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Abstract

We investigate a quantum battery system which yields both of the driven and dissipation.
Furthermore, the coupled two-level charger and battery are immersed in nonequilbrium
boson or fermion reservoirs. We consider the change of the energy spectrum induced
by the external driving to the charger by going beyond the secular approximation and
obtain the Redfield master equation. When the charger and the battery possess the same
transition frequency and the charger is driven in resonance, a bistability can emerge with
the closure of the Liouvillian gap. As a result, the efficiency of the battery depends on the
initial state of the charger-battery system, and certain types of entangled initial states
can enhance the efficiency. In the non-resonance driving regime, the efficiency of the
quantum battery can be optimized by the compensation mechanism for both the boson
and fermion reservoirs. Our investigation is helpful to the design and optimization of
quantum battery in the nonequlibrium open system.
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1 Introduction

The stage is yours. Write your article here. The bulk of the paper should be clearly divided
into sections with short descriptive titles, including an introduction and a conclusion. A central
issue in quantum technology is to explore how to utilize the quantum resource to accomplish
various tasks which can not be realized in the classical counterpart. One of such tasks origi-
nates from the energy storage, which coins the word “quantum battery”. A typical quantum
battery device is composed of a charger which supplies the energy to the battery, and a battery
which is used to store and extract energy.

Ever since the concept of quantum battery was proposed by Alicke and Fannes [1], several
quantum battery models have been put forward in different physical systems, for example, the
spin or resonator chain model [2–7,7–15], the Tavis-Cummings and Dicke model in quantum
optics [16–21], Rydberg atom system [22]. In some of these systems, the Floquent technology
has been used to enhance the performance of the quantum battery [23–25]. Since a quantum
system is inevitable to couple to the reservoirs, the quantum battery which is subject to the
open system is now also evoking significant interests [26–36].

The simplest open system for quantum battery is probably two coupled two-level-system
setup, which is subject to the external environments. One of them is driven by a classical
field and can serve as the charger and the other one can serve as the battery [28]. In this
paper, we further couple the charger and battery with two independent reservoirs that can
exchange energy (for boson reservoirs) or particles (for fermion reservoirs) with the system.
We emphasize that our model is established by a non-equilibrium setup, where the temperature
difference for boson reservoirs or chemical potential difference for fermion reservoirs supplies
the non-equilibrium for the system.

We adopt a quantum master equation approach under the Born-Markovian approximation.
Beyond the Lindblad master equation [37], we derive the Redfield master equation [38, 39],
which is widely applied in the study of quantum transport [40, 41] and photosynthetic reac-
tions [42–44]. To obtain the Redfield master equation, we work in the eigen states represen-
tation by regarding the driving field as part of the open system, since it actually changes the
energy spectrum of the charger-battery system. This is dramatically different from that in the
traditional treatment [28], where the driving is treated as an effective reservoir and is intro-
duced phenomenologically. Furthermore, by taking the non-equilibrium into consideration,
which was shown to induce the steady state coherence and entanglement [45–55], one can
also go beyond the secular approximation, and find out whether the steady state entanglement
is beneficial to increase the efficiency of the quantum battery.

One of the surprising results based on our Redfield master equation approach is the emer-
gence of bistability when the charger and the battery are identical and the charger is driven in
resonance. Such bistability is associated with the Liouvillian gap closure [56–58], and the effi-
ciency of the quantum battery when the charging time becomes very long depends on its initial
state. As for the traditional Lindblad master equation treatment, it yields a unique steady state,
so that the efficiency is initial state independent.

In the above mentioned identical and resonant driving case, certain types of initial entan-
glements can lead to the steady state to be entangled and beneficial for the performance of the
quantum battery. The efficiency can reach its maximum value when the system is immersed
in the equilibrium boson or fermion reservoirs in this case. On the contrary, when the tran-
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Figure 1: Schematic diagram of the quantum battery model under consideration.
The charger and the battery are both two-level systems with transition frequencies
ω1 andω2, respectively. They are immersed in their individual reservoir and coupled
to each other with coupling strength λ. The charger is driven by an external classical
field with strength F and frequency ωd .

sition frequencies of the charger and the battery differ from each other, the efficiency of the
battery is enhanced more than 90% by setting the frequency of the battery larger than that of
the charger and coupling it to the boson reservoir with higher temperature. For the case of
fermion reservoirs, the efficiency is dominantly determined by the charger-battery detuning.
Whether red or blue detuning is beneficial to enlarge the efficiency depends on the sign of the
average chemical potential. In this sense, the efficiency diagram as a function of detuning,
nonequilibrium as well as the driving strength provides important guidelines for enhancing
the efficiency of our simple quantum battery setup.

The rest of the paper is organized as follows. In Sec. 2, we illustrate our model and derive
the Redfield master equation. In Sec. 3, we discuss the bistability emergence and the steady
state entanglement in our system. The efficiency of quantum battery is investigated in resonant
and non-resonant driving in Sec. 4 and Sec. 5, respectively. At last, we give a short conclusion
in Sec. 6.

2 Model and master equation

As schematically shown in Fig. 1, the quantum battery system under our consideration is com-
posed of a charger and a battery, which are both considered as two-level systems. The charger
is driven by a classical field, the charger and the battery are coupled to their individual reser-
voirs following either bosonic or fermionic statistics. In the rotating frame with respective to
the frequency ωd of the driving field, the Hamiltonian of the whole system including reser-
voirs reads H = Hs + HB + V . Here, the Hamiltonian for the charger-battery system is [28]
(ħh= kB = 1 in what follows)

Hs =
∆1

2
σ(1)z +

∆2

2
σ(2)z +λ
�
σ
(1)
+ σ

(2)− +σ(1)− σ(2)+
�

+
F
2

�
σ
(1)
+ +σ

(1)−
�

. (1)

Here, σ(i)m (m = z,+,−) is the Pauli operator for the ith two-level system with transition fre-
quencyωi , and the notation 1 and 2 represents the charger and battery, respectively. ∆i =ωi−ωd
is the detuning between the charger/battery and the driving field, F is the driving strength and
λ is the coupling strength between the battery and the charger.
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The Hamiltonian of the reservoirs reads

HB =
∑

k

(ωbk −ωd)b
†
k bk +
∑

k

(ωck −ωd)c
†
kck, (2)

where bk (b†
k) and ck (c†

k) are the annihilation (creation) operators for the kth mode with fre-
quenciesωbk andωck in the reservoirs in contact with the charger and the battery, respectively.
The Hamiltonian for the system-reservoir coupling can be expressed as

V =
∑

k

gkσ
(1)
x

�
b†

k + bk

�
+
∑

k

fkσ
(2)
x

�
c†

k + ck

�
, (3)

where σ(i)x = σ
(i)
+ +σ

(i)− and gk ( fk) denotes the coupling strength between the charger (bat-
tery) and the kth mode in its contacting reservoir. One should note that we here keep both of
the formal rotating wave terms (i.e., σ(1)+ bk+σ

(1)− b†
k and σ(2)+ ck+σ

(2)− c†
k ) and counter-rotating

wave terms (i.e., σ(1)+ b†
k +σ

(1)− bk and σ(2)+ c†
k +σ

(2)− ck ) in the system-reservoir coupling inter-
action Hamiltonian.

