects in the Chern-

Simons theory. They are precisely the monopole operators (’t Hooft operators). To under-

stand this, we recall the definition of a ’t Hooft operator in D = 3 given in (7.6), which we

repeat here,

T (x) = e2πiã, (8.25)

where we have set qm = 1. The scalar field ã enters as a parametrization of the dual

field strength, according to e2∂µã = ϵµνρ∂νaρ. With this, we can naively think that the

terms ada and Ada in the action (8.22) represent the couplings ∂µã aµ and ∂µãAµ of the

monopole operator with both gauge fields a and A. This implies that the monopole operator

is charged under both U(1)a and U(1)A. The respective charges can be determined by using

the equations of motion.

To do this, we first introduce in the action (8.22) a Maxwell term for the a field as − 1
4g2f

2
µν ,

with the coupling constant g2 (we reserve e for electromagnetic coupling). The equations of

motion are
1

g2
∂µf

µν +
k

2π
ϵναβ∂αaβ + J̃

ν = 0. (8.26)

Picking up the component ν = 0, we get

1

g2
∇⃗ ⋅ e⃗ +

k

2π
ϵij∂iaj + J̃

0 = 0. (8.27)

This relation shows that the Chern-Simons term provides charge k under U(1)a to the

monopole operator.

Next we introduce a Maxwell term for the electromagnetic field and proceed similarly.

The equations of motion are

1

e2
∂µF

µν
A +

1

2π
ϵναβ∂αaβ = 0, (8.28)

which show that the monopole operator has charge 1 under U(1)A.

We can use the above results to unveil an interesting perspective that leads to a special

type of duality in D = 3, namely, a bosonization duality. Suppose we turn the probe particles
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associated with J̃ in (8.22) into dynamical ones, and assume that they are represented by a

complex scalar field with charge 1 under U(1)a. The corresponding Lagrangian reads

L = ∣(∂µ − iaµ)ϕ∣
2 +

k

4π
ϵµνρaµ∂νaρ +

1

2π
ϵµνρAµ∂νaρ +⋯. (8.29)

We can construct the following object,

ϕ† T (x), (8.30)

which is the monopole operator dressed by the complex field. It represents a bound-state of

a ϕ-particle and a monopole. Notice that this object is charged under U(1)A with charge 1,

and uncharged under U(1)a for k = 1. Moving one bound-state around another one induces

an Aharonov-Bohm phase

ei(charge under U(1)A)×(flux unit of BA) = ei(1)×(2π), (8.31)

where BA = ϵij∂iAj, from which we can extract the statistics ν = 1. Therefore, the composite

object ϕ† T (x) possesses precisely the quantum numbers of an electromagnetically charged

fermion, which suggests the following duality relation

∣(∂µ − iaµ)ϕ∣
2 +

k

4π
ϵµνρaµ∂νaρ +

1

2π
ϵµνρAµ∂νaρ +⋯ ⇔ ψ̄( /∂ − i /A)ψ +⋯. (8.32)

With the proper refinements (relegated to the dots), this is the bosonization duality in D = 3,

and it figures as the heart of the so-called web of dualities [44–46].

C. Bosonization in D = 2

The Chern-Simons action (8.1) in gauge-invariant up to boundary terms. Therefore, in

a manifold with boundary, the gauge freedom cannot be used at the boundaries to remove

degrees of freedom so that it is expected physical modes living at the boundaries. This fact

can be used to understand bosonization in D = 211.

We consider the manifold defined in the semi-plane x2 ∈ (−∞,0], so that there is a

physical boundary at x2 = 0, and parametrize the solution of (8.6) in terms of a scalar

field as aµ = ∂µϕ, i.e., a pure gauge configuration in the bulk. Next, we take the Wilson

11 See [47, 48] for detailed discussions on bosonization in D = 2.
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line along an open curve coming from infinity and ending at the boundary, and use this

parametrization to write it as

Wn[x
0, x1] = exp(in∫

0

−∞
dx2a2)

= exp (inϕ(x0, x1)) . (8.33)

This edge operator is usually referred to as a vertex operator in CFT language [49].

In the commutator (8.12), we set x2 = 0 and integrate both sides in y2 in the interval

x2 ∈ (−∞,0], which gives

[∂1ϕ(x
1), ϕ(y1)] =

2πi

k
δ(1)(x1 − y1). (8.34)

This implies

[ϕ(x1), ϕ(y1)] =
πi

k
sign(x1 − y1), (8.35)

which is the commutation relation for a chiral boson [50] (more recent discussions can be

found in [51]).

Comparing (8.34) with the commutation rule for a chiral system, namely,

[ϕ(x1),Π(y1)] =
i

2
δ(1)(x1 − y1), (8.36)

we see that the momentum is identified as Π = − k
4π∂1ϕ.

Now we look for a Lagrangian that gives this relation. It must contain

L = −
k

4π
∂0ϕ∂1ϕ +⋯. (8.37)

If we do not include any other term in the dots, the theory has no propagating degree of

freedom. A sensible choice is

L = −
k

4π
(∂0ϕ∂1ϕ + v(∂1ϕ)

2) , (8.38)

where we have included a new parameter v that represents the velocity of propagation in

the boundary. The equation of motion is

(∂0 + v∂1)∂1ϕ = 0, (8.39)

which shows that ϕ is indeed a chiral field, i.e., one-way propagating.

The corresponding Hamiltonian is

H = ∫ dx1
k

4π
v(∂1ϕ)

2. (8.40)
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It is positive definite only if kv > 0. Thus, the sign of the Chern-Simons level k determines

the sign of the velocity v.

Let us study the statistics of the vertex operators in (8.33). According to the commutation

in (8.35),

einϕ(x
1)eimϕ(y1) = exp(−

πinm

k
sign(x1 − y1)) eimϕ(y1)einϕ(x

1). (8.41)

This means that a vertex operator einϕ(x) has statistics e−πi
n2

k . In particular, the vertex

operator with n = k is a fermion if k is odd (e−πik = −1 for odd k).

