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Flat ΛCDM cosmology is specified by two constant fitting parameters in the late Universe, the Hubble con-
stant H0 and matter density (today) Ωm. In the cosmology literature, one typically assumes that there is no
redshift evolution of cosmological parameters when one fits data sets. Here, in mock observational Hubble data
we demonstrate evolution in distributions of best fit parameters with effective redshift. As a result, considerably
different (H0,Ωm) best fits from Planck-ΛCDM cannot be precluded in high redshift bins. We explore if obser-
vational Hubble data, Type Ia supernovae and standardisable quasar samples exhibit redshift evolution of best
fit ΛCDM parameters. In all samples, we confirm an increasing Ωm (decreasing H0) trend with increasing bin
redshift. Through comparison with mocks, we confirm that similar behaviour can arise randomly within the flat
ΛCDM model with probabilities as low as p = 0.0021 (3.1σ).

I. INTRODUCTION

Cosmologists are currently debating tensions within the flat
ΛCDM cosmology; the two most serious concern the Hubble
constant H0 and the S 8 ∝

√
Ωm parameter [1, 2] [65]. These

tensions have been framed as disagreements between the early
(high redshift) and late (low redshift) Universe [3]. In par-
ticular, local H0 values [4–8] are universally biased to larger
values than Planck-ΛCDM [9]. Observations at different red-
shifts have shown that H0 evolves with effective (binned) red-
shift in the flat ΛCDM model [10–18] (see also [19]). If
this trend is not due to observational selection biases, and it
is intrinsic, this behaviour is indicative of model breakdown
[20, 21].

The flat ΛCDM model Hubble parameter H(z) is specified
by two constant fitting parameters (H0,Ωm) or (A, B),

H(z)2 = H2
0

[
1 −Ωm + Ωm(1 + z)3

]
,

= A + B(1 + z)3.
(1)

The parameter A := H2
0(1 − Ωm) is attributed to dark energy

(DE), while the matter sector B := H2
0Ωm scales as (1 + z)3

and Ωm is bounded, 0 ≤ Ωm ≤ 1. One can relax this con-
straint by allowing negative energy densities, but interpreta-
tion is problematic [66]. Observe that DE becomes irrele-
vant at higher redshifts, where A ≪ B(1 + z)3 for reason-
able values of Ωm. On the other hand, note that at higher
redshifts H(z)2 ∼ B(1 + z)3, so the combination Ωmh2, with
h := H0/100, is the relevant quantity. Exploiting these facts,
it was recently argued that increases in Ωm (decreases in H0)
with effective redshift may be inherent to the flat ΛCDM
model [16]. Here, we study ΛCDM mocks binned by red-
shift to uncover the mathematical fact that the probability of
Planck values Ωm ∼ 0.3 decreases as we increase bin redshift.
As a result, some evolution away from Ωm ∼ 0.3 should be

expected in best fits of purely high redshift observations.
Armed with this analytic insight, we turn to observed data

in order to ascertain whether the same trend exists through
comparison to mock simulations. We employ observational
Hubble data (OHD), essentially cosmic chronometers [23]
and baryon acoustic oscillations (BAO) [24, 25], Type Ia su-
pernovae (SN) [26] and standardisable quasar (QSO) data sets
[27]. Throughout we compare values of (H0,Ωm) to mock
simulations in the same redshift range, where the base cos-
mology for the mock is fixed by the best fit parameters of the
entire data set. This allows us to confirm evolution between
low and high redshifts in the sample.

Ultimately, while the fit of the overall sample to flatΛCDM
is largely dictated by the redshift range with greater density of
data points, we will see that in sparser redshift ranges, the data
prefers different cosmological parameters. In particular, we
find probabilities as low as p = 0.021 (OHD), p = 0.081 (SN)
and p = 0.019 (QSOs), respectively, that mock data leads to
similar values of (H0,Ωm) as observed data. Combining the
independent probabilities using Fisher’s method, one arrives
at the probability p = 0.0021 (3.1σ) that such an evolution
indeed exists within flat ΛCDM. An explanation in terms of
selection biases is plausible for SN, e. g. [13, 15], but simi-
lar effects must impact cosmic chronometers, BAO, etc. Our
mock analysis shows that without selection biases evolution
away from Planck values should be expected.

