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Abstract

We investigate a quantum battery system under both external driving and dissipation.
The system consists of a coupled two-level charger and battery immersed in nonequi-
librium fermionic reservoirs. By considering the changes in the energy spectrum in-
duced by external driving and charger-battery coupling in a non-perturbative manner,
we go beyond the secular approximation to derive the Redfield master equation. In the
nonequilibrium scenario, both charging efficiency and power of the quantum battery
can be optimized through a compensation mechanism. When the charger and battery
are off-resonance, a significant chemical potential difference between the reservoirs,
which characterizes the degree of nonequilibrium, plays a crucial role. Specifically, the
charger’s frequency should be higher (lower) than that of the battery when the aver-
age chemical potential is negative (positive) to achieve enhanced charging efficiency
and power under strong nonequilibrium conditions. Remarkably, the efficiency in the
nonequilibrium case can surpass that in the equilibrium setup. Our results provide in-
sights into the design and optimization of quantum batteries in nonequilibrium open
systems.
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1 Introduction

A central challenge in quantum technology is to explore how quantum resources can
be utilized to perform tasks that are unattainable with classical systems. One such
task arises in the realm of energy storage, giving rise to the concept of the "quantum
battery." A typical quantum battery system consists of a charger, which supplies energy,
and a battery, which stores and releases the energy.

Ever since the concept of the quantum battery was introduced by Alicke and Fannes [1],
numerous quantum battery models have been proposed in various physical systems. Ex-
amples include spin or resonator chain models [2–15], the Tavis-Cummings and Dicke
models in quantum optics [16–21], and Rydberg atom systems [22]. In some of these
systems, Floquet engineering has been employed to enhance the performance of quan-
tum batteries [23–25]. Given that quantum systems are inherently coupled to their
environments, quantum batteries in open systems are now drawing increasing atten-
tion [26–36].

The simplest open system for a quantum battery is perhaps a setup involving two
coupled two-level systems, each interacting with external environments. One of these
systems, driven by a classical field, acts as the charger, while the other serves as the
battery [28]. To explore how particle exchange between the system and reservoirs im-
pacts the quantum battery’s performance, we further couple the charger and battery to
two independent fermionic reservoirs. The nonequilibrium effect is characterized by the
chemical potential difference between these reservoirs. In this quantum open system,
the external driving applied to the charger provides energy to the system, necessitat-
ing a reassessment of efficiency. Moreover, the nonequilibrium nature of the reservoirs
plays a crucial role in shaping the steady-state properties of the system.

To analyze the effects of driving and nonequilibrium effects on the performance of
the quantum battery, we employ a quantum master equation approach under the Born-
Markovian approximation [37]. Classical driving significantly alters the energy spec-
trum of the charger-battery system. However, in the conventional Lindblad master e-
quation approach, driving is treated as a perturbation, its impact on the system’s energy
spectrum is neglected, and the injected energy is not fully considered when evaluating
the efficiency of the quantum battery. To address these limitations, we go beyond the
Lindblad master equation and adopt the Redfield master equation [38, 39], which has
been extensively used in studies of quantum transport [40,41] and photosynthetic pro-
cesses [42–44]. Specifically, we work in the eigen state representation by considering
the case of strong coupling between the driving field and the system, thus treating the
driving field as an integral part of the open system rather than as a perturbation. This
approach allows us to define the charging efficiency and power in a consistent manner.
This methodology contrasts sharply with the traditional treatment [28], where the driv-
ing is modeled phenomenologically as an effective reservoir weakly coupled to the sys-
tem. Additionally, we consider the nonequilibrium effects characterized by the chemical
potential difference between the two reservoirs coupled to the system. Such nonequilib-
rium has been shown to induce steady-state coherence and entanglement [45–55]. By
moving beyond the secular approximation, we investigate whether the nonequilibrium
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Figure 1: Schematic diagram of the quantum battery model under consideration.
The charger and the battery are modeled as two-level systems with transition fre-
quencies ω1 and ω2, respectively. Each system is coupled to its individual reservoir
and they interact with each other via a coupling strength λ. The charger is driven by
an external classical field with driving strength F and frequency ωd .

reservoirs can enhance the performance of the quantum battery.
Using the Redfield master equation, we uncover a compensation mechanism that

enhances the charging efficiency and power of the quantum battery. Specifically, the
charger’s frequency should exceed that of the battery when the average chemical poten-
tial is sufficiently negative and large. Under these conditions, the maximum efficiency
can exceed 90% significantly surpassing the efficiency achievable in the equilibrium
case. Moreover, this compensation mechanism is also effective in boosting the charging
power of the quantum battery.

