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Abstract

We develop a method for finding the independent invariant tensors of a gauge theory.
Our method uses a theorem relating invariant tensors and constant configurations in
field space. We apply our method to an SU(3) gauge theory with matter in the adjoint,
and find the independent invariant tensors of this theory.
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1 Introduction

There has been much interest recently in finding the invariants for gauge field theories with
multiple fields in various representations. These are important because in a confining the-
ory, the physical spectrum is composed of gauge-invariant states. Similarly, tests of duality
conjectures in supersymmetric gauge theories [?] require a knowledge of the gauge invariant
operators [?, 3, 4]. Powerful calculational methods have been developed for these invariant
tensors in gauge theories (for some of the mathematical literature relevant to invariant theory
see: [5] – [8]). However, one of the important questions which is not fully addressed by these
methods is: how many independent tensors exist in a given theory?

The method commonly used to address this latter question is the computation of the Hilbert
series, which provides a generating function for the number of invariants of a given degree in
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the fields (see e.g. [9–22]). This can be used to try and find the independent invariants, at
least for low degrees in the fields. However, except in a few cases, it is not possible to calculate
to arbitrary degree (especially if there are large representations) and it is therefore often not
possible to establish the complete set of invariants of the theory using this method.

Here we apply an alternative approach (see also [23,24]) by using a theorem stating that
there is a one-to-one correspondence between invariant operators and gauge-fixed configu-
rations of the fields (a precise statement is in [25]). The logic of the theorem is simple. An
arbitrary constant configuration of the fields can be gauge-fixed; that is, one can use gauge
transformations to eliminate some parameters of the configuration until the gauge transfor-
mations are exhausted (this assumes that both the fields and the gauge symmetries are com-
plexified). The remaining parameters are all, by construction, gauge-invariant operators. In
this gauge, there is therefore an obvious one-to-one correspondence between parameters of
the configuration and the gauge-invariant operators. This will then continue to hold in any
gauge.

The approach to finding the basis set of invariants is then straightforward. We should
consider all possible configurations of the fields and gauge-fix each configuration so that the
gauge symmetry is broken. In this specific gauge, each remaining parameter of the configura-
tion would be an invariant tensor. Finally we would then find a set of invariant tensors that
would reduce to these tensors in the special gauge.

We here apply this approach to a theory with SU(3) gauge group and fields in the adjoint
representation. Partial results for the Hilbert basis have been obtained before for these the-
ories [26], [27]. These theories are interesting, firstly because adjoint representations occur
in many models that go beyond the Standard model, such as grand unified theories. Sec-
ondly, these appear to difficulties matching chiral operators in theories that include adjoint
fields [28]. This suggests the importance of understanding the invariant operators. Finally
these theories are simple enough that our methods can be applied fairly straightforwardly.
Here we are able to explicitly find the basis set of invariants for this theory.

In the next section, we perform a preliminary evaluation of the number of invariants at low
degree in the fields. Since we are interested in the symmetry structure of these invariants, and
that is not supplied by the Hilbert series, we use a different approach using the LIE program,
which allows us to find the symmetries for which independent invariants should exist. We
then find explicit expressions for these invariants. These have up to six fields. To verify that
these form a complete set, we apply the theorem described above, and gauge fix one of the
fields. Generically, this gauge fixing leaves a residual U(1)×U(1) symmetry, and for a special
set of choices, the gauge-fixing leaves a residual SU(2)× U(1) symmetry.

In each case, we find the gauge-fixed invariants; i.e. the combinations of fields invariant
under the residual symmetry. We then verify that all gauge fixed invariants can be repro-
duced from the list of SU(3) invariants, thereby establishing that we have found the full set of
independent invariants. We conclude with a summary of results and ideas for future work.

2 Enumeration of Invariants

We start by counting invariants in a manner similar to the Hilbert series. However, since we
are interested in finding invariants with specific symmetry structures, and this is not provided
by the Hilbert series, we take a slightly different route.

