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Abstract

We study the phase structure and charge transport at finite temperature and chem-
ical potential in the non-Hermitian PT -symmetric holographic model of [1]. The non-
Hermitian PT -symmetric deformation is realized by promoting the parameter of a global
U(1) symmetry to a complex number. Depending on the strength of the deformation,
we find three phases: stable PT -symmetric phase, unstable PT -symmetric phase, and an
unstable PT -symmetry broken phase. In the three phases, the square of the condensate
and also the spectral weight of the AC conductivity at zero frequency are, respectively,
positive, negative, and complex. We check that the Ferrell-Glover-Tinkham sum rule for
the AC conductivity holds in all the three phases. We also investigate a complexified U(1)
rotor model with PT -symmetric deformation, derive its phase structure and condensation
pattern, and find a zero frequency spectral weight analogous to the holographic model.

Contents

1 Introduction 2

2 Non-Hermitian Holography 5
2.1 Action and symmetries 5
2.2 Equations and ansatz 7
2.3 Neutral background 9

2.3.1 Fixed points and zero temperature solutions 10
2.3.2 Phase diagram at finite temperature 10
2.3.3 The probe limit 13

2.4 Charged backgrounds 14

3 Conductivity and the sum rule 14
3.1 AC conductivity 15
3.2 Numerical results 16
3.3 Sum rule from quasi normal mode 17

4 Field theory: U(1) rotor model 18

5 Conclusions 22

1

ar
X

iv
:2

30
4.

11
18

3v
2 

 [
he

p-
th

] 
 5

 M
ay

 2
02

3



SciPost Physics Submission

6 Acknowledgements 24

A A fermion model with PT symmetry 24

B Instability analysis 26

C Analytic conductivity in the probe limit 26

D Complex temperature of the double cone geometry 28

E A two-level system with PT symmetry 29

F Holographic renormalization 29

References 31

1 Introduction

Non-Hermitian Hamiltonian evolution has attracted increasing interest in various areas
of physics, including condensed matter, quantum information, and AdS/CFT, for reviews
c.f. e.g. [2, 3]. In condensed matter, it has been widely employed in describing open
quantum systems [4], for example as effective models of the finite quasiparticle lifetime
introduced by electron-electron or electron-phonon interactions [5]. Furthermore, non-
Hermitian descriptions have been employed in Weyl semimetals [6–8], for delocalization
transitions or vortex flux line depinning in type II superconductors [9], as well as in the
context of the interplay between topology and dissipation [10,11]. In quantum information,
non-Hermiticity has been introduced to describe projective measurements on quantum
circuits or many-body systems, which turns out to be an efficient way to prepare entangled
states [12–15] and conduct quantum teleportation [16]. In AdS/CFT, it is also a potential
route to a better understanding of the holography of complex spacetime metrics and of
quantum matter [17–21].

Non-Hermiticity does not necessarily lead to a complex energy spectrum and non-
unitary Hamiltonian evolution [3, 22, 23]. If a non-Hermitian Hamiltonian satisfies PT -
symmetry, namely the Hamiltonian is invariant under the combination of a generalized
time-reversal T and a generalized parity P transformation, it is possible that the spectrum
remains real and unitary evolution still holds in terms of a new inner product. PT -
symmetric theories have been extensively explored in the context of quantum mechanics
[22, 23], quantum field theory [3, 24–26], and even classical physics [27]. If an eigenstate
of the Hamiltonian is also a simultaneous eigenstate of the operator PT , then its energy
is real. If it is not a PT eigenstate but part of a PT doublet, it is in general mapped to
another state by the action of PT , with complex conjugate energy. Most PT -symmetric
Hamiltonians are found to be pseudo-Hermitian, with eigenenergies appearing in complex
conjugate pairs [28,29]. The spectrum of a PT -symmetric Hamiltonian can hence be real,
partially complex, or completely complex. If at least some energies are complex, the PT
symmetry is spontaneously broken. A PT -symmetric Hamiltonian with a real spectrum
can always be related to a Hermitian Hamiltonian via a similarity transformation [28,30–
32], the so-called Dyson map [33]. Recently, it has been observed that PT symmetry also
plays an increasingly important role in strongly interacting systems relevant to holography,
such as the Sachdev-Ye-Kitaev model [34–37] and holographic quantum matter [1, 38].
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Figure 1: Phase diagram of the PT -
symmetric model (4), with parameters
d = 3, m2 = −2, q = 1 and v = 3/2, at
zero chemical potential µ = 0.

Phase I Phase II Phase III

PT symmetry preserved preserved broken

(free) energy real real complex

scalar stability stable unstable unstable

vector stability stable stable stable

superfluid
density

positive negative complex

QC conductivity suppressed enhanced complex

FGT sum rule holds holds holds

NEC holds violated ill-defined

Table 1: The properties of the three phases of the
model of [1].

In this work, we will focus on the electric conductivity of the PT -symmetric non-
Hermitian model of [1]. Unitarity constrains transport phenomena in electron systems as
well as in holography, for example by constraining the shear and bulk viscosities η and ζ, as
well as the dissipative part of the electric conductivity Reσ to be positive semidefinite [39],

η ≥ 0 , ζ ≥ 0 , Reσ ≥ 0 . (1)

Investigating transport in strongly interacting non-Hermitian systems via the AdS/CFT
correspondence is of interest both to high energy and to condensed matter. We expect that
the AdS/CFT correspondence will provide predictions for transport coefficients in strongly
coupled and correlated PT -symmetric systems, which are unamenable to perturbation
theory otherwise.

In the model of [1], the non-Hermitian deformation is implemented by complexify-
ing the global U(1) symmetry that is spontaneously broken in the Einstein-Maxwell-
scalar model of [40]. As reviewed in Sec. 2.1, this effectively decouples the source for
the charged scalar operator from its complex conjugate. This implements the Dyson
map which connects a PT -symmetric Hamiltonian with real spectrum with an ordinary
Hermitian Hamiltonian. We first investigate the phase structure in the presence of the
non-Hermitian PT -symmetric deformation at finite temperature and both at zero and
finite chemical potential. The phase diagram at zero chemical potential is shown in Fig. 1
and discussed in Sec. 2.3.2. At zero chemical potential, there are three finite temperature
phases in the model of [1]: We not only reproduce the real solution in phase I and the
pair of purely imaginary solutions in phase II found in [1], but also numerically construct
a pair of complex conjugate solutions in phase III. Thee two complex conjugate solutions
admit complex temperatures, and we check that their zero temperature limit approaches
the two zero temperature solutions already found in [1]. The phase diagram at finite chem-
ical potential, discussed in Sec. 2.3.2 and shown in Fig. 4, is similar to the zero chemical
potential case. We will comment on the interplay of superconductivity and PT breaking
in Sec. 5.

The main results of our work are the calculation of the AC electric conductivity from
linear perturbation theory, and the verification of the Ferrell-Glover-Tinkham (FGT) sum
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rule in each phase. The AC conductivity itself shows an interesting structure in phases I,
II and III: In phase I the expectation value of the operator induces a positive superfluid
density ρs that leads to a ρsδ(ω) contribution to Reσxx and an associated 1/ω pole in
Imσxx. In phase II, the superfluid density turns negative, ρs < 0. In phase III, ρs itself
becomes complex, leading to a δ(ω) contribution and a 1/ω pole in both Reσxx and Imσxx.
In general, the AC conductivity in holographic systems consist of three different parts,
describing the effects of quantum criticality (incoherent transport), superconductivity,
and coherent transport. They all contribute additively to the low frequency conductivity
[41–49],

σ(ω) = σi(ω) + σs(ω) + σc(ω) . (2)

The incoherent conductivity σi(ω) is defined as the part of the conductivity unrelated to
either momentum transport or condensation. Its ω → 0 limit is usually called the quantum
critical conductivity, σQ = σi(0). In the weakly coupled limit, σQ (and actually σi(ω))
originates from the momentum-conserving scattering between electrons and holes [50]
and is thus incoherent with the momentum flow, hence the name. The superconducting
contribution σs(ω) = ρsq

2 (πδ(ω) + i/ω) is induced by the condensation of normal state
charge carriers [51–54], where q is the charge of Cooper pairs. The coherent conductivity
σc(ω) originates from the charge flow that is coherent to the momentum flow. In the
absence of momentum relaxation, it has a πδ(ω)+i/ω contribution analogous to σs, as well
as an analytic part. As electric charge is conserved, the charge carriers could contribute to
all three parts of the conductivity by spectral weight transfer. As evident from Figs. 6, 7
and 8, we find that σQ is reduced in phase I as compared to the AdS-Schwarzschild value
σQ = 1, enhanced in phase II, and becomes complex in phase III. In Sec. 4, we study a
complexified U(1) rotor model with the same PT -symmetric deformation as in [1], which
reproduces the phases of the holographic model, and whose zero frequency spectral weight
coincides with our results for the holographic model of [1].

Finally, we checked the validity of the FGT sum rule in all three phases. In d = 3
(2 + 1 boundary dimensions), at high frequencies the AC electric conductivity calculated
in an asymptotically AdS4 background tends to a constant Reσxx = 1 (in units of e2/h),
due to the scale invariance of the ultraviolet (UV) fixed point. Following [55], we subtract
this constant, after which the FGT sum rule reads∫ ∞

−∞
Re [σ(ω)− 1] dω = 0 . (3)

We take the integral in (3) over the whole real axis, as the symmetry of conductivity
under the transformation ω ↔ −ω may not hold in the presence of non-Hermiticity. The
subtraction is necessary for the integral to converge. The sum rule is expected to hold
under the assumptions of causality, unitarity, and charge conservation [55]. It has been
verified in various holography models [46, 55–59] fulfilling these assumptions. Since PT -
symmetric non-Hermitian systems can break some of these assumptions, in particular
unitarity in the PT -broken phase, we check the validity of (3) in the holographic model
of [1]. We find that the sum rule holds in all three phases, even in the PT -broken phase.