In the simplest case k = 1 (at the compactification radius equal to one), an explicit version

of the fermionized theory can be achieved. In this case, we can write

ψ ≡ c eiϕ, (8.42)

where c is some normalization constant. Dimensional analysis shows that c must have

dimension [c] = 1
2 in mass units. Thus we write is

ψ ≡
1
√
2πa

eiϕ, (8.43)

where a is a short-distance cutoff. Let us compute

ψ†(x′)ψ(x) =
1

2πa
e−iϕ(x

′)eiϕ(x)

=
1

2πa
e−i(ϕ(x

′)−ϕ(x))e
πi
2
sign(x′−x). (8.44)

We are interested in the limit x′ → x, but this should be done carefully. We then set x′ = x+a,

ψ†(x′)ψ(x) =
1

2πa
e

πi
2
sign(a) (1 − ia∂xϕ −

ia2

2
∂2xϕ −

a2

2
(∂xϕ)

2 +⋯) . (8.45)

Next we apply a derivative with respect to x in both sides, taking into account that in the

right hand side a is now dependent on x, so that ∂xa = −1. The only nontrivial contribution

comes when the derivative acts on the factor 1
2πa , resulting in

ψ†(x′)∂xψ(x) = −i
1

4π
(∂xϕ)

2 +⋯. (8.46)

The terms in the dots can be neglected since they are constants (divergent), total derivatives,

or even vanish in the limit a → 0. With this, we have obtained essentially the bosonization

formula for the Hamiltonian (8.40), which in terms of fermionic field becomes

H = −∫ dx i v ψ†(x)∂xψ(x). (8.47)
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The corresponding Lagrangian is

L = iψ†(∂0 + v∂x)ψ, (8.48)

which is the Lagrangian of a chiral free fermion [50, 51].

D. ’t Hooft Anomaly and Ground State Degeneracy in the Torus

Let us go back to the algebra (8.15) to discuss some further implications. It is a projective

representation of the Abelian algebra, in the sense that it fails to reduce to a commutator

because of a phase. A projective representation signals the existence of an ’t Hooft anomaly,

i.e., an obstruction to gauging, and has consequences on the spectrum of the theory. In fact,

an ’t Hooft anomaly famously leads to the so-called matching conditions [29]. Specifically,

an ’t Hooft anomaly in the UV cannot be matched by a trivial gapped theory in the IR, so

that the IR must be nontrivial.

Let us write generically the projective representation of an algebra involving two unitary

operators as

U1U2 = e
iαU2U1. (8.49)

Next consider the following two states,

∣ψ′⟩ = U1U2 ∣ψ⟩ and ∣ψ′′⟩ = U2U1 ∣ψ⟩ , (8.50)

constructed out the same original physical state ∣ψ⟩. According to the algebra (8.49), we

see that

∣ψ′⟩ = eiα ∣ψ′′⟩ . (8.51)

As the two states differ only by a phase, they belong to the same ray and are actually

identified as the same physical state.

Now suppose that we gauge the global symmetries associated with U1 and U2. This means

that physical states must be invariant under action of such operators, i.e., U1 ∣ψ⟩ = ∣ψ⟩ and

U2 ∣ψ⟩ = ∣ψ⟩. Thus, the algebra in (8.49) implies

(1 − eiα) ∣ψ⟩ = 0. (8.52)

As in general eiα ≠ 1, it follows that there are no notrivial physical states left behind in the

theory, ∣ψ⟩ = 0. In particular, the partition function vanishes.

47



Now we turn to the Chern-Simons theory. In this case, the gauging of the Z(1)k symmetry

can be done in the following way. We introduce in the action the coupling cµνJµν , where

Jµν is the 2-form current (8.7) and cµν is a flat gauge connection for the Z(1)k -symmetry12,

and sum over cµν in the partition function. Being a flat connection, we can write it as

cµν =
1

4π
∂[µcν]. (8.53)

Let us treat initially the gauge field as a background one. In this case, the partition function

reads

Z[c] = ∫ Da exp [i∫ d3x(
k

4π
ϵµνρaµ∂νaρ +

1

2π
ϵµνρaµ∂νcρ)] . (8.54)

Identifying the current Jµ ≡ 1
2π ϵ

µνρ∂νcρ, we can express the term ∫ d
3xaµJµ in the action in

terms of a line integral ∮ a, as discussed in the derivation of (5.9). In this way,

Z[c] = ∫ Da exp [i∫ d3x
k

4π
ϵµνρaµ∂νaρ + in∮

C
a]

= ⟨Wn[C]⟩. (8.55)

Now we convert to the Hilbert space perspective. To this, we choose the line C to be purely

spatial, say infinitely extended along direction 113, and rotate to the Euclidean periodic time

τ (imaginary time formalism),

Z[n] = ∫ DaWn[1] e
−∫

β
0 dτd2xL. (8.56)

The information of the background gauge field remaining in this expression is encoded in n.

Therefore, gauging the theory means sum over all possible operators Wn[1], namely,

Zgauged =
k−1

∑
n=0
∫ DaWn[1] e

−∫
β
0 dτd2xL. (8.57)

This expression, in turn, can be written as

Zgauged = Tr(e
−βH

k−1

∑
n=0

Wn[1]) , (8.58)

where H is the Chern-Simons Hamiltonian, which in turn vanishes, but this is innocuous

in the present derivation. Then, picking up a basis that diagonalizes the unitary operators

12 In gauging a continuous symmetry, there is also curvature.
13 According to the notation of (8.13), Wn[1] = (W1)

n.
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Wn[1], that is, ∣m⟩ ≡ (W2)
m ∣0⟩ (see the discussion after (8.65)), the partition function is

written as

Zgauged =
k−1

∑
m=0

⟨m∣ e−βH(1 + e−
2πim

k + e−
2πi2m

k +⋯ + e−
2πi(k−1)m

k ) ∣m⟩ , (8.59)

which vanishes for any k > 1.

The above discussion shows that there is an obstruction to gauging the Z(1)k -symmetry

due to a ’t Hooft anomaly. Now we discuss the consequences of it in the spectrum. We

wish to compute the ground state degeneracy of the Chern-Simons theory in a spatial torus,

M=R × T 2.