To look for these invariants, we use the program LIE [29]. The program can calculate
the decomposition into SU(3) representations of any combinations of adjoints with any flavor
symmetry. We use it to compute the the number of invariants of any combination of up to
seven SU(3) adjoints.
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We must however note that many invariants found by LIE are not independent, but are
rather products of smaller invariants. For example from LIE, we find one invariant with two

fields with the symmetry . With four fields, we find two invariants with symmetry .
However, we know that we can take a product of two of the two-field invariants which has the

symmetry . Subtracting this off, we find one new independent invariant with symmetry

.
We repeat this process for all possible combinations of up to six adjoints. For each possible

symmetry of the fields (shown in the first column as a list of the number of boxes per row
in the corresponding Young tableau) we use LIE to find the number of invariants (shown
in the second column) with that symmetry. (Note that the Hilbert series would provide us
with the total number of invariants with a given number of fields, but here we have a more
detailed picture.) We then subtract off any invariants that can be written as a product of
smaller invariants; these are shown in the following column of the table. The net number
of independent invariants after subtraction is shown in the final column. We have found no
invariants with seven adjoints; for conciseness, we have not shown the calculations for seven
adjoints.

Tableau # Invts Subtract Net

(2) 1 - 1
(1,1) 0 - 0

(3) 1 - 1
(2,1) 0 - 0

(1,1,1) 1 - 1

(4) 1 (2)(2) 0
(3,1) 0 - 0
(2,2) 2 (2)(2) 1

(2,1,1) 1 - 1
(1,1,1,1) 0 - 0

(5) 1 (2)(3) 0
(4,1) 1 (2)(3) 0
(3,2) 1 (2)(3) 0

(3,1,1) 2 (1,1,1)(2) 1
(2,2,1) 1 - 1

(2,1,1,1) 1 (1,1,1)(2) 0
(1,1,1,1,1) 1 - 1

Tableau # Invts Subtract Net

(6) 2
(2)(2)(2)
(3)(3) 0

(5,1) 0 - 0

(4,2) 3
(2)(2)(2)
(2,2)(2)
(3)(3)

0

(3,3) 1 - 1

(4,1,1) 2
(1,1, 1)(3)
(2,1, 1)(2) 0

(3,2,1) 2
(2,2)(2)
(2,1, 1)(2) 0

(2,2,2) 3
(2)(2)(2)
(2,2)(2)

(1,1, 1)(1,1, 1)
0

(3,1,1,1) 3
(2,1, 1)(2)
(1,1, 1)(3) 1

(2,2,1,1) 1 (2,1,1)(2) 0
(2,1,1,1,1) 1 (1,1,1)(1,1,1) 0

(1,1,1,1,1,1) 0 - 0

3 The Explicit Form of the Invariants

At this point, we have found that a number of invariants should exist. We here try to find
explicit expressions for these invariants.

We are considering a theory with a gauge symmetry of SU(3), and N matter fields trans-
forming in the adjoint of SU(3). We denote the adjoints as X I

i j̇
where i, j̇ (the gauge indices)

are the fundamental and antifundamental indices of SU(3), and I = 1..N labels the different
fields. We shall call the I index a flavor index in analogy with the flavors in particle physics.
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We shall use lower case indices for gauge indices and upper case for the flavor indices.
The general constant configuration of these adjoints is of the form

X I =





X I
11̇

X I
12̇

X I
13̇

X I
21̇

X I
22̇

X I
23̇

X I
31̇

X I
32̇

X I
33̇



 (1)

Under a gauge transformation,

δX I = [iαa ta, X I] (2)

where ta are the Gell-Mann matrices.
A general invariant is of the form

Tr
�

X I · X J .. · X L
�

. (3)

where we define the matrix multiplication

(X I · X J ) j̇
i =
∑

k

(X I) k̇
i (X

J ) j̇
k (4)

The table above shows that there is an invariant with two symmetric indices (corresponding
to the tableau (2)) . This must be

I (1)I J = Tr
�

X I · X J
�

(5)

which is automatically symmetric.
Similarly, there is an invariant with tableau (3) . This must be

I (2)I JK = Tr
�

X {I · X J · X K}� (6)

where all the flavor indices are symmetrized; this symmetrization is indicated by the curly
brackets.

The invariant with tableau (1,1,1) must be

I (3)I JK = Tr
�

X [I · X J · X K]
�

(7)

where all the flavor indices are antisymmetrized; this antisymmetrization is indicated by the
square brackets.