This paper is organized as follows. In Sec. 2, we introduce the Einstein-Maxwell-scalar
theory with the non-Hermitian PT -symmetric source deformation of [1], and study its
phase structure at finite temperature and chemical potential. In Sec. 3, we calculate and
discuss the AC conductivity. In addition, we verify the sum rule in each phase. In Sec. 4,
we study a complexified U(1) rotor model with a PT -symmetric deformation. We find
that its phase structure and zero frequency spectral weight turn out analogous to our
holographic model. In Sec. 5, we present our conclusions and outline further research
directions.
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2 Non-Hermitian Holography

In this section, we first introduce the PT -symmetric non-Hermitian model of [1], and
review its symmetries and the associated Dyson map, in Sec. 2.1. In Sec. 2.2, we present
the equations of motion and the ansatz for the bulk fields that we will solve numerically
in the remainder of this section for both vanishing (Sec. 2.3) and finite (Sec. 2.4) chemical
potential.

2.1 Action and symmetries

In the AdS/CFT correspondence, every continuous global symmetry of the dual field
theory is represented by a gauge symmetry in the bulk. Thus, while constructing the bulk
theory, we at least need a U(1) gauge symmetry whose gauge field encodes the conserved
current on the boundary. In addition, in order to implement the PT deformation of [1], a
charged bulk field is needed. We follow the previous works [1, 38] and consider the scalar
field to be minimally coupled, with charge q under the U(1) symmetry. The holographic
action reads

S =

∫
dd+1x

√
−g
[
R+

d(d− 1)

L2
−D†aφ̄Daφ−m2φ̄φ− vφ̄2φ2 − 1

4
FabF

ab

]
, (4)

with Da = ∇a − iqAa and 16πGN = 1. In this paper we consider d = 3. The action (4)
is the Abelian-Higgs model [52,53]. It admits a local U(1) symmetry

φ→ φ eiα(x), φ̄→ φ̄ e−iα(x), Aa → Aa + ∂aα(x)/q. (5)

The bulk action (4) is dual to a conformal field theory on the boundary with Hamiltonian
HCFT. The local U(1) symmetry of the bulk action corresponds to the global U(1) sym-
metry of the boundary Hamiltonian HCFT. We identify the global U(1) symmetry with
charge conservation.

We consider the field φ dual to an operator O, and φ̄ dual to O†. We introduce
sources M and M̄ for these operators, which corresponds to a deformation of the original
Hamiltonian HCFT,

H = HCFT −
∫
dd−1x (MO† + M̄O). (6)

If both φ and φ̄ are related by complex conjugation, we have M∗ = M̄ , and the deformed
Hamiltonian (6) is Hermitian. The Gubser-Klebanov-Polyakov-Witten (GKPW) prescrip-
tion relates the partition functions of the bulk and boundary theory and in the large N
and strong coupling limit, it reduces to a saddle point approximation,

Z[M,M̄ ] = Tr
[
e−βHCFT+

∫
ddx(MO†+M̄O)

]
≈ e−Sren |φ→zd−∆M,φ̄→zd−∆M̄ . (7)

Here we adopt standard quantization in which ∆ is the scaling dimension of O given by
one of the solutions of ∆(∆ − d) = m2L2, z is the radial coordinate, and z → 0 is the
conformal boundary. A nonzero source, either M or M̄ , breaks the U(1) symmetry (5)
and thus, charge conservation is violated on the boundary theory.

To explore non-Hermitian holography, we assume that the GKPW relation (7) still
holds even for M∗ 6= M̄ , and hence φ? 6= φ̄, while the holographic dictionary φ↔ O, φ̄↔
O† is preserved. Since H 6= H†, there are different ways to define the time evolution. We
start with the Euclidean GKPW relation (7), in which the partition function is evaluated
by the on-shell action on an Euclidean spacetime. In holography, the time evolution is
usually chosen as follows:

〈O(τ)E〉 = Tr[O(τ)Ee
−βH ]/Tr[e−βH ], O(τ)E = eτHOe−τH . (8)

5
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In order to move to Lorentzian signature, one can perform a Wick rotation τ = it on
the Euclidean spacetime. The observable O measured on the asymptotic boundary of the
Lorentzian spacetime at time t, has therefore the the expectation value

〈O(t)〉 = Tr[O(t)e−βH ]/Tr[e−βH ], O(t) = eiHtOe−iHt. (9)

Hence, the ordinary time evolution considered in holography is the analytical continuation
of the Euclidean time path integral in the GKPW relation, which is different from other
frameworks of non-unitary evolution in non-Hermitian systems [60,61]. In Sec. 5, we will
comment on the realization of these evolution schemes in holography. Nevertheless, if the
theory has time translational symmetry, the one-point functions in (8) and (9) will be time
independent, which is consistent with the construction of time-translational solutions in
the bulk in this as well as previous works [1, 38].

On the other hand, the conjugation relation between the expectation values 〈O〉 and〈
O†
〉

does not necessarily hold for H 6= H†, since

〈O〉∗ = Tr[O†e−βH
†
]/Tr[e−βH

†
],

〈
O†
〉

= Tr[O†e−βH ]/Tr[e−βH ]. (10)

The generalization to M∗ 6= M̄ can be implemented by the global complexified U(1)
transformations

φ→ φ e−θ, φ̄→ φ̄ eθ, Aa → Aa, (11)

M →Me−θ, M̄ → M̄eθ (12)

with θ ∈ C. Both the bulk action (4) and also the boundary condition in (7) are invariant
under (11) and (12). From the GKPW relation, the partition function is invariant under
the transformation (11) and hence, is only a function of the invariant of (11), namely

Z[M,M̄ ] = Z[e−θM, eθM̄ ] = Z[N2], N2 = MM̄. (13)

This means that each value of the invariant N2 labels a class of theories related by the
complexified U(1) transformation (12). Denoting the generator of the global U(1) trans-
formation as Q, the transformation (11) can be achieved via the similarity transformation

Hθ = eθQHe−θQ = HCFT −
∫
ddx (Me−θO† + M̄eθO), (14)

where the sources transform in the same way as in (12). So we call it the Dyson map
as well. Hθ will in general be non-Hermitian even though H is Hermitian. Then, the
evolution operator Uθ = e−iHθt could be non-unitary even though the evolution operator
U = e−iHt is unitary. Still, the two evolution operators are similar via the Dyson map
(14). The similarity transformation preserves the trace and the eigenvalues, so it leaves
the partition function (13) invariant. Thus, all the theories with MM̄ ≥ 0 have entirely
real eigenvalues, since they are similar to a theory with M∗ = M̄ , whose Hamiltonian is
Hermitian.

However, there are more general choices of M,M̄ with a real invariant N2, which can
be either N2 ≥ 0 or N2 < 0. Since MM̄ is invariant under the Dyson map (14), the case
N2 < 0 can not be mapped to a Hermitian Hamiltonian by the Dyson map (14), which
would require N2 = MM̄ > 0. Thus, N2 = 0 is the exceptional point. We now show that
in all these cases, the holographic theory is PT -symmetric with a proper parity P. See
App. A for a fermion model example with PT symmetry.

Firstly, given a theory with M,M̄ ∈ R, it is PT -symmetric with the following trans-
formation rules of P, T and C [1, 38]

A φ φ̄ i x1 t

P −A φ̄ φ i −x1 t
T A φ̄ φ −i x1 −t
C −A φ φ̄ i x1 t

(15)

6
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without exchanging the sources M, M̄ . In other words, after the action of P, φ is sourced
by M̄ and φ̄ is sourced by M ; after T , φ is sourced by M̄∗ and φ̄ is sourced by M∗. If
M,M̄ ∈ R, then both the bulk action and the boundary condition are invariant under this
PT transformation. A theory with M,M̄ ∈ R defines a ‘standard’ PT frame with respect
to the complexified U(1) transformation, as it entails a ‘standard’ definition of the PT
transformation, defined in (15).

Secondly, given a theory with M,M̄ 6∈ R, but MM̄ ∈ R, we can parameterize the
sources as M = M0 e

−iθ′ and M̄ = M̄0 e
iθ′ with M0, M̄0, θ

′ ∈ R. Then, this theory is
exactly the image of the theory with M0, M̄0 under the complexified U(1) transformation
(12) with angle θ = iθ′. The former Hamiltonian H ′ is similar to the latter Hamiltonian
H via H ′ = eiθ

′QHe−iθ
′Q. Since H = PT HPT and PT QPT = Q [3], H ′ is invariant

under a new P ′T transformation with P ′ = e2θ′QP. Starting from the ‘standard frame’
with M, M̄ ∈ R, in any other complexified U(1) frame, there will be a correspondingly
transformed definition of PT under which the theory is invariant in this frame.

We conclude that each value of the invariant MM̄ = N2 ∈ R labels a class of PT -
symmetric theories related by the complexified U(1) transformation. Without loss of
generality, we can pick a representative in each class with a gauge 1

M = M̄ = N. (16)

In this gauge, we will show that φ = φ̄ holds for the solutions in all three phases.
Now we discuss the PT symmetry of the solution. Similarly, to MM̄ labelling a class

of Hamiltonians, each profile of φφ̄ labels a class of solutions related by complexified U(1)
transformation (11) in the bulk. The PT transformation (15) maps φφ̄ → φ∗φ̄∗. Thus,
given a solution with φφ̄ ∈ R, the PT symmetry is preserved by the solution; given a
solution with φφ̄ 6∈ R, the PT symmetry is spontaneously broken by the solution.

Last but not least, by setting θ = log(M∗/M̄) in the similar transformation (14), we
get Hθ = H†. Therefore, the Hamiltonian (6) is pseudo-Hermitian.

2.2 Equations and ansatz

We now discuss in detail the equations of motion and the ansatz for the background
solution. In our numerical calculation, we set the mass of scalar field to be m2L2 = −2
and L = 1 to ensure an analytic FG expansion near the conformal boundary. In addition,
we choose the coupling coefficient v = 3/2. The equations of motion read as follows,

Rab +
1

2
gab

(
d(d− 1)

L2
−m2φ̄φ− vφ̄2φ2

)
−D(aφD

†
b)φ̄+

1

2

(
1

4
gabFcdF

cd − FacFbc
)

= 0, (17)

∇aF ab + iq
(
φD†bφ̄− φ̄Dbφ

)
= 0, (18)

DDφ−m2φ− 2vφ̄φ2 = 0, (19)

D†D†φ̄−m2φ̄− 2vφ̄2φ = 0. (20)

where we have made use of the on-shell trace of the Einstein equations.