The rest of the paper is organized as follows. In Sec. 2, we illustrate our model and
derive the Redfield master equation. In Sec. 3, we discuss the steady state entanglement
in our system. The charging efficiency and power of quantum battery are investigated
in Sec. 4 and Sec. 5, respectively. At last, we give a short conclusion in Sec. 6.

2 Model and master equation

As schematically illustrated in Fig. 1, the quantum battery system under consideration
consists of a charger and a battery, both modeled as two-level systems. The charger is
driven by a classical field, and both the charger and the battery are coupled to their
respective reservoirs, which obey fermionic statistics. In the rotating frame with respect
to the driving field frequency ωd , the Hamiltonian of the entire system, including the
reservoirs, is given by H = Hs +HB + V .

The Hamiltonian for the charger-battery system is [28] (ħh= kB = 1 in what follows)

Hs =
ω1

2
σ(1)z +

ω2

2
σ(2)z +λ
�
σ
(1)
+ σ

(2)
− +σ

(1)
− σ

(2)
+

�
+

F

2

�
σ
(1)
+ e−iωd t +σ(1)− eiωd t

�
. (1)

Here, σ(i)m (m = z,+,−) represents the Pauli operators for the i-th two-level system
with transition frequency ωi. The indices 1 and 2 correspond to the charger and the bat-
tery, respectively. The driving field has a frequency ωd , F denotes the driving strength,
and λ represents the coupling strength between the charger and the battery.

The Hamiltonian of the reservoirs is given by

HB =
∑

k

ωbk b†
k bk +
∑

k

ωckc†
kck, (2)
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where bk (b†
k) and ck (c†

k) are the annihilation (creation) operators for the kth mode
with frequencies ωbk and ωck in the reservoirs coupled to the charger and the battery,
respectively.

The Hamiltonian describing the system-reservoir coupling is expressed as

V =
∑

k

gk

�
σ
(1)
− b†

k +σ
(1)
+ bk

�
+
∑

k

fk

�
σ
(2)
− c†

k +σ
(2)
+ ck

�
, (3)

where gk ( fk) denotes the coupling strength between the charger (battery) and the kth
mode in its respective reservoir.

The time dependence of the Hamiltonian can be eliminated by working in the rotat-

ing frame defined by U1(t) = exp
�

iωd

�
σ
(1)
z +σ

(2)
z

2
+
∑

k(b
†
k bk + c†

kck)
�

t
�

.

In this rotating frame, the Hamiltonian becomes

Hs =
∆1

2
σ(1)z +

∆2

2
σ(2)z +λ
�
σ
(1)
+ σ

(2)
− +σ

(1)
− σ

(2)
+

�
+

F

2

�
σ
(1)
+ +σ

(1)
−
�

, (4)

HB =
∑

k

(ωbk −ωd)b
†
k bk +
∑

k

(ωck −ωd)c
†
kck, (5)

where ∆i = ωi −ωd , and the interaction Hamiltonian V remains unchanged due to the
application of the rotating wave approximation.

With these significant approximations and simplifications, the conventional Marko-
vian master equation for the charger-battery system can be written as

d

d t
ρ = −i[Hs,ρ] +

2∑
i=1

Ji(ωi)Ni(ωi)Dσ(i)+
[ρ] +

2∑
i=1

Ji(ωi)Ni(ωi)Dσ(i)−
[ρ], (6)

where DA[ρ] = 2AρA†−A†Aρ−ρA†A, J1(ω) = π
∑

k g2
kδ(ω−ωbk) and J2(ω) = π

∑
k f 2

k δ(ω−ωck)
are the spectral densities of the two reservoirs.

For the fermionic reservoirs, the average particle number at frequency ω in the ith
reservoir is Ni(ω) =

1
exp[(ω−µi)/Ti]+1

, where µi and Ti are the chemical potential and
temperature of the ith reservoir, respectively, and Ni(ω) = 1− Ni(ω).

Actually, in writing the above master equation, one only simply adds the dissipation
terms of the charger and the battery. As a result, the master equation yields a Lindblad
form. We should note that both of the driving to the charger and the charger-battery
coupling will affect the eigen spectrum of the system, compared to the case when both
of the charger and the battery are free. In what follows, we will derive the master
equations by taking into account of both of the strong driving and coupling effects and
obtain the Redfield master equations.