We continue this process for the other invariants obtained in the table above; we then have
the further invariants

(2, 2) : I (4)I JK L = Tr
�

X [I · X J] · X [K · X L]
�

(8)

(2, 1,1) : I (5)I JK L = Tr
�

X [I · X J · X K] · X L
�

(9)

(3, 1,1) : I (6)I JK LM = Tr
�

X [I · X J · X K] · X {LX M}� (10)

(2,2, 1) : I (7)I JK LM = Tr
�

X [I · X J · X K] · X [L · X M]
�

(11)

(1,1, 1,1, 1) : I (8)I JK LM = Tr
�

X [I · X J · X K · X L · X M]
�

(12)

(3,3) : I (9)I JK LMN = Tr
�

X [I · X J] · X [K · X L] · X [M · X N]
�

(13)

(3, 1,1, 1) : I (10)I JK LMN = Tr
�

X [I · X J] · X [K · X L] · X [M · X N]
�

+ (K↔ M) (14)

This is a total of ten possible invariants, with up to six fields.
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4 SU(3) adjoints: The gauge-fixed field space

The calculations in the previous section have yielded a set of independent invariants for the
SU(3) theory with fields in the adjoint. Furthermore, there were no new invariants with seven
fields. However, this argument can never prove that this is truly a complete set. To achieve
this proof, we turn to the theorem described in the introduction, stating that the invariants are
in 1-1 correspondence with the gauge-fixed configurations.

We therefore try to gauge fix the symmetry. Using the complexified SU(3) gauge transfor-
mations, we can bring one adjoint (which we label X 0) to a diagonal form, while the other
fields remain general

X 0 =





a 0 0
0 b 0
0 0 c



 X I =





X I
11̇

X I
12̇

X I
13̇

X I
21̇

X I
22̇

X I
23̇

X I
31̇

X I
32̇

X I
33̇



 (15)

with a+ b+ c = 0.
This gauge fixing partially breaks the SU(3) symmetry. We have typically a preserved

continuous symmetry of U(1)× U(1) generated by

t3 =





1 0 0
0 −1 0
0 0 0



 t8 =





1 0 0
0 1 0
0 0 −2



 (16)

X 0 (and hence a, b, c) are invariant under the action of U(1)× U(1).
We could then try to gauge fix these residual symmetries (using the other adjoints) to find

the gauge invariant parameters. Instead, we can just as well directly look for the U(1)×U(1)
gauge invariant operators describing the configuration (15). Since these are found after gauge
fixing one adjoint, these operators will in general not be manifestly SU(3) invariant. We will
then need to find fully SU(3) invariant operators that are in one-to-one correspondence with
these operators with U(1)× U(1) gauge invariance.

Under the U(1)× U(1) transformations, we have

δt3 X I = δt3





X I
11̇

X I
12̇

X I
13̇

X I
21̇

X I
22̇

X 1
23̇

X I
31̇

X I
32̇

X I
33̇



= iα3





0 2X I
12̇

X I
13̇

−2X I
21̇

0 −X 1
23̇

−X I
31̇

X I
32̇

0



 (17)

δt8 X I = δt8





X I
11̇

X I
12̇

X I
13̇

X I
21̇

X I
22̇

X 1
23̇

X I
31̇

X I
32̇

X I
33̇



= iα8





0 0 3X I
13̇

0 0 3X 1
23̇

−3X I
31̇
−3X I

32̇
0



 (18)

so that we can identify the charges of each component of the adjoint under the U(1)× U(1)
as

Field X I
11̇

X I
12̇

X I
13̇

X I
21̇

X I
22̇

X I
23̇

X I
31̇

X I
32̇

X I
33̇

U(1)1 0 2 1 -2 0 -1 -1 1 0
U(1)2 0 0 3 0 0 3 -3 -3 0

Table 1: Charges of fields under U(1)× U(1)

It is straightforward to find all the combinations of fields invariant under the U(1)×U(1).
These are generated by a small set of operators. These operators can be categorized as

(a) invariants with one flavor index: X I
11̇

, X I
22̇

, X I
33̇
= −X I

11̇
− X I

22̇
.
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(b) invariants with two flavor indices: X I
23̇