Under the significant approximation and simplification, the conventional Markovian mas-
ter equation for the charger-battery system can be written as

d
d t
ρ = −i[Hs,ρ] +

2∑
i=1

Ji(ωi)Ni(ωi)Dσ(i)+
[ρ] +

2∑
i=1

Ji(ωi)Ni(ω)Dσ(i)−
[ρ], (4)

where DA[ρ] = 2AρA†−A†Aρ−ρA†A, J1(ω) = π
∑

k g2
kδ(ω−ω1) and J2(ω) = π

∑
k f 2

k δ(ω−ω2)
are respectively the spectra of the two reservoirs. One should note that the formal counter-
rotating wave terms in Eq. (3) play no roles in the above master equation. For the boson reser-
voirs, the average particle number on frequencyω in the ith reservoir is Ni(ω) = [exp(ω/Ti)−1]−1

with Ti being the temperature of the ith reservoir and Ni(ω) = Ni(ω) + 1. For the fermion
reservoirs, it becomes Ni(ω) = {exp[(ω−µi)/Ti] + 1}−1 with µi being the chemical potential
of the ith reservoir and Ni(ω) = 1− Ni(ω).

For the above approximated master equation, the effects of both the external driving and
the charger-battery coupling to the energy spectrum are neglected. As a result, the master
equation yields a Lindblad form. In what follows, we will derive the master equations by
taking into account of both of the above two effects and obtain the Redfield master equations
when the classical driving is in and off resonance, respectively.

2.1 Resonant driving

We first consider that the charger and the battery are identical and the charger is driven in
resonance, that is, ∆1 =∆2 = 0. Then, the Hamiltonian of charger-battery system becomes

Hs = λ[σ
(1)
+ σ

(2)− +σ(1)− σ(2)+ ] +
F
2
[σ(1)+ +σ

(1)− ]. (5)

whose eigen values are obtained as

E1 =ω+, E2 =ω−, E3 = −ω−, E4 = −ω+. (6)

with
ω± =

1
2
(
p
λ2 + F2 ±λ). (7)

As a result, it is obvious that E1 > E2 > E3 > E4.
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Furthermore, the eigen states |Ei〉 which satisfy Hs|Ei〉= Ei |Ei〉 are obtained as

(|E1〉, |E2〉, |E3〉, |E3〉)T = U(|ee〉, |eg〉, |ge〉, |g g〉)T , (8a)

(|ee〉, |eg〉, |ge〉, |g g〉)T = U−1(|E1〉, |E2〉, |E3〉, |E3〉)T ,

(8b)

where the unitary transformation U is given by

U =


F

2G+
ω+
G+

ω+
G+

F
2G+− F

2G−
ω−
G− −ω−G−

F
2G−

F
2G− −ω−G− −ω−G−

F
2G−− F

2G+
−ω+G+

ω+
G+

F
2G+

 , (9)

and the inverse transformation is

U−1 = U† =


F

2K+
− F

2K−
F

2K− − F
2K+

K+
2M

K−
2M − K−

2M − K+
2M

K+
2M − K−

2M − K−
2M

K+
2M

F
2K+

F
2K−

F
2K−

F
2K+

 . (10)

In the above equations, we have defined G± =
p

F2 +λ2 ±λpF2 +λ2, K± =
p

F2 ± 2λω±
and M =

p
F2 +λ2.

In terms of the eigen states |Ei〉, we will have

σ(1)x = |ge〉〈ee|+ |ee〉〈ge|+ |g g〉〈eg|+ |eg〉〈g g|
=

F
M
(τ11 +τ22 −τ33 −τ44) +

λ

M
(τ13 −τ24 +H.c.),

(11)

σ(2)x = |ee〉〈eg|+ |eg〉〈ee|+ |g g〉〈ge|+ |ge〉〈g g|
=

F
M
(τ11 −τ22 −τ33 +τ44) +

λ

M
(τ13 +τ24 +H.c.),

(12)

where τi j = |Ei〉〈E j |. Then, performing the rotating wave approximation, the interaction
Hamiltonian becomes

V ≈ ∑
k

gkλ

M
(τ13 bk +τ31 b†

k −τ24 bk −τ42 b†
k) +
∑

k

fkλ

M
(τ13ck +τ31c†

k −τ24ck −τ42c†
k).

(13)

Thanks to the general form of the Markovian master equation

d
d t
ρ = −
∫ ∞

0

dτTrB[VI (t), [VI (t −τ),ρ ⊗ρB]] (14)

with V (t) = exp[i(Hs+HB)t]V exp[−i(Hs+HB)t], we finally reach the Redfield master equa-
tion in the Schödinger picture as

dρ
d t
= Lρ = −i[

4∑
i=1

Ei |Ei〉〈Ei |,ρ] + D[ρ], (15)

where the dissipator reads
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D[ρ] = [Γ1(M) + Γ2(M)][2(τ31ρτ13 +τ42ρτ24)− (τ11 +τ22)ρ −ρ(τ11 +τ22)]

[γ1(M) + γ2(M)][2(τ13ρτ31 +τ24ρτ42)− (τ33 +τ44)ρ −ρ(τ33 +τ44)]

−2[γ1(M)− γ2(M)](τ13ρτ42 +τ24ρτ31)− 2[Γ1(M)− Γ2(M)][τ31ρτ24 +τ42ρτ13].

(16)

with

γi(ω) =
λ2

M2
Ji(M)Ni(M), Γi(ω) =

λ2

M2
Ji(M)Ni(M). (17)

We emphasize that the last line in Eq. (16) comes from the non-secular terms. In the
equilibrium situation, that is, T1 = T2 for boson reservoirs or T1 = T2,µ1 = µ2 for fermion
reservoirs, these terms will disappear. The same situation has also been found in the two-qubit
system, which are immersed in the nonequilibrium reservoirs [52].