II. MOCK DATA

Consider a simple data fitting exercise, where one takes
Dark Energy Spectroscopic Instrument (DESI) forecasts for
H(z) errors σH(zi) at redshifts zi in the range 0.05 ≤ zi ≤ 3.55
[22]. Next, adopt Planck values [9], H0 = 67.36, Ωm = 0.315,
for an underlying model and generate H(zi) values in a nor-
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mal distribution about the Planck-ΛCDM model using the er-
rors σH(zi) as the standard deviation at each zi. Throughout we
fix the parameters for the underlying cosmology and do not
pick (H0,Ωm) in a distribution. Picking (H0,Ωm) in a distribu-
tion adds randomness, but this randomness is expected to be
subleading to the randomness introduced in the shifts of the
data points. For each realisation of mock data, separate the
data into four bins, concretely 0 < z < 0.8, 0.8 ≤ z < 1.5,
1.5 ≤ z < 2.3 and 2.3 ≤ z < 3.6. This ensures similar
data quality in each bin. Finally, fit the parameters (H0,Ωm)
from (1) to the data in each bin with a Gaussian prior on
Ωmh2 = 0.1430 ± 0.0011 [9]. Note that the prior only pro-
vides guidance for the high redshift behaviour of H(z) and its
omission cannot change results (see appendix). Repeat the
process a few thousand times and record the distribution of
best fit values of (H0,Ωm) for each bin.
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FIG. 1. Distributions of A = H2
0 (1 − Ωm) and B = H2

0Ωm parame-
ters reconstructed from mock simulations of the Planck-flat-ΛCDM
model in different redshift bins.

Before turning our attention to H0,Ωm best fit distributions,
let us report on the (unnormalised) distributions for A, B. Fig.
1, produced with GetDist [28], demonstrates that both A and
B are Gaussian by inspection, except where A is impacted by
the boundary at A = 0. Note, we have imposed a Gaussian
prior on B, so B being Gaussian is expected. Observe that
the distributions in A and B spread and narrow, respectively,
with increasing bin redshift. Interestingly, the distribution in
B spreads from bin 1 to bin 2 before narrowing in bins 3 and
4. This apparently contradicts our claim that A spreads and B

narrows, but it can be traced to data quality differences with
redshift in the DESI forecast [22]. If one ensures the same
data quality in all bins, then A spreads and B narrows with
redshift. We demonstrate this in the appendix. This outcome
is expected as the ΛCDM model (1) transitions from a two-
parameter to an effective one-parameter model at high red-
shift. We have checked that A and B are uncorrelated (see ap-
pendix). We also see that A grows a non-Gaussian tail around
the A = 0 (Ωm = 1) region at higher redshift bins. This comes
about as a Gaussian with a wide spread probes the A < 0 re-
gion with a growing probability in higher z bins, which we
have dubbed a ‘pile up’ feature. Moreover, the width of the
Gaussian distribution for B = H2

0Ωm reduces as we go to
higher redshift bins and hence we know B with a better pre-
cision in the higher redshift bins. Higher redshift spread in
A = H2

0 − B then yields spread in both H0 and Ωm values.
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FIG. 2. Distributions of the cosmological parameters in different red-
shift bins. The ‘pile up’ at Ωm ∼ 1 and H0 ∼ 37.8 km/s/Mpc is due
to Ωm > 1 best fits being restricted to the bound Ωm = 1.

In Fig. 2 we show the same distribution in (H0,Ωm) pa-
rameters. It is evident that both H0 and Ωm develop long non-
Gaussian tails in the direction of smaller H0 and larger Ωm de-
spite input Planck values in the mocking procedure, confirm-
ing our analytic expectations discussed above. This is easily
explained. Since Ωmh2 is well constrained, best fit (H0,Ωm)
values inhabit a ΩmH2

0 ∼ constant curve or banana. Never-
theless, as the banana stretches, configurations move from the
peak to the extremities, leading to shifts in the peak when pro-
jected onto the H0 and Ωm axes. Thus, the Ωm peak shifts
to lower values, whereas the H0 peak shifts to higher values.
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This comes from a “projection effect” in the mock data. The
pile up at Ωm = 1 is an artefact of our priors, but this can be
relaxed without changing the conclusions. See [63] for a more
complete analysis. Our analysis here only concerns H(z), but
angular diameter distance DA(z) constraints, and the combina-
tion H(z) + DA(z), are studied in [63].