X J
32̇

, X I
31̇

X J
13̇

, X I
12̇

X J
21̇

(c) invariants with three flavor indices: X I
12̇

X J
23̇

X K
31̇

, X I
21̇

X J
32̇

X K
13̇

We shall refer to these as the gauge-fixed invariants at the generic parameter point.
We now ask if all the gauge-fixed invariants can be reproduced by the candidate set of

invariants found in the previous section. That is, we replace one or more adjoints in the
candidate invariants by (15), and see if the resulting expressions cover all the gauge fixed
invariants above. We are then assured that there are no further independent invariants at the
generic parameter point.

We try this for the gauge fixed invariants with one flavor index. We find

I (1)0I = aX I
11 + bX I

22 + cX I
33 (19)

I (2)00I = a2X I
11 + b2X I

22 + c2X I
33 (20)

and these are indeed sufficient to reproduce the gauge fixed invariants with one flavor index
for generic a, b, c.

For the invariants with two indices, we must consider both the symmetric and asymmetric
flavor combinations. The three symmetric combinations are reproduced by

I (1)I J = X I
23̇

X J
32̇
+ X I

31̇
X J

13̇
+ X I

12̇
X J

21̇
(21)

I (2)0I J = −2
�

aX I
23̇

X J
32̇
+ bX I

31̇
X J

13̇
+ cX I

12̇
X J

21̇

�

+ ... (22)

I (4)0I0J = 3
�

a2X I
23̇

X J
32̇
+ b2X I

31̇
X J

13̇
+ c2X I

12̇
X J

21̇

�

+ ... (23)

where the ellipses indicate expressions made of products of smaller invariants.
Similarly, the three SU(3) invariants I (3)0I J , I (5)0I J0, I (6)0I J00 reproduce the three antisym-

metric combinations.
In the invariants with three indices, the flavor indices can be completely symmetrized, com-

pletely antisymmetrized or in a mixed symmetry. The two completely symmetric combinations
are reproduced by

I (2)I JK = X {I
12̇

X J
23̇

X K}
31̇
+ X {I

21̇
X J

32̇
X K}

13̇
+ ... (24)

I (9)I0J0K0 = (a− b)(b− c)(c − a)
�

X {I
12̇

X J
23̇

X K}
31̇
− X {I

21̇
X J

32̇
X K}

13̇

�

+ ... (25)

Similarly, the two completely antisymmetric combinations are reproduced by I (3)I JK , I (10)I JK000,
while the mixed structures are reproduced from I (4)I JK0, I (5)I J0K , I (6)I J0K0, I (7)I J0K0.

The invariants in the previous section therefore reproduce all gauge fixed invariants at the
generic parameter point.

5 The Point of Enhanced symmetry

While the analysis above yields the invariants at generic points in parameter space, there
are special points that needs to be considered separately. These are where the symmetry is
enhanced; this can happen when two eigenvalues of X 0 coincide e,g. when b = c.

At this point, the unbroken symmetry generators are

t1 =





0 0 0
0 0 1
0 1 0



 t2 =





0 0 0
0 0 −i
0 i 0



 t3 =





0 0 0
0 1 0
0 0 −1



 t8 =





−2 0 0
0 1 0
0 0 1



(26)
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and the continuous symmetry is enhanced to SU(2)× U(1). The invariants therefore need to
be invariant under SU(2)× U(1).

The SU(3) adjoint decomposes as an adjoint of SU(2),

aI =





X I
22̇
−X I

33̇
2 X I

23̇

X I
32̇

X I
33̇
−X I

22̇
2



 (27)

two doublets,

qI
a = (X

I
12̇

, X13̇) QJ
ȧ = (X

J
21̇

, X31̇) (28)

and a scalar

sI =
X I

22̇
+ X I

33̇

2
(29)

Under the unbroken U(1), the q,Q have charges 3,−3 respectively, while the scalar and
adjoint are neutral.

The U(1) invariants are the scalar, the adjoint ai , and qI ·QJ ≡ qI
aQJ

ȧ, and, qI ·σi·QJ ≡ qI
aσ

i
ȧbQJ

ḃ
.