Let us consider a torus as a rectangle of sizes L1 and L2, with the identifications x1 ∼ x1+L1

and x2 ∼ x2 +L2. In this case, we can decompose the gauge field in Fourier modes as

aµ(x
0, x⃗) = ∑

k⃗

eik⃗⋅x⃗aµ(x
0, k⃗), (8.60)

where k1 = 2π n1

L1
and k2 = 2π n2

L2
. To study the ground state degeneracy, we need to consider

only the zero modes,

aµ(x
0, x⃗) = aµ(x

0, k⃗ = 0) +⋯, (8.61)

since the nonzero modes are separated by gaps of the order 1
L1
, 1
L2

14. Then, the Chern-

Simons theory reduces to a simple quantum mechanical system. We redefine the zero modes

to absorb the lengths of the torus āi ≡ ai(x0, k⃗ = 0)Li (no sum). The line operators (8.13)

around the two holonomies of the torus reduce to

W1 = e
iā1 and W2 = e

iā2 , (8.62)

with the algebra given by (8.14),

W1W2 = e
− 2πi

k W2W1, (8.63)

representing the algebra of the ground state. Thus, the ground state degeneracy follows

from the size of the representation implied by (8.63). Suppose we choose to diagonalize the

operator W1,

W1 ∣0⟩ = e
iλ ∣0⟩ . (8.64)

14 In the strict case of pure Chern-Simons theory the nonzero modes are in fact gauge modes since the

vacuum solutions of the equations of motion are of the form ai = ∂iϕ + āi(t)/L
i.
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Then, the operator W2 plays the role of creation operators,

∣p⟩ ≡ (W2)
p ∣0⟩ . (8.65)

The algebra in (8.63) leads to

W1(W2)
p ∣0⟩ = e−

2πip
k eiλ(W2)

p ∣0⟩ , (8.66)

which shows that there are k distinct states ∣p⟩, labeled by p = 0,1, . . . , k − 1. Using (8.63)

we can see immediately that they are linearly independent,

⟨p∣p′⟩ = ⟨0∣ (W2)
−p(W2)

p′ ∣0⟩

= ⟨0∣ (W2)
−pW −1

1 W1(W2)
p′ ∣0⟩

= e
2πi(p−p′)

k ⟨0∣ (W2)
−p(W2)

p′ ∣0⟩ , (8.67)

i.e., the scalar product vanishes unless p = p′. Therefore, the ground state degeneracy in the

tours is k. This result can be easily generalized to the case of a g-torus, i.e., a surface with

genus g. It is equivalent to the composition of a number g of torus, so that the ground state

degeneracy is simply

k ×⋯ × k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g times

= kg. (8.68)

IX. 1-FORM SYMMETRY IN NON-ABELIAN GAUGE THEORIES

Our main concern here is the case of four-dimensional non-Abelian gauge theories with

gauge group SU(N), governed by the Yang-Mills action

SYM[a] = ∫ −
1

e2
Tr(f ∧ ∗f) = ∫ d4x −

1

2e2
Tr(fµνf

µν), (9.1)

where the non-Abelian field strength is defined as

fµν = ∂µaν − ∂νaµ − i[aµ, aν]. (9.2)

The gauge field aµ is algebra-valued,

aµ = T
aaaµ, (9.3)

with the Hermitian generators T a satisfying

[T a, T b] = ifabcT c and Tr(T aT b) =
1

2
δab. (9.4)
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Under a gauge transformation

aµ → a′µ = U(x)aµU
†(x) + iU(x)∂µU

†(x), (9.5)

with U ∈ SU(N), the field strength transforms as

fµν → f ′µν = U(x)fµνU
†(x), (9.6)

which leaves the action (9.1) invariant.

The equations of motion of the action (9.1) are

Dµf
µνa = ∂µf

µνa + fabcabµf
µνc = 0. (9.7)

In terms of matrices, this can be written as

Dµf
µν = ∂µf

µν − i[aµ, f
µν] = 0. (9.8)

More generally, the covariant derivative of any object ϕ = ϕaT a belonging to the adjoint

representation is

Dµϕ = ∂µϕ − i[aµ, ϕ]. (9.9)

As in the Abelian case, here we also have the Bianchi identity. In terms of the Hodge

dual

∗fµν =
1

2
ϵµνρσfρσ, (9.10)

it is given by

Dµ ∗ f
µν = 0. (9.11)

A. Wilson Lines

With this basic setup, we are ready to investigate the Wilson line operators in the non-

Abelian case [52]. It requires a slight generalization compared with the Abelian case. To

see this, we consider first the Wilson operator along an infinitesimal path of length ϵ,

W (x + ϵ, x) = eiϵµa
µ(x) = 11 + iϵµa

µ(x) +⋯. (9.12)

Upon a gauge transformation (9.5), this object transforms as

W (x + ϵ, x) →W ′(x + ϵ, x) = 11 + iϵµU(x)aµU
†(x) − ϵµU(x)∂µU

†(x) +⋯

= 11 + ϵµ∂µU(x)U
†(x) + iϵµU(x)aµU

†(x) +⋯

= [(11 + ϵµ∂µ)U(x)]U
†(x) + iϵµU(x)aµU

†(x) +⋯

= U(x + ϵ)(11 + iϵµa
µ(x))U †(x) +⋯. (9.13)
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Therefore, we see that

W (x + ϵ, x) →W ′(x + ϵ, x) = U(x + ϵ)W (x + ϵ, x)U †(x). (9.14)

Note that W †(x + ϵ, x) = W (x − ϵ, x). On the other hand, W (x − ϵ, x) is equal W (x,x + ϵ)

up to second order terms in ϵ, so that we can write

W †(x + ϵ, x) =W (x,x + ϵ). (9.15)

This implies that the Hermitian conjugate reverses the orientation of the path.

Now we can consider the Wilson line operator along a finite path through the composition

of many infinitesimal connected pieces. Consider two points x and y, with y reached after

n infinitesimal displacements from x, i.e., y = x + ϵ1 + ϵ2 + ⋯ + ϵn. We define the string of

infinitesimal Wilson operators as

WP (y, x) ≡W (y, y − ϵn)W (y − ϵn, y − ϵn − ϵn−1) . . .W (x + ϵ1 + ϵ2, x + ϵ1)W (x + ϵ1, x), (9.16)

where P stands for the path ordering specified by the right hand side. The path order-

ing is important to ensure a nice transformation property of WP (y, x). Under the gauge

transformation (9.5), WP (y, x) transforms as

WP (y, x) →W ′
P (y, x) = U(y)WP (y, x)U

†(x). (9.17)

In view of (9.15), it follows that

W †
P (y, x) =W−P (x, y), (9.18)

where −P means the reverse of the path P .