2.1 Redfield master equation

To obtain the Redfield master equation, we first solve the eigen energies and corre-
sponding eigen states of the Hamiltonian given by Eq. (4). This is achieved numerically,
and the results are expressed as

Hs =
4∑

i=1

Ei|Ei〉〈Ei |, (7)

where the eigen energies are ordered as E1 > E2 > E3 > E4, and |Ei〉 represents the
corresponding eigen state.
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In terms of the eigen states, we have

σ
(m)
− =

4∑
i, j=1

χ
(m)
i j τi j , (8)

where τi j = |Ei〉〈E j|, and χ(m)i j = 〈Ei|Uσ(m)− U†|E j〉 for m= 1,2. The unitary transformation
U , obtained via numerical diagonalization of the Hamiltonian Hs, connects the eigen
states with the bare states.

The relationships between the eigen states and bare states are given by

(|E1〉, |E2〉, |E3〉, |E4〉)T = U(|ee〉, |eg〉, |ge〉, |g g〉)T , (9a)

(|ee〉, |eg〉, |ge〉, |g g〉)T = U†(|E1〉, |E2〉, |E3〉, |E4〉)T . (9b)

By redefining the bare basis of the charger-battery system as |1〉 = |ee〉, |2〉 = |eg〉,
|3〉 = |ge〉, and |4〉 = |g g〉, the elements of the transformation matrix U are expressed as
Ui j = 〈Ei | j〉.

As a result, the interaction Hamiltonian in the interaction picture can be written as

V =
∑
i, j>i

∑
k

�
gkχ

(1)
i j bkτi je

−i(ωbk−ω ji)t + fkχ
(2)
i j ckτi je

−i(ωck−ω ji)t +H.c.
�

, (10)

where we have applied the rotating wave approximation again, considering that the
system weakly couples to the reservoirs.

Using the general form of the master equation [37],

d

d t
ρ(I) =−
∫ ∞

0

dτTrB

h
VI(t),
h

VI(t −τ),ρ(I)⊗ρ(I)B

ii
, (11)

where the superscript I indicates the interaction picture (while the absence of a su-
perscript refers to the Schroedinger picture), the master equation under the Markovian
approximation for our system reads

d

d t
ρ = Lρ =−i

 4∑
j=1

E j|E j〉〈E j|,ρ
+D1(ρ) +D2(ρ), (12)

where

D1(ρ) =
∑
i, j>i

∑
m,n>m

∑
α=1,2

Jα(εmn)Nα(εmn)G
(α)
i j,mn[ρ], (13)

D2(ρ) =
∑
i, j>i

∑
m,n>m

∑
α=1,2

Jα(εmn)Nα(εmn)H
(α)
i j,mn[ρ], (14)

and

G(α)i j,mn[ρ] = χ
(α)
ji χ

(α)
mn

�
τ jiρτmn−ρτmnτ ji

�
+χ(α)i j χ

(α)
nm

�
τnmρτi j −τi jτnmρ

�
, (15)

H(α)i j,mn[ρ] = χ
(α)
i j χ

(α)
nm

�
τi jρτnm−ρτnmτi j

�
+χ(α)ji χ

(α)
mn

�
τmnρτ ji −τ jiτmnρ

�
. (16)

One should note that, since the charger and the battery are immersed in fermion-
ic reservoirs characterized by different chemical potentials which creates nonequilibri-
um conditions, we have gone beyond the commonly used secular approximation in the
above Redfield master equation. This is achieved by including the summation terms
with εmn ̸= εi j, which correspond to fast oscillating terms in the interaction picture. In
our previous works [50,52], we demonstrated that these non-secular terms give rise to
steady-state coherence, a feature that is absent in equilibrium open systems.
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2.2 Basic concept for quantum battery

In the eigen state representation, the initial state is given by |ψ(0)〉e = U†|ψ(0)〉, and
the system undergoes time evolution governed by the master equation in Eq. (12). Af-
ter a time interval τ, at which the charging process is assumed to end, the system
reaches a state with density matrix ρ(τ). Returning to the bare representation and the
Schroedinger picture, we have

ρ̃(τ) = U1(τ)Uρ(τ)U
†U†

1(τ), (17)

where U1(τ) = exp[iωd(σ(1)z +σ(2)z )τ/2] is defined by the rotating frame, and U is the
unitary transformation connecting the bare state representation and the eigen state
representation.