These are scalars and fundamentals under SO(3). The invariant tensors of SO(3) with funda-
mentals are known to be δi j ,εi jk, which allows us to form the complete set of invariants of
this theory by contracting the invariant tensors with the fundamentals.

Using the Fierz identities

σi
ȧbσ

i
ċd = −δȧbδċd + 2δȧdδċ b (30)

helps us to reduce some of these invariants to products of smaller invariants. Once this is done,
the remaining invariants are

(a) invariants with one flavor index: sI

(b) invariants with two flavor indices: qI ·QJ , aK
i aL

i
(c) invariants with three flavor indices: qI ·σi ·QJ aK

i , εi jkaK
i aL

j aM
k

(d) invariants with four flavor indices: εi jkqI ·σi ·QJ aK
j aL

k
We now see if these can be reproduced from the SU(3) candidate invariants from the

previous section, once we substitute 15.
We find that the invariants with one flavor index are reproduced as I (1)0I = 4sI .
When considering the invariants with two flavor indices, qI · QJ can have either sym-

metrized or antisymmetrized indices, while , aK
i aL

i must have symmetrized indices. The sym-
metrized combinations are reproduced as

I (1)I J = 2aK
i aL

i + 2qI ·QJ + 2QI · qJ + ... (31)

I (2)0I J = 2aI
i aJ

i − qI ·QJ −QI · qJ + ... (32)

while the antisymmetric combination is

I (3)0I J = −3qI ·QJ + 3QI · qJ + ... (33)

For the invariants with three flavor indices, εi jkaK
i aL

j aM
k is completely antisymmetric in

the flavor indices, while qI ·σi ·QJ aK
i can have any symmetry. The completely antisymmetric

combinations are reproduced from

I (3)I JK = qJ ·σi ·QK aI
i +

1
2

aI aJ aK + [I JK] + ... (34)

I (5)I JK0 = −
4
3

qJ ·σi ·QK aI
i +

1
3
εi jkaI

i aJ
j aK

k + [I JK] + ... (35)
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while the completely symmetric combination is reproduced from

I (2)I JK = qI ·σi ·QJ aK
i + {I JK}+ ... (36)

Similarly, the mixed symmetries are obtained from I (4)I JK0.
In the invariant with four flavor indices, the flavor indices of the two ai are antisymmetrized

and are combined with the remaining two indices.
If all indices are antisymmetric, this can be reproduced from

I (8)I JK L0 = 2εi jkqI ·σi ·QJ aK
j aL

k + antisymmetric in IJKL (37)

If three indices are antisymmetric (this corresponds to the Young tableau (2,1,1,1)), these
is the invariant εi jkqI ·σi ·QJ aK

j aL
k with either IKL or JKL antisymmetrized. These are found

to be reproduced from I (5)I JK L , I (6)I JK L0.
The other possibilities are that we have εi jkqI ·σi ·QJ aK

j aL
k with KL antisymmetrized, and

IJ antisymmetrized, or with KL antisymmetrized, and IJ symmetrized. These are respectively
reproduced from I (4)I JK L , I (6)I J0K L .

At this point, we have reproduced all the gauge-fixed invariants, both at the generic pa-
rameter point as well as at the enhanced symmetry point, from the SU(3) invariants listed in
section (3). This proves that this list is a complete set of invariants for the theory.

6 Conclusions

We have discussed a method to determine a set of independent invariants of a theory with a
general gauge group and matter field in a general representation. We have done this by using
a theorem that relates gauge-fixed configurations to the independent invariants in a gauge
theory. Specifically, this theorem asserts that the constant configurations of the fields, identi-
fied by complex gauge transformations, are in one-to-one correspondence with the invariants
in the theory. We have shown that this method provides a straightforward approach to find
the independent invariant tensors.

We have applied these methods to a theory with SU(3) gauge symmetry and with matter
in the adjoint, and found the independent invariant tensors, listed in section (3). There are
10 independent tensors with up to six fields. This generalizes and confirms results of [26,27].

Many other groups and representations remain to be studied; in particular little is known
of the invariant tensors of the exceptional groups. We hope to return to this topic in future
work.
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