1In Ref. [1], the authors parameterized the complexified U(1) transformation (12) as eθ =
√

1+x
1−x and the

invariant as N2 = (1− x2)M̃2, where x and M̃ are real numbers. Thus, changing x with fixed M̃2 6= 0 in their
paper is simply changing N2 along the real axis in our paper. Especially, their regions x2 < 1, x2 = 1, and
x2 > 1 correspond to our regions N2 > 0, N2 = 0, and N2 < 0, respectively.

7
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In this paper, we investigate static and translationally invariant solutions for the back-
ground, and hence the following metric and gauge field ansatz [1]

ds2 =
1

z2

[
−u(z)e−χ(z)dt2 +

dz2

u(z)
+ dx2

]
, A = A(z)dt. (21)

Since we choose m2L2 = −2, the scaling dimension of the dual scalar operator can
have two cases ∆ = 1 or 2, which depends on the choice of quantization. Here we work in
standard quantization, and thus identify ∆ = 2. In this setup, the source is identified as
the leading coefficient in the asymptotic expansion form of the scalar field

φ = Mz + 〈O〉 z2 + · · · , φ̄ = M̄z +
〈
O†
〉
z2 + · · · . (22)

If working in alternate quantization with ∆ = 1, one should do the exchange M ↔
〈O〉 , M̄ ↔

〈
O†
〉
. Since neither P nor T exchanges the sources M, M̄ , the expansion after

the P transformation is

φ̄ = Mz +
〈
O†
〉
z2 + · · · , φ = M̄z + 〈O〉 z2 + · · · , (23)

and after the T transformation is

φ̄ = M∗z +
〈
O†
〉
z2 + · · · , φ = M̄∗z + 〈O〉 z2 + · · · . (24)

Clearly, a nonzero source M or M̄ explicitly breaks the U(1) symmetry (5). For a static
solution, we note that the z component of the Maxwell equation (18) requires

φ∂zφ̄− φ̄∂zφ = 0. (25)

Thus, the Ward identity

∂µ 〈Jµ〉 = iq
(
M
〈
O†
〉
− M̄ 〈O〉

)
= 0 (26)

vanishes. Jµ is the charge current and µ is the coordinate index on the boundary. The
Ward identity (26) can also be obtained by taking the derivative of (13) w.r.t. θ. The
vanishing of (26) in spite of the explicit U(1) symmetry breaking is due to the fact that
the divergence of the U(1) current is evaluated on a static solution.

Notice that the complexified U(1) invariant combination is φφ̄ = MM̄z2 + · · · . As
explained in detail in Sec. 2.1, in order to label the equivalence class of partition function
Z[N2], we define MM̄ = N2 with the condition N =

√
MM̄ ∈ C. Without loss of

generality, we can still rotate the sources to beM = M̄ = N utilizing the complexified U(1)
transformation. By this rotation, both the equations of motion and boundary condition
are invariant under the exchange of φ ↔ φ̄. With (25), we can further consider the
following ansatz for the scalar fields

φ = φ̄ = ϕ(z) ∈ C . (27)

where ϕ(z)2 = φφ̄ is invariant under the complexified U(1) transformation. The ansatz
(21)(27) is invariant under the rescaling

(z, t, x)→ (λz, λt, λx), (u, χ, A, ϕ)→ (u, χ, λ−1A, ϕ). (28)

Substituting the above ansatz into the equations of motion, we obtain four independent
equations

− A2q2ϕ2eχz

u2
+ χ′ − zϕ′2 = 0, (29a)

8
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− A2q2ϕ2eχz

2u2
+
−eχz4A′2 + 4ϕ2 − 2vϕ4 + 12(1− u)

4uz
− 1

2
zϕ′2 +

u′

u
= 0, (29b)

ϕ

u2

(
A2q2eχ +

2u

z2

)
− 2vϕ3

uz2
+ ϕ′

(
u′

u
− χ′

2
− 2

z

)
+ ϕ′′ = 0, (29c)

A′′ +
A′χ′

2
− 2Aq2ϕ2

uz2
= 0, (29d)

and one constraint [51]

QT =
1

4π
eχ/2

(
AA′ − 1

z2
(ue−χ)′

)
, (30)

whose value on the horizon will give the Hawking temperature T . The null energy condi-
tion (NEC) is given by

T zz − T tt =
z2

u

[
A2q2ϕ2eχ + u2 (ϕ′)

2
]
≥ 0, (31)

which could be violated once ϕ2 becomes negative.
We consider the asymptotic boundary conditions

u = 1 +
1

2
N2z2 + u3z

3 + · · · , χ =
1

2
N2z2 +

4

3
N〈O〉z3 + · · · , (32)

A = µ− ρz + · · · , ϕ = Nz + 〈O〉 z2 + · · · ,

with µ the chemical potential, ρ the charge density, and u3 is related to the energy density,
and we have normalized the expectation value 〈O〉 according to the convention in [52].

So 〈O〉2 = 〈O〉
〈
O†
〉

is invariant under the complexified U(1) transformation. At finite
temperature, we denote the horizon as zh and impose regularity there, namely,

u(zh) = 0, χ(zh) = χh, A(zh) = 0, ϕ(zh) = ϕh . (33)

The Hawking temperature is defined by

T = − 1

4π
e−χ/2u′|z=zh , (34)

where u′ refers to ∂zu(z). The entropy density is s = 4π/z2
h. From the holographic

renormalization given in App. F, which follows from [62–65], the grand canonical potential
density ωG, free energy density f , and energy density ε can be formulated as

ωG = f − µρ = ε− Ts− µρ = −1

3
(Ts+ µρ+ 2N 〈O〉) , (35)

which we find more convenient for numeric calculation. Following the rescaling transfor-
mation (28), both the sources and observables change as

(N, 〈O〉 , µ, T, s, ε)→ (λ−1N, λ−2 〈O〉 , λ−1µ, λ−1T, λ−2s, λ−3ε) . (36)

Hence, it is convenient to rescale zh to be unit and parameterize the solutions with di-
mensionless ratios (N2/T 2, µ/T ). We present both the neutral case with µ = 0 and the
charged case with µ 6= 0 in the following two subsections.

2.3 Neutral background

In this subsection, we construct and characterize the three different phases of the holo-
graphic model (4) for vanishing chemical potential µ = 0, and finite PT deformation
sourced by N/T . We find three different phases, labelled by I, II and III. While the
phases I and II have been found already in [1], the finding of phase III is novel.

9
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2.3.1 Fixed points and zero temperature solutions

Prior to our analysis at finite temperature, we examine the fixed point and RG structure
at zero temperature. In the neutral case with µ = 0, the Maxwell equations (29c) with
the boundary conditions A(0) = A(zh) = 0 are solved by A(z) = 0 globally.

We first analyze the fixed points structure and find the zero temperature solution.
According to [51,66], the model (4) at zero chemical potential has three AdS4 fixed points,

UV : u = 1, χ = 0, ϕ = 0, (37)

IR± : u = 1 +
1

6v
, χ = 0, ϕ = ± 1√

v
. (38)

The UV fixed point is dual to an AdS4 space. Since ∆ = 2 < 3, the deformation in (6) is
relevant. The IR fixed points are dual to two AdS4 spaces with constant scalar field. The
IR± are related by the complexified U(1) transformation (11), which could be reached by
the RG flow triggered by a nonzero source N .

The interpolation between these fixed points is given by the solutions at zero temper-
ature. We can numerically solve the equations of motion (29) in the |N/T | � 1 limit
or directly work in the domain-wall coordinate [51, 66, 67]. In Fig. 2, the solutions for
the scalar field are plotted in the complex ϕ2 plane, i.e. in an invariant way under the
complexified U(1) transformation (11). We find one real solution for N2 > 0 and two
complex conjugate solutions for N2 < 0, reproducing the result of [1]. Our numeric cal-
culation yields the free energy density, which coincides with the energy density at zero
temperature, f ≈ 0.89N3 and

(
0.89N3

)∗
in the two branches respectively. The free en-

ergy is real when N2 > 0 and imaginary when N2 < 0. The real solution preserves the
PT symmetry and the complex solutions break the PT symmetry. We will see that they
are, respectively, the zero temperature limits of phase I and phase III defined in the next
section. The real solution preserves NEC, and the complex solutions make the left-hand
side of (31) complex, while the fixed points always satisfy the c-theorem cUV ≥ cIR.

Besides these three solutions, there are families of solutions in the complex plane that
can interpolate the fixed points but do not satisfy the boundary condition N2 ∈ R. These
are related, via the complexified U(1) transformation (12), to the N2 ∈ R case.

2.3.2 Phase diagram at finite temperature

We also numerically solve the equations of motion (29) at finite temperature. In virtue
of the rescaling symmetry (28), we can fix the horizon radius to zh = 1. This allows to
determine the solutions as functions of only the radial coordinate z and the dimensionless
ratio N/T . We perform the numerical integration of the equations (29) with the boundary
conditions (32) and (33) at a specific value of N . The temperature T is determined
from (34). We investigate the phase structure by varying the values of N2, and plot the
expectation value for the scalar operator 〈O〉, free energy density f , and energy density ε
in Fig. 3. We find the following phase structure:

Phase I In the region N2 ≥ 0, we find one branch of real solutions, which manifestly
preserves the PT symmetry. The expectation value 〈O〉 is real and negative. The
solution in the N/T � 1 limit coincides with the analytical approximation given in
Sec. 2.3.3. The solution in the N/T � 1 limit asymptotes to the real solution at zero
temperature given in Sec. 2.3.1. In addition, NEC is also preserved for all values of
N/T . The observed increase in the energy density ε and the free energy density f
with increasing N/T is expected, since we introduce a source in the boundary field
theory.