We formally assume that ρ̃(τ) can be expressed as (in the basis of {|ee〉, |eg〉, |ge〉, |g g〉})

ρ̃(τ) =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

 , (18)

and the reduced density matrix for the battery subsystem can be expressed as (in the
basis of {|e〉, |g〉})

ρB =

�
M33+M11 M12+M34
M21+M43 M44+M22

�
. (19)

In the quantum battery scenario, one of the key quantities of interest is the mean
charging energy EB stored in the battery at the end of the charging process, which is
expressed as [56,57]

EB(τ) = Tr[HBρB(τ)]− Tr[HBρB(0)], (20)

where HB = ω(|e〉〈e| − |g〉〈g|)/2. The corresponding average energy per unit time, i.e.,
the charging power, is given by P(τ) = EB(τ)/τ. Another quantity of interest is the
ergotropy function EB, which has a clear physical interpretation as follows.

Considering the state of a quantum system, characterized by the free Hamiltonian
H, is given by the density matrix ρ. Using spectral decomposition, ρ and H can be
expressed as

ρ =
∑

n
rn|rn〉〈rn|, H =

∑
n

en|en〉〈en|, (21)

where rn and en are the eigen values of ρ and H, with corresponding eigen states |rn〉
and |en〉. By arranging the eigen values such that r0 ≥ r1 ≥ r2 ≥ · · · and e0 ≤ e1 ≤ e2 ≤ · · · ,
we can construct a quantum state with a density matrix given by

ρ(p) =
∑

n
rn|en〉〈en|. (22)

When a quantum system is in such a state, it cannot release energy to its surroundings.
Therefore, the state ρ(p) is referred to as a passive state [56, 57]. The energy of the
passive state is given by

E(p) = Tr(Hρ(p)) =
∑

n
rnen, (23)

which can also be expressed as

E(p) =min
UB

Tr[HUBρB(τ)U
†
B]. (24)
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Here, the minimization is performed over all local unitary transformations UB acting on
the battery subsystem. This represents the portion of energy in EB(τ) that is locked in
correlations within the system, making it inaccessible through local operations on the
battery.

Thus, the ergotropy, which represents the extractable energy from the battery, is
defined as

EB(τ) = EB(τ)− E(p). (25)

For our two-level battery system, the above quantities can be calculated as [28]

EB(τ) =
ω

2
(N + 1), (26)

EB(τ) =
ω

2

�p〈σz〉2+ 4〈σ+〉〈σ−〉+ 〈σz〉
�

=
ω

2

�p
N2+ 4|N |2+ N

�
, (27)

where N = M11+M33−M22−M44 and N = M12+M34.
In what follows, we will first demonstrate the entanglement between the charger

and the battery. Next, we will discuss the charging efficiency R(τ) = EB(τ)/EB(τ) and
the average power P(τ) = EB(τ)/τ.

3 Steady state entanglement

Under the combined effects of coherent driving by the classical field and dissipation in-
duced by two non-equilibrium reservoirs, the charger-battery coupled system eventually
reaches a steady state. This steady state is generally a mixed state but exhibits a certain
degree of entanglement.

In the pioneering work of Hill and Wootters [58], the entanglement of an arbitrary
two-qubit state ρ is quantified by the so-called concurrence. The concurrence is defined
as C = max{0,λ1 − λ2 − λ3 − λ4}, where λ1 > λ2 > λ3 > λ4 are the eigen values of
the matrix ρ̃ = (σy ⊗σy)ρ∗(σy ⊗σy), evaluated in the basis {|ee〉, |eg〉, |ge〉, |g g〉}. The
concurrence C takes values between 0 and 1: the state is separable if C = 0, while it is
maximally entangled if C = 1.

Without loss of generality, we choose the Ohmic spectral density given by

Ji(ω) = αiωexp(−ω/ωc), (28)

for i = 1,2. In Fig. 2(a), we plot the steady-state concurrence Css between the charger
and the battery as a function of their detuning∆=∆1−∆2, considering both equilibrium
and non-equilibrium scenarios where the two reservoirs share the same temperature.
To evaluate any physical quantity A at steady state, denoted as Ass = A(τ = ∞), we set
τ= 20000/λ. We have verified that the system achieves its steady state within this time
interval.