Since our mocking procedure is the same in each bin, while
data quality does not change greatly (see [22]), one concludes
that the behaviour is generic to the flat ΛCDM model. Note
also that selection biases do not impact mocks. Moreover,
the same argument can be run for any mock input parame-
ters (H0,Ωm). The main message is that even in a Universe
statistically consistent with Planck-ΛCDM by construction,
unfamiliar best fit values can easily be returned in data fit-
ting. Furthermore, best fits in the Ωm > 1 regime of parameter
space are possible. See related analysis with Pantheon+ SN
[64].

III. OBSERVED DATA

Having uncovered a general feature for H(z) constraints
confronted to the flat ΛCDM model, we now explore this pre-
diction with observed OHD. In [63] we show that DL(z) ∝
DA(z) constraints confronted to flat ΛCDM exhibit similar
features, which justifies studying Type Ia SN and QSOs.

A. Comments on Methodology

As we have seen, one encounters non-Gaussian distribu-
tions in exclusively high redshift bins (see also [63]). As a
result, while best fits, i. e. the extrema of χ2, are expected
to be robust within machine precision [67], estimating errors
as is usually done in cosmology is difficult. More explicitly,
Fisher matrix leads to unrepresentative Gaussian errors, while
Markov Chain Monte Carlo (MCMC) inferences are prone to
degeneracies/projection effects that distort inferences. More-
over, with broad distributions it is possible that MCMC infer-
ences are simply tracking the priors and the peaks of distribu-
tions are not guaranteed to coincide with the minimum of the
χ2. To overcome this difficulty, it is standard practice in cos-
mology to combine data sets and/or introduce priors that re-
store Gaussianity, but it is more agnostic to analyse data sets
independently without imposing additional constraints. We
highlight the explicit difficulty with MCMC analysis in the
appendix.

Given the difficulties with conventional techniques, here we
resort to mocks that allow us to generate a large number of
best fits that are statistically consistent (by construction) with
no evolution of cosmological parameters. We make direct
comparison between best fits from mocks and observed data
in the same redshift range with the same data quality. This
allows us to rank mock best fits of H0 and Ωm in descending
and ascending order, respectively, and identify the percentile
where observed data best fits appear. This gives us a proba-
bility for finding similar best fits assuming no evolution in the
sample. Note, just as the shape of a PDF of heights of children

in a class is irrelevant in such an exercise, the same logic also
applies here.

In all samples, we note that the probabilities (see Tables
I, II and III) of finding observed data best fits as extreme in
mock data decrease as the effective redshift of subsamples
becomes less representative of the full sample. This is ex-
pected if the trend is physical. However, the probabilities do
not decrease indefinitely, and our results show that the prob-
abilities increase again in the smallest subsamples, which we
attribute to noise. It is intuitive that any signal in the data
eventually disappears due to statistical fluctuations in small
samples. Furthermore, given the probabilities decrease with
increasing difference in effective redshift between subsample
and the full sample, this means that this probability is bounded
below. Thus, we do not pick redshift ranges by hand, but they
emerge from the data as the redshift ranges where best fits in a
subsample are least representative of the full sample. In other
words, one can give a lower bound on probabilities and this
lower bound is expected to be well defined.

We impose a strong Planck Ωmh2 = 0.1430 ± 0.0011 prior,
which constrains best fits to a curve in the (H0,Ωm)-plane. In
tandem we start χ2-minimisation for each realisation of the
data, either observed or mock, from the best fits of the full
sample. As a result, if there is little or no evolution, one ex-
pects the best fits to not move far from the initial guess. In
other words, we bias the initial guess towards no evolution.
However, our strong Planck Ωmh2 prior effectively reduces
the fitting procedure to an effective 1-dimensional fit in the
(H0,Ωm)-plane. What this means in practice is that we may
find false minima, but these minima are the closest to the input
parameters. Nevertheless, we think false minima are unlikely,
given the effective 1-dimensional nature of the fitting. More
concretely, note that even in OHD, we are performing an ef-
fective 1-dimensional fit with no less than 6 data points and
it is hard to imagine that the outcome is not unique modulo
machine precision.