2.2 Non-resonant driving

In the non-resonant driving case, that is, ∆1 6= 0 and/or ∆2 6= 0, an analytical solution of the
Hamiltonian in Eq. (1) is cumbersome. However, both the eigen energies and the correspond-
ing eigen states, and hence the unitary transformation U can be obtained numerically.

In the eigen states presentation, we have

σ(1)x =
4∑

i, j=1

χ
(1)
i j τi j ,σ

(2)
x =

4∑
i, j=1

χ
(2)
i j τi j . (18)

where χ(m)i j = 〈Ei |Uσ(m)x U†|E j〉 for m = 1,2. Under the rotating wave approximation, the
interaction Hamiltonian between the charger-battery system and the reservoirs can be written
as

V =
∑
i, j>i

∑
k

�
gkχ

(1)
i j bkτi j + fkχ

(2)
i j ckτi j +H.c.
�

, (19)

where we have ordered the eigen energies by E1 > E2 > E3 > E4. Consequently, the master
equation under Markovian approximation but beyond secular approximation reads

d
d t
ρ = Lρ = −i[

4∑
j=1

E j |E j〉〈E j |,ρ] +D1(ρ) +D2(ρ), (20)

where

D1(ρ) =
∑
i, j>i

∑
m,n>m

∑
α=1,2

Jα(εmn)Nα(εmn)G
(α)
i j,mn[ρ], (21)

D2(ρ) =
∑
i, j>i

∑
m,n>m

∑
α=1,2

Jα(εmn)Nα(εmn)H
(α)
i j,mn[ρ], (22)

and

G(α)i j,mn[ρ] = χ
(α)
ji χ

(α)
mn

�
τ jiρτmn −ρτmnτ ji

�
+χ(α)i j χ

(α)
nm

�
τnmρτi j −τi jτnmρ

�
, (23)

H(α)i j,mn[ρ] = χ
(α)
i j χ

(α)
nm

�
τi jρτnm −ρτnmτi j

�
+χ(α)ji χ

(α)
mn

�
τmnρτ ji −τ jiτmnρ

�
. (24)

In the above equations, we have defined εi j = Ei − E j as the energy level spacing between
the states |Ei〉 and |E j〉.
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In the eigen states representation, the initial state is obtained as |ψ(0)〉e = U†|ψ(0)〉, and
the system undergoes the time evolution which is governed by the master equation in Eq. (16)
or Eq. (20), depending on whether the driving to the charger is in resonance. After a time
interval τ, at which the charging process is supposed to be ended, the system will reach a
state with density matrix ρ(τ). Back to the bare representation and Schödinger picture, we
will have

ρ̃(τ) = U1(τ)Uρ(τ)U
†U†

1(τ), (25)

with U1(τ) = exp[i(σ(1)z +σ
(2)
z )τ].

We formally assume that ρ̃(τ) can be expressed as (in the basis of {|ee〉, |eg〉, |ge〉, |g g〉})

ρ̃(τ) =

 M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

 , (26)

the reduced density matrix for the battery subsystem can be expressed as (in the basis of
{|e〉, |g〉})

ρB =

�
M33 +M11 M12 +M34
M21 +M43 M44 +M22

�
. (27)

In the quantum battery scenario, one of the quantities we are interested is the mean charg-
ing energy EB contained in the battery at the end of the charging process, which is expressed
as [59,60]

EB(τ) = Tr[HBρB], (28)

with HB = ω|e〉〈e|. Another quantity is the ergotropy function EB, whose physical meaning
can be understood as follows.

Considering the state of a quantum system, which is characterized by the free Hamiltonian
H, is given by the density matrx ρ. In terms of spectrum decomposition, ρ and H can be
written as

ρ =
∑

n

rn|rn〉〈rn|, H =
∑

n

en|en〉〈en|, (29)

where rn and en are the eigen values of ρ and H with corresponding eigen states |rn〉 and |en〉.
Grouping the eigen energies as r0 ≥ r1 ≥ r2 ≥ · · · and e0 ≤ e1 ≤ e2 ≤ · · · , we can construct a
quantum state, whose density matrix yields

ρ(p) =
∑

n

rn|en〉〈en|. (30)

When a quantum system is in such a state, it is unable to release energy to the outside, so, the
state ρ(p) is called passive state [59,60]. The energy of the passive state is given by

E(p) = Tr(Hρ(p)) =
∑

n

rnen, (31)

which corresponds to
E(p) =min

U
Tr[HUρB(τ)U

†], (32)

Here, the minimization is performed on all of the local unitaries UB on the battery subsystem,
and this corresponds to the part energy in EB(τ) that is locked into the correlations in the
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Figure 2: Liouvillian gap of the system as a function of ∆ = ∆1 − ∆2 for (a)
boson and (b) fermion reservoirs for the Ohmic spectra. The parameters are
set as F = 0.5λ,ωc = 5λ,α1 = α2 = 0.1λ, ∆̄ = (∆1 + ∆2)/2 = 0 and (a)
T̄ = (T1 + T2)/2= λ and (b) T1 = T2 = λ, µ̄= (µ1 +µ2)/2= 2λ.

system, preventing one from accessing it via local operations on the battery. Therefore, the
ergotropy, which is actually the available energy that can be extracted from the battery is

EB(τ) = EB(τ)− E(p). (33)

For our two-level battery system, the above qualities can be obtained as [28]

EB(τ) =
ω

2
(N + 1), (34)

EB(τ) =
ω

2

�Æ〈σz〉2 + 4〈σ+〉〈σ−〉+ 〈σz〉
�

=
ω

2

�Æ
N2 + 4|N |2 + N

�
, (35)

where N = M11 +M33 −M22 −M44 and N = M12 +M34.
In what follows, we will discuss the characterization of the Liouvillian and the charging

efficiency P(τ) = EB(τ)/EB(τ). We will set τ = 20000/λ when we discuss the quantities on
the steady state. We have checked that the system has achieved the steady state after this time
interval.