Phase II In the region (N/T )2
c ≤ (N/T )2 < 0, there exist two branches of solutions with

real metric and imaginary scalar field values [1]. The expectation value 〈O〉 is purely

10
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Figure 2: The flows of ϕ(z)2 at zero temperature in the complex plane. They are interpolating
between the UV fixed point (purple point) and the two IR fixed points (red point). The flow
denoted by the blue curve satisfies the boundary condition N2 > 0. The complex conjugate
flows denoted by the two green curves satisfy the boundary condition N2 < 0. The dashed
curves denote some of the other flows interpolating the two fixed points but not satisfying the
boundary condition N2 ∈ R.

imaginary. Even though φφ̄ is negative, these solutions still preserve PT symmetry.
For v = 3/2, we numerically find a critical ratio (N/T )2

c ≈ −3.6. As in [1], these two
branches are both unstable in the sector of scalar (Ax, ϕ) perturbations. In addition,
NEC is violated in this case. Interestingly, the branch connected to phase I has a
higher free energy density, but a smaller energy density in comparison to the other
branch.

Phase III In the region of (N/T )2 < (N/T )2
c , we do not find any solution with real

ϕ2 and real metric. However, if we allow the fields to take complex values, we do
find a pair of complex conjugate solutions with complex ϕ2 and complex metric,
for which PT symmetry is spontaneously broken. We extract two complex conju-
gate temperatures T, T ∗ from imposing regularity on the horizon. The solutions in
the |N/T | � 1 limit asymptote to the two complex solutions at zero temperature
discussed in Sec. 2.3.1. The expectation value 〈O〉, free energy f , and energy den-
sity ε are complex. Also, the left-hand side of NEC (31) becomes complex. From
the quasi-normal mode (QNM) analysis presented in App. (B), the two complex
conjugate branches are also unstable.

We now discuss the complex metrics and complex temperatures in phase III in detail.
For both solutions in phase III, the metric we calculate numerically has the following
asymptotic behavior

ds2 →

{(
−dt2 + dz2

)
/z2, z → 0

1
−u′(zh)

[
−(zh − z)(4πT )2dt2 + dz2

zh−z

]
, z → zh

. (39)

Here T ∈ C, Re(T ) > 0, and we omit the spatial coordinates. From imposing regularity at
the horizon, the coordinate time t acquires a complex period, t ∼ t+ iβ with β = 1/T . If
we define a new Euclidean time direction τ = i2πTt such that it has periodicity τ ∼ τ+2π,

11
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Figure 3: 〈O〉 /N |T | (a), f/|T |3 (b), and ε/|T |3 (c) as multivalued functions of N2/ |T |2,
whose real (imaginary) part is denoted by solid (dashed) curves. The trajectories of T/|N | in
its complex plane are shown in panel (d). The results in phases I, II, and III are represented
by blue, orange, and green curves respectively.

the metric becomes

ds2 →

{[
(β/2π)2dτ2 + dz2

]
/z2, z → 0

1
−u′(zh)

[
4(zh − z)dτ2 + dz2

zh−z

]
, z → zh

, β ∈ C, Re(β) > 0 . (40)

We see that the line element on a boundary cut-off slice is now complex,

dτ2
bdy

ε2
=
β2dτ2

(2πε)2
, (41)

where τbdy is the boundary time and ε is the UV cutoff. Eq. (41) implies a complex inverse
temperature β in the partition function

Z(β) = Tr[e−
∫ β
0
dτbdyH ], β ∈ C . (42)

Complex metrics and complex time periods are not exotic in holography. In App. D, we
review the “double cone” geometry contributing to the spectral form factor, which also
admits complex line element on the boundary, and an interpretation involving a complex
temperature.

12
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The two complex conjugate solutions in phase III correspond to partition functions
with two complex conjugate inverse temperatures,

Z(β) = Tr[e−βH ], Z(β∗) = Tr[e−β
∗H ], β = 1/T ∈ C . (43)

Their related complex free energies and complex internal energies are shown in Figs. (3b)
and (3c). We further checked explicitly that the |β| → ∞ limit of the two finite tempera-
ture solutions in phase III approach the two zero temperature solutions of [1] discussed in
Sec. 2.3.1. Note that the zero temperature limit generally has to be taken along either of
the two complex trajectories shown in Fig. 3d corresponding to the two solution branches.

Our holographic interpretation involving complex temperatures in phase III also re-
solves the following puzzle: The solutions in phase III have complex energies. However,
since the PT -symmetric Hamiltonian (6) in holography is pseudo-Hermitian, even in the
PT -broken phase, both the partition function Z(β), as well as the thermodynamic aver-
age of the energy 〈E〉, should be real for real β. This apparent contradiction is resolved
by concluding that the correct definition of the temperature must be complex in order to
avoid a conical singularity at the horizon, and hence both partition functions in (43) are
complex conjugate to each other.

The emergence of complex temperatures in the PT -broken phase is also expected in
PT -symmetric non-Hermitian systems. This can be seen even in the two-level system
analyzed in detail in App. E, where we show that the free energy encounters a branch cut
when the temperature is lowered. When the branch cut appears, one should select one
branch of the two complex conjugate temperatures, as the PT -broken phase is entered.
The zero temperature limit is taken by fixing a nonzero argument of β and sending |β| →
∞, which reduces both the free energy and the average energy to one of the eigenenergies.

2.3.3 The probe limit

We can solve the scalar equation (29d) analytically when the source of the scalar field
N in is small compared to the temperature T . In this situation, the bulk geometry can
be approximated as an AdS4-Schwarzschild black hole with a scalar field ϕ in the probe
limit, i.e. the propagation of this field does not alter the bulk geometry to leading order
in ϕ. The AdS4–Schwarzschild solution is given by

u(z) = 1− z3

z3
h

, χ(z) = 0 , zh =
3

4πT
. (44)

The equation (29d) reduces to

ϕ′′(z) +

(
u′(z)

u(z)
− 2

z

)
ϕ′(z) +

2

z2u(z)
ϕ(z) = 0 . (45)

This equation admits a solution regular at the horizon,

ϕ(z) = Nz


2F1

(
1

3
,

1

3
;

2

3
;
z3

z3
h

)
−

2π3/2z 2F1

(
2
3 ,

2
3 ; 4

3 ; z
3

z3
h

)
Γ
(

1
6

)2
Γ
(

7
6

)
zh

 , (46)

with the asymptotic behavior

ϕ(z → 0) = N z − 2π3/2N

zhΓ (1/6)
2

Γ (7/6)
z2 + · · · . (47)

From the near boundary expansion, we find

〈O〉
NT

= −
√

2(2π)5/2

3Γ (1/6)
2

Γ (7/6)
≈ −1.63, (48)

which matches the numerical result given in Fig. 3a in the limit |N/T | � 1.
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Figure 4: Re[〈O〉2]/µ4 on the plane spanned by N2/µ2 and |T | /µ. The red curve denotes the
transition between phase II (right) and phase III (left).

2.4 Charged backgrounds

In this subsection, we discuss the case of finite chemical potential µ and derive the charged
background solutions numerically. Due to the relation (27) derived from the Maxwell
equation, for a given solution at finite µ, the counterpart with −µ can be obtained just by
changing the sign of A, while keeping other fields fixed. So, and without loss of generality,
we restrict to the µ > 0 case.

From the background solutions, we study the phase structure in the (N2/µ2, |T | /µ)
plane numerically. This is shown in Fig. 4. In particular, we find that the global phase
structure above |T | /µ ≈ 0.02 is similar to the neutral case in Fig. (1).

Below |T | /µ ≈ 0.02, the system has the superconducting instability of the U(1) scalar
field of [52, 53]. When N = 0, this is a second-order phase transition, while for N2 > 0,
the transition becomes a cross-over. Since the transition temperature is very small, we do
not display it in Fig. 4.

3 Conductivity and the sum rule

In this section, we study the linear response of the model (4), and derive the AC conduc-
tivity. We consider the Kubo formula of conductivity

σµν(ω) =
GµνR (ω + iε)

i(ω + iε)
, (49)

GµνR (t) = − iθ(t)
Tr
[
e−βH [Jµ(t), Jν ]

]
Tr [e−βH ]

, Jµ(t) = eiHtJµe−iHt , (50)

where GµνR is the retarded Green’s function, ε is a positive infinitesimal number, and the
time evolution is defined in (9). We will compute the longitudinal conductivity σ(ω) =
σxx(ω) with GR(ω) = GxxR (ω) and check the validity of the sum rule numerically.

The complexified U(1) transformation (11) does not change the Maxwell field A. Thus,
the charge current operator 〈Jµ〉, and also its correlation function, are both invariant under
the Dyson map

Jµ = eθQ/2Jµe−θQ/2, Tr[eiHtJµe−iHtJνe−βH ] = Tr[eiHθtJµe−iHθtJνe−βHθ ]. (51)
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This invariance also holds for the fermion model presented in App. A. In order to calculate
the conductivity from holography, we work in the gauge (16). In addition, notice that
the perturbation equation (59) relevant for the conductivity depends on the scalar fields
via the complexified U(1) invariant profile ϕ2 only. Therefore, in phase I, we expect the
derivation of the AC conducitivity to be equivalent to the Hermitian case. The invariance
of Dyson map in holography also supports our definition of evolution and Green function
(50).

However, since the theory with N2 < 0 is not similar to a Hermitian theory via Dyson
map (14), the conductivity relation

σ(ω) = σ(−ω)∗ (52)

may not necessarily hold in the N2 < 0 region. Remarkably, we will show that (52) is a
necessary condition in order for the sum rule to hold.

We firstly check the sum rule (3) by analyzing the properties of the retarded Green’s
function of the charged current following [55]. As required by causality and the asymptotic
behavior of the retarded Green’s function for the sum rule to hold, the following two
conditions must be met:

1. GR(ω) is analytical on the upper half plane and on the real axis;

2. lim|ω|→∞GR(ω) = iω.