B. OHD

Here, we make use of cosmic chronometer [29–35] and
BAO data [36–45]. More precisely, we work with the H(z)
BAO determinations compiled in Table 2 of [46], where ob-
servations have been homogenised to be consistent with a uni-
form Planck inference of the sound horizon [47]. We added
the newer constraint from eBOSS Quasar [48, 49], which we
appropriately adjusted for the sound horizon, H(z = 1.48) =
153.59 ± 8.27. Our total sample has 54 OHD sources. More-
over, we have checked that replacing earlier Lyman-α BAO
[43–45] with the latest constraints [50] does not change the
results, so we work with the earlier determinations collated in
[46].

First, we identify the best fit values of the cosmological pa-
rameters for the full sample, (H0,Ωm) = (69.11, 0.299), where
it is worth noting that Ωmh2 = 0.1428, consistent with the
prior. Next, we repeat the mocking and binning procedure
outlined earlier with the new input parameters (H0,Ωm) =
(69.11, 0.299). Following [16] we impose a low redshift cut-
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off to remove sources below a given z and isolate high red-
shift bins. In each bin we compare the best fit values from
the real data and flat ΛCDM mocks in the same bin with the
same data quality in order to establish the probability of re-
covering the same or larger Ωm and the same or smaller H0
values. In the event of saturation of the bound Ωm = 1, this
means that our probabilities are over-estimated, i. e. too large,
since allowing Ωm > 1 permits further ordering of the values
piled up at Ωm = 1. The results are shown in Table I, where
it is clear that (H0,Ωm) best fits are evolving in the real data.
For easy comparison throughout, we include the best fits for
the full sample in tables, but do not assign any probabilities.
Understandably, the probability of recovering similar values
from mocks decreases with redshift up to a point where statis-
tical fluctuations dominate and the probability increases again.
Fig. 3 provides visual confirmation that despite the long tails,
a bin exists where the real values are unexpected at ≳ 2σ.
This points to redshift evolution in the sample, which may be
expected given our discussions in the previous section.

z H0 (km/s/Mpc) Ωm Probability
0 ≤ z ≤ 2.36 (54) 69.11 0.299 −

0.5 ≤ z ≤ 2.36 (28) 69.68 0.294 0.646
0.7 ≤ z ≤ 2.36 (18) 65.67 0.331 0.326
1 ≤ z ≤ 2.36 (11) 61.27 0.380 0.258

1.2 ≤ z ≤ 2.36 (10) 53.91 0.491 0.120
1.4 ≤ z ≤ 2.36 (8) 41.55 0.828 0.037
1.45 ≤ z ≤ 2.36 (7) 37.80 1 0.021
1.5 ≤ z ≤ 2.36 (6) 37.80 1 0.069

TABLE I. Best fit cosmological parameters for different redshift
ranges of OHD. Throughout, we impose the Planck prior, Ωmh2 =

0.1430 ± 0.0011. Flat ΛCDM simulations based on best fit parame-
ters over the entire redshift range, 0 < z ≤ 2.33, allow us to estab-
lish the probability of higher Ωm and lower H0 values in real data.
Where a discrepancy exists, we quote the largest probability. The
OHD count in each bin is denoted in brackets.

FIG. 3. Comparing 10,000 mock simulations with the best fit value
of Ωm from OHD data (black line) for the bin 1.45 ≤ z ≤ 2.36.
Dashed and dotted lines denote the (2.3, 15.9, 84.1, 97.7) percentiles.

FIG. 4. Comparing 3,000 mock simulations with the best fit value of
Ωm from SN data (black line) for the bin 0.95 < z ≤ 2.26. Dashed and
dotted lines denote the (2.3, 15.9, 84.1, 97.7) percentiles correspond-
ing to 1σ and 2σ confidence intervals for a Gaussian distribution.