For the equilibrium case of ∆µ= 0, the concurrence remains consistently very small
(Css < 0.05) as shown in Fig. 2(a), indicating that the charger and the battery are nearly
separable. In contrast, non-zero entanglement can be observed when the frequency of
the charger exceeds that of the battery for both ∆µ > 0 and ∆µ < 0. This suggests
that driving the charger at a higher frequency facilitates the generation of steady-state
entanglement. Moreover, the maximum steady-state concurrence achieved for ∆µ < 0
surpasses that for ∆µ > 0.
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Figure 2: (a) The concurrence of the steady states governed by the Redfield master
equation under fermion reservoirs. (b) and (c) Tomography of the steady states un-
der nonequilibrium fermion reservoirs, where ∆ is chosen such that the correspond-
ing concurrence reaches its maximum value. The parameters are set as F = 0.5λ,
ωc = 5λ, T1 = T2 = λ, µ̄= 2λ, and α1 = α2 = 0.1λ.

In the nonequilibrium case, the concurrence exhibits a non-monotonic behavior as
a function of ∆. In particular, we tomograph the steady state when the concurrence
reaches its maximum value for ∆µ/λ=±4, as shown in Figs. 2(b) and (c). For the nega-
tive chemical potential difference, depicted in Fig. 2(b), the steady state predominantly
occupies the superposition states of |eg〉 and |ge〉. Conversely, in Fig. 2(c), the mixing
of the |ee〉 and |g g〉 states for ∆µ > 0 suppresses the concurrence of the charger-battery
system.

4 Efficiency of the quantum battery

In this section, we will discuss the efficiency Rss of the quantum battery setup by consid-
ering that the reservoirs are characterized by the Ohmic spectrum in Eq. (28).

Firstly, we consider the case where the charger and the battery are resonant, and the
charger is resonantly driven. Furthermore, the charger and the battery are immersed in
equilibrium reservoirs, characterized by T1 = T2 = T , µ1 = µ2 = µ, and ∆1 =∆2 = 0.

In Fig. 3(a), we plot the steady-state efficiency as a function of the chemical poten-
tial µ for different temperatures T . The results indicate that the efficiency drops off at
a specific value of µ, which is slightly greater than 0 and independent of T . A possible
explanation for this behavior is that when the chemical potentials of reservoirs are both
near zero, they cannot exchange the particles with the charger-battery system, result-
ing in a low (or possibly zero) efficiency. The slight deviation observed may originate
from the external driving of the charger. Additionally, as µ becomes sufficiently pos-
itive or negative, the efficiency saturates at a relatively large value, regardless of the
temperature.

In Fig. 3(b), we investigate the efficiency as a function of temperature for different
chemical potentials. At very low temperatures, the efficiency is nearly independent of
T . However, as the temperature increases, the efficiency drops sharply and eventually
approaches zero. This indicates that high temperatures degrade the performance of the
battery due to thermal fluctuations.

Next, we consider more general cases where the charger and the battery are not
resonant, and the two reservoirs are not in equilibrium. In Fig. 4, we plot the efficiency
Rss as a function of the chemical potential difference and the charger-battery detuning
for different average chemical potentials µ̄= (µ1+µ2)/2.

For small µ̄, such as µ̄ = 0 and µ̄ = 3λ, the maximum efficiency is achieved in the
parameter regime with either ∆ > 0 or ∆ < 0 (∆ = ∆1 −∆2, the frequency difference
between the charger and the battery) under significant chemical potential difference
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Figure 3: The efficiency Rss as a function of µ1 = µ2 = µ (a) and T1 = T2 = T (b)
in equilibrium fermion reservoirs. The parameters are set as F = 0.5λ, ωc = 5λ,
∆1 =∆2 = 0, and α1 = α2 = 0.1λ.

or nonequilibrium, as shown in Figs. 4(a) and (b). For a positively large µ̄ = 6λ, the
optimal regime shifts primarily to ∆ < 0, as depicted in Fig. 4(c). In stark contrast,
when µ̄=−6λ, the optimal regime transitions to ∆> 0 as seen in Fig. 4(d).