The first condition can be checked from the QNM spectrum in the holographic model,
which will be done at the end of this section. The second condition is related to the
asymptotic behavior of GR(ω) in the high frequency limit, which for this model becomes
the current Green’s function of the AdS-Schwarzschild black hole without any scalar fields.
By applying Cauchy’s theorem, we have

GR(ω + iε)− iω =

∫ ∞
−∞

dz

2πi

GR(z)− iz
z − ω − iε

, 0 =

∫ ∞
−∞

dz

2πi

GR(z)− iz
z − ω + iε

. (53)

Adding up the first integral and the complex conjugate of the second integral leads to the
spectral representation

GR(ω)− iω = lim
ε→ε

∫ ∞
−∞

dz

π

Im[GR(z)]− z
z − ω − iε

. (54)

Setting ω = 0 and using the Cauchy principal value integral, we obtain the sum rule (3).
In order to check the sum rule numerically, we also need to introduce the integrated

spectral weight Sσ(Ω),

Sσ(Ω) =

∫ Ω

−Ω

(Re[σ(ω)]− 1)dω. (55)

In particular, notice that Sσ(∞) = 0 is exactly the sum rule (3). In the pure AdS-
Schwarzschild case, it vanishes exactly regardless of ω. A non-zero value of (3) would
signal a severe breakdown of either causality, unitarity, or charge conservation, due to the
P- and T -invariance violation in the model (4).

3.1 AC conductivity

As the time evolution (9)(49) realized in AdS/CFT is of the same form as in the Hermitian
case, we follow the standard procedure to derive the conductivity within the AdS/CFT
correspondence [68] from linear gauge field perturbations. We consider the fluctuations of
the gauge field and metric component

δAx = a(z)e−iωt, δgtx = htx(z)e−iωt (56)
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in the equations (17)-(20). The only non-trivial equations come from the tx component
of the Einstein equations and the x component of the Maxwell equations, which read

az2A′ + h′tx = 0, (57)

4u2z2a′′ + uza′
(
eχz4 (A′)

2
+ 12u− 4ϕ2 + 2vϕ4 − 12

)
+ a

(
4eχω2z2 − 8q2uϕ2

)
+ 4ueχz2A′h′tx = 0. (58)

The mix between a(z) and htx(z) indicates a coupling of charge current and momentum.
Solving (57) for h′tx(z) and substituting it in (58), we get a single equation for a(z)

4u2z2a′′ + uza′
(
eχz4 (A′)

2
+ 12u− 4ϕ2 + 2vϕ4 − 12

)
− 4a

(
eχz2

(
uz2 (A′)

2 − ω2
)

+ 2q2uϕ2
)

= 0 . (59)

Imposing the ingoing boundary condition at the horizon

a(z) = (zh − z)−i
ω

4πT b(z) , (60)

and requiring the regularity of b(z) near zh, we get the retarded Green’s function GxxR (ω).
From the Kubo formula (49), we get

σ(ω) =
a′(0)

i (ω + iε) a(0)
. (61)

The infinitesimal shift ε accounts for the delta peak at ω = 0 in the real part of the
conductivity, which is essential for examining the validity of the sum rule (3). In the high
frequency limit, namely ω � |T | , µ, |N |, the conductivity approaches σ → 1, as expected
for the AdS-Schwarzschild geometry that governs the UV, while the low frequency behavior
depends on the IR geometry. The low-frequency behavior is governed by the Kramers-
Kronig (KK) relation, with two contributions denoted by ρn and ρs in such a way that

σ(ω) = (ρsq
2 + ρn)

(
πδ(ω) +

i

ω

)
+ regular terms, (62)

where ρs is the superfluid density and ρn is the normal charge density. Next, we present
the numerical results of the AC conductivity on both the neutral and charged backgrounds
and further analyze the asymptotic behaviors at high and low frequencies.

3.2 Numerical results

We first calculate the conductivity on the neutral background, i.e. µ = 0. The conductivity
σ shown in the left panels of Figs. 6, 7 and 8 correspond to phase I, II and III respectively.
The right panels of these figures show the convergence of the integral (55), which is used
to check the validity of the sum rule.

In the high frequency limit, there exists a common asymptotic behavior for all phases,
σ(ω)→ 1, or GR(ω)→ iω for ω →∞. This is exactly the conductivity for the asymptotic
AdS-Schwarzschild background in the UV regime. In the right panels of Figs. 6, 7 and
8, we also observe that the integral Sσ(Ω) in (55) always exhibits a power-law decay at
Ω/|N | � 1, which confirms that the sum rule always holds. As an independent check, we
also show that the sum rule holds from the quasi-normal modes spectrum at the end of
this section.

In the low frequency limit, the conductivity agrees with our expectation (62) with
ρn = 0 due to the neutrality of the background. We extract ρs from fitting the numerical
conductivity and show it as a function of the square of the condensate 〈O〉2 in Fig. 5. In

particular, we find ρs ∼ 〈O〉2 /T 3 for small 〈O〉2. Therefore, the low frequency behavior
of conductivity varies with the particular phase considered, with the following properties:
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Figure 5: ρsq
2/T as a function of 〈O〉2 /T 4 in phases I (ρs > 0) and II (ρs < 0) with µ = 0.

Phase III, where ρsq
2/T becomes complex and is not shown in this plot, extends from the

phase II at ρsq
2/T ≈ −1.3.

Phase I In this phase, we find that Imσ can be approximated as ρsq
2/ω with ρs > 0 at

low frequencies. Due to the form (62), the conductivity satisfies the relation (52), as
required by Hermiticity. In addition, the regular part of σ(ω) fulfills Reσ < 1. This
is required by the existence of a positive weight of the δ(ω) function due to the sum
rule.

Phase II In this phase, Imσ can still be approximated as ρsq
2/ω at small ω, except

that now ρs < 0. Since ρs ∈ R, the conductivity still satisfies the relation (52).
Furthermore, we observe that the analytical part of σ(ω) fulfills Reσ > 1, which is
also required by the existence of a negative weight of the δ(ω) function in the sum
rule.

Phase III In this phase, we find that σ ≈ iρsq
2/ω at small but nonzero ω with ρs ∈ C.

Our numerical analysis finds that ρs ∈ C, and hence both Reσ and Imσ have 1/ω
behavior. Consequently, the conductivity does not satisfy the relation (52). Instead,
the conductivity on the one branch of the background is mapped to the one on its
conjugated branch under the change ω → −ω by (52). This requires to include δ(ω)
in both the real and imaginary parts as well.

The PT symmetry is preserved in phases I and II, but broken in phase III. This
breaking leads to the emergence of the complex weight ρs and thus, to the breaking of
the symmetry (52) of the conductivity under the reflection ω → −ω. Still, the sum rule
always holds. The analytical study of conductivity in the probe limit N � T in App. C
also confirms the sum rule and shows that the superfluity density is proportional to the
scalar field source, ρs ∝ N2.

We also investigated the conductivity for finite chemical potential µ. By inspecting
Fig. 9, we can observe, as we dial N/µ, a competition between the superfluid density ρs
and normal charge density ρn in the low frequency limit (62) in phase II. The weight
ρsq

2 + ρn can be either negative or positive. Nevertheless, the sum rule always holds, as
illustrated in the right plot of Fig. 9. The combination of ρsq

2 +ρn also appears in phases
I and III numerically.

3.3 Sum rule from quasi normal mode

We already observe the power law decay of the integral Sσ(Ω) numerically in last subsec-
tion. In this subsection, we doubly check the first condition for the sum rule, stability,
namely GR(ω) being analytic both on the upper half plane and the real axis. The poles of
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Figure 6: Left: The conductivity in phase I as a function of ω/T . The real (imaginary) part
is denoted by solid (dashed) lines. Right: The integral spectral weights (55) as functions of
the frequency bound.
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Figure 7: The conductivity and its integral in phase II.

GR(ω) are given by the QNMs of the (Ax, gtx) components [56]. For our numerical anal-
ysis, we arrange the differential equation (59), the boundary conditions (60) and a(0) = 0
together as a linear differential operator D of the form

D[a(z)] = 0. (63)

If the determinant of (63) vanishes for a set of frequencies, we found a QNM. One can
write the operator D as a matrix and calculate the 1/det[D]. In Fig. 10, we plot this
quantity as a function of the complex frequency, and infer that there is no pole on the
upper half plane and the real axis. This shows that the retarded Green’s function GR(ω)
is analytic both on the upper half plane and the real axis. Therefore, the first condition
for the sum rule mentioned in Sec. 3 is satisfied. By combining it with the asymptotic
condition GR(ω) = iω for |ω| → ∞ due to the UV fixed point, we independently confirm
that the sum rule holds in all the phases.

4 Field theory: U(1) rotor model

To better understand phase III, in which the complex superfluity density emerges in the
PT -symmetric holographic model, in this section, we construct an effective model in field
theory which reproduces the phase transitions and the zero frequency spectral weight of
conductivity found in the holographic model. We start from a U(1) rotor model with
a charged scalar φ coupled to a gauge field Aµ. Then, we allow the scalar field φ to
be independent from its complex conjugate φ̄, such that the original U(1) symmetry is
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Figure 8: The conductivity and its integral in phase III.
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Figure 9: The conductivity and its integral in phase II at finite charge. The spike in the
yellow curve in the right panel is due to the integral (55) going through a zero at some finite
cutoff frequency Ω, which in the log-log plot leads to an apparent divergence.

complexified. We refer to this model as the complexified U(1) rotor model. After this,
we break the complexified U(1) symmetry and also Hermiticity by introducing the PT -
symmetric deformations. Its Euclidean action takes the form

Sφ =

∫
ddx

(
DµφD

†µφ̄+ V (φ, φ̄) + M̄φ+Mφ̄
)
, V (φ, φ̄) = rφφ̄+

1

2
uφ2φ̄2, (64)

where Dµ = ∂µ − iqAµ, φ and φ̄ are two independent fields, r is the mass square, u is
coupling constant, and M, M̄ are two independent sources, respectively. So this model is
an analogue of the holographic model (4). Following (15), the application of T transforms
φ ↔ φ̄, i ↔ −i, and the application of P transforms φ ↔ φ̄. Letting Aµ = 0 and
considering a static and translational invariant solution to the scalar fields, the saddle
point φs, φ̄s of the potential satisfies the following equations

rφs + uφ2
sφ̄s +M = 0, rφ̄s + uφ̄2

sφs + M̄ = 0 . (65)

Similar to the holographic model, we can consider the complexified U(1) transformation,

M →Me−θ, M̄ → M̄eθ, θ ∈ C . (66)

Then, the saddle point solution follows the transformation rules

φs → φs e
−θ, φ̄s → φ̄s e

θ , (67)

such that the on-shell action is invariant. This transformation preserves MM̄ and ρs =
2φsφ̄s, which enables us to choose M = M̄ = N ∈ C without loss of generality. Once
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Figure 10: 1/ det[D] in the complex ω/T plane in phase I, II, and III (from left to
right), where the color denotes the argument and the shading denotes the absolute value of
1/ det[D]. The white points denote the poles. The three plots correspond to (N2/µ2, T/µ) =
(6.2, 2.4), (−6.2, 2.4), (−100, 2.4 + 0.1i), respectively.