C. Type Ia SN

We revisit the analysis of the Pantheon data set [26] with
1048 SN conducted in [16] (see also [13, 14]) in order to in-
troduce a high redshift Planck prior on Ωmh2 [9]. Note, to
do so, we treat the absolute magnitude of Type Ia SN MB
as a nuisance parameter. This gives SN data the freedom to
adjust H0 so that the high redshift behaviour is always the
same as Planck, otherwise the analysis is the same as be-
fore. Note, we have an additional nuisance parameter, but
its role is simply to adopt the value that best accommodates
fits in the (H0,Ωm)-plane, where we are still confronted with
an effective 1-dimensional fit. We identify the best fit param-
eters (H0,Ωm,MB) = (69.26, 0.298,−19.37), construct mock
realisations in bins, which one compares to the real values.
Throughout we allow for statistical and systematic uncertain-
ties by cropping the Pantheon covariance matrix accordingly
to fit the redshift bin. The results are shown in Table II and
Fig. 4, where the same trend as the OHD data is evident.

D. Standardisable QSOs

Finally we turn our attention to QSOs standardised through
the Risaliti-Lusso proposal [52, 53]. We refer readers to the
original texts for methodology. Objectively, QSOs constitute
emerging cosmological probes [54, 60] and are understand-
ably less well developed than the SN and BAO; neverthe-
less, even now SN remain a work in progress [55]. In par-
ticular, there is considerable intrinsic scatter in the QSO data
and there is an ongoing debate about the standardisability of
the Risaliti-Lusso QSOs [57–61]. Nonetheless, QSOs sup-
port our narrative and this justifies their inclusion. In contrast
to OHD and SN, which have lower error-weighted (effective)
redshifts of zeff ∼ 0.5 and zeff ∼ 0.3, respectively, the QSO
sample [27] is larger (2421 sources) and has a higher effective
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redshift zeff ∼ 1.4. Moreover, it is well documented that Ωm
adopts larger values than expected at higher redshifts [53, 56]
and that evolution happens within the QSO sample [16, 53].
The key point here is that any evolution of Ωm with effective
redshift may be telling us less about QSOs and more about the
flat ΛCDM model.

z H0 (km/s/Mpc) Ωm Probability
0 < z ≤ 2.26 (1048) 69.26 0.298 −

0.7 < z ≤ 2.26 (124) 64.37 0.345 0.381
0.8 < z ≤ 2.26 (82) 58.99 0.411 0.258
0.9 < z ≤ 2.26 (49) 45.88 0.679 0.117
0.95 < z ≤ 2.26 (34) 40.73 0.862 0.081

1 < z ≤ 2.26 (23) 43.16 0.768 0.170

TABLE II. Same as Table I but for Pantheon SN. We treat the abso-
lute magnitude MB as an additional nuisance parameter when we fit
mock realisations and real data. We quote the probability of larger
values of Ωm and lower values of H0. The additional freedom in MB

means that these probabilities always agree. SN count is denoted in
brackets.

FIG. 5. A comparison between 3,000 mock simulations and the best
fit value of Ωm from QSO data (black line) for the bin 0 < z ≤ 0.55.
Dashed and dotted red lines denote the (2.3, 15.9) percentiles corre-
sponding to 1σ and 2σ confidence intervals for a Gaussian distribu-
tion. The dashed black line denotes the median, Ωm = 0.982, which,
as expected, is close to the mock input Ωm = 1. In contrast to Fig.
3 and Fig. 4, the PDF is flat (neglecting the impact of bounds), thus
implying that Ωm errors are large, i. e. Ωm is poorly constrained, in
the redshift range.

Our analysis here follows the earlier sections, but there is a
key difference. Risaliti-Lusso QSOs return best fits of Ωm ∼ 1
across the full sample [56–59], whereas at lower redshifts
0 < z ≲ 0.7, one recovers Planck values, Ωm ∼ 0.3 [16];
in accord with our earlier discussions and analyses. Thus,
we start from the redshift range 0 < z ≤ 1.4 (1326 QSOs),
where Ωm hits the bound Ωm = 1, and identify the best fit
parameters that serve as inputs for mocks, (H0,Ωm, β, γ, δ) =
(37.82, 1, 8.64, 0.61, 0.24). As before, β is a nuisance param-
eter degenerate with H0 (the analogue of MB in SN), so once
again the fit in the (H0,Ωm)-plane is effectively 1-dimensional.

z H0 (km/s/Mpc) Ωm Probability
0 < z ≤ 0.3 (56) 406.41 0.009 0.073

0 < z ≤ 0.5 (177) 353.47 0.011 0.028
0 < z ≤ 0.55 (233) 433.91 0.008 0.019
0 < z ≤ 0.6 (279) 381.50 0.010 0.020
0 < z ≤ 0.7 (398) 73.40 0.265 0.096
0 < z ≤ 0.8 (543) 58.48 0.418 0.117
0 < z ≤ 1 (826) 40.69 0.864 0.400

0 < z ≤ 1.4 (1326) 37.82 1.000 −

TABLE III. Same as Table I but for Risaliti-Lusso QSOs. We treat
β, γ and δ (see [52] for definitions) as additional nuisance parameters
when we fit mock realisations and real data. We quote the probability
of lower values ofΩm and higher values of H0. QSO count is denoted
in brackets

.