These behaviors can be intuitively explained by the compensation mechanism. When
the chemical potential is negative, the charger-battery system tends to release particles
to the environment. To compensate for this particle loss and achieve higher efficiency,
the charger frequency should be higher than that of the battery (∆ > 0). Conversely,
when the chemical potential is positive, the charger frequency should be lower than the
battery (∆ < 0). Thus, the highest efficiency is achieved in the regime ∆ > 0 for µ̄ < 0
(Fig. 4(d)) and in the regime ∆< 0 for µ̄ > 0 (Fig. 4(c)). For small µ̄ and ∆µ, the highest
efficiency can appear in both ∆ > 0 and ∆ < 0 regimes (Figs. 4(a) and (b)), as particle
flows between the charger and battery can either align (both release or absorb particles)
or oppose (one releases while the other absorbs).

The results in Fig. 4 also demonstrate how to manipulate nonequilibrium character-
ized by the chemical potential difference between the reservoirs to enhance the charging
efficiency of the quantum battery. When µ̄ is zero or positive, the maximum efficiency
is predominantly localized in the regime ∆ < 0 under significant chemical potential
difference (Figs. 4(a-c)). However, when µ̄ is negative, such as µ̄ = −6λ, the role of
nonequilibrium becomes negligible for enhancing efficiency.

From the results in Fig. 4, we observe that the efficiency at resonance (∆ = 0) is
always below 50%. However, this efficiency can exceed 90% when the charger is driven
non-resonantly (∆ ̸= 0). Therefore, non-resonant driving proves to be a more effective
strategy for enhancing the performance of the quantum battery in our setup.

5 Charging power

In the battery scenario, the charging power P(τ) = E(τ)/τ is another key quantity of
interest. It describes the "velocity" of the charging process, as E(τ) represents the en-
ergy transferred to the battery from the charger. In Figs. 5(a) and (b), we analyze the
charging power in both equilibrium and nonequilibrium cases.

In the equilibrium case, the results shown in Fig. 5(a) indicate that both the chem-
ical potential and the temperature have minimal impact on the charging power. This
suggests that an equilibrium system alone cannot effectively enhance the charging pow-
er. Fortunately, this limitation can be addressed by transitioning to the nonequilibrium
setup.

As illustrated in Fig. 5(b), compared to the equilibrium case with ∆µ = 0, signifi-
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Figure 4: The efficiency Rss as a function of the chemical potential difference ∆µ
and the detuning ∆ for nonequilibrium fermion reservoirs. The parameters are set
as F = 0.5λ, ωc = 5λ, T1 = T2 = λ, ∆̄ = 0, and α1 = α2 = 0.1λ.
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Figure 5: The charging power P(τ) = E(τ)/τ in the equilibrium
and nonequilibrium fermion reservoirs. The parameters are set as
µ1 = µ2 = µ, T1 = T2 = T, F = 0.5λ,ωc = 5λ,∆1 = ∆2 = 0,α1 = α2 = 0.1λ
for (a) and T1 = T2 = λ, F = 0.5λ,ωc = 5λ, ∆̄ = 0,α1 = α2 = 0.1λ for (b).
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cantly higher charging power can be achieved for ∆µ > 0 in the regime ∆ < 0. This
highlights the pivotal role of the compensation mechanism in enhancing the charging
power in a nonequilibrium quantum battery setup.

6 Conclusion

In this paper, we have investigated the efficiency of a quantum battery setup where
both the charger and the battery are modeled as two-level systems. These systems
are coherently coupled to each other and simultaneously interact with their respective
fermionic reservoirs, with nonequilibrium characterized by the chemical potential dif-
ference. Going beyond the traditional phenomenological master equation, we consider
the effects of external driving and charger-battery coupling on the eigen spectrum of
the system. By treating these effects in a non-perturbative manner, we derive the Red-
field master equation without applying the secular approximation. Solving this master
equation, we reveal the significant role of nonequilibrium reservoirs in the performance
of the quantum battery setup. Generally, the Redfield master equation does not guar-
antee the positivity of the density matrix, as the eigen values of the density matrix may
become negative. However, we have verified that the density matrix remains positive
throughout the entire parameter regime considered in this study. Our results demon-
strate that when the charger is driven non-resonantly, the chemical potential difference
in the fermionic reservoirs can enhance the quantum battery’s efficiency via a compen-
sation mechanism. This mechanism is particularly effective under non-resonant driving
and can also be employed to boost the charging power of the quantum battery under
significant nonequilibrium conditions. In summary, nonequilibrium reservoirs provide
an effective framework for designing energy devices based on open quantum systems.
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