N 6= 0, the equations give φs = φ̄s = ϕs. Finally, the on-shell action can be related to a
PT -symmetric action via the complexified U(1) transformation if MM̄ = N2 ∈ R.

We restrict to the u > 0 case, in order for the potential to be bounded from below for
real φ,φ̄. When N = 0, the action admits the global U(1) symmetry

φ→ φ e−iα, φ̄→ φ̄ eiα. (68)

If we set r < 0, the potential V (φ, φ̄) looks like a Mexican hat with three extrema on
the real axis. Then the U(1) symmetry will be broken spontaneously by the nonzero
solution. However, in holographic approach (4), we consider an explicit breaking of the
U(1) symmetry under the transformation (5). Thus, in order to establish an analogy to
the holographic model, we consider r > 0. This entails that there is only one saddle point
of the potential V (φ, φ̄) on the real axis. To break the U(1) symmetry explicitly and
trigger nonzero solution, we turn on the source N .

Around the resulting saddle point, we consider phase fluctuations φ = ϕse
−iα and

φ̄ = ϕse
iα. The action in the small α expansion is then given by

Sα ≈
1

2
ρs

∫
ddx

[
(∂µα− qAµ)(∂µα− qAµ)−m2α2

]
, (69)

where ρs = 2ϕ2
s plays the role of the superfluid density and the mass square of pseudo-

Goldstone is

m2 = N/ϕs . (70)

To study the dynamic stability at A = 0, we can consider a general fluctuation around
the saddle point φ = ϕs+δφ(ω,~k), φ̄ = ϕs+δφ̄(ω,~k) and extract their effective mass square
matrix M2. The linear perturbation equation around a saddle point ϕs in frequency-
momentum domain is

(−ω2 + ~k2 +M2)δ~φ = 0 , (71)

where δ~φ =
(
δφ, δφ̄

)T
. Around a saddle point ϕs, the negative or complex eigenvalues of

M2 correspond to the dynamically unstable modes.
We always find three saddle points in the complex plane because of the quartic po-

tential. Their movement depending on the value of N2 is shown in Fig. 11. One of the
saddle points remains a spectator, which does not merge with the others throughout the
domain of parameters we study. We find three different phases as follows:
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Figure 11: The movement of the saddle point solution ϕs (left) and superfluid condensate ρs
(right) in the complex plane when N2 decreases from 30 to −30 and r = 2, u = 1. The blue
dots, orange dots, and green dots denote phase I, phase II, and phase III, respectively. The
transition between phase I and phase II happens at N2 = 0 and the transition between phase
II and phase III happens at N2

c = −1.18.

Phase I When N2 ≥ 0, there is one real solution ϕs with ρs > 0, and two complex
conjugate values of ϕs with ρs ∈ C. Only the real solution is stable.

Phase II When N2
c < N2 < 0, there are three imaginary values of ϕs with ρs < 0. Only

the solution connected to the real solution in phase I is stable.

Phase III When N2 < N2
c , there is one imaginary ϕs with ρs < 0 and two complex

conjugate values of ϕs with ρs ∈ C. All solutions are unstable.

The transition between phase II and phase III is due to the collision of two imaginary
saddle points, which is analogous to the case in the holographic model.

In all phases, the U(1) current is

Jµ =
δSα
δAµ

= −ρsq(∂µα− qAµ) . (72)

The Kubo formula in Euclidean momentum space is

Kµν(k) =
δ 〈Jµ(k)〉
δAν(k)

= −ρsq2

(
δµν − kµkν

k2 +m2

)
. (73)

After Wick rotating to real time, the superfluid conductivity along the x direction is

σs(ω) =
Kxx(i(ω + iε), k = 0)

i(ω + iε)
= ρsq

2

(
πδ(ω) +

i

ω

)
. (74)

The integral of the spectral weight is∫ ∞
−∞

Reσs(ω)dω = πρsq
2, (75)

which depends on the sources M and M̄ via ρs only. Notice that from (75), no actual
violation of the sum rule can be deduced, as we are considering the phase fluctuation at
quadratic order in (69) and ignoring the existence of loop corrections coming from both
phase and absolute value (Higgs mode) fluctuations, which is the reason for the absence
of the normal (not superconducting) contribution to the conductivity. In summary, the
rotor model (64) reproduces the behavior of the condensate in all three phases found in
the holographic model (4).
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5 Conclusions

In this work, we studied the solution structure and AC conductivity for the non-Hermitian
holographic model of [1], both at zero and at finite density. The solution space we ex-
amined consisted of the two sources of the U(1) complex scalar operator M and M̄ , the
temperature T , and chemical potential µ. The PT -symmetric non-Hermitian deformation
consists of effectively decoupling M and M̄ , where in the usual Hermitian setup, M̄ is
the complex conjugate of M . The PT deformation switches on sources for the scalar
operators 〈O〉 and

〈
O†
〉
, which in the Hermitian case also are complex conjugate to each

other. Both operators receive expectation values, i.e. condensates 〈O〉 and
〈
O†
〉
. Note

that the sources M and M̄ break the U(1) symmetry explicitly, and not spontaneously as
in the holographic superconductor of [40].

Within the explored solution space, there are two PT -symmetric phases at finite tem-
perature with real (phase I) and imaginary (phase II) condensates, respectively, which
have already been constructed in [1]. The finite temperature solutions in phase II ap-
proach the exceptional point in a zero temperature limit in which the ratio N/T is held
fixed. We furthermore calculated the free energy in phase II (c.f. Fig. 3b), and in this way
identified the thermodynamically dominant solution branch. Since the exceptional point
in the holographic model [1] is exactly AdS4, the phase diagram Fig. 1 suggests that phase
II is actually part of a quantum critical region at finite temperature, which emanates from
the quantum critical exceptional point at zero temperature.

We also presented and discussed in detail the emergence of a PT -broken finite temper-
ature phase with complex condensates (phase III). We checked that our finite temperature
solutions approach, in the zero temperature limit, the complex conjugate pair of extremal
solutions constructed in [1]. A peculiar feature of our finite temperature solutions in phase
III is that the metric sourced by the scalar field also becomes complex, while it remained
real in phases I and II. Requiring the absence of a conical singularity at the horizon implies
that the temperature acquires an imaginary part in phase III. While a complex tempera-
ture seems puzzling at first, as discussed in App. D, a similar phenomenon appears in the
double cone geometry of JT gravity. In addition, we quantified the transition point from
phase II to phase III, which occurs at a critical value of (N/T )c ≈ −3.6. We note that
in general, this value is a function of the conformal dimension ∆ = 2, the charge of the
scalar field q = 1, and the coefficient of the quartic term in the action v = 3/2. For future
work, it will be interesting to explore the parameter space (∆, q, v) thoroughly in order to
further analyze the phase structure of PT deformed holographic Einstein-Maxwell-scalar
theory [51,69]. In addition, following [70] and analysing quantum critical points from the
top-down perspective should be insightful as well.

Furthermore, we calculated the AC conductivity for each of the three phases and
observed a shift of spectral weight to a delta function at zero frequency as a function of
the PT breaking parameter N . Zero frequency spectral weight can be induced by the
condensation of charged operators as well as by normal charge densities, with the latter
being absent at zero chemical potential. We found that the zero frequency spectral weight
induced by the condensate is positive in phase I, negative in phase II, and complex in
phase III, leading to a delta function and a 1/ω pole in both Reσ and Imσ. Still, in all
three cases, a mode analysis in the (Ax, gtx) channel related to the longitudinal charge
transport shows that the Kramers-Kronig relations hold, as all quasinormal modes are
in the lower half frequency plane. Moreover, the quantum critical conductivity, which
is the DC limit of the real analytic part of the AC conductivity, is suppressed in phase
I and enhanced in phase II, as compared to the value σQ = 1 (in units of e2/h) for the
AdS-Schwarzschild solution. We also extracted the quantum critical conductivity in phase
III, finding a complex value for σQ due to the breakdown of the relation (52) In contrast,
if (52) holds, the imaginary part of σQ always vanishes. We also observe that the FGT
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sum rule always holds from two perspectives: 1) as a direct integral of the real part of the
AC conductivity, and 2) from the analysis of the quasi-normal mode spectrum. The sum
rule holds both in the PT -symmetric and broken phases, and is in essence responsible for
the suppression or enhancement of the quantum critical conductivity due to the spectral
weight in the δ(ω) pole.

We also constructed and analyzed a complexified U(1) rotor model with an analogous
PT -symmetric deformation from effective field theory principles. By tuning the sources
of the scalar operators, we find real, imaginary and even complex solutions. The nonzero
sources break the U(1) symmetry explicitly, and pseudo-Goldstone bosons with a finite
mass appear. We studied the AC conductivity in all phases of the rotor model. We found
an analogous shift of spectral weight to the delta functions at zero frequency as in the
holographic model. The spectral weight is given by the condensates. The rotor model
also admits some differences to the holographic model: First, from (75), we find that the
apparent violation of sum rule in all phases, as we only consider the phase fluctuation
around the saddle point in the rotor model, instead of solving the whole model, including
the absolute value of the scalar field. Second, as evident from the left panel of Fig. 11, in all
three phases, the rotor model has one or more additional complex solution compared to the
holographic model Fig. 3. However, this does not necessarily mean that the holographic
model has another solution that we possibly missed in our numerical analysis. As all
the properties of the solutions of the holographic model are reproduced by at most two
solutions of the rotor model, it looks as if the additional solution in the rotor model is
just a spectator which does not play any role in the universality argument.