With the above results, we can construct a gauge invariant Wilson line operator. We just

consider the continuum limit of a closed oriented path and then take the trace,

W [C] = TrPei∮C a, (9.19)

where P inside the trace stands for path ordering. It is important to emphasize that implic-

itly there is an assumed representation in this expression, because the generators are given

in some representation and the trace must be taken accordingly. We shall discuss more

about this below.

52



B. 1-Form Center Symmetry

1. Fundamental Representation

The center subgroup of SU(N) can be constructed in a simple way [53]. Let us consider

the fundamental representation and we choose one of the generators, say the last one, to be

diagonal. It can be written as

TN2−1 =

√
N

2(N − 1)
diag(

1

N
,
1

N
, . . . ,

1

N
,−1 +

1

N
) , (9.20)

with the diagonal elements ensuring that its trace vanishes.

Then consider the group element

U = ei θ T
N2−1

, (9.21)

and choose the parameter as θ ≡ 2π
√

2(N−1)
N . It is immediate to see that this group element

is proportional to the identity, being an element of the ZN group,

U = e2πit
N2−1
= e

2πi
N 11, (9.22)

where we have defined the rescaled generator

tN
2−1 ≡

√
2(N − 1)

N
TN2−1 = diag(

1

N
,
1

N
, . . . ,

1

N
,−1 +

1

N
) . (9.23)

Note that the matrix U in (9.22) has unit determinant, as it should be.

To unveil the global center symmetry of the SU(N) gauge theory it is convenient to

consider a manifold with periodic time S1, which amounts to the identification x0 ∼ x0 +L0.

In this case, a large gauge transformation that winds around the time direction reads

U(x0) = e2πNi x
0

L0 t
N2−1

. (9.24)

This is well-defined under x0 → x0 +L0 in the sense that

U(x0 +L0) = U(x0), (9.25)

which follows because e2πNitN
2−1
= 11. Therefore, it is a true (large) gauge transformation.

Now we can consider a modification of (9.25), involving the twist by an element of the

center ZN of SU(N), i.e.,

Ũ(x0 +L0) = Ũ(x0)h, h ∈ ZN . (9.26)
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An explicit matrix-valued function Ũ(x0) satisfying this condition is

Ũ(x0) = e2πki
x0

L0 t
N2−1

, k = 0,1, . . . ,N − 1. (9.27)

It is immediate to see that it satisfies

Ũ(x0 +L0) = Ũ(x0)e
2πik
N . (9.28)

Notice that a transformation with Ũ ,

a0 → a′0 = Ũ(x
0)a0Ũ

†(x0) + iŨ(x0)∂0Ũ
†(x0)

= Ũ(x0)a0Ũ
†(x0) +

2πk

L0
tN

2−1, (9.29)

does not correspond to a gauge transformation, since it cannot be removed by any kind of

gauge transformation (not even a large gauge one). Using (9.6), it is immediate to see that it

is a true global symmetry of the Yang-Mills action. As we shall see, it is a 1-form symmetry

since it acts on the Wilson line operators.

Consider a Wilson operator extended along time direction,

Pei ∫
x0+L0

x0
dx′0a0 . (9.30)

According to (9.17), we see that under (9.29), this object transforms as

Pei ∫
x0+L0

x0
dx′0a0 → Ũ(x0 +L0)Pei ∫

x0+L0

x0
dx′0a0Ũ †(x0)

→ e
2πik
N Ũ(x0)Pei ∫

x0+L0

x0
dx′0a0Ũ †(x0), (9.31)

where we have used (9.28). Then, taking the trace leads to

TrPei ∫
x0+L0

x0
dx′0a0 → e

2πik
N TrPei ∫

x0+L0

x0
dx′0a0 . (9.32)

In other words, the Wilson line in the fundamental representation is charged under (9.29),

with the charge being an element of the center ZN .

2. Adjoint Representation

Let us construct now aWilson line with the generators taken in the adjoint representation.

To this, we can use the fact that the direct product of fundamental and anti-fundamental

representations of SU(N) can be decomposed into irreducible parts according to

N
®

dim=N

⊗ N̄
®

dim=N

= 11
®

dim=1

⊕ A
®

dim=N2−1

. (9.33)
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This expression provides us a useful relation for the indices of the adjoint representation

in terms of fundamental indices, known as double-index representation. To see this, we

consider fields ϕi and ϕi transforming according to the fundamental and anti-fundamental

representations, namely, ϕ
′i = U i

jϕj and ϕ′i = (U
∗)i

jϕj. In terms of components, (9.33)

reads

ϕiϕj =
1

N
δijϕ

2 + (ϕiϕj −
1

N
δijϕ

2) . (9.34)

The term inside the brackets corresponds to the tensor product that transforms in the adjoint

representation. We define

ϕij
adj ≡ ϕ

iϕj −
1

N
δijϕ

2. (9.35)

With this, we notice that fields belonging to the adjoint representation are invariant under

the center symmetry, since their transformation involve the product of U and U∗.

Under a generic SU(N) transformation, it follows that

ϕ
′ij
adj = ϕ

′iϕ′j −
1

N
δijϕ

′2

= U i
k(U

∗)j
lϕkϕl −

1

N
δijϕ

2

= U i
k(U

∗)j
l (ϕkϕl −

1

N
δkl ϕ

2 +
1

N
δkl ϕ

2) −
1

N
δijδ

l
k (ϕ

kϕl −
1

N
δkl ϕ

2 +
1

N
δkl ϕ

2)

= (U i
k(U

∗)j
l −

1

N
δijδ

l
k)(ϕ

kϕl −
1

N
δkl ϕ

2) , (9.36)

where we have used that

1

N
U i

k(U
∗)j

lδkl ϕ
2 −

1

N2
δijδ

l
kδ

k
l ϕ

2 = 0. (9.37)

Relation (9.36) implies that any SU(N) matrix in the adjoint representation can be written

as

U ij

kl
≡ U i

k(U
∗)j

l −
1

N
δijδ

l
k, (9.38)

so that

ϕ
′ij
adj = U

ij

kl
ϕkl
adj. (9.39)

Let us use the above results to construct a Wilson line in the adjoint representation. In

the fundamental representation, we can write

[Pei∮ a]i j ∈ SU(N). (9.40)
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According to (9.38), it follows that the Wilson line in the adjoint representation is

[Pei∮ a]
ij

kl
= [Pei∮ a]i k[(Pe

i∮ a)∗]j
l −

1

N
δijδ

l
k. (9.41)

Finally, taking the trace amounts to setting i = k and j = l,

Tradj (Pe
i∮ a) = [Pei∮ a]i i[(Pe

i∮ a)∗]j
j −

1

N
δijδ

j
i

= ∣Pei∮ a∣
2
− 1. (9.42)

Therefore, we see that the Wilson line in the adjoint representation is invariant under the

1-form center ZN symmetry.