3 Bistability and steady state entanglement

In the last section, we have listed the phenomenological master equation and derived the
Redfield master equation for the driven charger-battery system. The master equations in
Eqs. (15,20) show that the Liouvillian superoperator L belongs to the Liouvillian space H⊗H,
where H is the Hilbert space of the quantum system. To fully determine the dynamics of the
system, one has to resort to the spectrum of the superoperator L, with

Lρi = λiρi . (36)

Equivalently, ρi is an eigen right vector of L with eigen value λi . It can be proven that
Re[λi]≤ 0 for arbitrary i. We sort the eigen valuesλi in a way that Re[λ0]< Re[λ1]< · · · < Re[λn],
so Re[λ0] = 0 corresponds to the steady stateρss = ρ0/Tr(ρ0) and the Liouvillian gapΛ = Re[λ1]
is also called the asymptotic decay rate [61], which determines the slowest relaxation dynam-
ics in the long-time limit.
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Figure 3: Tomography [(a) and (c)] and concurrence [(b) and (d)] of the
steady states governed by our Redfield master equation under the nonequilib-
rium boson reservoirs. The initial state is set as |ψ(0)〉 = |eg〉 for (a) and
(b) and |ψ(0)〉 = (|eg〉 + |ge〉)/p2 for (c) and (d). The parameters are set as
F = 0.5λ,ωc = 5λ, T̄ = λ,α1 = α2 = 0.1λ. In (a) and (c), we set ∆T = λ. In
(b) and (d), we set ∆T = 0 for blue solid curve, ∆T/λ = 1 for red dashed curve and
∆T/λ = −1 for green dotted-dashed curve.

The results of Liouvillian gap are demonstrated in Fig. 2 (a) and (b) for the boson and
fermion reservoirs by choosing the Ohmic spectrum with

Ji(ω) = αiωexp(−ω/ωc), (37)

for i = 1,2. The results show that the Liouvillian gap behaves similarly for different non-
equilibrium natures, that is, the temperature difference ∆T = T1− T2 for the boson reservoirs
and the chemical potential difference ∆µ = µ1 − µ2 for the fermion reservoirs. The results
given by the phenomenological master equation [Eq. (4)] show that the Liouvillian gap is
always nonzero, which implies that there is only one steady state as the evolution time tends
to be infinity. On the contrary, for the Redfield master equation [Eq. (20)], it is found that the
Liouvillian gap closes when ∆1 = ∆2 = 0, that is, the charger and the battery are identical,
and the charger is driven in resonance. In this case, the system exhibits bistability. It is then
constructive to investigate the steady state when the charger-battery system is prepared in
different initial states.

Let us firstly consider that the system is prepared in the initial state |ψ(0)〉= |eg〉, that is,
the charger is in the excited state while the battery is in the ground state. A tomography for
the density matrix |ρi j | for ∆1 = ∆2 = 0 is shown in Fig. 3(a) for the boson reservoirs case.
It shows that, the population exhibits an uniform distribution and there exists some minor
coherence. For the same initial state, we plot the steady state concurrence C [62,63] in Fig. 3
(b), which quantifies the entanglement for a two two-dimension composite quantum system
as a function of ∆ for ∆̄ = 0. We observe C = 0 at ∆ = 0, in which the charger is driven in
resonance. Away from the resonant driving ∆ 6= 0, a non-zero entanglement emerges and the
non-equilibrium nature of the reservoir can enhance the steady entanglement. As shown in
Fig. 3 (b), the values of C for ∆T/λ = 1 (red dashed curve) and ∆T/λ = −1 (green dotted-
dashed curve) are higher than that for ∆T = 0 (blue solid curve) for the non-resonant driving
case.
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Figure 4: Concurrence of the steady states governed by our Redfield master equation
under the fermion reservoirs. The initial state is set as |ψ(0)〉 = (|eg〉 + |ge〉)/p2.
The parameters are set as F = 0.5λ,ωc = 5λ, T1 = T2 = λ, µ̄= 2λ,α1 = α2 = 0.1λ.

However, the entanglement will be recovered in the resonant driving by preparing the ini-
tial state as |ψ(0)〉= (|eg〉+|ge〉)/p2. In this case, the tomography and concurrence are given
in Fig. 3(c) and (d), respectively. Under the resonant driving, we observe |ρee,ee|= |ρg g,g g |= |ρee,g g |,|ρeg,eg | = |ρge,ge| = |ρeg,ge| and |ρee,eg | = |ρee,ge| = |ρg g,eg | = |ρg g,ge|, and this symmetry
leads to a non-zero steady state entanglement for ∆ = 0 as shown in Fig. 3(d). Similar to
Fig. 3(b), the non-equilibrium also increases the entanglement in the regime of ∆ 6= 0.

For the resonant driving, the steady states for the equilibrium and non-equilibrium fermion
reservoirs are similar to that for the boson reservoirs, and we will not give the tomography
results here. However, in the non-resonant driving situation, the steady state entanglement is
dramatically different for the fermion and boson reservoirs. When the charger-battery system
is prepared in the separated state |eg〉, the concurrence for the steady state is smaller than 0.01
even under the resonant driving. For the initial state |ψ(0)〉 = (|eg〉+ |ge〉)/p2, although it
still yields a zero concurrence under the non-resonant driving, the resonant driving can induce
a considerable entanglement as shown in Fig. 4 for the fermion reservoirs. Furthermore, the
non-equilibrium induced by the chemical potential difference between the two fermion reser-
voirs weakens the entanglement, it is opposite of the case for the boson reservoirs, in which
the non-equilibrium is supplied by the temperature difference.

4 Efficiency of quantum battery for resonant driving

In this section, we will discuss the efficiency of the quantum battery based on the Redfield
master equation in Eq. (16) in the resonant driving situation. We will also give a comparison
to the results based on the phenomenological master equation in Eq. (4).

We first prepare the system in the state |ψ(0)〉= cosθ |eg〉+ sinθ eiϕ |ge〉 to discuss the ef-
ficiency of quantum battery model in the equilibrium boson reservoirs. Since the phenomeno-
logical master equation in Eq. (4) yields a single steady state, we can obtain an efficiency of
Pss ≈ 0.94 for arbitrary θ and ϕ. However, based on the Redfield master equation in Eq. (16),
we contour plot the dependence of Pss on θ and ϕ in Fig. 5. It shows that, for the separated
states (θ = 0,π/2 and π), the efficiency is always zero. For the maximum entanglement initial
state θ = π/4 or θ = 3π/4, the efficiency is sensitive to the phase ϕ. For ϕ = π/2, which
yields |ψ(0)〉= (|eg〉±i|ge〉)/p2, the efficiency is still zero. However, forϕ = 0 orϕ = π, that
is |ψ(0)〉= (|eg〉± |ge〉)/p2, we can achieve a maximum efficiency by Pss ≈ 0.23. Actually, as
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Figure 5: Efficiency Pss as function of θ and ϕ for the initial state
|ψ(0)〉 = cosθ |eg〉 + sinθ eiϕ |ge〉 in the bosonic reservoir. The parameters are set
as F = 0.5λ,ωc = 5λ,∆1 =∆2 = 0, T1 = T2 = λ,α1 = α2 = 0.1λ.

shown before, under these initial states, the system will evolve to an entangled state, which
implies that the entanglement may enhance the efficiency of the quantum battery.
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Figure 6: (a) Efficiency Pss and (b) concurrence Css as functions of ϕ for the initial
state |ψ(0)〉 = (|eg〉 + eiϕ |ge〉)/p2 in the nonequilibrium boson reservoir. The pa-
rameters are set as F = 0.5λ,ωc = 5λ,∆1 =∆2 = 0, T̄ = λ,α1 = α2 = 0.1λ.