For future work, it will be interesting to investigate PT -symmetric non-Hermitian
versions of superconductivity in holography [71], and compare to recent field theory studies
[72–78], as well as to holographic hydrodynamics [79]. Another interesting route is to
further investigate PT -symmetric deformations of SYK-type models, following [80–85].
Finally, it will be interesting to calculate the quantum critical conductivity from kinetic
theory in a PT -symmetric Dirac metal along the lines of [86], in order to understand how
sensitive is the suppression/enhancement feature we found in the holographic model to
the coupling strength.

Finally, in this paper, we use the standard GKPW relation (7) in Euclidean time and
analytically continue it to Lorentzian time (9). This defines a particular holographic time
evolution in the presence of the PT deformation. Alternatively, some studies [60, 61, 87]
consider a Hermitian density matrix ρ such as the Gibbs state ρ ∝ e−βHCFT , and define real

time evolution as e−iH
†tρeiHt with the non-Hermitian Hamiltonian H. Correspondingly,

the Heisenberg picture of an operator O becomes O(t) = eiH
†tOe−iHt, and the expectation

value will in general be time-dependent,

〈O(t)〉 = Tr[eiH
†tOe−iHtρ] . (76)

Obviously, this is different from the holographic construction considered here and in [1],
where the background solutions are all static, i.e. time-independent. Also, the evolution in
(76) will not be invariant under the complexified U(1) transformation, as eθQH†e−θQ 6=
(eθQHe−θQ)† for a general θ ∈ C. To compute the expectation value (76) with ρ ∝
e−βHCFT and the non-Hermitian HamiltonianH in (6) in holography, we could first prepare
an Euclidean black hole at temperature 1/β without sources, next apply a quench on one
side with HCFT +

∫
dd−1x (MO† + M̄O) for time t and a quench on the conjugate side

with HCFT +
∫
dd−1x (M̄∗O† + M∗O) for time t, then measure the observable O, and

finally glue the two sides together following [88,89]. We leave it for future work [90].
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A A fermion model with PT symmetry

In this appendix, we will give a simple model with PT symmetry, and to be specific,
consider the 1 + 1 dimensional Hamiltonian of fermion as in [91],

H =

∫
dx
(
−iψ̄ /∇ψ +NO1

)
=

∫
dx
(
−iψ̄ /∇ψ +NO† +NO

)
, (77)

O1 = ψ̄ψ, O5 = ψ̄γ5ψ, O1 = O† +O, O5 = O† −O, (78)

with N ∈ R and ψ̄ = ψ†γ0. In 1 + 1 dimensional spacetime, the conventions are adopted
as follows,

γ0 = σ1, γ1 = iσ2, γ5 = γ0γ1 = σ3, (79)

where σ1,2,3 are Pauli matrices. To relate it to the PT symmetry in the main text, one
can consider a redefinition of operators as the last step of (77). The actions of P and T
transformations on the fermion are

Pψ(x, t)P = γ0ψ(−x, t), Pψ̄(x, t)P = ψ̄(−x, t)γ0, (80)

T ψ(x, t)T = γ0ψ(x,−t), T ψ̄(x, t)T = ψ̄(x,−t)γ0. (81)

The transformations on the scalar and pseudo-scalar are the following,

PO1(x, t)P = O1(−x, t), PO5(x, t)P = −O5(−x, t), (82)

PO(x, t)P = O†(−x, t), PO†(x, t)P = O(−x, t), (83)

T O1(x, t)T = O1(x,−t), T O5(x, t)T = −O5(x,−t), (84)

T O(x, t)T = O†(x,−t), T O†(x, t)T = O(x,−t). (85)

So obviously, the Hamiltonian H is Hermitian and also satisfies P and T symmetries,
respectively

H = H† = PHP = T HT . (86)

Furthermore, we consider the the charge transformation and chiral transformation

ψ → e−iϕψ, ψ → e−iθ
′γ5

ψ, (87)
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respectively. The theory is invariant under the charge transformation for general N and
is invariant under the chiral transformation when N = 0. The charge current and axis
current corresponding to these symmetries are respectively

jµ = ψ̄γµψ, jµ5 = ψ̄γµγ5ψ, (88)

both of which are Hermitian. Although the chiral symmetry is broken when N 6= 0, the
Ward identity still vanishes, i.e.

〈∂µjµ5 〉 = iN 〈O5〉 = iN 〈PO5P〉 = −iN 〈O5〉 = 0, (89)

where 〈X〉 denotes Tr[Xe−βH ]. It shares the same feature as the holographic Ward identity
(26).

To construct non-Hermitian PT -symmetric Hamiltonian, one can define the Dyson
map as the chiral transformation with the generator being the (rescaled) axis charge

Q = −1

2

∫
dxψ†γ5ψ. (90)

So the Dyson map transforms the scalars as the following forms [91]

eθQOe−θQ = eθO, eθQO†e−θQ = e−θO†, (91)

with θ ∈ C. Ultimately, the Dyson map transforms the Hamiltonian H into a non-
Hermitian one

Hθ = eθQHe−θQ

=

∫
dx
(
−iψ̄ /∇ψ +MO† + M̄O

)
=

∫
dx
(
−iψ̄ /∇ψ +m1O1 +m2O5

)
, (92)

where

e−θN = M = m1 +m2, eθN = M̄ = m1 −m2, tanh θ = m2/m1. (93)

Now we realize that the Dyson map corresponds to a complexified U(1) transformation,
which is analogous to (12). Consequently, both MM̄ = N2 and eθQO†Oe−θQ = O†O
are invariant under the complexified U(1) transformation. The original theory has the
non-negative invariant N2. However, we could generalize it to the whole real axis R. The
source terms in Hθ share the same form as the holographic model (4) and rotor model
(64).

One can check that both of the currents in (88) commute with Q. Thus, their trans-
ports are invariant under the Dyson map.

The Hθ with MM̄ = N2 ∈ R is invariant under the combination of another Pθ and T
transformations. We define a new parity Pθ as

Pθ = e2ImθQP. (94)

Hθ is non-Hermitian but is PθT -symmetric, namely

H†θ 6= Hθ, PθT HθPθT = Hθ, (95)

where we have used PT QPT = Q [3].
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B Instability analysis

We study the stability of the solution in holography by examining the QNM. Following [1],
we only consider the perturbation on the matter fields, as this set will provide a consistent
set of equations alone. The following ansatz of perturbations is introduced

δA = (at(z)dt+ ax(z)dx)e−iωt+ikx, δφ = −δφ̄ = δϕ(z)e−iωt+ikx, (96)

so that the perturbation on energy-momentum tensor vanishes, that is δTµν ∼ φδφ̄+φ̄δφ =
0. The perturbation equations are

kue−χz2a′x + ωz2a′t + 2quϕe−χδϕ′ − 2δϕque−χϕ′ = 0, (97)

keχωat
u2

+ ax

(
eχω2

u2
− 2q2ϕ2

uz2

)
+ a′x

(
vϕ4

2uz
− ϕ2

uz
+

3(u− 1)

uz

)
+ a′′x +

2δϕkqϕ

uz2
= 0,

(98)

kqϕax
u

+
qϕeχωat

u2
+ δϕ′′ + δϕ

(
u
(

2
z2 − k2

)
+ eχω2

u2
− 2vϕ2

uz2

)
+

δϕ′
(
vϕ4

2uz
− ϕ2

uz
+
u− 3

uz

)
= 0. (99)

From applying local gauge transformation, we find that

at = −ω, ax = k, δϕ = qϕ(z) (100)

is always a solution. To calculate the QNM on the asymptotic boundary, we require zero
sources up to the gauge transformation (100), namely

qat(0)ϕ′(0) + ωδϕ′(0) = qax(0)ϕ′(0)− kδϕ′(0) = 0. (101)

Near the horizon, we impose ingoing boundary conditions and find the following expan-
sions

at =(zh − z)−iω/(4πT )+1

(
−kaxh + 2qδϕhϕh

1/ (4πT ) + i/ω
e−χh/2 +O(zh − z)

)
, (102)

ax =(zh − z)−iω/(4πT ) (axh +O(zh − z)) , (103)

δϕ =(zh − z)−iω/(4πT ) (δϕh +O(zh − z)) , (104)

where the two coefficients axh and δϕh are determined by the asymptotic boundary con-
ditions (101).

Given a background solution, frequency ω and momentum k, we can transform the
QNM of the perturbation equations (97) and the boundary conditions (101)(102) into the
null vector of a matrix D̃. By finding the poles of 1/ det D̃ in the complex ω plane with a
given k, we can find the QNM. We show the most important pole in Fig. 12, where the
frequency ω could cross the upper half plane at low momentum, which would signal the
onset of the instability. However, we find that this mode triggers a shift on the chemical
potential with at(0) = δµ.

C Analytic conductivity in the probe limit

We aim here to derive an approximate expression of the conductivity and study the sum
rule on the neutral background with small source. For this, we disregard the normalizable
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Figure 12: The unstable QNMs in phase II and III (from the left to the right) with N/|T | =
1.71, 2.15 respectively.

mode in the near boundary for the scalar field in the equation (59), so that ϕ ≈ Nz 2.
Adopting the notation 2q2N2 ≡ k2 and rescaling zh → 1, we rewrite (59) as

a′′ +
u′

u
a′ +

(
ω2

u2
− k2

u

)
= 0. (105)

where k2 is positive (negative) in phase I (phase II). The solution of this differential
equation is expressed in terms of the Heun function Hl(a, q;α, β, γ, δ; z)

a(z) = c(1− z)
−iω

3 (z − z0)
−iω
3z20 (z − z2

0)
−iω
3z0

·Hl

(
−z0,−

k2

z2
0 − 1

; 0, 2, 1− 2iω

3
, 1− 2iω

3z0
;

1− z
1− z2

0

)
, (106)

where c is an integration constant and z0 = −1+
√

3i
2 . The retarded Green’s function and

the conductivity are found to be

GR(ω) =
1

3(z2
0 − 1)

·

3H ′l

(
−z0,− k2

z2
0−1

; 0, 2, 1− 2iω
3 , 1− 2iω

3z0
; 1

1−z2
0

)
Hl

(
−z0,− k2

z2
0−1

; 0, 2, 1− 2iω
3 , 1− 2iω

3z0
; 1

1−z2
0

) +
iω(z5

0 − z3
0 + 2z2

0 − 2)

z3
0

 , (107)

and

σ(ω) = 1 +
1√

3− 3i

 2H ′l

(
1−i
√

3
2 ,− 2ik2

√
3−3i

; 0, 2, 1− 2iω
3 , 1− 4ω

3
√

3+3i
; −2i√

3−3i

)
ωHl

(
1−i
√

3
2 ,− 2ik2√

3−3i
; 0, 2, 1− 2iω

3 , 1− 4ω
3
√

3+3i
; −2i√

3−3i

)
 , (108)

where the prime in the numerator denotes the z-derivative. In the low frequency limit,
the conductivity takes the form

σ(ω) ≈ 2N2q2

(
πδ(ω) +

i

ω

)
+ regular terms. (109)

This result is compatible with (62) at T → 0 (notice that this implies ρn → 0), and the
leading term of ρs takes 2N2.