C. ’t Hooft Lines

Now we study ’t Hooft lines, which represent the trajectory of ”magnetically” charged

probe particles [54] (see also [55]). Perhaps the simplest way to introduce the ’t Hooft lines

in the non-Abelian case is to take a line extended along time direction, and then consider

its effect on a S2 surface that links with such line. As there is no electric flux, f0i = 0, and

the magnetic flux is produced by a magnetic field imitating the Abelian case,

bi =
1

2
ϵijkfjk =

xi

4π∣x⃗∣3
Q(x) ⇔ f ij = ϵijk

xk

4π∣x⃗∣3
Q(x). (9.43)

The algebra-valued object Q(x) = Qa(x)T a plays the role of the magnetic charge of the

’t Hooft line. It must carry in principle dependence on coordinates since under gauge

transformations fij → UfijU †, and consequently Q must transform accordingly, i.e., Q →

UQU †.

The equations of motion (9.8) and (9.11) reduce to

Dif
ij = 0 and ϵijkDifjk = 0, (9.44)

which, in turn, imply that

DiQ = ∂iQ − i[ai,Q] = 0. (9.45)

Potentials producing the configuration in (9.43) can be constructed in a simple way in

spherical coordinates. We recall that we need two charts to cover S2. Considering first a

chart covering the north pole, we can take the potential as

aNr = a
N
θ = 0 and aNϕ =

Q

4πr

(1 − cos θ)

sin θ
, (9.46)
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with a constant matrix algebra-valued Q. This is consistent with (9.45), namely, DϕQ =

∂ϕQ − i[aϕ,Q] = 0. In terms of differential forms, this reads

aN = a⃗N ⋅ dx⃗ = aNr dr + r a
N
θ dθ + r sin θ a

N
ϕ dϕ =

Q

4π
(1 − cos θ)dϕ. (9.47)

Notice that we can write the magnetic field in (9.43) as

bi = ϵijk∂jak − iϵ
ijkajak. (9.48)

Then we convert this to spherical coordinates. The term ϵijkajak vanishes for the fields given

in (9.46) because only the component aNϕ is nonvanishing. The contribution of the curl,

b⃗ = ∇⃗ × a⃗N = r̂
1

r sin θ
[
∂

∂θ
(sin θ aNϕ ) −

∂aNθ
∂ϕ
] +⋯, (9.49)

produces the magnetic field in (9.43). The same reasoning applies to the chart covering the

south pole. In this case, the potential reads

aSr = a
S
θ = 0 and aSϕ = −

Q

4πr

(1 + cos θ)

sin θ
, (9.50)

which also gives the magnetic field (9.43). In the overlapping region (θ = π
2 ) they can differ

at most by a gauge transformation.

With a suitable gauge transformation Q → UQU † we can diagonalize Q, so that it can

be written as a linear combination of the Cartan generators15 since the diagonal form is still

algebra-valued,

Q = m⃗ ⋅ H⃗, (9.51)

where the coefficient mi are determined by consistency. To see this, we can proceed in

analogy to the equations (6.5) and (6.6) of the Abelian case or, alternatively, we can consider

a Wilson line along the overlapping region (θ = π
2 ). In this region, a closed path should lead

to the same result using either aN or aS,

TrP exp(i∫
2π

0
aNϕ ) = TrP exp(i∫

2π

0
aSϕ)

TrPe
iQ
2 = TrPe

−iQ
2

Tre
im⃗⋅H⃗

2 = Tre
−im⃗⋅H⃗

2 , (9.52)

15 A nice book on Lie algebras can be found in [56]. In Appendix B, we review some useful properties.
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where in the last step we have discarded the path ordering since all the Cartan generators are

simultaneously commuting. Taking the trace in the basis that diagonalizes the Cartan gen-

erators, this leads to a consistency condition in terms of the weights µ⃗ of the corresponding

representation,

eim⃗⋅µ⃗ = 1 ⇒ m⃗ ⋅ µ⃗ = 2πZ. (9.53)

At this point is useful to recall the relation between weights and roots of the SU(N) algebra,

2
α⃗ ⋅ µ⃗

α⃗2
∈ Z. (9.54)

For convenience we review the derivation of this relation in appendix B. Therefore, condition

(9.53) is satisfied for any representation labeled by µ⃗ provided that

m⃗ ≡ 2π
2α⃗

α⃗2
, (9.55)

i.e., the magnetic charges are associated with the roots. In other words, the t’ Hoot lines

must be taken in the adjoint representation. Summarizing, while the Wilson lines can be

taken in any representation, the ’t Hooft lines must be taken in the adjoint one. This leads

to an imbalance of the number of electric and magnetic line operators.

D. SU(N) vs SU(N)/ZN

With the previous understanding of Wilson and ’t Hooft operators, we can address the

important question about the difference between SU(N) and SU(N)/ZN gauge theories.

From the point of view of the (local) action, both theories are the same. However, the

spectrum of line operators is different. To highlight the differences, it is convenient to

proceed similarly to the Abelian case and parametrize the field strength and its Hodge dual

as

f = da − ia ∧ a and ∗ f = dã − iã ∧ ã. (9.56)

In terms of the fields a and ã, we construct the Wilson and t’Hooft operators as

W [C] = TrRePe
i∮ a and T [C] = TrRmPe

i∮ ã, (9.57)

with Re and Rm corresponding to the representations in which they are taken. In this way,

we may have in general electric and magnetic ZN 1-form symmetries,

(ZN)
(1)
e and (ZN)

(1)
m . (9.58)
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Now we specify the gauge group. In the SU(N) case, as we have discussed above, the

Wilson lines can be taken in any representation Re labeled by the weights µ⃗, whereas the

magnetic charges are labeled by the roots m⃗, meaning that the t’ Hooft operators must be

taken in the adjoint representation. In the case of SU(N)/ZN gauge group, any object that

is charged under the center symmetry is not allowed, restricting so the possible Wilson lines.