This entanglement enhanced efficiency is also verified in the non-equilibrium case. As
shown in Fig. 6, where the steady state efficiency and the concurrence are plotted as functions
of∆T , the behaviors of the efficiency and the entanglement are positively related to each other
in our system. For example, both of the entanglement and the efficiency reach their maximum
values at the equilibrium situation with∆T = 0 for θ 6= 0.5π, which otherwise keeps zero. On
the other hand, the results based on the phenomenological master equation in Eq. (4) show
its independence on ϕ due to its single steady state. Although the efficiency based on Eq. (4)
is higher than that based on Eq. (15), the steady state entanglement is not as shown in Fig. 6
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Figure 7: Efficiency Pss as function of T1 = T2 = T in boson reser-
voirs (a) and µ1 = µ2 = µ in fermion reservoirs (b) with the ini-
tial state being |ψ(0)〉 = (|eg〉 + |ge〉)/p2. The parameters are set as
F = 0.5λ,ωc = 5λ,∆1 = ∆2 = 0,α1 = α2 = 0.1λ. In (b), we set T1 = T2 = T = λ
for the blue solid curve, T = 2λ for red dashed curve and T = 3λ for green dotted-
dashed curves respectively.

(b), this is because we have resorted to different treatment.
The above results for the boson reservoirs are also valid for the fermion reservoirs. For

example, the initial state |ψ(0)〉 = (|eg〉 ± |ge〉)/p2 leads to the highest efficiency in our
quantum battery setup and this efficiency will reach its maximum value in the equilibrium
situation, that is, T1 = T2 for the boson reservoirs and T1 = T2,µ2 = µ2 for the fermion
reservoirs. In Fig. 7(a), we plot the efficiency as a function of the temperature T1 = T2 = T
in the equilibrium boson reservoir by setting the initial state as |ψ(0)〉 = (|eg〉+ |ge〉)/p2. It
is not surprising that the high temperature will suppress the efficiency due to the weakening
of the quantum nature by the thermal effect. The battery efficiency for fermion reservoirs
as a function of µ1 = µ2 = µ with different T is plotted in Fig. 7(b), which shows that the
efficiency drops off for a fixed µ, which is not dependent of T . Moreover, as µ is positively
or negatively higher enough, the efficiency will be saturated at a relatively large value for
arbitrary temperature. It means that coupling to fermion reservoirs exchanging particles with
the system is more robust to the thermal effect than boson reservoirs exchanging energy with
the system, to enhance the quantum battery performance.

5 Efficiency of quantum battery for non-resonant driving

In this section, we study the efficiency of the quantum battery when the external driving to the
charger is not in resonance and the charger and the battery are not identical, that is,∆1 6=∆2.
In this case, the Liouvillian gap of the Redfield master equation opens, and there is only one
steady state. In the following discussions, we prepare the initial state as |ψ(0)〉 = |eg〉, and
investigate the battery efficiency in both the equilibrium and nonequilibrium cases.
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Figure 8: The efficiency Pss as a function of the driving strength F and the
detuning ∆ for the boson equilibrium reservoir. The parameters are set as
ωc = 5λ, ∆̄ = 0,α1 = α2 = 0.1λ.

5.1 Boson reservoirs

In Fig. 8, we plot the efficiency Pss as a function of the driving strength F and the detuning∆ for
different temperatures T1 = T2 = T for boson reservoirs. One sees that the efficiency can reach
its maximum value for∆ > 0. In this case, the nonequilibrium is supplied by the driving to the
charger and the dissipation for both of the charger and the battery. As a result, the efficiency is
enhanced by a compensation mechanism, in which the frequency of the driven charger should
be higher than that of the battery. The results also show that a lower temperature is helpful
to broaden the high efficiency regime.

For the non-equilibrium boson reservoirs, we demonstrate the dependence of the battery
efficiency Pss on the charger-battery detuning ∆ = ∆1 −∆2 and the temperature difference
∆T = T1 − T2 in Fig. 9. One sees that the efficiency has higher values in the top right corner,
in which the efficiency is 0.93, being much higher than that with resonant driving (∆ = 0). In
the top right corner where ∆ > 0 and ∆T > 0, that is, ω1 > ω2 and T1 > T2. This suggests
that, to enhance the performance of the quantum battery, it is beneficial to have the frequency
of the battery to be lower than that of the charger and couple it to the reservoir with lower
temperature. Meanwhile, the regime with high efficiency shrinks with the increase of T̄ , which
implies that a higher temperature is harmful for the performance of the quantum battery.

5.2 Fermion reservoirs

In Figs. 10 and 11, we plot the efficiency Pss for the fermion reservoirs with same and different
chemical potentials respectively. For the same chemical potential µ1 = µ2 = µ, the results in
Fig. 10 show that the maximum efficiency can be obtained by setting ∆ < 0 for µ > 0 and
∆ > 0 for µ < 0. For the nonequilibrium fermion reservoirs, the efficiency shows a complicated
dependence on the chemical potential difference and detuning for different average chemical
potential µ̄ = (µ1 + µ2)/2. For small µ̄, for example µ̄ = 0 and µ̄ = 3λ, one observes that
the maximum efficiency can be reached in the parameter regime for either ∆ > 0 or ∆ < 0 in
Fig. 11(a) and (b). For a positively large µ̄ = 6λ, as shown in Fig. 11(c), the optimal regime
mainly locates at∆ < 0. As a dramatic contrast, this optimal regime is transferred to that with
∆ > 0 when µ̄= −6λ. These behaviors can be physical intuitively explained by the compensa-
tion mechanism. When the chemical potential is negative, the charger-battery system is easy
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Figure 9: The efficiency Pss as a function of ∆T and ∆ for nonequilibrium boson
reservoirs. The parameters are set as F = 0.5λ,ωc = 5λ, ∆̄ = 0,α1 = α2 = 0.1λ.