The limit we take in this section is equivalent to |k| � 1, within this constraint we
found out that the sum rule still holds. As can be seen from Fig. (13), in the high frequency
regime, the integrated spectral weight (55) decreases in power law (left) and there is no
pole in the upper-half plane and the real axis of the complex frequency (right). This
justifies the two conditions from [55].

2We thank Jie Ren for helpful discussions and comments.

27



SciPost Physics Submission

0.001 0.010 0.100 1 10 100

10
-4

0.001

0.010

0.100

ω

1

2
N
∫ -

ω
ω

d
Ω

(R
e
[σ

(Ω
)]
-

1
)

k=0.01

k=0.03

k=0.05

k=0.07

k=0.09

(a) Weight W (ω) vs. frequency ω. (b) Poles (white points) in the com-
plex frequency plane for k = 0.01.
The color denote the phase.

Figure 13: (a) Integral weight Sσ(Ω)/N as a function of the frequency. From the scaling-law
decay at large ω, the second condition of the sum rule is proved. (b) No poles on the upper-
half plane and the real axis of complex frequency, this proves the first condition of the sum
rule. Both figures correspond to phase I.

D Complex temperature of the double cone geometry

Complex metrics and complex time periods are not rare in holography. We take the double
cone geometry in [17] as an example, where the bulk theory is JT gravity and the boundary
theory is a 0 + 1 Schwarzian action with a Hermitian Hamiltonian H. The double cone
geometry is dual to the ramp of the spectral form factor (SFF) of the boundary theory

Tr[e−(β+iT )H ]Tr[e−(β−iT )H ], β, T ∈ R, (110)

which has complex inverse temperatures β + iT and β − iT . The ramp in the connected
part of SFF is contributed by a semiclassical double cone geometry, with metric

ds2 = −
(

sinh ρ+ i
β

T
cosh ρ

)2

dt̃2 + dρ2, t̃ ∼ t̃+ T̃ , T̃ ∈ R, (111)

where the periodicity T̃ defined in [17], is the auxiliary inverse temperature parameterizing
the solutions that contribute to the ramp. For the right factor Tr[e−(β−iT )H ] in (110),
the induced metric on the right UV cutoff slice of the double cone geometry satisfies the
boundary condition

dτ2
bdy

ε2
= −

[
eρε

2

(
1 + i

β

T

)]2

dt̃2 . (112)

Upon identification of T = 1
2εe

ρε T̃ , this agrees with a complex period in τbdy ∼ τbdy +

β − iT , where a possible real factor was absorbed into T̃ . In summary, both of the line
elements in (41) and (112) are complex, and hence the coordinates τ in (41) and t̃ in (112)
play the similar roles.
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E A two-level system with PT symmetry

Here we review the non-Hermitian two-level model with PT symmetry and discuss the
PT symmetry breaking at finite temperature. Consider a non-Hermitian Hamiltonian of
two-level system

H = σ1 + i
√

1−N2σ3, (113)

where N2 ∈ R and σ1,3 are Pauli matrices. It is PT -symmetric with P = σ1 being parity
and T being the complex conjugate. The eigenvalues are E± = ±N . They are real when
N2 ≥ 0 and imaginary when N2 < 0. So the PT symmetry is spontaneously broken at
zero temperature when N2 < 0.

Consider the canonical ensemble e−βH at finite temperature T = 1/β. The partition
function, free energy, energy, and average entropy are respectively

Z = 2 cosh (βN) , (114)

F = − 1

β
log (2 cosh (βN)) , (115)

E = −N tanh (βN) , (116)

S = log (2 cosh (βN))− βN tanh (βN) . (117)

We plot ReF on the N2-T plane in Fig. 14. We call the region of N2 ≥ 0 phase I, in which
the spectrum and the free energy are both real. The region of N2 < 0 and |N | < πT/2 is
phase II, in which the spectrum is complex but the free energy remains real. The region
of N2 < 0 and |N | > πT/2 is phase III, in which the spectrum is complex and the free
energy encounters the first branch cut along the real axis of β at βN = π/2, as shown in
Fig. 15. β must deviate from the real axis and continue to the upper or lower half plane
such that F takes complex conjugate values on the two half planes. The phase structure
presented in Fig. 14 is analogous to that in the holographic model as shown in Fig. 1. The
emergence of complex temperature on the phase boundary between phases II and III also
evokes the complex solutions with complex temperatures, as we find in holography.

Furthermore, in order to get the eigenvalues E± from the canonical ensemble in the
zero-temperature limit, we could introduce an imaginary angle to the inverse temperature
β = |β| (1 ± iε) with ε > 0 and send |β| → ∞. Taking the branch from analytical
continuation, we get the two eigenvalues from both free energy F and average energy E,

F → ±N, E → ±N. (118)

Similar limit behavior appears in the holographic model where the N2/ |T |2 → −∞ limit
of the solutions in phase III gives the zero temperature solutions.

F Holographic renormalization

By using the holographic renormalization in [92,93], we can determine the thermodynamic
quantities including the grand potential density ωG, charge density ρ, energy density ε,
and pressure p. We follow the same approach as in [94, 95]. Firstly, in order to derive
the on-shell action Son−shell, we need the extrinsic curvature Kµν and scalar K, which are
defined by

Kµν =
1

2
√
gzz

∂zγµν , K = Kµνγ
µν , (119)
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Figure 14: The real part of free energy
Re(F ) on the N2-T plane. The black
curves denote the phase boundaries.

Figure 15: Free energy F on the com-
plex plane of β at N = iπ/2. The white
segments are branch cuts. The argument
arg(F ) is denoted by color.

where γµν is the induced metric on a constant z slice, where µ, ν stand for the (t,x)
indexes. Inserting the on-shell relation for the Ricci scalar,

R = 2V +D†aφ̄D
aφ, V = −d(d− 1)

L2
+m2φ̄φ− vφ̄2φ2 , (120)

into the action (4) and after some further manipulations, we arrive at3

Son−shell =

∫ zh

zΛ

d4x∂z

[
−2

3

(√
−γK

)
− 1

3
A
(√
−gF z0

)]
+ 2

∫
zΛ

d3x
√
−γK , (121)

where the first term is split into two surface integrals on the boundary and horizon from
Gauss theorem. The action (121) diverges when zΛ → 0. This can be canceled by adding
the following boundary counterterms (we set ∆ = 2)

Sct =

∫
z=zΛ

d3x
√
−γ
[
4 + φφ̄

]
, (122)

so that the renormalized action Sren in (7) reads

Sren = lim
zΛ→0

[Son−shell + Sct] . (123)

Near the boundary (z → 0), the bulk fields read

φ = Mz + φ2z
2 + · · · , φ̄ = M̄z + φ̄2z

2 + · · · ,

u = 1 +
MM̄

2
z2 + u3z

3 + · · · , χ =
MM̄

2
z2 +

2

3
(Mφ̄2 + M̄φ2)z3 + · · · , (124)

A = µ+ a1z + · · · .

To express the horizon integral in (121) in terms of the boundary data, we evaluate the
constraint equation (30) on the boundary and horizon, namely

1

4π

[
−µρ+ 2(Mφ̄2 + M̄φ2)− 3u3

]
=
Ts

4π
, (125)

3In this section, as well as in the whole work, we employ GN = 1
16π

units.
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where T is the black hole temperature and s is the entropy density. Finally, we express
the renormalized action (123) in terms of the boundary data, obtaining

ωG = u3 − (Mφ̄2 + M̄φ2) , (126)

The remaining thermodynamic quantities can be determined by considering variations of
the of the renormalized action with respect to the boundary sources

〈Tµν〉 = −2 lim
z→0

1

z2

[
−
√
−γΠµν +

δSct
δγµν

]
, (127)

〈O〉 = − lim
z→0

z

[
−
√
−ggzz∂zφ+

δSct
δφ̄

]
, (128)

〈O†〉 = − lim
z→0

z

[
−
√
−ggzz∂zφ̄+

δSct
δφ

]
, (129)

〈Jµ〉 = − lim
z→0

[√
−ggzzgµαFzα

]
, (130)

where Πµν = Kµν − γµνK is the Brown-York tensor. Evaluating the expressions (127)-
(130) at the boundary by means of the expansions (124) yields

〈T 00〉 = ε = −2u3 +Mφ̄2 + M̄φ2 , (131)

〈T ii〉 = p = −u3 +Mφ̄2 + M̄φ2 , (132)

〈O〉 = φ2 , (133)〈
O†
〉

= φ̄2 , (134)

〈J0〉 = ρ = −a1 , (135)

From here, we notice that the pressure p = −ωG, as expected. In addition, the Ward
identity for the trace of the stress tensor reads

〈Tµµ〉 = ηµν〈Tµν〉 = M
〈
O†
〉

+ M̄ 〈O〉 , (136)

which has the expected form. Furthermore, after combining (131) and (132), we find the
Gibbs-Duhem relation

ε+ p = −3u3 + 2(Mφ̄2 + M̄φ2) = µρ+ Ts, (137)

where we have made use of the constraint (125), as well as of (135).
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