In fact, only Wilson lines in the adjoint representation (more generally, tensor products of

the adjoint representation) are acceptable, which means that they are labeled in this case

by the roots. Consequently, the consistency condition (9.53) implies that the ’t Hooft lines

are labeled by the weights, so that they can be taken in any representation Rm. The role of

the weights and roots is exchanged in SU(N) and SU(N)/ZN groups.

We can summarize the above picture in terms of the 1-form symmetries in each case,

SU(N) ∶ (ZN)
(1)
e and SU(N)/ZN ∶ (ZN)

(1)
m . (9.59)

X. SPONTANEOUS BREAKING OF HIGHER-FORM SYMMETRIES

The last topic of these notes is the spontaneous symmetry breaking of higher-form sym-

metries [10, 27, 28]. For concreteness, we shall consider the case of 1-form symmetries in

gauge theories, whose charged objects are Wilson and ’t Hooft lines.

The key point is to identify the vacuum expectation value of the Wilson loop as the order

parameter for the electric 1-form symmetry, which distinguishes different phases. Given a

closed curve C, the expectation value ⟨W [C]⟩ typically depends on geometric properties like

the area enclosed by C or its perimeter,

⟨W [C]⟩ ∼ e−Area[C] or ⟨W [C]⟩ ∼ e−Perimeter[C]. (10.1)

Distinct decaying behaviors naturally signal different phases. For a large loop C, the area

law decays much faster than the perimeter law, so that effectively we have

⟨W [C]⟩ ∼ e−Area[C] → 0, (10.2)

while

⟨W [C]⟩ ∼ e−Perimeter[C] ≠ 0. (10.3)

Another typical dependence, with a decay even weaker than the perimeter law is the so-

called Coulomb behavior, which is a scale-invariant dependence on the parameters of the

loop. We shall consider this explicitly a little later.
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T

R

FIG. 13: Wilson line describing a pair of static particles.

In analogy with the case of ordinary symmetries, the perimeter and Coulomb laws are

interpreted as implying a nonvanishing value of the order parameter and then are associated

with phases where the 1-form symmetry is spontaneously broken. As we shall see, when

the 1-form symmetry is continuous, this leads to the existence of Goldstone excitations (the

photon!). On the other hand, the area law is interpreted as meaning a vanishing value of the

order parameter, corresponding to a symmetric phase. This perspective is quite illuminating

and, in particular, allows to reinterpret the problem of confinement in terms of spontaneous

breaking of a 1-form symmetries.

To appreciate this, let us start by discussing the relation of the expectation value of the

Wilson loop in Euclidean spacetime with the static potential between two charged probe

particles. The idea is to consider a loop as shown in Fig. 13, which has a simple physical

interpretation: a pair of opposite charges is created in the remote past by a source which

is adiabatically turned on, and then they are slowly separated apart from each other at a

distance R. After a long time T the pair is annihilated, again adiabatically.

We are interested in the corresponding vacuum expectation value

⟨W [C]⟩ = ⟨TrPei∮C a⟩, (10.4)

computed in the Euclidean spacetime. We will follow here [57]. As this object is gauge

invariant, we can choose a convenient gauge. Let us pick up the axial gauge, a0 = 0, so that

there is no contribution of the pieces of C along the time direction T . Also, without loss of

generality, we consider that R is along direction 1. In this situation, the above expression

reduces to

⟨W [C]⟩ = ⟨[Pei ∫
R
0 dx1a1(T,x

1,...)]i j[Pe
i ∫

0
R dx1a1(0,x

1,...)]j i⟩. (10.5)
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To simplify the notation, it is convenient to define

ψi
j(T ) ≡ [Pe

i ∫
R
0 dx1a1(T,x

1,...)]i j. (10.6)

With this, (10.5) becomes

⟨W [C]⟩ = ⟨ψi
j(T )ψ

†j
i(0)⟩. (10.7)

Recalling that the Euclidean time T is related to the real time according to t → −iT , the

time evolution is ψi
j(T ) = eHTψi

j(0)e−HT . With this, and inserting a complete set of energy

eigenstates ∣n⟩ in (10.7), it follows that

⟨W [C]⟩ = ∑
n

e−TEn(R)⟨ψi
j(0) ∣n⟩ ⟨n∣ψ

†j
i(0)⟩

= ∑
n

e−TEn(R)∣⟨ψi
j(0) ∣n⟩ ∣

2. (10.8)

In the limit T →∞, only the lowest-energy state provides a significant contribution,

⟨W [C]⟩ ∼ e−TE0(R). (10.9)

As the charges are static, the energy reduces to the potential, and we finally find

V (R) = − lim
T→∞

1

T
ln⟨W [C]⟩. (10.10)

So the behavior of the loop Wilson dictates the form of the static potential between charges.

1. Phases of Gauges Theories

We discuss now the typical behaviors of the expectation value of the Wilson loop associ-

ated with Fig. 13. Suppose it behaves as the area law,

⟨W [C]⟩ ∼ e−σTR, (10.11)

where σ is a dimensionful constant. According to (10.10), this leads to a linear potential,

V (R) = σR. (10.12)

Therefore, the energy required to separate charges grows linearly with the distance R, so

that the charges turn out to be confined. In other words, the area law for ⟨W [C]⟩ is an

indicative of confinement.
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Next we consider the perimeter law,

⟨W [C]⟩ ∼ e−ρ(T+R), (10.13)

where ρ is a dimensionful constant. This behavior leads to a constant potential

V (R) = ρ. (10.14)

Since the energetic cost to separate charges at large distance is finite, this potential does

not confine charges. We rephrase this by saying that the perimeter law corresponds to a

deconfining phase.