Figure 10: The efficiency Pss as a function of the driving strength F and the
detuning ∆ for the fermion equilibrium reservoirs. The parameters are set as
T1 = T2 = λ,ωc = 5λ, ∆̄ = 0,α1 = α2 = 0.1λ.

to release particles to the environments. In this case, the charger should be higher than the
battery in frequency, to compensate the particle loss to achieve a larger efficiency. Vice verse,
when the chemical potential is positive, the frequency of the charger should be lower than the
battery. Therefor, we reach the highest efficiency in the regime ∆ > 0 for µ̄ < 0 as shown in
Figs. 10(c),(d) and Fig. 11(d). On the contrary, the high efficiency regime can be found with
∆ < 0 in Figs. 10(a),(b) and Fig. 11(c) when µ̄ > 0.

Furthermore, for small µ̄ and ∆µ, the particle flow for the charger and the battery can be
either the same (both of them release or absorb particles) or different (one partner of charger-
battery system releases particles while the other absorbs). Therefore, the highest efficiency
can appear in both the ∆ > 0 regime and the ∆ < 0 regime as shown in Figs. 11 (a) and (b).

The above results for both of the boson and fermion reservoirs demonstrate the advantages
of non-resonant driving setup in the following two aspects. First, the value of the highest
efficiency in Figs. 8 to 11 for non-resonant driving is about 3 − 4 times higher than that in
Fig. 6 for resonant driving. Second, since the Redfield master equation yields a unique steady
state under the non-resonant driving, there is no need to prepare the charger-battery system
in the initial entangled state to achieve a high efficiency. This simplifies the experimental

14



SciPost Physics Submission

Figure 11: The efficiency Pss as a function of ∆µ and ∆ for
nonequilibrium fermion reservoirs. The parameters are set as
F = 0.5λ, T1 = T2 = λ,ωc = 5λ, ∆̄ = 0,α1 = α2 = 0.1λ.

difficulties in entangled state preparation.

6 Conclusion

In this paper, we have investigated the efficiency of a quantum battery setup, where both the
charger and the battery are two-level systems. They coherently couple to each other and si-
multaneously interact with their individual boson or fermion reservoirs, with nonequilibrium
characterized by the temperature or chemical potential difference. By taking the external
driving to the charger beyond the traditional phenomenological manner, we obtain the Red-
field master equation without secular approximation. When the transition frequencies of the
charger and the battery are equal to each other and the charger is driven in resonance, we
show that the system will exhibit a bistability behavior which is determined by the closed Li-
ouvillian gap and can not be predicted by the conventional Lindblad master equation. As a
result, the on demand chosen initial entangled state may lead to a relatively higher efficiency
for the quantum battery. This efficiency can be furthermore enhanced in the non-resonant
driving cases. For example, for both the boson reservoirs and fermion reservoirs, one can
found a maximum efficiency which achieves 93% , being much higher than that for resonant
driving.

We also show the role of the nonequilibrium of the reservoirs in the performance of the
quantum battery setup. When the charger is driven in resonance, the nonequilibrium reduced
the efficiency of the quantum battery for both the boson and fermion reservoirs. However,
when the charger is driving nonresonantly, a temperature difference for boson reservoirs and
chemical potential difference for fermion reservoirs can enhance the quantum battery effi-
ciency in a compensation manner. In this sense, the nonequilibrium reservoirs provides us an
effective approach for designing energy devices based on open system.

Author contributions Z. Wang and J. Wang designed the research. Z. Wang and H. Yu
performed the main calculations. Z. Wang and J. Wang wrote the manuscript, All of the authors
contributed to the planning and made revision of the manuscript.

15



SciPost Physics Submission

Funding information National Key R&D Program of China (Grant No. 2021YFE0193500).
Science and Technology Development Project of Jilin Province (Grant No. 20230101357JC)
and National Natural Science Foundation of China (Grants No. 21721003 and 12234019).

References

[1] R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quan-
tum batteries, Phys. Rev. E 87, 042123 (2013), doi: 10.1103/PhysRevE.87.042123

[2] T. P. Le, J. Levinsen, K. Modi, M. M. Parish and F. A. Pollock, Spin-chain model of
a many-body quantum battery, Phys. Rev. A 97, 022106 (2018), doi: 10.1103/Phys-
RevA.97.022106

[3] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini and M. Polini, High-power collec-
tive charging of a solid-state quantum battery, Phys. Rev. Lett. 120, 117702 (2018), doi:
10.1103/PhysRevLett.120.117702

[4] D. Rossini and E. Vicari, Scaling of decoherence and energy flow in interacting quantum
spin systems, Phys. Rev. A 99, 052113 (2019), doi: 10.1103/PhysRevA.99.052113

[5] Y.-Y. Zhang, T.-Ran Yang, L. Fu and X. Wang, Powerful harmonic charging in a quantum
battery, Phys. Rev. E 99, 052106 (2019), doi: 10.1103/PhysRevE.99.052106

[6] J. Chen, L. Zhan, L. Shao, X. Zhang, Y. Zhang and X. Wang, Charging quantum batteries
with a general harmonic driving field, ANNALEN DER PHYSIK 532, 1900487 (2020), doi:
10.1002/andp.201900487

[7] D. Rossini, G. M. Andolina, D. Rosa, M. Carrega and M. Polini, Quantum advantage in
the charging process of Sachdev-Ye-Kitaev batteries, Phys. Rev. Lett. 125, 236402 (2020),
doi: 10.1103/PhysRevLett.125.236402

[8] Z. Li, P. Yang, W.-L. You and N. Wu, Dynamics of the homogeneous two-qubit XXZ central
spin model with the spin bath prepared in superpositions of symmetric Dicke states, Phys.
Rev. A 102, 032409 (2020), doi: 10.1103/PhysRevA.102.032409

[9] S. Ghosh, T. Chanda and A. Sen, Enhancement in the performance of a quantum bat-
tery by ordered and disordered interactions, Phys. Rev. A 101, 032115 (2020), doi:
10.1103/PhysRevA.101.032115

[10] V. P. Patil, Z. Kos, M. Ravnik and J. Dunkel, Discharging dynamics of topological batteries,
Phys. Rev. Research 2, 043196 (2020), doi: 10.1103/PhysRevResearch.2.043196