To construct the mocks, we generate new UV fluxes FUV by
picking values in a normal distribution about the original val-
ues with a standard deviation set to the error. Next, we gen-
erate corresponding central values for the X-ray fluxes FX
through the relation [52, 53],

log10 FX = β + γ log10 FUV + (γ − 1) log10(4πD2
L), (2)

where DL(z) is the luminosity distance, before displacing the

values with the standard deviation
√
δ2 + σ2

i , where σi is the
error on log10 FX,i at redshift zi.

In Table III we show the increasing (decreasing) trend of
Ωm (H0) with effective redshift. Unexpectedly large values of
H0 and small values of Ωm are driven partially by poor data
quality and the Planck prior on Ωmh2. Nevertheless, the trend
in central values is the same and one notes that the probabil-
ity of recovering the best fit values for real data decreases as
the effective redshift of the bin decreases, confirming that the
best fit values of the entire data set are less representative. In
Fig. 5 we provide visual confirmation of this result in a given
range, where it is notable that the Ωm distribution is uniform
between the bounds, thus underscoring how poorly QSO data
constrains Ωm in the corresponding redshift range. This is
presumably due to the large scatter and fewer QSOs at lower
redshifts.

IV. CONCLUSIONS

We explained through analytic arguments and simulations
why the Planck value Ωm ∼ 0.3 is less likely when one fits
higher redshift binned H(z) observations to the flat ΛCDM
model. Our arguments are independent of mock input param-
eters and simply follow from the irrelevance of the A term
in (1) at higher redshifts, and A ≥ 0, which yield an initial
‘pile up’ of best fits on Ωm = 1, before piling up at Ωm ∼ 0
at even higher redshifts. This reduces the probability of re-
covering the Planck value at high redshift, thus providing an
avenue to test the model. Note, it is not enough to find un-
expected best fits, but one must prove that those best fits are
statistically unlikely assuming no evolution of ΛCDM param-
eters across data sets. Our warm-up DESI mock analysis here
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solely pertains to H(z) constraints, but the same conclusions
hold for angular diamater distance DA(z) ∝

∫ z
0 dz′/H(z′) con-

straints [63]. The reader will note that DL(z) ∝ DA(z), so all
our observed data is in the H(z) or DL(z)/DA(z) class.

In the second part of our work, we confirmed an increasing
Ωm behaviour in OHD and Type Ia SN with p-values as low
as p = 0.021 (2.3σ) and p = 0.081 (1.7σ), respectively. We
resorted to comparison to mock analysis in the same redshift
range with the same data quality as a means of circumvent-
ing the difficulty estimating errors with non-Gaussian distri-
butions. Using Fisher’s method, the combined (lowest) prob-
ability for these established cosmological probes is p = 0.013
(2.5σ). In QSOs, an intrinsically high redshift emerging ob-
servable, we see the opposite trend where discrepant best fit
(H0,Ωm) values relative to the entire sample appear at lower
redshifts with probabilities as low as p = 0.019 (2.3σ). Once
again combining the probabilities, one finds a (lowest) prob-
ability p = 0.0021 (3.1σ). One may also benchmark with
respect to the bin 0 < z ≤ 0.7, where Ωm ∼ 0.3, in which
case the combined (lowest) probability becomes p = 0.0078
(2.7σ). As argued in the text, the probabilities we quote are
lower bounds. One can of course find redshift ranges with less
evolution. Moreover, by working with the full sample and not
binning it, one can return to the working assumption that there
is no evolution in the samples. Our analysis here challenges
the working assumption.