Finally, we consider the Coulomb or scale-invariant law. In this case, ⟨W [C]⟩ decays

slower than the perimeter law, depending on the dimensionless ratios T /R or R/T ,

⟨W [C]⟩ ∼ e−α
T
R
−βR

T , (10.15)

where α and β are dimensionless constants. The corresponding potential is

V (R) =
α

R
, (10.16)

which is precisely the Coulomb potential. Naturally, this also corresponds to a deconfining

phase.

A. Continuous 1-Form Symmetry and Goldstone Excitations

To find the Goldstone excitations, we can follow precisely the same reasoning we did in

the case of ordinary symmetries in Sec. (II C). The starting point is the Ward identity

(4.20), which we rewrite here with ⟨δW [C]⟩ = −iqe⟨W [C]⟩,

⟨∂µJ
µν(x)W [C]⟩ = −qe∫

C
dyνδ(D)(x − y)⟨W [C]⟩. (10.17)

Taking the Fourier transform∫ d
Dxeipx, this leads to

ipµ⟨J
µν(p)W [C]⟩ = qef

ν(p;C)⟨W [C]⟩, (10.18)

where we have defined

f ν(p;C) ≡ ∫
C
dyνeipy. (10.19)
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This object has some important properties. First, it is in general nonvanishing at p = 0, i.e.,

f ν(0;C) ≡ ∫
C
dyν ≠ 0. (10.20)

Second, it satifies

pνf
ν(p;C) = ∫

C
dyνpνe

ipy

= −i∫
C
dyν∂νe

ipy = 0, (10.21)

for any closed curve C.

With this, we consider (10.18) in the limit p→ 0,

lim
p→0

ipµ⟨J
µν(p)W [C]⟩ = qef

ν(0;C)⟨W [C]⟩. (10.22)

Whenever ⟨W [C]⟩ ≠ 0, as it happens in the case of Coulomb and perimeter laws, the corre-

lation function ⟨Jµν(p)W [C]⟩ must have a pole at p = 0,

⟨Jµν(p)W [C]⟩ ∼
pµf ν(p,C) − pνfµ(p,C)

p2
. (10.23)

This, in turn, implies that there are massless excitations in the spectrum. These excitations

are the Goldstone bosons following from the spontaneous breaking of the 1-form symmetry.

B. QED in D = 4

The expectation value of the Wilson loop in four-dimensional free QED behaves accord-

ing to the Coulomb law, leading to the deconfinement of charges. The above discussion

then implies that there are Goldstone excitations in the spectrum. We can understand in

a very simple way that the photons are precisely the Goldstone excitations coming from

the spontaneous breaking the 1-form symmetry. In fact, we know that the corresponding

conserved current Jµν creates Goldstone excitations from the vacuum in the broken phase16,

∣Goldstone⟩ ∼ Jµν(x) ∣0⟩ . (10.24)

We recall that Jµν = fµν . To proceed we need to enter a little bit into the canonical

quantization structure. For the theory covariantly quantized in the Feynman gauge, i.e., we

16 A very nice exposition on spontaneous symmetry breaking can be found in [34].
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consider the Lagrangian with the addition of the gauge-fixing term − ξ
2(∂µa

µ)2 and set ξ = 1,

the free field expansion satisfying ∂2aµ = 0 is

aµ(x) =
1

(2π)
3
2
∫

d3p⃗

2∣p⃗∣

4

∑
λ=1

eµλ(p) [aλ(p)e
−ipx + a†

λ(p)e
ipx] , (10.25)

where eµλ(p) are four linearly independent polarization vectors. Not all polarizations are

physical since some of them produce states that do not satisfies the selection rule ∂µaµ ∣phy⟩ =

0, or correspond simply to gauge degrees of freedom (zero norm states). Let us say that the

physical polarizations are λ = 1,2. Then, a single photon state is created by

∣λ, p⃗⟩ = a†
λ(p) ∣0⟩ , λ = 1,2, (10.26)

with the creation and annihilation operators satisfying

[aλ(p), a
†
λ′(p

′)] = 2∣p⃗∣δλ,λ′δ
(3)(p⃗ − p⃗′), λ, λ′ = 1,2. (10.27)

Now we can compute the matrix element between ∣λ, p⃗⟩ and ∣Goldstone⟩ ∼ fµν(x) ∣0⟩,

⟨0∣ fµν(x) ∣λ, p⃗⟩ =
i

(2π)
3
2

[eµλ(p)p
ν − eνλ(p)p

µ] e−ipx ≠ 0, (10.28)

which shows that the Goldstone excitation has nonvanishing overlap with (and only with)

a single photon state. Therefore, this implies that the Goldstone excitation is the photon

itself.

XI. FINAL REMARKS

As we have tasted along these notes, higher-form symmetries pervade gauge theories and

thus figure as a fundamental ingredient in the modern perspective of effective field theories,

which are largely grounded on the gauge structure. In a broader context, the subject of

generalized symmetries (encompassing higher-forms and the other forms of symmetries)

possesses some features that place it as one of the cornerstones of modern physics.

Generalized symmetries have been a source of new advances and new results in several

directions. New forms of symmetries naturally lead to more constraints in the underlying

theories. At the same time, they provide a deeper understanding of many known results and

also shed light on some hard problems. For example, as we have discussed, they enable us to
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understand the photon as a Goldstone excitation and lead to a reformulation of confinement

problem in terms of spontaneous breaking of a higher-form symmetry.

In addition, generalized symetries are a meeting point of different areas of physics, placing

them under a unified perspective. A remarkable example is fracton physics, which brings

together aspects of quantum field theory, quantum computing, and topological phases of

matter, whose exotic patterns of higher-form symmetries challenge the construction of ef-

fective field theories. Nevertheless, much progress has been done in this direction (see for

example [58–67]). Still in the context of topological phases, generalized symmetries lead

to an enlargement of the Landau paradigm (based on symmetry breaking) to encompass

topological order, which can then be interpreted as spontaneous breaking of higher-form

symmetries [68, 69].