[11] F. Caravelli, B. Yan, L. Pedro, G. Pintos and A. Hamma, Energy storage and coherence in
closed and open quantum batteries, Quantum 5, 505 (2021), doi: 10.22331/q-2021-07-
15-505

[12] F. Zhao, F.-Q. Dou and Q. Zhao, Quantum battery of interacting spins with environmental
noise Phys. Rev. A 103, 033715 (2021), doi: 10.1103/PhysRevA.103.033715

[13] O. Abah, G. D. Chiara, M. Paternostro and R. Puebla, Harnessing nonadiabatic excitations
promoted by a quantum critical point: Quantum battery and spin squeezing, Phys. Rev.
Research 4, L022017 (2022), doi: 10.1103/PhysRevResearch.4.L022017

16



SciPost Physics Submission

[14] F. Zhao, F.-Q. Dou and Q. Zhao, Charging performance of the Su-Schrieffer-Heeger
quantum battery, Phys. Rev. Research 4, 013172 (2022), doi: 10.1103/PhysRevRe-
search.4.013172

[15] Y. Yao and X. Q. Shao, Optimal charging of open spin-chain quantum batteries via
homodyne-based feedback control, Phys. Rev. E 106, 014138 (2022), doi: 10.1103/Phys-
RevE.106.014138

[16] L. Fusco, M. Paternostro and G. D. Chiara, Work extraction and energy storage in the Dicke
model, Phys. Rev. E 94, 052122(2016), doi: 10.1103/PhysRevE.94.052122

[17] G. M. Andolina, M. Keck, A. Mari, V. Giovannetti and M. Polini, Quantum versus
classical many-body batteries, Phys. Rev. B 99, 205437 (2019), doi: 10.1103/Phys-
RevB.99.205437

[18] D. Z. Rossatto, D. P. Pires, F. M. de Paula and O. P. de SaNeto, Quantum coherence and speed
limit in the mean-field Dicke model of superradiance, Phys. Rev. A 102, 053716 (2020),
doi: 10.1103/PhysRevA.102.053716

[19] A. Crescente, M. Carrega, M. Sassetti and D. Ferraro, Ultrafast charging in a two-
photon Dicke quantum battery, Phys. Rev. B 102, 245407 (2020), doi: 10.1103/Phys-
RevB.102.245407

[20] W. Lu, J. Chen, L.-M. Kuang and X. Wang, Optimal state for a Tavis-Cummings quan-
tum battery via the Bethe ansatz method, Phys. Rev. A 104, 043706 (2021), doi:
10.1103/PhysRevA.104.043706

[21] F.-Q. Dou, Y.-Q. Lu, Y.-J. Wang and J.-A. Sun, Extended Dicke quantum battery with
interatomic interactions and driving field, Phys. Rev. B 105, 115405 (2022), doi:
10.1103/PhysRevB.105.115405

[22] Y. Yao and X. Q. Shao, Stable charging of a Rydberg quantum battery in an open system,
Phys. Rev. E 104, 044116 (2021), doi: 10.1103/PhysRevE.104.044116

[23] S-Y. Bai and J.-H. An, Floquet engineering to reactivate a dissipative quantum battery, Phys.
Rev. A 102, 060201 (2020), doi: 10.1103/PhysRevA.102.060201

[24] S.-Y. Bai, C. Chen, H. Wu and J.-H. An, Quantum control in open and pe-
riodically driven systems, Advances in Physics: X 6, 1870559 (2021), doi:
10.1080/23746149.2020.1870559

[25] S. Mondal and S. Bhattacharjee, Periodically driven many-body quantum battery, Phys.
Rev. E 105, 044125 (2022), doi: 10.1103/PhysRevE.105.044125

[26] F. Barra, Dissipative charging of a quantum battery, Phys. Rev. Lett. 122, 210601 (2019),
doi: 10.1103/PhysRevLett.122.210601

[27] C. L. Latune, I. Sinayskiy and F. Petruccione, Heat flow reversals without reversing the ar-
row of time: The role of internal quantum coherences and correlations, Phys. Rev. Research
1, 033097 (2019), doi: 10.1103/PhysRevResearch.1.033097

[28] D. Farina, G. M. Andolina, A. Mari, M. Polini and V. Giovannetti, Charger-mediated energy
transfer for quantum batteries: An open-system approach, Phys. Rev. B 99, 035421 (2019),
doi: 10.1103/PhysRevB.99.035421

17



SciPost Physics Submission

[29] A. Crescente, M. Carrega, M. Sassetti and D. Ferraro, Charging and energy fluctuations
of a driven quantum battery, New J. Phys. 22, 063057(2020), doi: 10.1088/1367-
2630/ab91fc

[30] M. Carrega, A. Crescente, D. Ferraro and M. Sassetti, Dissipative dynamics of an open
quantum battery, New J. Phys. 22, 083085 (2020), doi: 10.1088/1367-2630/abaa01

[31] F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish and A. C. Santos, Non-Markovian effects
on charging and self-discharging process of quantum batteries, New J. Phys. 22, 083007
(2020), doi: 10.1088/1367-2630/ab9ee2

[32] F. T. Tabesh, F. H. Kamin and S. Salimi, Environment-mediated charging process of quantum
batteries, Phys. Rev. A 102, 052223 (2020), doi: 10.1103/PhysRevA.102.052223

[33] F. Tacchino, T. F. F. Santos, D. Gerace, M. Campisi and M. F. Santos, Charging a quan-
tum battery via nonequilibrium heat current, Phys. Rev. E 102, 062133 (2020), doi:
10.1103/PhysRevE.102.062133

[34] W. Chang, T.-R. Yang, H. Dong, L. Fu, X. Wang and Y.-Y. Zhang, Optimal building block of
multipartite quantum battery in the driven-dissipative charging, New J. Phys. 23, 103026
(2021), doi: 10.1088/1367-2630/ac2a5b

[35] K. Xu, H.-J. Zhu, G.-F. Zhang and W.-M. Liu, Enhancing the performance of an open
quantum battery via environment engineering, Phys. Rev. E 104, 064143 (2021), doi:
10.1103/PhysRevE.104.064143

[36] F. Mayo and A. J. Roncaglia, Collective effects and quantum coherence in dissipative
charging of quantum batteries, Phys. Rev. A 105, 062203 (2022), doi: 10.1103/Phys-
RevA.105.062203

[37] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University
Press, Oxford, 2007).