Objectively, all observables show signatures of evolution
to higher values of Ωm between low and high redshifts, in
line with mock expectations that they can be easily displaced
from Planck values. Neglecting selection effects, and more
general systematics, across multiple observables (SN, cosmic
chronometers, BAO, QSOs), this supports the idea that the
flat ΛCDM model is a dynamical model where its fitting pa-
rameters, which should be constants, evolve in (cosmic) time.
This cautions that cosmological tensions may be an outcome
of the flawed assumption that (H0,Ωm) are unique within flat
ΛCDM. Our analysis can be revisited as data quality im-
proves, e. g. [64].
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Appendix A: Removing Ωmh2 prior

Removing the Planck Ωmh2 prior from Fig. 2 leads to a
spreading in all distributions, but qualitatively the features are
the same, as expected from the analytic discussions. This can
be confirmed in Fig. 6.

50 100 150
H0

0 z < 0.8
0.8 z < 1.5
1.5 z < 2.3
2.3 z < 3.6

0.0 0.2 0.4 0.6 0.8 1.0

m

0 z < 0.8
0.8 z < 1.5
1.5 z < 2.3
2.3 z < 3.6

FIG. 6. Same as Fig. 2, but without the Ωmh2 prior.

0.0 0.2 0.4 0.6 0.8 1.0

m

P

zi + 0
zi + 1
zi + 2
zi + 3

FIG. 7. Probabilities of a given Ωm best fit value for forecast DESI
H(z) data in the range 2.3 ≤ z < 3.6 (blue curve) with Planck input
values. Green, yellow and red denote the probabilities if the same
forecasted data quality is displaced to higher redshifts.
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Appendix B: Confirmation of P(Ωm ∼ 0.3)→ 0

In this section we consider the same mocking procedure but
focus exclusively on the fourth DESI bin with redshift range
2.3 ≤ z < 3.6. We now displace the redshifts in intervals of
+1 without changing the data and document the effect on the
distribution of Ωm best fits over a few thousand mocks. Once
again, we assume Planck input parameters, H0 = 67.36,Ωm =

0.315 and the Gaussian prior, Ωmh2 = 0.1430 ± 0.0011 [9].
In Fig. 7 we present (normalised) probabilities for Ωm for
Planck-ΛCDM mocks, where the blue curve corresponds to
the red curve in Fig. 2. The remaining curves correspond
to Ωm probabilities as we displace the original binned data
in redshift. Since we are at high redshift, the probability of
Ωm = 1, P(Ωm = 1) > 0 and it clearly increases with redshift
of the sample. This corresponds to the A distribution spread-
ing to smaller values, where it is impacted by the bound at
A = 0. However, A must also spread to higher values, and
since B = H2

0Ωm is fixed, in the sense that this combination
is relevant at higher redshifts, the only way A = H2

0 − B can
spread to higher values is increasing H0 and decreasing Ωm.
This spreading of the A distribution to larger values explains
why the peaks in Fig. 2 get displaced from their input values.
In Fig. 7 this trend is more pronounced and it is an obvious
implication that at a given high redshift, any knowledge of the
input parameters is lost and the probability of recovering the
Planck value, P(Ωm ∼ 0.3) is close to zero.

2000 5000 8000

A

1425

1430

1435

B

1426 1430 1434

B

0.05 z < 0.8
0.8 < z < 1.5
1.5 < z < 2.3
2.3 < z 3.55

FIG. 8. A corner plot with DESI forecast data demonstrating that
(A, B) are uncorrelated across the bins.

Appendix C: Further comments on (A, B)

In this section we show in Fig. 8 that the derived (sec-
ondary) parameters (A, B) are uncorrelated. As explained in

the main text, we imposed a (strong) Planck Gaussian prior on
B, so unsurprisingly B conforms to a Gaussian and A is also
Gaussian where it is not impacted by the bound Ωm ≤ 1. Not-
ing that (A, B) are uncorrelated, whereas the transformation
from the fitting parameters (H0,Ωm) to (A, B) is non-linear, it
would be surprising if one encountered Gaussian distributions
in all parameters.