Naturally, that type of interplay is a hallmark of deep ideas in physics, reflecting its

universality across the fields. The result is a very fruitful cross-fertilization with far-reaching

consequences.
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Appendix A: Differential Forms

In a D-dimensional manifold, a p-form (p ≤D) is expressed as

Ωp =
1

p!
ωµ1µ2...µpdx

µ1 ∧⋯ ∧ dxµp . (A1)

Let us recall some basic operations with differential forms [70, 71]. The exterior derivative

is defined as

dΩ ≡
1

p!
∂αωµ1µ2...µpdx

α ∧ dxµ1 ∧⋯ ∧ dxµp . (A2)

The Hodge dual operation ∗ is defined through

∗Ωp ≡
1

p!
ωµ1µ2...µp ∗ dx

µ1 ∧⋯ ∧ dxµp , (A3)
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with the dual of the antisymmetrized product being

∗dxµ1 ∧⋯ ∧ dxµp ≡
1

(D − p)!
ϵµ1...µp

µp+1...µD
dxµp+1 ∧⋯ ∧ dxµD . (A4)

Plugging this back in (A3), we find

∗Ω =
1

p!

1

(D − p)!
ωµ1µ2...µpϵ

µ1...µp
µp+1...µD

dxµp+1 ∧⋯ ∧ dxµD . (A5)

Finally, we recall the Stokes theorem, which establishes the relation

∫
M
dω = ∫

∂M
ω, (A6)

where M is a manifold with boundary ∂M. The Stokes theorem encompasses the usual

theorems of calculus. For example, in R3, if we pick up a 1-form ω = ωµdxµ, the Stokes

theorem gives

∫
S
∇× ω⃗ ⋅ dS⃗ = ∮

C
ω⃗ ⋅ dl⃗ (Stokes’ theorem), (A7)

where the curve C is the boundary of the surface S. For ω = 1
2ωµνdxµ ∧ dxν ,

∫
V
∇ ⋅ ω⃗ dV = ∮

S
ω⃗ ⋅ dS⃗ (Gauss’ theorem), (A8)

where ωµ = ϵµνρωνρ and the surface S is the boundary of the volume V .

Appendix B: Quick Review of Weights and Roots

The analysis of line operators in the non-Abelian case requires going through a little

further on the Lie algebra structure and representations [49, 56]. We need to consider the

so-called weights of the representation. They are the eigenvalues of the so-called Cartan

subalgebra, which is the maximum set of self-commuting generators T a, denoted by H i,

[H i,Hj] = 0, i = 1, . . . , r, (B1)

where r is the rank of the algebra. They can be simultaneously diagonalized,

H i ∣µ,R⟩ = µi ∣µ,R⟩ , (B2)

where the eigenvalues are called weights of the representation. All such weights span a

lattice, referred to as the lattice weight Λw(g).

66



Special representations are the fundamental and the adjoint. The fundamental represen-

tation is N -dimensional. In general, matter fields are in this representation. In the adjoint

representation, the generators are

[T a]bc = −ifabc. (B3)

This is a (N2−1)-dimensional representation. Acting on a state in the adjoint representation

T a ∣ψ,adj⟩ amounts to

∑
c

[T a]bc ∣ψ,adj⟩c , (B4)

namely, the states are specified by generator indices. This implies that we can associate

generators with states,

T a ⇔ ∣T a⟩ , (B5)

with components ∣T a⟩b = δab. Naturally, the scalar product is expected to be ⟨T a∣T b⟩ ∼

Tr(T aT b).

Linear combinations of the generators correspond to linear combination of states

αT a + βT b ⇔ ∣αT a + βT b⟩ . (B6)

With this, we see that

T a ∣T b⟩ = ∑
c

∣T c⟩ ⟨T c∣T a ∣T b⟩

= ∑
c

[T a]cb ∣T
c⟩

= −ifacb ∣T
c⟩ (sum convention)

= ∣ifabcT
c⟩

= ∣[T a, T b]⟩ . (B7)

Restricting to the Cartan subalgebra, this leads

H i ∣Hj⟩ = ∣[H i,Hj]⟩ = 0. (B8)

As all the Cartan generators can be simultaneously diagonalized, we can choose specific (in

general, non-Hermitian) linear combinations of the generators outside the Cartan subalgebra

as Eα, so that the corresponding states satisfy

H i ∣Eα⟩ = αi ∣E
α⟩ , (B9)
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with the scalar product

⟨Eα∣Eβ⟩ = λTr(Eα†Eβ) = δαβ =∏
i

δαiβi
, (B10)

where the constant λ is chosen to ensure the normalization of the scalar product. The weights

αi of the adjoint representation are called roots, and also span a lattice, Λroot(g) ⊂ Λw(g).

According to (B7), this means that

[H i,Eα] = αiE
α. (B11)

Taking the Hermitian conjugate of (B11), it follows,

[H i,Eα†] = −αiE
α†, (B12)

so that we can take

Eα† = E−α. (B13)

All roots come in pairs ±αi.

This is the analogue of the algebra of creation and annihilation operators of angular

momentum algebra. The pair of operators Eα and Eα† plays the role of creation and

annihilation operators, i.e., H i↔ Jz and Eα↔ J+, J−. Relation (B12) yields to

H iE±α ∣µ,R⟩ = (µi ± αi)E
±α ∣µ,R⟩ . (B14)

This equation is true for any representation R, but it is particularly important for the adjoint

representation. In fact, it implies that the state Eα ∣E−α⟩ has vanishing weight, and thus it

must be a linear combination of the Cartan generators,

Eα ∣E−α⟩ = ∣ciH
i⟩ . (B15)

The constants ci can be determined by taking the scalar product with ∣Hj⟩ in both sides,

cj = ⟨H
j ∣Eα ∣E−α⟩

= ⟨Hj ∣[Eα,E−α]⟩

= λTr(Hj[Eα,E−α])

= λTr(E−α[Hj,Eα])

= λαjTr(E−αEα) = αj. (B16)
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Therefore, this implies that

[Eα,E−α] = αiH
i. (B17)

With this, we see that the operators

E± ≡
1

∣α⃗∣
E±α and E3 ≡

1

α⃗2
α⃗ ⋅ H⃗ (B18)

form a SU(2) subalgebra. For any given representationR, this has an important consequence

E3 ∣µ,R⟩ =
α⃗ ⋅ µ⃗

α⃗2
∣µ,R⟩ , (B19)

which implies that

2
α⃗ ⋅ µ⃗

α⃗2
∈ Z. (B20)
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