[38] F. Bloch, Generalized theory of relaxation, Phys. Rev. 105, 1206 (1957), doi:
10.1103/PhysRev.105.1206

[39] A. G. Redfield, On the theory of relaxation processes, IBM J. Res. Dev. 1, 19 (1957), doi:
10.1147/rd.11.0019

[40] A. Ishizaki and G. R. Fleming, On the adequacy of the Redfield equation and related ap-
proaches to the study of quantum dynamics in electronic energy transfer, J. Chem. Phys.
130, 234110 (2009), doi: 10.1063/1.3155214

[41] C. K. Lee, J. Moix and J. Cao, Coherent quantum transport in disordered systems: A uni-
fied polaron treatment of hopping and band-like transport, J. Chem. Phys. 142, 164103
(2015), doi: 10.1063/1.4918736

[42] V. I. Novoderezhkin, A. G. Yakovlev, R. van Grondelle and V. A. Shuvalov, Coherent nuclear
and electronic dynamics in primary charge separation in photosynthetic reaction centers: a
Redfield theory approach, J. Phys. Chem. B 108, 7445 (2004), doi: 10.1021/jp0373346

[43] J. Jeske, D. J. Ing, M. B. Plenio, S. F. Huelga and J. H. Cole, Bloch-Redfield equa-
tions for modeling light-harvesting complexes, J. Chem. Phys. 142, 064104 (2015), doi:
10.1063/1.4907370

18



SciPost Physics Submission

[44] M.-J. Tao, N.-N. Zhang, P.-Y. Wen, F.-G. Deng, Q. Ai and G.-L. Long, Coherent and
incoherent theories for photosynthetic energy transfer, Sci. Bull. 65, 318 (2020), doi:
10.1016/j.scib.2019.12.009

[45] Z. D. Zhang and J. Wang, Curl flux, coherence, and population landscape of molecular
systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermody-
namics, J. Chem. Phys. 140, 245101 (2014), doi: 10.1063/1.4884125

[46] S.-W. Li, C. Y. Cai and C. P. Sun, Steady quantum coherence in non-equilibrium environment,
Ann. Phys. 360, 19 (2015), doi: 10.1016/j.aop.2015.05.004

[47] Y. Huangfu and J. Jing, Steady bipartite coherence induced by non-equilibrium environ-
ment, Sci. China-Phys. Mech. Astron. 61, 010311 (2018), doi: 10.1007/s11433-017-
9115-2

[48] Z. D. Zhang and J. Wang, Landscape, kinetics, paths and statistics of curl flux, coherence,
entanglement and energy transfer in non-equilibrium quantum systems, New J. Phys. 17,
043053 (2015), doi: 10.1088/1367-2630/17/4/043053

[49] Z. D. Zhang and J. Wang, Shape, orientation and magnitude of the curl quantum flux, the
coherence and the statistical correlations in energy transport at nonequilibrium steady state,
New J. Phys. 17, 093021 (2015), doi: 10.1088/1367-2630/17/9/093021

[50] Z. Wang, W. Wu, G. Cui and J. Wang, Coherence enhanced quantum metrology in a
nonequilibrium optical molecule, New J. Phys. 20, 033034 (2018), doi: 10.1088/1367-
2630/aab03a

[51] G. Guarnieri, M. Kolar and R. Filip, Steady-state coherences by composite system-bath in-
teractions, Phys. Rev. Lett. 121, 070401 (2018), doi: 10.1103/PhysRevLett.121.070401

[52] Z. Wang, W. Wu and J. Wang, Steady-state entanglement and coherence of two coupled
qubits in equilibrium and nonequilibrium environments, Phys. Rev. A 99, 042320 (2019),
doi: 10.1103/PhysRevA.99.042320

[53] L.-B. Fan, Y.-H. Zhou, F. Zou, H. Guo, J.-F. Huang and J.-Q. Liao, Quantum Thermalization
and Vanishing Thermal Entanglement in the Open Jaynes-Cummings Model, ANNALEN
DER PHYSIK 532, 2000134 (2020), doi: 10.1002/andp.202000134

[54] B. Mojaveri, A. Dehghani and Z. Ahmadi, Maximal steady-state entanglement and perfect
thermal rectification in non-equilibrium interacting XXZ chains, Eur. Phys. J. Plus 136, 83
(2021), doi: 10.1140/epjp/s13360-020-01016-0

[55] Y. Khlifi, S. Seddik and A. El Allati, Steady state entanglement behavior between two quan-
tum refrigerators, Physica A: Statistical Mechanics and its Applications 596, 127199
(2022), doi: 10.1016/j.physa.2022.127199

[56] M. Cattaneo, G. Luca Giorgi, S. Maniscalco and R. Zambrini, Symmetry and block structure
of the Liouvillian superoperator in partial secular approximation, Phys. Rev. A 101, 042108
(2020), doi: 10.1103/PhysRevA.101.042108

[57] S. Lieu, R. Belyansky, J. T. Young, R. Lundgren, V. V. Albert and A. V. Gorshkov, Symmetry
breaking and error correction in open quantum systems, Phys. Rev. Lett. 125, 240405
(2020), doi: 10.1103/PhysRevLett.125.240405

[58] F. Minganti, A. Biella, N. Bartolo and C. Ciuti, Spectral theory of Liouvillians for dissipative
phase transitions, Phys. Rev. A 98, 042118 (2018), doi: 10.1103/PhysRevA.98.042118

19



SciPost Physics Submission

[59] A. E. Allahverdyan, R. Balian and T. M. Nieuwenhuizen, Maximal work extraction from
finite quantum systems, Europhys. Lett. 67, 565 (2004), doi: 10.1209/epl/i2004-10101-
2

[60] W. Pusz and S. L. Woronowicz, Passive states and KMS states for general quantum systems,
Commun. Math. Phys. 58, 273 (1978), doi: 10.1007/BF01614224

[61] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin and J. I. Cirac, Dissi-
pative phase transition in a central spin system, Phys. Rev. A 86, 012116 (2012), doi:
10.1103/PhysRevA.86.012116

[62] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev.
Lett. 80, 2245 (1998), doi: 10.1103/PhysRevLett.80.2245

[63] M. Ikram, F. L. Li and M. S. Zubairy, Disentanglement in a two-qubit system subjected
to dissipation environments, Phys. Rev. A 75, 062336 (2007), doi: 10.1103/Phys-
RevA.75.062336

20