There is another loose end to close. The astute reader will
notice that the B distribution does not narrow uniformly in Fig.
8. To explain this feature we note that the percentage H(z) er-
rors vary with redshift in the DESI forecast [22] and the errors
are smallest at the boundary of bin 1 and bin 2 (z ∼ 0.8). As
a result, bin 1 better constrains B, the relevant high redshift
parameter, whereas bin 2 better constrains A, the relevant low
redshift parameter. From Fig. 8 one notes that any spread
in A is marginal between bins 1 and 2, while the B distribu-
tion actually spreads between bins 1 and 2, thus contradicting
statements in the text. However, in Fig. 9 we produce four
bins with exactly the same data quality in each bin by simply
displacing the percentage errors in bin 1 in redshift and using
them as the basis for mocks in bins 2, 3 and 4. As a result, one
has the same percentage errors in each bin, and one notices
that A spreads whereas B narrows with effective redshift. In
summary, one generically expects a spreading A distribution
and narrowing B distribution with effective redshift in the flat
ΛCDM model as the model transitions from a two-parameter
model to an effective one-parameter model, but this trend may
be impacted by data quality.

2000 4000 6000 8000
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1426

1428

1430

1432

1434

B

1427 1430 1433

B

0.05 z < 0.8
0.85 < z < 1.6
1.65 < z < 2.4
2.45 < z < 3.2

FIG. 9. A corner plot with with uniform data quality in all bins that
the A distribution spreads whereas the B distribution narrows once
the data quality in all bins is the same.
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Appendix D: MCMC analysis

As explained in the text, great care is required with MCMC
inferences in non-Gaussian regimes. For this reason we opted
to compare our best fits in observed data directly with best fits
in mock data in the same redshift range with the same data
quality. Here we take a look at the inferences one would make
with MCMC, where we focus on OHD data, since it is the
simplest to analyse because there are no nuisance parameters.
Once again, we impose the bounds 0 ≤ Ωm ≤ 1. We then
split the OHD sample at z = 1.45, which is of interest since it
corresponds to the 7th entry in Table I, where we have recorded
the lowest probability of recovering best fits from observed
data in mock data. It should be noted that our best fitΩm value
saturates the bound Ωm = 1, so we expect that our MCMC
distribution has no Ωm peak because it is precluded by the
priors.

40 50 60 70

H0

0.4

0.6

0.8

1.0

m

0.4 0.6 0.8 1.0

m

z < 1.45
1.45 z

FIG. 10. Inferences of cosmological parameters from MCMC chains
in the OHD sample of 54 data points. Evolution of cosmological
parameters is evident when comparing low and redshift subsamples.

In Fig. 10 we show the outcome of the MCMC analy-
sis. As expected, the low redshift (z < 1.45) sample of
47 OHD data points leads to an Ωm distribution that is per-
fectly Gaussian, but the high redshift (1.45 ≥ z) sample of
7 OHD data points does not. The Ωm distribution contin-
ues to increase towards the Ωm = 1 bound implying either
a peak at the bound or beyond the bound. Priors are clearly
impacting the result. In the (H0,Ωm)-plane the contours fol-
low a curve of constant Ωmh2 due to the Planck prior. This
curve is elongated in the high redshift sample and the dis-
crepancy between the low and high redshift subsamples of the
full OHD sample is evident in the (H0,Ωm)-plane. From the
MCMC chains, we infer the constraints on (H0,Ωm) from the
low redshift sample to be (H0,Ωm) = (69.32+0.90

−0.90, 0.298+0.008
−0.008),

whereas the constraints from the high redshift sample are
(H0,Ωm) = (42.82+6.56

−3.69, 0.779+0.154
−0.194). Here, we quote 16th, 50th

and 84th percentiles in line with standard practice, of course
assuming a Gaussian distribution. It is clearly wrong to do
this as our distributions are non-Gaussian and have been im-
pacted by the Ωm ≤ 1 bound, but the results are indicative.
Note that Ωm inferences are clearly shifted to lower values
relative to the best fit Ωm = 1 (see Table I) due to the pres-
ence of the bound. A back of the envelope calculation then
places the tension between these results as a 4σ discrepancy
in H0 and a 2.5σ discrepancy in Ωm, demonstrating evolution
in cosmological parameters across the OHD sample.

The main message to be taken away is the difficulty per-
forming an MCMC analysis when distributions become non-
Gaussian either because of a fundamentally non-Gaussian dis-
tribution or the impact of the priors. Nevertheless, one can
follow the standard procedures and still find evidence for evo-
lution in cosmological parameters across the sample. MCMC
may lead to misleading results, but evolution is still evident.
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